1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/g1AllocRegion.hpp"
  30 #include "gc_implementation/g1/g1HRPrinter.hpp"
  31 #include "gc_implementation/g1/g1RemSet.hpp"
  32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  33 #include "gc_implementation/g1/heapRegionSeq.hpp"
  34 #include "gc_implementation/g1/heapRegionSets.hpp"
  35 #include "gc_implementation/shared/hSpaceCounters.hpp"
  36 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
  37 #include "memory/barrierSet.hpp"
  38 #include "memory/memRegion.hpp"
  39 #include "memory/sharedHeap.hpp"
  40 #include "utilities/stack.hpp"
  41 
  42 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  43 // It uses the "Garbage First" heap organization and algorithm, which
  44 // may combine concurrent marking with parallel, incremental compaction of
  45 // heap subsets that will yield large amounts of garbage.
  46 
  47 class HeapRegion;
  48 class HRRSCleanupTask;
  49 class GenerationSpec;
  50 class OopsInHeapRegionClosure;
  51 class G1KlassScanClosure;
  52 class G1ScanHeapEvacClosure;
  53 class ObjectClosure;
  54 class SpaceClosure;
  55 class CompactibleSpaceClosure;
  56 class Space;
  57 class G1CollectorPolicy;
  58 class GenRemSet;
  59 class G1RemSet;
  60 class HeapRegionRemSetIterator;
  61 class ConcurrentMark;
  62 class ConcurrentMarkThread;
  63 class ConcurrentG1Refine;
  64 class GenerationCounters;
  65 
  66 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  67 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  68 
  69 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  70 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  71 
  72 enum GCAllocPurpose {
  73   GCAllocPurposeStart = 0,
  74   GCAllocForTenured = GCAllocPurposeStart,
  75   GCAllocForSurvived = GCAllocPurposeStart + 1,
  76   GCAllocPurposeCount = GCAllocPurposeStart + 2
  77 };
  78 
  79 class YoungList : public CHeapObj<mtGC> {
  80 private:
  81   G1CollectedHeap* _g1h;
  82 
  83   HeapRegion* _head;
  84 
  85   HeapRegion* _survivor_head;
  86   HeapRegion* _survivor_tail;
  87 
  88   HeapRegion* _curr;
  89 
  90   uint        _length;
  91   uint        _survivor_length;
  92 
  93   size_t      _last_sampled_rs_lengths;
  94   size_t      _sampled_rs_lengths;
  95 
  96   void         empty_list(HeapRegion* list);
  97 
  98 public:
  99   YoungList(G1CollectedHeap* g1h);
 100 
 101   void         push_region(HeapRegion* hr);
 102   void         add_survivor_region(HeapRegion* hr);
 103 
 104   void         empty_list();
 105   bool         is_empty() { return _length == 0; }
 106   uint         length() { return _length; }
 107   uint         survivor_length() { return _survivor_length; }
 108 
 109   // Currently we do not keep track of the used byte sum for the
 110   // young list and the survivors and it'd be quite a lot of work to
 111   // do so. When we'll eventually replace the young list with
 112   // instances of HeapRegionLinkedList we'll get that for free. So,
 113   // we'll report the more accurate information then.
 114   size_t       eden_used_bytes() {
 115     assert(length() >= survivor_length(), "invariant");
 116     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
 117   }
 118   size_t       survivor_used_bytes() {
 119     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 120   }
 121 
 122   void rs_length_sampling_init();
 123   bool rs_length_sampling_more();
 124   void rs_length_sampling_next();
 125 
 126   void reset_sampled_info() {
 127     _last_sampled_rs_lengths =   0;
 128   }
 129   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 130 
 131   // for development purposes
 132   void reset_auxilary_lists();
 133   void clear() { _head = NULL; _length = 0; }
 134 
 135   void clear_survivors() {
 136     _survivor_head    = NULL;
 137     _survivor_tail    = NULL;
 138     _survivor_length  = 0;
 139   }
 140 
 141   HeapRegion* first_region() { return _head; }
 142   HeapRegion* first_survivor_region() { return _survivor_head; }
 143   HeapRegion* last_survivor_region() { return _survivor_tail; }
 144 
 145   // debugging
 146   bool          check_list_well_formed();
 147   bool          check_list_empty(bool check_sample = true);
 148   void          print();
 149 };
 150 
 151 class MutatorAllocRegion : public G1AllocRegion {
 152 protected:
 153   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 154   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 155 public:
 156   MutatorAllocRegion()
 157     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
 158 };
 159 
 160 // The G1 STW is alive closure.
 161 // An instance is embedded into the G1CH and used as the
 162 // (optional) _is_alive_non_header closure in the STW
 163 // reference processor. It is also extensively used during
 164 // refence processing during STW evacuation pauses.
 165 class G1STWIsAliveClosure: public BoolObjectClosure {
 166   G1CollectedHeap* _g1;
 167 public:
 168   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 169   bool do_object_b(oop p);
 170 };
 171 
 172 class SurvivorGCAllocRegion : public G1AllocRegion {
 173 protected:
 174   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 175   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 176 public:
 177   SurvivorGCAllocRegion()
 178   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
 179 };
 180 
 181 class OldGCAllocRegion : public G1AllocRegion {
 182 protected:
 183   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 184   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 185 public:
 186   OldGCAllocRegion()
 187   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
 188 };
 189 
 190 class RefineCardTableEntryClosure;
 191 
 192 class G1CollectedHeap : public SharedHeap {
 193   friend class VM_G1CollectForAllocation;
 194   friend class VM_G1CollectFull;
 195   friend class VM_G1IncCollectionPause;
 196   friend class VMStructs;
 197   friend class MutatorAllocRegion;
 198   friend class SurvivorGCAllocRegion;
 199   friend class OldGCAllocRegion;
 200 
 201   // Closures used in implementation.
 202   template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
 203   friend class G1ParCopyClosure;
 204   friend class G1IsAliveClosure;
 205   friend class G1EvacuateFollowersClosure;
 206   friend class G1ParScanThreadState;
 207   friend class G1ParScanClosureSuper;
 208   friend class G1ParEvacuateFollowersClosure;
 209   friend class G1ParTask;
 210   friend class G1FreeGarbageRegionClosure;
 211   friend class RefineCardTableEntryClosure;
 212   friend class G1PrepareCompactClosure;
 213   friend class RegionSorter;
 214   friend class RegionResetter;
 215   friend class CountRCClosure;
 216   friend class EvacPopObjClosure;
 217   friend class G1ParCleanupCTTask;
 218 
 219   // Other related classes.
 220   friend class G1MarkSweep;
 221 
 222 private:
 223   // The one and only G1CollectedHeap, so static functions can find it.
 224   static G1CollectedHeap* _g1h;
 225 
 226   static size_t _humongous_object_threshold_in_words;
 227 
 228   // Storage for the G1 heap.
 229   VirtualSpace _g1_storage;
 230   MemRegion    _g1_reserved;
 231 
 232   // The part of _g1_storage that is currently committed.
 233   MemRegion _g1_committed;
 234 
 235   // The master free list. It will satisfy all new region allocations.
 236   MasterFreeRegionList      _free_list;
 237 
 238   // The secondary free list which contains regions that have been
 239   // freed up during the cleanup process. This will be appended to the
 240   // master free list when appropriate.
 241   SecondaryFreeRegionList   _secondary_free_list;
 242 
 243   // It keeps track of the old regions.
 244   MasterOldRegionSet        _old_set;
 245 
 246   // It keeps track of the humongous regions.
 247   MasterHumongousRegionSet  _humongous_set;
 248 
 249   // The number of regions we could create by expansion.
 250   uint _expansion_regions;
 251 
 252   // The block offset table for the G1 heap.
 253   G1BlockOffsetSharedArray* _bot_shared;
 254 
 255   // Tears down the region sets / lists so that they are empty and the
 256   // regions on the heap do not belong to a region set / list. The
 257   // only exception is the humongous set which we leave unaltered. If
 258   // free_list_only is true, it will only tear down the master free
 259   // list. It is called before a Full GC (free_list_only == false) or
 260   // before heap shrinking (free_list_only == true).
 261   void tear_down_region_sets(bool free_list_only);
 262 
 263   // Rebuilds the region sets / lists so that they are repopulated to
 264   // reflect the contents of the heap. The only exception is the
 265   // humongous set which was not torn down in the first place. If
 266   // free_list_only is true, it will only rebuild the master free
 267   // list. It is called after a Full GC (free_list_only == false) or
 268   // after heap shrinking (free_list_only == true).
 269   void rebuild_region_sets(bool free_list_only);
 270 
 271   // The sequence of all heap regions in the heap.
 272   HeapRegionSeq _hrs;
 273 
 274   // Alloc region used to satisfy mutator allocation requests.
 275   MutatorAllocRegion _mutator_alloc_region;
 276 
 277   // Alloc region used to satisfy allocation requests by the GC for
 278   // survivor objects.
 279   SurvivorGCAllocRegion _survivor_gc_alloc_region;
 280 
 281   // PLAB sizing policy for survivors.
 282   PLABStats _survivor_plab_stats;
 283 
 284   // Alloc region used to satisfy allocation requests by the GC for
 285   // old objects.
 286   OldGCAllocRegion _old_gc_alloc_region;
 287 
 288   // PLAB sizing policy for tenured objects.
 289   PLABStats _old_plab_stats;
 290 
 291   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
 292     PLABStats* stats = NULL;
 293 
 294     switch (purpose) {
 295     case GCAllocForSurvived:
 296       stats = &_survivor_plab_stats;
 297       break;
 298     case GCAllocForTenured:
 299       stats = &_old_plab_stats;
 300       break;
 301     default:
 302       assert(false, "unrecognized GCAllocPurpose");
 303     }
 304 
 305     return stats;
 306   }
 307 
 308   // The last old region we allocated to during the last GC.
 309   // Typically, it is not full so we should re-use it during the next GC.
 310   HeapRegion* _retained_old_gc_alloc_region;
 311 
 312   // It specifies whether we should attempt to expand the heap after a
 313   // region allocation failure. If heap expansion fails we set this to
 314   // false so that we don't re-attempt the heap expansion (it's likely
 315   // that subsequent expansion attempts will also fail if one fails).
 316   // Currently, it is only consulted during GC and it's reset at the
 317   // start of each GC.
 318   bool _expand_heap_after_alloc_failure;
 319 
 320   // It resets the mutator alloc region before new allocations can take place.
 321   void init_mutator_alloc_region();
 322 
 323   // It releases the mutator alloc region.
 324   void release_mutator_alloc_region();
 325 
 326   // It initializes the GC alloc regions at the start of a GC.
 327   void init_gc_alloc_regions();
 328 
 329   // It releases the GC alloc regions at the end of a GC.
 330   void release_gc_alloc_regions(uint no_of_gc_workers);
 331 
 332   // It does any cleanup that needs to be done on the GC alloc regions
 333   // before a Full GC.
 334   void abandon_gc_alloc_regions();
 335 
 336   // Helper for monitoring and management support.
 337   G1MonitoringSupport* _g1mm;
 338 
 339   // Determines PLAB size for a particular allocation purpose.
 340   size_t desired_plab_sz(GCAllocPurpose purpose);
 341 
 342   // Outside of GC pauses, the number of bytes used in all regions other
 343   // than the current allocation region.
 344   size_t _summary_bytes_used;
 345 
 346   // This is used for a quick test on whether a reference points into
 347   // the collection set or not. Basically, we have an array, with one
 348   // byte per region, and that byte denotes whether the corresponding
 349   // region is in the collection set or not. The entry corresponding
 350   // the bottom of the heap, i.e., region 0, is pointed to by
 351   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
 352   // biased so that it actually points to address 0 of the address
 353   // space, to make the test as fast as possible (we can simply shift
 354   // the address to address into it, instead of having to subtract the
 355   // bottom of the heap from the address before shifting it; basically
 356   // it works in the same way the card table works).
 357   bool* _in_cset_fast_test;
 358 
 359   // The allocated array used for the fast test on whether a reference
 360   // points into the collection set or not. This field is also used to
 361   // free the array.
 362   bool* _in_cset_fast_test_base;
 363 
 364   // The length of the _in_cset_fast_test_base array.
 365   uint _in_cset_fast_test_length;
 366 
 367   volatile unsigned _gc_time_stamp;
 368 
 369   size_t* _surviving_young_words;
 370 
 371   G1HRPrinter _hr_printer;
 372 
 373   void setup_surviving_young_words();
 374   void update_surviving_young_words(size_t* surv_young_words);
 375   void cleanup_surviving_young_words();
 376 
 377   // It decides whether an explicit GC should start a concurrent cycle
 378   // instead of doing a STW GC. Currently, a concurrent cycle is
 379   // explicitly started if:
 380   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 381   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 382   // (c) cause == _g1_humongous_allocation
 383   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 384 
 385   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 386   // concurrent cycles) we have started.
 387   volatile unsigned int _old_marking_cycles_started;
 388 
 389   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 390   // concurrent cycles) we have completed.
 391   volatile unsigned int _old_marking_cycles_completed;
 392 
 393   // This is a non-product method that is helpful for testing. It is
 394   // called at the end of a GC and artificially expands the heap by
 395   // allocating a number of dead regions. This way we can induce very
 396   // frequent marking cycles and stress the cleanup / concurrent
 397   // cleanup code more (as all the regions that will be allocated by
 398   // this method will be found dead by the marking cycle).
 399   void allocate_dummy_regions() PRODUCT_RETURN;
 400 
 401   // Clear RSets after a compaction. It also resets the GC time stamps.
 402   void clear_rsets_post_compaction();
 403 
 404   // If the HR printer is active, dump the state of the regions in the
 405   // heap after a compaction.
 406   void print_hrs_post_compaction();
 407 
 408   double verify(bool guard, const char* msg);
 409   void verify_before_gc();
 410   void verify_after_gc();
 411 
 412   void log_gc_header();
 413   void log_gc_footer(double pause_time_sec);
 414 
 415   // These are macros so that, if the assert fires, we get the correct
 416   // line number, file, etc.
 417 
 418 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 419   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 420           (_extra_message_),                                                  \
 421           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 422           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 423           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 424 
 425 #define assert_heap_locked()                                                  \
 426   do {                                                                        \
 427     assert(Heap_lock->owned_by_self(),                                        \
 428            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 429   } while (0)
 430 
 431 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 432   do {                                                                        \
 433     assert(Heap_lock->owned_by_self() ||                                      \
 434            (SafepointSynchronize::is_at_safepoint() &&                        \
 435              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 436            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 437                                         "should be at a safepoint"));         \
 438   } while (0)
 439 
 440 #define assert_heap_locked_and_not_at_safepoint()                             \
 441   do {                                                                        \
 442     assert(Heap_lock->owned_by_self() &&                                      \
 443                                     !SafepointSynchronize::is_at_safepoint(), \
 444           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 445                                        "should not be at a safepoint"));      \
 446   } while (0)
 447 
 448 #define assert_heap_not_locked()                                              \
 449   do {                                                                        \
 450     assert(!Heap_lock->owned_by_self(),                                       \
 451         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 452   } while (0)
 453 
 454 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 455   do {                                                                        \
 456     assert(!Heap_lock->owned_by_self() &&                                     \
 457                                     !SafepointSynchronize::is_at_safepoint(), \
 458       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 459                                    "should not be at a safepoint"));          \
 460   } while (0)
 461 
 462 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 463   do {                                                                        \
 464     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 465               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 466            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 467   } while (0)
 468 
 469 #define assert_not_at_safepoint()                                             \
 470   do {                                                                        \
 471     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 472            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 473   } while (0)
 474 
 475 protected:
 476 
 477   // The young region list.
 478   YoungList*  _young_list;
 479 
 480   // The current policy object for the collector.
 481   G1CollectorPolicy* _g1_policy;
 482 
 483   // This is the second level of trying to allocate a new region. If
 484   // new_region() didn't find a region on the free_list, this call will
 485   // check whether there's anything available on the
 486   // secondary_free_list and/or wait for more regions to appear on
 487   // that list, if _free_regions_coming is set.
 488   HeapRegion* new_region_try_secondary_free_list();
 489 
 490   // Try to allocate a single non-humongous HeapRegion sufficient for
 491   // an allocation of the given word_size. If do_expand is true,
 492   // attempt to expand the heap if necessary to satisfy the allocation
 493   // request.
 494   HeapRegion* new_region(size_t word_size, bool do_expand);
 495 
 496   // Attempt to satisfy a humongous allocation request of the given
 497   // size by finding a contiguous set of free regions of num_regions
 498   // length and remove them from the master free list. Return the
 499   // index of the first region or G1_NULL_HRS_INDEX if the search
 500   // was unsuccessful.
 501   uint humongous_obj_allocate_find_first(uint num_regions,
 502                                          size_t word_size);
 503 
 504   // Initialize a contiguous set of free regions of length num_regions
 505   // and starting at index first so that they appear as a single
 506   // humongous region.
 507   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 508                                                       uint num_regions,
 509                                                       size_t word_size);
 510 
 511   // Attempt to allocate a humongous object of the given size. Return
 512   // NULL if unsuccessful.
 513   HeapWord* humongous_obj_allocate(size_t word_size);
 514 
 515   // The following two methods, allocate_new_tlab() and
 516   // mem_allocate(), are the two main entry points from the runtime
 517   // into the G1's allocation routines. They have the following
 518   // assumptions:
 519   //
 520   // * They should both be called outside safepoints.
 521   //
 522   // * They should both be called without holding the Heap_lock.
 523   //
 524   // * All allocation requests for new TLABs should go to
 525   //   allocate_new_tlab().
 526   //
 527   // * All non-TLAB allocation requests should go to mem_allocate().
 528   //
 529   // * If either call cannot satisfy the allocation request using the
 530   //   current allocating region, they will try to get a new one. If
 531   //   this fails, they will attempt to do an evacuation pause and
 532   //   retry the allocation.
 533   //
 534   // * If all allocation attempts fail, even after trying to schedule
 535   //   an evacuation pause, allocate_new_tlab() will return NULL,
 536   //   whereas mem_allocate() will attempt a heap expansion and/or
 537   //   schedule a Full GC.
 538   //
 539   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 540   //   should never be called with word_size being humongous. All
 541   //   humongous allocation requests should go to mem_allocate() which
 542   //   will satisfy them with a special path.
 543 
 544   virtual HeapWord* allocate_new_tlab(size_t word_size);
 545 
 546   virtual HeapWord* mem_allocate(size_t word_size,
 547                                  bool*  gc_overhead_limit_was_exceeded);
 548 
 549   // The following three methods take a gc_count_before_ret
 550   // parameter which is used to return the GC count if the method
 551   // returns NULL. Given that we are required to read the GC count
 552   // while holding the Heap_lock, and these paths will take the
 553   // Heap_lock at some point, it's easier to get them to read the GC
 554   // count while holding the Heap_lock before they return NULL instead
 555   // of the caller (namely: mem_allocate()) having to also take the
 556   // Heap_lock just to read the GC count.
 557 
 558   // First-level mutator allocation attempt: try to allocate out of
 559   // the mutator alloc region without taking the Heap_lock. This
 560   // should only be used for non-humongous allocations.
 561   inline HeapWord* attempt_allocation(size_t word_size,
 562                                       unsigned int* gc_count_before_ret,
 563                                       int* gclocker_retry_count_ret);
 564 
 565   // Second-level mutator allocation attempt: take the Heap_lock and
 566   // retry the allocation attempt, potentially scheduling a GC
 567   // pause. This should only be used for non-humongous allocations.
 568   HeapWord* attempt_allocation_slow(size_t word_size,
 569                                     unsigned int* gc_count_before_ret,
 570                                     int* gclocker_retry_count_ret);
 571 
 572   // Takes the Heap_lock and attempts a humongous allocation. It can
 573   // potentially schedule a GC pause.
 574   HeapWord* attempt_allocation_humongous(size_t word_size,
 575                                          unsigned int* gc_count_before_ret,
 576                                          int* gclocker_retry_count_ret);
 577 
 578   // Allocation attempt that should be called during safepoints (e.g.,
 579   // at the end of a successful GC). expect_null_mutator_alloc_region
 580   // specifies whether the mutator alloc region is expected to be NULL
 581   // or not.
 582   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 583                                        bool expect_null_mutator_alloc_region);
 584 
 585   // It dirties the cards that cover the block so that so that the post
 586   // write barrier never queues anything when updating objects on this
 587   // block. It is assumed (and in fact we assert) that the block
 588   // belongs to a young region.
 589   inline void dirty_young_block(HeapWord* start, size_t word_size);
 590 
 591   // Allocate blocks during garbage collection. Will ensure an
 592   // allocation region, either by picking one or expanding the
 593   // heap, and then allocate a block of the given size. The block
 594   // may not be a humongous - it must fit into a single heap region.
 595   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
 596 
 597   // Ensure that no further allocations can happen in "r", bearing in mind
 598   // that parallel threads might be attempting allocations.
 599   void par_allocate_remaining_space(HeapRegion* r);
 600 
 601   // Allocation attempt during GC for a survivor object / PLAB.
 602   inline HeapWord* survivor_attempt_allocation(size_t word_size);
 603 
 604   // Allocation attempt during GC for an old object / PLAB.
 605   inline HeapWord* old_attempt_allocation(size_t word_size);
 606 
 607   // These methods are the "callbacks" from the G1AllocRegion class.
 608 
 609   // For mutator alloc regions.
 610   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 611   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 612                                    size_t allocated_bytes);
 613 
 614   // For GC alloc regions.
 615   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 616                                   GCAllocPurpose ap);
 617   void retire_gc_alloc_region(HeapRegion* alloc_region,
 618                               size_t allocated_bytes, GCAllocPurpose ap);
 619 
 620   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 621   //   inspection request and should collect the entire heap
 622   // - if clear_all_soft_refs is true, all soft references should be
 623   //   cleared during the GC
 624   // - if explicit_gc is false, word_size describes the allocation that
 625   //   the GC should attempt (at least) to satisfy
 626   // - it returns false if it is unable to do the collection due to the
 627   //   GC locker being active, true otherwise
 628   bool do_collection(bool explicit_gc,
 629                      bool clear_all_soft_refs,
 630                      size_t word_size);
 631 
 632   // Callback from VM_G1CollectFull operation.
 633   // Perform a full collection.
 634   virtual void do_full_collection(bool clear_all_soft_refs);
 635 
 636   // Resize the heap if necessary after a full collection.  If this is
 637   // after a collect-for allocation, "word_size" is the allocation size,
 638   // and will be considered part of the used portion of the heap.
 639   void resize_if_necessary_after_full_collection(size_t word_size);
 640 
 641   // Callback from VM_G1CollectForAllocation operation.
 642   // This function does everything necessary/possible to satisfy a
 643   // failed allocation request (including collection, expansion, etc.)
 644   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
 645 
 646   // Attempting to expand the heap sufficiently
 647   // to support an allocation of the given "word_size".  If
 648   // successful, perform the allocation and return the address of the
 649   // allocated block, or else "NULL".
 650   HeapWord* expand_and_allocate(size_t word_size);
 651 
 652   // Process any reference objects discovered during
 653   // an incremental evacuation pause.
 654   void process_discovered_references(uint no_of_gc_workers);
 655 
 656   // Enqueue any remaining discovered references
 657   // after processing.
 658   void enqueue_discovered_references(uint no_of_gc_workers);
 659 
 660 public:
 661 
 662   G1MonitoringSupport* g1mm() {
 663     assert(_g1mm != NULL, "should have been initialized");
 664     return _g1mm;
 665   }
 666 
 667   // Expand the garbage-first heap by at least the given size (in bytes!).
 668   // Returns true if the heap was expanded by the requested amount;
 669   // false otherwise.
 670   // (Rounds up to a HeapRegion boundary.)
 671   bool expand(size_t expand_bytes);
 672 
 673   // Do anything common to GC's.
 674   virtual void gc_prologue(bool full);
 675   virtual void gc_epilogue(bool full);
 676 
 677   // We register a region with the fast "in collection set" test. We
 678   // simply set to true the array slot corresponding to this region.
 679   void register_region_with_in_cset_fast_test(HeapRegion* r) {
 680     assert(_in_cset_fast_test_base != NULL, "sanity");
 681     assert(r->in_collection_set(), "invariant");
 682     uint index = r->hrs_index();
 683     assert(index < _in_cset_fast_test_length, "invariant");
 684     assert(!_in_cset_fast_test_base[index], "invariant");
 685     _in_cset_fast_test_base[index] = true;
 686   }
 687 
 688   // This is a fast test on whether a reference points into the
 689   // collection set or not. It does not assume that the reference
 690   // points into the heap; if it doesn't, it will return false.
 691   bool in_cset_fast_test(oop obj) {
 692     assert(_in_cset_fast_test != NULL, "sanity");
 693     if (_g1_committed.contains((HeapWord*) obj)) {
 694       // no need to subtract the bottom of the heap from obj,
 695       // _in_cset_fast_test is biased
 696       uintx index = (uintx) obj >> HeapRegion::LogOfHRGrainBytes;
 697       bool ret = _in_cset_fast_test[index];
 698       // let's make sure the result is consistent with what the slower
 699       // test returns
 700       assert( ret || !obj_in_cs(obj), "sanity");
 701       assert(!ret ||  obj_in_cs(obj), "sanity");
 702       return ret;
 703     } else {
 704       return false;
 705     }
 706   }
 707 
 708   void clear_cset_fast_test() {
 709     assert(_in_cset_fast_test_base != NULL, "sanity");
 710     memset(_in_cset_fast_test_base, false,
 711            (size_t) _in_cset_fast_test_length * sizeof(bool));
 712   }
 713 
 714   // This is called at the start of either a concurrent cycle or a Full
 715   // GC to update the number of old marking cycles started.
 716   void increment_old_marking_cycles_started();
 717 
 718   // This is called at the end of either a concurrent cycle or a Full
 719   // GC to update the number of old marking cycles completed. Those two
 720   // can happen in a nested fashion, i.e., we start a concurrent
 721   // cycle, a Full GC happens half-way through it which ends first,
 722   // and then the cycle notices that a Full GC happened and ends
 723   // too. The concurrent parameter is a boolean to help us do a bit
 724   // tighter consistency checking in the method. If concurrent is
 725   // false, the caller is the inner caller in the nesting (i.e., the
 726   // Full GC). If concurrent is true, the caller is the outer caller
 727   // in this nesting (i.e., the concurrent cycle). Further nesting is
 728   // not currently supported. The end of this call also notifies
 729   // the FullGCCount_lock in case a Java thread is waiting for a full
 730   // GC to happen (e.g., it called System.gc() with
 731   // +ExplicitGCInvokesConcurrent).
 732   void increment_old_marking_cycles_completed(bool concurrent);
 733 
 734   unsigned int old_marking_cycles_completed() {
 735     return _old_marking_cycles_completed;
 736   }
 737 
 738   G1HRPrinter* hr_printer() { return &_hr_printer; }
 739 
 740 protected:
 741 
 742   // Shrink the garbage-first heap by at most the given size (in bytes!).
 743   // (Rounds down to a HeapRegion boundary.)
 744   virtual void shrink(size_t expand_bytes);
 745   void shrink_helper(size_t expand_bytes);
 746 
 747   #if TASKQUEUE_STATS
 748   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 749   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 750   void reset_taskqueue_stats();
 751   #endif // TASKQUEUE_STATS
 752 
 753   // Schedule the VM operation that will do an evacuation pause to
 754   // satisfy an allocation request of word_size. *succeeded will
 755   // return whether the VM operation was successful (it did do an
 756   // evacuation pause) or not (another thread beat us to it or the GC
 757   // locker was active). Given that we should not be holding the
 758   // Heap_lock when we enter this method, we will pass the
 759   // gc_count_before (i.e., total_collections()) as a parameter since
 760   // it has to be read while holding the Heap_lock. Currently, both
 761   // methods that call do_collection_pause() release the Heap_lock
 762   // before the call, so it's easy to read gc_count_before just before.
 763   HeapWord* do_collection_pause(size_t       word_size,
 764                                 unsigned int gc_count_before,
 765                                 bool*        succeeded);
 766 
 767   // The guts of the incremental collection pause, executed by the vm
 768   // thread. It returns false if it is unable to do the collection due
 769   // to the GC locker being active, true otherwise
 770   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 771 
 772   // Actually do the work of evacuating the collection set.
 773   void evacuate_collection_set();
 774 
 775   // The g1 remembered set of the heap.
 776   G1RemSet* _g1_rem_set;
 777   // And it's mod ref barrier set, used to track updates for the above.
 778   ModRefBarrierSet* _mr_bs;
 779 
 780   // A set of cards that cover the objects for which the Rsets should be updated
 781   // concurrently after the collection.
 782   DirtyCardQueueSet _dirty_card_queue_set;
 783 
 784   // The closure used to refine a single card.
 785   RefineCardTableEntryClosure* _refine_cte_cl;
 786 
 787   // A function to check the consistency of dirty card logs.
 788   void check_ct_logs_at_safepoint();
 789 
 790   // A DirtyCardQueueSet that is used to hold cards that contain
 791   // references into the current collection set. This is used to
 792   // update the remembered sets of the regions in the collection
 793   // set in the event of an evacuation failure.
 794   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 795 
 796   // After a collection pause, make the regions in the CS into free
 797   // regions.
 798   void free_collection_set(HeapRegion* cs_head);
 799 
 800   // Abandon the current collection set without recording policy
 801   // statistics or updating free lists.
 802   void abandon_collection_set(HeapRegion* cs_head);
 803 
 804   // Applies "scan_non_heap_roots" to roots outside the heap,
 805   // "scan_rs" to roots inside the heap (having done "set_region" to
 806   // indicate the region in which the root resides),
 807   // and does "scan_metadata" If "scan_rs" is
 808   // NULL, then this step is skipped.  The "worker_i"
 809   // param is for use with parallel roots processing, and should be
 810   // the "i" of the calling parallel worker thread's work(i) function.
 811   // In the sequential case this param will be ignored.
 812   void g1_process_strong_roots(bool is_scavenging,
 813                                ScanningOption so,
 814                                OopClosure* scan_non_heap_roots,
 815                                OopsInHeapRegionClosure* scan_rs,
 816                                G1KlassScanClosure* scan_klasses,
 817                                int worker_i);
 818 
 819   // Apply "blk" to all the weak roots of the system.  These include
 820   // JNI weak roots, the code cache, system dictionary, symbol table,
 821   // string table, and referents of reachable weak refs.
 822   void g1_process_weak_roots(OopClosure* root_closure);
 823 
 824   // Frees a non-humongous region by initializing its contents and
 825   // adding it to the free list that's passed as a parameter (this is
 826   // usually a local list which will be appended to the master free
 827   // list later). The used bytes of freed regions are accumulated in
 828   // pre_used. If par is true, the region's RSet will not be freed
 829   // up. The assumption is that this will be done later.
 830   void free_region(HeapRegion* hr,
 831                    size_t* pre_used,
 832                    FreeRegionList* free_list,
 833                    bool par);
 834 
 835   // Frees a humongous region by collapsing it into individual regions
 836   // and calling free_region() for each of them. The freed regions
 837   // will be added to the free list that's passed as a parameter (this
 838   // is usually a local list which will be appended to the master free
 839   // list later). The used bytes of freed regions are accumulated in
 840   // pre_used. If par is true, the region's RSet will not be freed
 841   // up. The assumption is that this will be done later.
 842   void free_humongous_region(HeapRegion* hr,
 843                              size_t* pre_used,
 844                              FreeRegionList* free_list,
 845                              HumongousRegionSet* humongous_proxy_set,
 846                              bool par);
 847 
 848   // Notifies all the necessary spaces that the committed space has
 849   // been updated (either expanded or shrunk). It should be called
 850   // after _g1_storage is updated.
 851   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
 852 
 853   // The concurrent marker (and the thread it runs in.)
 854   ConcurrentMark* _cm;
 855   ConcurrentMarkThread* _cmThread;
 856   bool _mark_in_progress;
 857 
 858   // The concurrent refiner.
 859   ConcurrentG1Refine* _cg1r;
 860 
 861   // The parallel task queues
 862   RefToScanQueueSet *_task_queues;
 863 
 864   // True iff a evacuation has failed in the current collection.
 865   bool _evacuation_failed;
 866 
 867   // Set the attribute indicating whether evacuation has failed in the
 868   // current collection.
 869   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
 870 
 871   // Failed evacuations cause some logical from-space objects to have
 872   // forwarding pointers to themselves.  Reset them.
 873   void remove_self_forwarding_pointers();
 874 
 875   // Together, these store an object with a preserved mark, and its mark value.
 876   Stack<oop, mtGC>     _objs_with_preserved_marks;
 877   Stack<markOop, mtGC> _preserved_marks_of_objs;
 878 
 879   // Preserve the mark of "obj", if necessary, in preparation for its mark
 880   // word being overwritten with a self-forwarding-pointer.
 881   void preserve_mark_if_necessary(oop obj, markOop m);
 882 
 883   // The stack of evac-failure objects left to be scanned.
 884   GrowableArray<oop>*    _evac_failure_scan_stack;
 885   // The closure to apply to evac-failure objects.
 886 
 887   OopsInHeapRegionClosure* _evac_failure_closure;
 888   // Set the field above.
 889   void
 890   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 891     _evac_failure_closure = evac_failure_closure;
 892   }
 893 
 894   // Push "obj" on the scan stack.
 895   void push_on_evac_failure_scan_stack(oop obj);
 896   // Process scan stack entries until the stack is empty.
 897   void drain_evac_failure_scan_stack();
 898   // True iff an invocation of "drain_scan_stack" is in progress; to
 899   // prevent unnecessary recursion.
 900   bool _drain_in_progress;
 901 
 902   // Do any necessary initialization for evacuation-failure handling.
 903   // "cl" is the closure that will be used to process evac-failure
 904   // objects.
 905   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 906   // Do any necessary cleanup for evacuation-failure handling data
 907   // structures.
 908   void finalize_for_evac_failure();
 909 
 910   // An attempt to evacuate "obj" has failed; take necessary steps.
 911   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
 912   void handle_evacuation_failure_common(oop obj, markOop m);
 913 
 914 #ifndef PRODUCT
 915   // Support for forcing evacuation failures. Analogous to
 916   // PromotionFailureALot for the other collectors.
 917 
 918   // Records whether G1EvacuationFailureALot should be in effect
 919   // for the current GC
 920   bool _evacuation_failure_alot_for_current_gc;
 921 
 922   // Used to record the GC number for interval checking when
 923   // determining whether G1EvaucationFailureALot is in effect
 924   // for the current GC.
 925   size_t _evacuation_failure_alot_gc_number;
 926 
 927   // Count of the number of evacuations between failures.
 928   volatile size_t _evacuation_failure_alot_count;
 929 
 930   // Set whether G1EvacuationFailureALot should be in effect
 931   // for the current GC (based upon the type of GC and which
 932   // command line flags are set);
 933   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 934                                                   bool during_initial_mark,
 935                                                   bool during_marking);
 936 
 937   inline void set_evacuation_failure_alot_for_current_gc();
 938 
 939   // Return true if it's time to cause an evacuation failure.
 940   inline bool evacuation_should_fail();
 941 
 942   // Reset the G1EvacuationFailureALot counters.  Should be called at
 943   // the end of an evacuation pause in which an evacuation failure ocurred.
 944   inline void reset_evacuation_should_fail();
 945 #endif // !PRODUCT
 946 
 947   // ("Weak") Reference processing support.
 948   //
 949   // G1 has 2 instances of the referece processor class. One
 950   // (_ref_processor_cm) handles reference object discovery
 951   // and subsequent processing during concurrent marking cycles.
 952   //
 953   // The other (_ref_processor_stw) handles reference object
 954   // discovery and processing during full GCs and incremental
 955   // evacuation pauses.
 956   //
 957   // During an incremental pause, reference discovery will be
 958   // temporarily disabled for _ref_processor_cm and will be
 959   // enabled for _ref_processor_stw. At the end of the evacuation
 960   // pause references discovered by _ref_processor_stw will be
 961   // processed and discovery will be disabled. The previous
 962   // setting for reference object discovery for _ref_processor_cm
 963   // will be re-instated.
 964   //
 965   // At the start of marking:
 966   //  * Discovery by the CM ref processor is verified to be inactive
 967   //    and it's discovered lists are empty.
 968   //  * Discovery by the CM ref processor is then enabled.
 969   //
 970   // At the end of marking:
 971   //  * Any references on the CM ref processor's discovered
 972   //    lists are processed (possibly MT).
 973   //
 974   // At the start of full GC we:
 975   //  * Disable discovery by the CM ref processor and
 976   //    empty CM ref processor's discovered lists
 977   //    (without processing any entries).
 978   //  * Verify that the STW ref processor is inactive and it's
 979   //    discovered lists are empty.
 980   //  * Temporarily set STW ref processor discovery as single threaded.
 981   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 982   //    field.
 983   //  * Finally enable discovery by the STW ref processor.
 984   //
 985   // The STW ref processor is used to record any discovered
 986   // references during the full GC.
 987   //
 988   // At the end of a full GC we:
 989   //  * Enqueue any reference objects discovered by the STW ref processor
 990   //    that have non-live referents. This has the side-effect of
 991   //    making the STW ref processor inactive by disabling discovery.
 992   //  * Verify that the CM ref processor is still inactive
 993   //    and no references have been placed on it's discovered
 994   //    lists (also checked as a precondition during initial marking).
 995 
 996   // The (stw) reference processor...
 997   ReferenceProcessor* _ref_processor_stw;
 998 
 999   // During reference object discovery, the _is_alive_non_header
1000   // closure (if non-null) is applied to the referent object to
1001   // determine whether the referent is live. If so then the
1002   // reference object does not need to be 'discovered' and can
1003   // be treated as a regular oop. This has the benefit of reducing
1004   // the number of 'discovered' reference objects that need to
1005   // be processed.
1006   //
1007   // Instance of the is_alive closure for embedding into the
1008   // STW reference processor as the _is_alive_non_header field.
1009   // Supplying a value for the _is_alive_non_header field is
1010   // optional but doing so prevents unnecessary additions to
1011   // the discovered lists during reference discovery.
1012   G1STWIsAliveClosure _is_alive_closure_stw;
1013 
1014   // The (concurrent marking) reference processor...
1015   ReferenceProcessor* _ref_processor_cm;
1016 
1017   // Instance of the concurrent mark is_alive closure for embedding
1018   // into the Concurrent Marking reference processor as the
1019   // _is_alive_non_header field. Supplying a value for the
1020   // _is_alive_non_header field is optional but doing so prevents
1021   // unnecessary additions to the discovered lists during reference
1022   // discovery.
1023   G1CMIsAliveClosure _is_alive_closure_cm;
1024 
1025   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
1026   HeapRegion** _worker_cset_start_region;
1027 
1028   // Time stamp to validate the regions recorded in the cache
1029   // used by G1CollectedHeap::start_cset_region_for_worker().
1030   // The heap region entry for a given worker is valid iff
1031   // the associated time stamp value matches the current value
1032   // of G1CollectedHeap::_gc_time_stamp.
1033   unsigned int* _worker_cset_start_region_time_stamp;
1034 
1035   enum G1H_process_strong_roots_tasks {
1036     G1H_PS_filter_satb_buffers,
1037     G1H_PS_refProcessor_oops_do,
1038     // Leave this one last.
1039     G1H_PS_NumElements
1040   };
1041 
1042   SubTasksDone* _process_strong_tasks;
1043 
1044   volatile bool _free_regions_coming;
1045 
1046 public:
1047 
1048   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
1049 
1050   void set_refine_cte_cl_concurrency(bool concurrent);
1051 
1052   RefToScanQueue *task_queue(int i) const;
1053 
1054   // A set of cards where updates happened during the GC
1055   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
1056 
1057   // A DirtyCardQueueSet that is used to hold cards that contain
1058   // references into the current collection set. This is used to
1059   // update the remembered sets of the regions in the collection
1060   // set in the event of an evacuation failure.
1061   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
1062         { return _into_cset_dirty_card_queue_set; }
1063 
1064   // Create a G1CollectedHeap with the specified policy.
1065   // Must call the initialize method afterwards.
1066   // May not return if something goes wrong.
1067   G1CollectedHeap(G1CollectorPolicy* policy);
1068 
1069   // Initialize the G1CollectedHeap to have the initial and
1070   // maximum sizes and remembered and barrier sets
1071   // specified by the policy object.
1072   jint initialize();
1073 
1074   // Initialize weak reference processing.
1075   virtual void ref_processing_init();
1076 
1077   void set_par_threads(uint t) {
1078     SharedHeap::set_par_threads(t);
1079     // Done in SharedHeap but oddly there are
1080     // two _process_strong_tasks's in a G1CollectedHeap
1081     // so do it here too.
1082     _process_strong_tasks->set_n_threads(t);
1083   }
1084 
1085   // Set _n_par_threads according to a policy TBD.
1086   void set_par_threads();
1087 
1088   void set_n_termination(int t) {
1089     _process_strong_tasks->set_n_threads(t);
1090   }
1091 
1092   virtual CollectedHeap::Name kind() const {
1093     return CollectedHeap::G1CollectedHeap;
1094   }
1095 
1096   // The current policy object for the collector.
1097   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1098 
1099   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
1100 
1101   // Adaptive size policy.  No such thing for g1.
1102   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1103 
1104   // The rem set and barrier set.
1105   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1106   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
1107 
1108   unsigned get_gc_time_stamp() {
1109     return _gc_time_stamp;
1110   }
1111 
1112   void reset_gc_time_stamp() {
1113     _gc_time_stamp = 0;
1114     OrderAccess::fence();
1115     // Clear the cached CSet starting regions and time stamps.
1116     // Their validity is dependent on the GC timestamp.
1117     clear_cset_start_regions();
1118   }
1119 
1120   void check_gc_time_stamps() PRODUCT_RETURN;
1121 
1122   void increment_gc_time_stamp() {
1123     ++_gc_time_stamp;
1124     OrderAccess::fence();
1125   }
1126 
1127   // Reset the given region's GC timestamp. If it's starts humongous,
1128   // also reset the GC timestamp of its corresponding
1129   // continues humongous regions too.
1130   void reset_gc_time_stamps(HeapRegion* hr);
1131 
1132   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1133                                   DirtyCardQueue* into_cset_dcq,
1134                                   bool concurrent, int worker_i);
1135 
1136   // The shared block offset table array.
1137   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1138 
1139   // Reference Processing accessors
1140 
1141   // The STW reference processor....
1142   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1143 
1144   // The Concurent Marking reference processor...
1145   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1146 
1147   virtual size_t capacity() const;
1148   virtual size_t used() const;
1149   // This should be called when we're not holding the heap lock. The
1150   // result might be a bit inaccurate.
1151   size_t used_unlocked() const;
1152   size_t recalculate_used() const;
1153 
1154   // These virtual functions do the actual allocation.
1155   // Some heaps may offer a contiguous region for shared non-blocking
1156   // allocation, via inlined code (by exporting the address of the top and
1157   // end fields defining the extent of the contiguous allocation region.)
1158   // But G1CollectedHeap doesn't yet support this.
1159 
1160   // Return an estimate of the maximum allocation that could be performed
1161   // without triggering any collection or expansion activity.  In a
1162   // generational collector, for example, this is probably the largest
1163   // allocation that could be supported (without expansion) in the youngest
1164   // generation.  It is "unsafe" because no locks are taken; the result
1165   // should be treated as an approximation, not a guarantee, for use in
1166   // heuristic resizing decisions.
1167   virtual size_t unsafe_max_alloc();
1168 
1169   virtual bool is_maximal_no_gc() const {
1170     return _g1_storage.uncommitted_size() == 0;
1171   }
1172 
1173   // The total number of regions in the heap.
1174   uint n_regions() { return _hrs.length(); }
1175 
1176   // The max number of regions in the heap.
1177   uint max_regions() { return _hrs.max_length(); }
1178 
1179   // The number of regions that are completely free.
1180   uint free_regions() { return _free_list.length(); }
1181 
1182   // The number of regions that are not completely free.
1183   uint used_regions() { return n_regions() - free_regions(); }
1184 
1185   // The number of regions available for "regular" expansion.
1186   uint expansion_regions() { return _expansion_regions; }
1187 
1188   // Factory method for HeapRegion instances. It will return NULL if
1189   // the allocation fails.
1190   HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
1191 
1192   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1193   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1194   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1195   void verify_dirty_young_regions() PRODUCT_RETURN;
1196 
1197   // verify_region_sets() performs verification over the region
1198   // lists. It will be compiled in the product code to be used when
1199   // necessary (i.e., during heap verification).
1200   void verify_region_sets();
1201 
1202   // verify_region_sets_optional() is planted in the code for
1203   // list verification in non-product builds (and it can be enabled in
1204   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
1205 #if HEAP_REGION_SET_FORCE_VERIFY
1206   void verify_region_sets_optional() {
1207     verify_region_sets();
1208   }
1209 #else // HEAP_REGION_SET_FORCE_VERIFY
1210   void verify_region_sets_optional() { }
1211 #endif // HEAP_REGION_SET_FORCE_VERIFY
1212 
1213 #ifdef ASSERT
1214   bool is_on_master_free_list(HeapRegion* hr) {
1215     return hr->containing_set() == &_free_list;
1216   }
1217 
1218   bool is_in_humongous_set(HeapRegion* hr) {
1219     return hr->containing_set() == &_humongous_set;
1220   }
1221 #endif // ASSERT
1222 
1223   // Wrapper for the region list operations that can be called from
1224   // methods outside this class.
1225 
1226   void secondary_free_list_add_as_tail(FreeRegionList* list) {
1227     _secondary_free_list.add_as_tail(list);
1228   }
1229 
1230   void append_secondary_free_list() {
1231     _free_list.add_as_head(&_secondary_free_list);
1232   }
1233 
1234   void append_secondary_free_list_if_not_empty_with_lock() {
1235     // If the secondary free list looks empty there's no reason to
1236     // take the lock and then try to append it.
1237     if (!_secondary_free_list.is_empty()) {
1238       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1239       append_secondary_free_list();
1240     }
1241   }
1242 
1243   void old_set_remove(HeapRegion* hr) {
1244     _old_set.remove(hr);
1245   }
1246 
1247   size_t non_young_capacity_bytes() {
1248     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1249   }
1250 
1251   void set_free_regions_coming();
1252   void reset_free_regions_coming();
1253   bool free_regions_coming() { return _free_regions_coming; }
1254   void wait_while_free_regions_coming();
1255 
1256   // Determine whether the given region is one that we are using as an
1257   // old GC alloc region.
1258   bool is_old_gc_alloc_region(HeapRegion* hr) {
1259     return hr == _retained_old_gc_alloc_region;
1260   }
1261 
1262   // Perform a collection of the heap; intended for use in implementing
1263   // "System.gc".  This probably implies as full a collection as the
1264   // "CollectedHeap" supports.
1265   virtual void collect(GCCause::Cause cause);
1266 
1267   // The same as above but assume that the caller holds the Heap_lock.
1268   void collect_locked(GCCause::Cause cause);
1269 
1270   // True iff a evacuation has failed in the most-recent collection.
1271   bool evacuation_failed() { return _evacuation_failed; }
1272 
1273   // It will free a region if it has allocated objects in it that are
1274   // all dead. It calls either free_region() or
1275   // free_humongous_region() depending on the type of the region that
1276   // is passed to it.
1277   void free_region_if_empty(HeapRegion* hr,
1278                             size_t* pre_used,
1279                             FreeRegionList* free_list,
1280                             OldRegionSet* old_proxy_set,
1281                             HumongousRegionSet* humongous_proxy_set,
1282                             HRRSCleanupTask* hrrs_cleanup_task,
1283                             bool par);
1284 
1285   // It appends the free list to the master free list and updates the
1286   // master humongous list according to the contents of the proxy
1287   // list. It also adjusts the total used bytes according to pre_used
1288   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
1289   void update_sets_after_freeing_regions(size_t pre_used,
1290                                        FreeRegionList* free_list,
1291                                        OldRegionSet* old_proxy_set,
1292                                        HumongousRegionSet* humongous_proxy_set,
1293                                        bool par);
1294 
1295   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1296   virtual bool is_in(const void* p) const;
1297 
1298   // Return "TRUE" iff the given object address is within the collection
1299   // set.
1300   inline bool obj_in_cs(oop obj);
1301 
1302   // Return "TRUE" iff the given object address is in the reserved
1303   // region of g1.
1304   bool is_in_g1_reserved(const void* p) const {
1305     return _g1_reserved.contains(p);
1306   }
1307 
1308   // Returns a MemRegion that corresponds to the space that has been
1309   // reserved for the heap
1310   MemRegion g1_reserved() {
1311     return _g1_reserved;
1312   }
1313 
1314   // Returns a MemRegion that corresponds to the space that has been
1315   // committed in the heap
1316   MemRegion g1_committed() {
1317     return _g1_committed;
1318   }
1319 
1320   virtual bool is_in_closed_subset(const void* p) const;
1321 
1322   // This resets the card table to all zeros.  It is used after
1323   // a collection pause which used the card table to claim cards.
1324   void cleanUpCardTable();
1325 
1326   // Iteration functions.
1327 
1328   // Iterate over all the ref-containing fields of all objects, calling
1329   // "cl.do_oop" on each.
1330   virtual void oop_iterate(ExtendedOopClosure* cl);
1331 
1332   // Same as above, restricted to a memory region.
1333   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
1334 
1335   // Iterate over all objects, calling "cl.do_object" on each.
1336   virtual void object_iterate(ObjectClosure* cl);
1337 
1338   virtual void safe_object_iterate(ObjectClosure* cl) {
1339     object_iterate(cl);
1340   }
1341 
1342   // Iterate over all objects allocated since the last collection, calling
1343   // "cl.do_object" on each.  The heap must have been initialized properly
1344   // to support this function, or else this call will fail.
1345   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
1346 
1347   // Iterate over all spaces in use in the heap, in ascending address order.
1348   virtual void space_iterate(SpaceClosure* cl);
1349 
1350   // Iterate over heap regions, in address order, terminating the
1351   // iteration early if the "doHeapRegion" method returns "true".
1352   void heap_region_iterate(HeapRegionClosure* blk) const;
1353 
1354   // Return the region with the given index. It assumes the index is valid.
1355   HeapRegion* region_at(uint index) const { return _hrs.at(index); }
1356 
1357   // Divide the heap region sequence into "chunks" of some size (the number
1358   // of regions divided by the number of parallel threads times some
1359   // overpartition factor, currently 4).  Assumes that this will be called
1360   // in parallel by ParallelGCThreads worker threads with discinct worker
1361   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
1362   // calls will use the same "claim_value", and that that claim value is
1363   // different from the claim_value of any heap region before the start of
1364   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
1365   // attempting to claim the first region in each chunk, and, if
1366   // successful, applying the closure to each region in the chunk (and
1367   // setting the claim value of the second and subsequent regions of the
1368   // chunk.)  For now requires that "doHeapRegion" always returns "false",
1369   // i.e., that a closure never attempt to abort a traversal.
1370   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
1371                                        uint worker,
1372                                        uint no_of_par_workers,
1373                                        jint claim_value);
1374 
1375   // It resets all the region claim values to the default.
1376   void reset_heap_region_claim_values();
1377 
1378   // Resets the claim values of regions in the current
1379   // collection set to the default.
1380   void reset_cset_heap_region_claim_values();
1381 
1382 #ifdef ASSERT
1383   bool check_heap_region_claim_values(jint claim_value);
1384 
1385   // Same as the routine above but only checks regions in the
1386   // current collection set.
1387   bool check_cset_heap_region_claim_values(jint claim_value);
1388 #endif // ASSERT
1389 
1390   // Clear the cached cset start regions and (more importantly)
1391   // the time stamps. Called when we reset the GC time stamp.
1392   void clear_cset_start_regions();
1393 
1394   // Given the id of a worker, obtain or calculate a suitable
1395   // starting region for iterating over the current collection set.
1396   HeapRegion* start_cset_region_for_worker(int worker_i);
1397 
1398   // This is a convenience method that is used by the
1399   // HeapRegionIterator classes to calculate the starting region for
1400   // each worker so that they do not all start from the same region.
1401   HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
1402 
1403   // Iterate over the regions (if any) in the current collection set.
1404   void collection_set_iterate(HeapRegionClosure* blk);
1405 
1406   // As above but starting from region r
1407   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1408 
1409   // Returns the first (lowest address) compactible space in the heap.
1410   virtual CompactibleSpace* first_compactible_space();
1411 
1412   // A CollectedHeap will contain some number of spaces.  This finds the
1413   // space containing a given address, or else returns NULL.
1414   virtual Space* space_containing(const void* addr) const;
1415 
1416   // A G1CollectedHeap will contain some number of heap regions.  This
1417   // finds the region containing a given address, or else returns NULL.
1418   template <class T>
1419   inline HeapRegion* heap_region_containing(const T addr) const;
1420 
1421   // Like the above, but requires "addr" to be in the heap (to avoid a
1422   // null-check), and unlike the above, may return an continuing humongous
1423   // region.
1424   template <class T>
1425   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1426 
1427   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1428   // each address in the (reserved) heap is a member of exactly
1429   // one block.  The defining characteristic of a block is that it is
1430   // possible to find its size, and thus to progress forward to the next
1431   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1432   // represent Java objects, or they might be free blocks in a
1433   // free-list-based heap (or subheap), as long as the two kinds are
1434   // distinguishable and the size of each is determinable.
1435 
1436   // Returns the address of the start of the "block" that contains the
1437   // address "addr".  We say "blocks" instead of "object" since some heaps
1438   // may not pack objects densely; a chunk may either be an object or a
1439   // non-object.
1440   virtual HeapWord* block_start(const void* addr) const;
1441 
1442   // Requires "addr" to be the start of a chunk, and returns its size.
1443   // "addr + size" is required to be the start of a new chunk, or the end
1444   // of the active area of the heap.
1445   virtual size_t block_size(const HeapWord* addr) const;
1446 
1447   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1448   // the block is an object.
1449   virtual bool block_is_obj(const HeapWord* addr) const;
1450 
1451   // Does this heap support heap inspection? (+PrintClassHistogram)
1452   virtual bool supports_heap_inspection() const { return true; }
1453 
1454   // Section on thread-local allocation buffers (TLABs)
1455   // See CollectedHeap for semantics.
1456 
1457   virtual bool supports_tlab_allocation() const;
1458   virtual size_t tlab_capacity(Thread* thr) const;
1459   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
1460 
1461   // Can a compiler initialize a new object without store barriers?
1462   // This permission only extends from the creation of a new object
1463   // via a TLAB up to the first subsequent safepoint. If such permission
1464   // is granted for this heap type, the compiler promises to call
1465   // defer_store_barrier() below on any slow path allocation of
1466   // a new object for which such initializing store barriers will
1467   // have been elided. G1, like CMS, allows this, but should be
1468   // ready to provide a compensating write barrier as necessary
1469   // if that storage came out of a non-young region. The efficiency
1470   // of this implementation depends crucially on being able to
1471   // answer very efficiently in constant time whether a piece of
1472   // storage in the heap comes from a young region or not.
1473   // See ReduceInitialCardMarks.
1474   virtual bool can_elide_tlab_store_barriers() const {
1475     return true;
1476   }
1477 
1478   virtual bool card_mark_must_follow_store() const {
1479     return true;
1480   }
1481 
1482   bool is_in_young(const oop obj) {
1483     HeapRegion* hr = heap_region_containing(obj);
1484     return hr != NULL && hr->is_young();
1485   }
1486 
1487 #ifdef ASSERT
1488   virtual bool is_in_partial_collection(const void* p);
1489 #endif
1490 
1491   virtual bool is_scavengable(const void* addr);
1492 
1493   // We don't need barriers for initializing stores to objects
1494   // in the young gen: for the SATB pre-barrier, there is no
1495   // pre-value that needs to be remembered; for the remembered-set
1496   // update logging post-barrier, we don't maintain remembered set
1497   // information for young gen objects.
1498   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
1499     return is_in_young(new_obj);
1500   }
1501 
1502   // Returns "true" iff the given word_size is "very large".
1503   static bool isHumongous(size_t word_size) {
1504     // Note this has to be strictly greater-than as the TLABs
1505     // are capped at the humongous thresold and we want to
1506     // ensure that we don't try to allocate a TLAB as
1507     // humongous and that we don't allocate a humongous
1508     // object in a TLAB.
1509     return word_size > _humongous_object_threshold_in_words;
1510   }
1511 
1512   // Update mod union table with the set of dirty cards.
1513   void updateModUnion();
1514 
1515   // Set the mod union bits corresponding to the given memRegion.  Note
1516   // that this is always a safe operation, since it doesn't clear any
1517   // bits.
1518   void markModUnionRange(MemRegion mr);
1519 
1520   // Records the fact that a marking phase is no longer in progress.
1521   void set_marking_complete() {
1522     _mark_in_progress = false;
1523   }
1524   void set_marking_started() {
1525     _mark_in_progress = true;
1526   }
1527   bool mark_in_progress() {
1528     return _mark_in_progress;
1529   }
1530 
1531   // Print the maximum heap capacity.
1532   virtual size_t max_capacity() const;
1533 
1534   virtual jlong millis_since_last_gc();
1535 
1536   // Perform any cleanup actions necessary before allowing a verification.
1537   virtual void prepare_for_verify();
1538 
1539   // Perform verification.
1540 
1541   // vo == UsePrevMarking  -> use "prev" marking information,
1542   // vo == UseNextMarking -> use "next" marking information
1543   // vo == UseMarkWord    -> use the mark word in the object header
1544   //
1545   // NOTE: Only the "prev" marking information is guaranteed to be
1546   // consistent most of the time, so most calls to this should use
1547   // vo == UsePrevMarking.
1548   // Currently, there is only one case where this is called with
1549   // vo == UseNextMarking, which is to verify the "next" marking
1550   // information at the end of remark.
1551   // Currently there is only one place where this is called with
1552   // vo == UseMarkWord, which is to verify the marking during a
1553   // full GC.
1554   void verify(bool silent, VerifyOption vo);
1555 
1556   // Override; it uses the "prev" marking information
1557   virtual void verify(bool silent);
1558   virtual void print_on(outputStream* st) const;
1559   virtual void print_extended_on(outputStream* st) const;
1560   virtual void print_on_error(outputStream* st) const;
1561 
1562   virtual void print_gc_threads_on(outputStream* st) const;
1563   virtual void gc_threads_do(ThreadClosure* tc) const;
1564 
1565   // Override
1566   void print_tracing_info() const;
1567 
1568   // The following two methods are helpful for debugging RSet issues.
1569   void print_cset_rsets() PRODUCT_RETURN;
1570   void print_all_rsets() PRODUCT_RETURN;
1571 
1572   // Convenience function to be used in situations where the heap type can be
1573   // asserted to be this type.
1574   static G1CollectedHeap* heap();
1575 
1576   void set_region_short_lived_locked(HeapRegion* hr);
1577   // add appropriate methods for any other surv rate groups
1578 
1579   YoungList* young_list() { return _young_list; }
1580 
1581   // debugging
1582   bool check_young_list_well_formed() {
1583     return _young_list->check_list_well_formed();
1584   }
1585 
1586   bool check_young_list_empty(bool check_heap,
1587                               bool check_sample = true);
1588 
1589   // *** Stuff related to concurrent marking.  It's not clear to me that so
1590   // many of these need to be public.
1591 
1592   // The functions below are helper functions that a subclass of
1593   // "CollectedHeap" can use in the implementation of its virtual
1594   // functions.
1595   // This performs a concurrent marking of the live objects in a
1596   // bitmap off to the side.
1597   void doConcurrentMark();
1598 
1599   bool isMarkedPrev(oop obj) const;
1600   bool isMarkedNext(oop obj) const;
1601 
1602   // Determine if an object is dead, given the object and also
1603   // the region to which the object belongs. An object is dead
1604   // iff a) it was not allocated since the last mark and b) it
1605   // is not marked.
1606 
1607   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1608     return
1609       !hr->obj_allocated_since_prev_marking(obj) &&
1610       !isMarkedPrev(obj);
1611   }
1612 
1613   // This function returns true when an object has been
1614   // around since the previous marking and hasn't yet
1615   // been marked during this marking.
1616 
1617   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1618     return
1619       !hr->obj_allocated_since_next_marking(obj) &&
1620       !isMarkedNext(obj);
1621   }
1622 
1623   // Determine if an object is dead, given only the object itself.
1624   // This will find the region to which the object belongs and
1625   // then call the region version of the same function.
1626 
1627   // Added if it is NULL it isn't dead.
1628 
1629   bool is_obj_dead(const oop obj) const {
1630     const HeapRegion* hr = heap_region_containing(obj);
1631     if (hr == NULL) {
1632       if (obj == NULL) return false;
1633       else return true;
1634     }
1635     else return is_obj_dead(obj, hr);
1636   }
1637 
1638   bool is_obj_ill(const oop obj) const {
1639     const HeapRegion* hr = heap_region_containing(obj);
1640     if (hr == NULL) {
1641       if (obj == NULL) return false;
1642       else return true;
1643     }
1644     else return is_obj_ill(obj, hr);
1645   }
1646 
1647   // The methods below are here for convenience and dispatch the
1648   // appropriate method depending on value of the given VerifyOption
1649   // parameter. The options for that parameter are:
1650   //
1651   // vo == UsePrevMarking -> use "prev" marking information,
1652   // vo == UseNextMarking -> use "next" marking information,
1653   // vo == UseMarkWord    -> use mark word from object header
1654 
1655   bool is_obj_dead_cond(const oop obj,
1656                         const HeapRegion* hr,
1657                         const VerifyOption vo) const {
1658     switch (vo) {
1659     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
1660     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
1661     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
1662     default:                            ShouldNotReachHere();
1663     }
1664     return false; // keep some compilers happy
1665   }
1666 
1667   bool is_obj_dead_cond(const oop obj,
1668                         const VerifyOption vo) const {
1669     switch (vo) {
1670     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
1671     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
1672     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
1673     default:                            ShouldNotReachHere();
1674     }
1675     return false; // keep some compilers happy
1676   }
1677 
1678   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1679   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1680   bool is_marked(oop obj, VerifyOption vo);
1681   const char* top_at_mark_start_str(VerifyOption vo);
1682 
1683   // The following is just to alert the verification code
1684   // that a full collection has occurred and that the
1685   // remembered sets are no longer up to date.
1686   bool _full_collection;
1687   void set_full_collection() { _full_collection = true;}
1688   void clear_full_collection() {_full_collection = false;}
1689   bool full_collection() {return _full_collection;}
1690 
1691   ConcurrentMark* concurrent_mark() const { return _cm; }
1692   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1693 
1694   // The dirty cards region list is used to record a subset of regions
1695   // whose cards need clearing. The list if populated during the
1696   // remembered set scanning and drained during the card table
1697   // cleanup. Although the methods are reentrant, population/draining
1698   // phases must not overlap. For synchronization purposes the last
1699   // element on the list points to itself.
1700   HeapRegion* _dirty_cards_region_list;
1701   void push_dirty_cards_region(HeapRegion* hr);
1702   HeapRegion* pop_dirty_cards_region();
1703 
1704 public:
1705   void stop_conc_gc_threads();
1706 
1707   size_t pending_card_num();
1708   size_t cards_scanned();
1709 
1710 protected:
1711   size_t _max_heap_capacity;
1712 };
1713 
1714 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
1715 private:
1716   bool        _retired;
1717 
1718 public:
1719   G1ParGCAllocBuffer(size_t gclab_word_size);
1720 
1721   void set_buf(HeapWord* buf) {
1722     ParGCAllocBuffer::set_buf(buf);
1723     _retired = false;
1724   }
1725 
1726   void retire(bool end_of_gc, bool retain) {
1727     if (_retired)
1728       return;
1729     ParGCAllocBuffer::retire(end_of_gc, retain);
1730     _retired = true;
1731   }
1732 
1733   bool is_retired() {
1734     return _retired;
1735   }
1736 };
1737 
1738 class G1ParGCAllocBufferContainer {
1739 protected:
1740   enum GCAllocPriority {
1741       GCAllocPriorityStart = 0,
1742       GCAllocPriority1 = GCAllocPriorityStart,
1743       GCAllocPriority2 = GCAllocPriorityStart + 1,
1744       GCAllocPriorityCount = GCAllocPriorityStart + 2
1745   };
1746   G1ParGCAllocBuffer* _priority_buffer[GCAllocPriorityCount];
1747 
1748 public:
1749   G1ParGCAllocBufferContainer(size_t gclab_word_size) {
1750     for (int pr = GCAllocPriorityStart; pr < GCAllocPriorityCount; ++pr) {
1751       _priority_buffer[pr] = new G1ParGCAllocBuffer(gclab_word_size);
1752     }
1753   }
1754 
1755   ~G1ParGCAllocBufferContainer() {
1756     for (int pr = GCAllocPriorityStart; pr < GCAllocPriorityCount; ++pr) {
1757       assert(_priority_buffer[pr]->is_retired(), "alloc buffers should all retire at this point.");
1758       delete _priority_buffer[pr];
1759     }
1760   }
1761 
1762   HeapWord* allocate(size_t word_sz) {
1763     HeapWord* obj;
1764     for (int pr = GCAllocPriorityStart; pr < GCAllocPriorityCount; ++pr) {
1765       obj = _priority_buffer[pr]->allocate(word_sz);
1766       if (obj != NULL) return obj;
1767     }
1768     return obj;
1769   }
1770 
1771   bool contains(void* addr) {
1772     for (int pr = GCAllocPriorityStart; pr < GCAllocPriorityCount; ++pr) {
1773       if (_priority_buffer[pr]->contains(addr)) return true;
1774     }
1775     return false;
1776   }
1777 
1778   void undo_allocation(HeapWord* obj, size_t word_sz) {
1779     bool finish_undo;
1780     for (int pr = GCAllocPriorityStart; pr < GCAllocPriorityCount; ++pr) {
1781       if (_priority_buffer[pr]->contains(obj)) {
1782         _priority_buffer[pr]->undo_allocation(obj, word_sz);
1783         finish_undo = true;
1784       }
1785     }
1786     if (!finish_undo) ShouldNotReachHere();
1787   }
1788 
1789   size_t words_remaining() {
1790     size_t result = 0;
1791     for (int pr = GCAllocPriorityStart; pr < GCAllocPriorityCount; ++pr) {
1792       result += _priority_buffer[pr]->words_remaining();
1793     }
1794     return result;
1795   }
1796 
1797   size_t words_remaining_in_priority1_buffer() {
1798     G1ParGCAllocBuffer* retired = _priority_buffer[GCAllocPriority1];
1799     return retired->words_remaining();
1800   }
1801 
1802   void flush_stats_and_retire(PLABStats* stats, bool end_of_gc, bool retain) {
1803     for (int pr = GCAllocPriorityStart; pr < GCAllocPriorityCount; ++pr) {
1804       _priority_buffer[pr]->flush_stats_and_retire(stats, end_of_gc, retain);
1805     }
1806   }
1807 
1808   void retire_and_set_buf(bool end_of_gc, bool retain, HeapWord* buf, size_t word_sz) {
1809     G1ParGCAllocBuffer* retired_and_set =  _priority_buffer[GCAllocPriority1];
1810     retired_and_set->retire(end_of_gc, retain);
1811     retired_and_set->set_buf(buf);
1812     retired_and_set->set_word_size(word_sz);
1813     adjust_priority_order();
1814   }
1815 
1816 private:
1817   void adjust_priority_order() {
1818     G1ParGCAllocBuffer* retired_and_set =  _priority_buffer[GCAllocPriority1];
1819 
1820     int last = GCAllocPriorityCount - 1;
1821     for (int pr = GCAllocPriorityStart; pr < last; ++pr) {
1822       _priority_buffer[pr] = _priority_buffer[pr + 1];
1823     }
1824     _priority_buffer[last] = retired_and_set;
1825   }
1826 };
1827 
1828 class G1ParScanThreadState : public StackObj {
1829 protected:
1830   G1CollectedHeap* _g1h;
1831   RefToScanQueue*  _refs;
1832   DirtyCardQueue   _dcq;
1833   CardTableModRefBS* _ct_bs;
1834   G1RemSet* _g1_rem;
1835 
1836   G1ParGCAllocBufferContainer  _surviving_alloc_buffer;
1837   G1ParGCAllocBufferContainer  _tenured_alloc_buffer;
1838   G1ParGCAllocBufferContainer* _alloc_buffers[GCAllocPurposeCount];
1839   ageTable            _age_table;
1840 
1841   size_t           _alloc_buffer_waste;
1842   size_t           _undo_waste;
1843 
1844   OopsInHeapRegionClosure*      _evac_failure_cl;
1845   G1ParScanHeapEvacClosure*     _evac_cl;
1846   G1ParScanPartialArrayClosure* _partial_scan_cl;
1847 
1848   int _hash_seed;
1849   uint _queue_num;
1850 
1851   size_t _term_attempts;
1852 
1853   double _start;
1854   double _start_strong_roots;
1855   double _strong_roots_time;
1856   double _start_term;
1857   double _term_time;
1858 
1859   // Map from young-age-index (0 == not young, 1 is youngest) to
1860   // surviving words. base is what we get back from the malloc call
1861   size_t* _surviving_young_words_base;
1862   // this points into the array, as we use the first few entries for padding
1863   size_t* _surviving_young_words;
1864 
1865 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1866 
1867   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
1868 
1869   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
1870 
1871   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
1872   CardTableModRefBS* ctbs()                      { return _ct_bs; }
1873 
1874   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
1875     if (!from->is_survivor()) {
1876       _g1_rem->par_write_ref(from, p, tid);
1877     }
1878   }
1879 
1880   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
1881     // If the new value of the field points to the same region or
1882     // is the to-space, we don't need to include it in the Rset updates.
1883     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
1884       size_t card_index = ctbs()->index_for(p);
1885       // If the card hasn't been added to the buffer, do it.
1886       if (ctbs()->mark_card_deferred(card_index)) {
1887         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
1888       }
1889     }
1890   }
1891 
1892 public:
1893   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
1894 
1895   ~G1ParScanThreadState() {
1896     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
1897   }
1898 
1899   RefToScanQueue*   refs()            { return _refs;             }
1900   ageTable*         age_table()       { return &_age_table;       }
1901 
1902   G1ParGCAllocBufferContainer* alloc_buffer(GCAllocPurpose purpose) {
1903     return _alloc_buffers[purpose];
1904   }
1905 
1906   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
1907   size_t undo_waste() const                      { return _undo_waste; }
1908 
1909 #ifdef ASSERT
1910   bool verify_ref(narrowOop* ref) const;
1911   bool verify_ref(oop* ref) const;
1912   bool verify_task(StarTask ref) const;
1913 #endif // ASSERT
1914 
1915   template <class T> void push_on_queue(T* ref) {
1916     assert(verify_ref(ref), "sanity");
1917     refs()->push(ref);
1918   }
1919 
1920   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
1921     if (G1DeferredRSUpdate) {
1922       deferred_rs_update(from, p, tid);
1923     } else {
1924       immediate_rs_update(from, p, tid);
1925     }
1926   }
1927 
1928   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
1929     HeapWord* obj = NULL;
1930     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
1931     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1932       G1ParGCAllocBufferContainer* alloc_buf = alloc_buffer(purpose);
1933 
1934       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
1935       if (buf == NULL) return NULL; // Let caller handle allocation failure.
1936 
1937       add_to_alloc_buffer_waste(alloc_buf->words_remaining_in_priority1_buffer());
1938       alloc_buf->retire_and_set_buf(false /* end_of_gc */, false /* retain */,
1939                                     buf, gclab_word_size);
1940 
1941       obj = alloc_buf->allocate(word_sz);
1942       assert(obj != NULL, "buffer was definitely big enough...");
1943     } else {
1944       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
1945     }
1946     return obj;
1947   }
1948 
1949   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
1950     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
1951     if (obj != NULL) return obj;
1952     return allocate_slow(purpose, word_sz);
1953   }
1954 
1955   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
1956     if (alloc_buffer(purpose)->contains(obj)) {
1957       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
1958              "should contain whole object");
1959       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
1960     } else {
1961       CollectedHeap::fill_with_object(obj, word_sz);
1962       add_to_undo_waste(word_sz);
1963     }
1964   }
1965 
1966   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
1967     _evac_failure_cl = evac_failure_cl;
1968   }
1969   OopsInHeapRegionClosure* evac_failure_closure() {
1970     return _evac_failure_cl;
1971   }
1972 
1973   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
1974     _evac_cl = evac_cl;
1975   }
1976 
1977   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
1978     _partial_scan_cl = partial_scan_cl;
1979   }
1980 
1981   int* hash_seed() { return &_hash_seed; }
1982   uint queue_num() { return _queue_num; }
1983 
1984   size_t term_attempts() const  { return _term_attempts; }
1985   void note_term_attempt() { _term_attempts++; }
1986 
1987   void start_strong_roots() {
1988     _start_strong_roots = os::elapsedTime();
1989   }
1990   void end_strong_roots() {
1991     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
1992   }
1993   double strong_roots_time() const { return _strong_roots_time; }
1994 
1995   void start_term_time() {
1996     note_term_attempt();
1997     _start_term = os::elapsedTime();
1998   }
1999   void end_term_time() {
2000     _term_time += (os::elapsedTime() - _start_term);
2001   }
2002   double term_time() const { return _term_time; }
2003 
2004   double elapsed_time() const {
2005     return os::elapsedTime() - _start;
2006   }
2007 
2008   static void
2009     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
2010   void
2011     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
2012 
2013   size_t* surviving_young_words() {
2014     // We add on to hide entry 0 which accumulates surviving words for
2015     // age -1 regions (i.e. non-young ones)
2016     return _surviving_young_words;
2017   }
2018 
2019   void retire_alloc_buffers() {
2020     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2021       size_t waste = _alloc_buffers[ap]->words_remaining();
2022       add_to_alloc_buffer_waste(waste);
2023       _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
2024                                                  true /* end_of_gc */,
2025                                                  false /* retain */);
2026     }
2027   }
2028 
2029   template <class T> void deal_with_reference(T* ref_to_scan) {
2030     if (has_partial_array_mask(ref_to_scan)) {
2031       _partial_scan_cl->do_oop_nv(ref_to_scan);
2032     } else {
2033       // Note: we can use "raw" versions of "region_containing" because
2034       // "obj_to_scan" is definitely in the heap, and is not in a
2035       // humongous region.
2036       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
2037       _evac_cl->set_region(r);
2038       _evac_cl->do_oop_nv(ref_to_scan);
2039     }
2040   }
2041 
2042   void deal_with_reference(StarTask ref) {
2043     assert(verify_task(ref), "sanity");
2044     if (ref.is_narrow()) {
2045       deal_with_reference((narrowOop*)ref);
2046     } else {
2047       deal_with_reference((oop*)ref);
2048     }
2049   }
2050 
2051   void trim_queue();
2052 };
2053 
2054 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP