1 /* 2 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/symbolTable.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "code/codeCache.hpp" 29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp" 30 #include "gc_implementation/parallelScavenge/generationSizer.hpp" 31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp" 32 #include "gc_implementation/parallelScavenge/pcTasks.hpp" 33 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp" 34 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp" 35 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp" 36 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp" 37 #include "gc_implementation/parallelScavenge/psOldGen.hpp" 38 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp" 39 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp" 40 #include "gc_implementation/parallelScavenge/psScavenge.hpp" 41 #include "gc_implementation/parallelScavenge/psYoungGen.hpp" 42 #include "gc_implementation/shared/isGCActiveMark.hpp" 43 #include "gc_interface/gcCause.hpp" 44 #include "memory/gcLocker.inline.hpp" 45 #include "memory/referencePolicy.hpp" 46 #include "memory/referenceProcessor.hpp" 47 #include "oops/methodData.hpp" 48 #include "oops/oop.inline.hpp" 49 #include "oops/oop.pcgc.inline.hpp" 50 #include "runtime/fprofiler.hpp" 51 #include "runtime/safepoint.hpp" 52 #include "runtime/vmThread.hpp" 53 #include "services/management.hpp" 54 #include "services/memoryService.hpp" 55 #include "services/memTracker.hpp" 56 #include "utilities/events.hpp" 57 #include "utilities/stack.inline.hpp" 58 59 #include <math.h> 60 61 // All sizes are in HeapWords. 62 const size_t ParallelCompactData::Log2RegionSize = 9; // 512 words 63 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize; 64 const size_t ParallelCompactData::RegionSizeBytes = 65 RegionSize << LogHeapWordSize; 66 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1; 67 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1; 68 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask; 69 70 const ParallelCompactData::RegionData::region_sz_t 71 ParallelCompactData::RegionData::dc_shift = 27; 72 73 const ParallelCompactData::RegionData::region_sz_t 74 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift; 75 76 const ParallelCompactData::RegionData::region_sz_t 77 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift; 78 79 const ParallelCompactData::RegionData::region_sz_t 80 ParallelCompactData::RegionData::los_mask = ~dc_mask; 81 82 const ParallelCompactData::RegionData::region_sz_t 83 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift; 84 85 const ParallelCompactData::RegionData::region_sz_t 86 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift; 87 88 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id]; 89 bool PSParallelCompact::_print_phases = false; 90 91 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL; 92 Klass* PSParallelCompact::_updated_int_array_klass_obj = NULL; 93 94 double PSParallelCompact::_dwl_mean; 95 double PSParallelCompact::_dwl_std_dev; 96 double PSParallelCompact::_dwl_first_term; 97 double PSParallelCompact::_dwl_adjustment; 98 #ifdef ASSERT 99 bool PSParallelCompact::_dwl_initialized = false; 100 #endif // #ifdef ASSERT 101 102 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size, 103 HeapWord* destination) 104 { 105 assert(src_region_idx != 0, "invalid src_region_idx"); 106 assert(partial_obj_size != 0, "invalid partial_obj_size argument"); 107 assert(destination != NULL, "invalid destination argument"); 108 109 _src_region_idx = src_region_idx; 110 _partial_obj_size = partial_obj_size; 111 _destination = destination; 112 113 // These fields may not be updated below, so make sure they're clear. 114 assert(_dest_region_addr == NULL, "should have been cleared"); 115 assert(_first_src_addr == NULL, "should have been cleared"); 116 117 // Determine the number of destination regions for the partial object. 118 HeapWord* const last_word = destination + partial_obj_size - 1; 119 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 120 HeapWord* const beg_region_addr = sd.region_align_down(destination); 121 HeapWord* const end_region_addr = sd.region_align_down(last_word); 122 123 if (beg_region_addr == end_region_addr) { 124 // One destination region. 125 _destination_count = 1; 126 if (end_region_addr == destination) { 127 // The destination falls on a region boundary, thus the first word of the 128 // partial object will be the first word copied to the destination region. 129 _dest_region_addr = end_region_addr; 130 _first_src_addr = sd.region_to_addr(src_region_idx); 131 } 132 } else { 133 // Two destination regions. When copied, the partial object will cross a 134 // destination region boundary, so a word somewhere within the partial 135 // object will be the first word copied to the second destination region. 136 _destination_count = 2; 137 _dest_region_addr = end_region_addr; 138 const size_t ofs = pointer_delta(end_region_addr, destination); 139 assert(ofs < _partial_obj_size, "sanity"); 140 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs; 141 } 142 } 143 144 void SplitInfo::clear() 145 { 146 _src_region_idx = 0; 147 _partial_obj_size = 0; 148 _destination = NULL; 149 _destination_count = 0; 150 _dest_region_addr = NULL; 151 _first_src_addr = NULL; 152 assert(!is_valid(), "sanity"); 153 } 154 155 #ifdef ASSERT 156 void SplitInfo::verify_clear() 157 { 158 assert(_src_region_idx == 0, "not clear"); 159 assert(_partial_obj_size == 0, "not clear"); 160 assert(_destination == NULL, "not clear"); 161 assert(_destination_count == 0, "not clear"); 162 assert(_dest_region_addr == NULL, "not clear"); 163 assert(_first_src_addr == NULL, "not clear"); 164 } 165 #endif // #ifdef ASSERT 166 167 168 #ifndef PRODUCT 169 const char* PSParallelCompact::space_names[] = { 170 "old ", "eden", "from", "to " 171 }; 172 173 void PSParallelCompact::print_region_ranges() 174 { 175 tty->print_cr("space bottom top end new_top"); 176 tty->print_cr("------ ---------- ---------- ---------- ----------"); 177 178 for (unsigned int id = 0; id < last_space_id; ++id) { 179 const MutableSpace* space = _space_info[id].space(); 180 tty->print_cr("%u %s " 181 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " " 182 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ", 183 id, space_names[id], 184 summary_data().addr_to_region_idx(space->bottom()), 185 summary_data().addr_to_region_idx(space->top()), 186 summary_data().addr_to_region_idx(space->end()), 187 summary_data().addr_to_region_idx(_space_info[id].new_top())); 188 } 189 } 190 191 void 192 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c) 193 { 194 #define REGION_IDX_FORMAT SIZE_FORMAT_W(7) 195 #define REGION_DATA_FORMAT SIZE_FORMAT_W(5) 196 197 ParallelCompactData& sd = PSParallelCompact::summary_data(); 198 size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0; 199 tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " " 200 REGION_IDX_FORMAT " " PTR_FORMAT " " 201 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " " 202 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d", 203 i, c->data_location(), dci, c->destination(), 204 c->partial_obj_size(), c->live_obj_size(), 205 c->data_size(), c->source_region(), c->destination_count()); 206 207 #undef REGION_IDX_FORMAT 208 #undef REGION_DATA_FORMAT 209 } 210 211 void 212 print_generic_summary_data(ParallelCompactData& summary_data, 213 HeapWord* const beg_addr, 214 HeapWord* const end_addr) 215 { 216 size_t total_words = 0; 217 size_t i = summary_data.addr_to_region_idx(beg_addr); 218 const size_t last = summary_data.addr_to_region_idx(end_addr); 219 HeapWord* pdest = 0; 220 221 while (i <= last) { 222 ParallelCompactData::RegionData* c = summary_data.region(i); 223 if (c->data_size() != 0 || c->destination() != pdest) { 224 print_generic_summary_region(i, c); 225 total_words += c->data_size(); 226 pdest = c->destination(); 227 } 228 ++i; 229 } 230 231 tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize); 232 } 233 234 void 235 print_generic_summary_data(ParallelCompactData& summary_data, 236 SpaceInfo* space_info) 237 { 238 for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) { 239 const MutableSpace* space = space_info[id].space(); 240 print_generic_summary_data(summary_data, space->bottom(), 241 MAX2(space->top(), space_info[id].new_top())); 242 } 243 } 244 245 void 246 print_initial_summary_region(size_t i, 247 const ParallelCompactData::RegionData* c, 248 bool newline = true) 249 { 250 tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " " 251 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " 252 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d", 253 i, c->destination(), 254 c->partial_obj_size(), c->live_obj_size(), 255 c->data_size(), c->source_region(), c->destination_count()); 256 if (newline) tty->cr(); 257 } 258 259 void 260 print_initial_summary_data(ParallelCompactData& summary_data, 261 const MutableSpace* space) { 262 if (space->top() == space->bottom()) { 263 return; 264 } 265 266 const size_t region_size = ParallelCompactData::RegionSize; 267 typedef ParallelCompactData::RegionData RegionData; 268 HeapWord* const top_aligned_up = summary_data.region_align_up(space->top()); 269 const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up); 270 const RegionData* c = summary_data.region(end_region - 1); 271 HeapWord* end_addr = c->destination() + c->data_size(); 272 const size_t live_in_space = pointer_delta(end_addr, space->bottom()); 273 274 // Print (and count) the full regions at the beginning of the space. 275 size_t full_region_count = 0; 276 size_t i = summary_data.addr_to_region_idx(space->bottom()); 277 while (i < end_region && summary_data.region(i)->data_size() == region_size) { 278 print_initial_summary_region(i, summary_data.region(i)); 279 ++full_region_count; 280 ++i; 281 } 282 283 size_t live_to_right = live_in_space - full_region_count * region_size; 284 285 double max_reclaimed_ratio = 0.0; 286 size_t max_reclaimed_ratio_region = 0; 287 size_t max_dead_to_right = 0; 288 size_t max_live_to_right = 0; 289 290 // Print the 'reclaimed ratio' for regions while there is something live in 291 // the region or to the right of it. The remaining regions are empty (and 292 // uninteresting), and computing the ratio will result in division by 0. 293 while (i < end_region && live_to_right > 0) { 294 c = summary_data.region(i); 295 HeapWord* const region_addr = summary_data.region_to_addr(i); 296 const size_t used_to_right = pointer_delta(space->top(), region_addr); 297 const size_t dead_to_right = used_to_right - live_to_right; 298 const double reclaimed_ratio = double(dead_to_right) / live_to_right; 299 300 if (reclaimed_ratio > max_reclaimed_ratio) { 301 max_reclaimed_ratio = reclaimed_ratio; 302 max_reclaimed_ratio_region = i; 303 max_dead_to_right = dead_to_right; 304 max_live_to_right = live_to_right; 305 } 306 307 print_initial_summary_region(i, c, false); 308 tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10), 309 reclaimed_ratio, dead_to_right, live_to_right); 310 311 live_to_right -= c->data_size(); 312 ++i; 313 } 314 315 // Any remaining regions are empty. Print one more if there is one. 316 if (i < end_region) { 317 print_initial_summary_region(i, summary_data.region(i)); 318 } 319 320 tty->print_cr("max: " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " " 321 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f", 322 max_reclaimed_ratio_region, max_dead_to_right, 323 max_live_to_right, max_reclaimed_ratio); 324 } 325 326 void 327 print_initial_summary_data(ParallelCompactData& summary_data, 328 SpaceInfo* space_info) { 329 unsigned int id = PSParallelCompact::old_space_id; 330 const MutableSpace* space; 331 do { 332 space = space_info[id].space(); 333 print_initial_summary_data(summary_data, space); 334 } while (++id < PSParallelCompact::eden_space_id); 335 336 do { 337 space = space_info[id].space(); 338 print_generic_summary_data(summary_data, space->bottom(), space->top()); 339 } while (++id < PSParallelCompact::last_space_id); 340 } 341 #endif // #ifndef PRODUCT 342 343 #ifdef ASSERT 344 size_t add_obj_count; 345 size_t add_obj_size; 346 size_t mark_bitmap_count; 347 size_t mark_bitmap_size; 348 #endif // #ifdef ASSERT 349 350 ParallelCompactData::ParallelCompactData() 351 { 352 _region_start = 0; 353 354 _region_vspace = 0; 355 _region_data = 0; 356 _region_count = 0; 357 } 358 359 bool ParallelCompactData::initialize(MemRegion covered_region) 360 { 361 _region_start = covered_region.start(); 362 const size_t region_size = covered_region.word_size(); 363 DEBUG_ONLY(_region_end = _region_start + region_size;) 364 365 assert(region_align_down(_region_start) == _region_start, 366 "region start not aligned"); 367 assert((region_size & RegionSizeOffsetMask) == 0, 368 "region size not a multiple of RegionSize"); 369 370 bool result = initialize_region_data(region_size); 371 372 return result; 373 } 374 375 PSVirtualSpace* 376 ParallelCompactData::create_vspace(size_t count, size_t element_size) 377 { 378 const size_t raw_bytes = count * element_size; 379 const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10); 380 const size_t granularity = os::vm_allocation_granularity(); 381 const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity)); 382 383 const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 : 384 MAX2(page_sz, granularity); 385 ReservedSpace rs(bytes, rs_align, rs_align > 0); 386 os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(), 387 rs.size()); 388 389 MemTracker::record_virtual_memory_type((address)rs.base(), mtGC); 390 391 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz); 392 if (vspace != 0) { 393 if (vspace->expand_by(bytes)) { 394 return vspace; 395 } 396 delete vspace; 397 // Release memory reserved in the space. 398 rs.release(); 399 } 400 401 return 0; 402 } 403 404 bool ParallelCompactData::initialize_region_data(size_t region_size) 405 { 406 const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize; 407 _region_vspace = create_vspace(count, sizeof(RegionData)); 408 if (_region_vspace != 0) { 409 _region_data = (RegionData*)_region_vspace->reserved_low_addr(); 410 _region_count = count; 411 return true; 412 } 413 return false; 414 } 415 416 void ParallelCompactData::clear() 417 { 418 memset(_region_data, 0, _region_vspace->committed_size()); 419 } 420 421 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) { 422 assert(beg_region <= _region_count, "beg_region out of range"); 423 assert(end_region <= _region_count, "end_region out of range"); 424 425 const size_t region_cnt = end_region - beg_region; 426 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData)); 427 } 428 429 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const 430 { 431 const RegionData* cur_cp = region(region_idx); 432 const RegionData* const end_cp = region(region_count() - 1); 433 434 HeapWord* result = region_to_addr(region_idx); 435 if (cur_cp < end_cp) { 436 do { 437 result += cur_cp->partial_obj_size(); 438 } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp); 439 } 440 return result; 441 } 442 443 void ParallelCompactData::add_obj(HeapWord* addr, size_t len) 444 { 445 const size_t obj_ofs = pointer_delta(addr, _region_start); 446 const size_t beg_region = obj_ofs >> Log2RegionSize; 447 const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize; 448 449 DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);) 450 DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);) 451 452 if (beg_region == end_region) { 453 // All in one region. 454 _region_data[beg_region].add_live_obj(len); 455 return; 456 } 457 458 // First region. 459 const size_t beg_ofs = region_offset(addr); 460 _region_data[beg_region].add_live_obj(RegionSize - beg_ofs); 461 462 Klass* klass = ((oop)addr)->klass(); 463 // Middle regions--completely spanned by this object. 464 for (size_t region = beg_region + 1; region < end_region; ++region) { 465 _region_data[region].set_partial_obj_size(RegionSize); 466 _region_data[region].set_partial_obj_addr(addr); 467 } 468 469 // Last region. 470 const size_t end_ofs = region_offset(addr + len - 1); 471 _region_data[end_region].set_partial_obj_size(end_ofs + 1); 472 _region_data[end_region].set_partial_obj_addr(addr); 473 } 474 475 void 476 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end) 477 { 478 assert(region_offset(beg) == 0, "not RegionSize aligned"); 479 assert(region_offset(end) == 0, "not RegionSize aligned"); 480 481 size_t cur_region = addr_to_region_idx(beg); 482 const size_t end_region = addr_to_region_idx(end); 483 HeapWord* addr = beg; 484 while (cur_region < end_region) { 485 _region_data[cur_region].set_destination(addr); 486 _region_data[cur_region].set_destination_count(0); 487 _region_data[cur_region].set_source_region(cur_region); 488 _region_data[cur_region].set_data_location(addr); 489 490 // Update live_obj_size so the region appears completely full. 491 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size(); 492 _region_data[cur_region].set_live_obj_size(live_size); 493 494 ++cur_region; 495 addr += RegionSize; 496 } 497 } 498 499 // Find the point at which a space can be split and, if necessary, record the 500 // split point. 501 // 502 // If the current src region (which overflowed the destination space) doesn't 503 // have a partial object, the split point is at the beginning of the current src 504 // region (an "easy" split, no extra bookkeeping required). 505 // 506 // If the current src region has a partial object, the split point is in the 507 // region where that partial object starts (call it the split_region). If 508 // split_region has a partial object, then the split point is just after that 509 // partial object (a "hard" split where we have to record the split data and 510 // zero the partial_obj_size field). With a "hard" split, we know that the 511 // partial_obj ends within split_region because the partial object that caused 512 // the overflow starts in split_region. If split_region doesn't have a partial 513 // obj, then the split is at the beginning of split_region (another "easy" 514 // split). 515 HeapWord* 516 ParallelCompactData::summarize_split_space(size_t src_region, 517 SplitInfo& split_info, 518 HeapWord* destination, 519 HeapWord* target_end, 520 HeapWord** target_next) 521 { 522 assert(destination <= target_end, "sanity"); 523 assert(destination + _region_data[src_region].data_size() > target_end, 524 "region should not fit into target space"); 525 assert(is_region_aligned(target_end), "sanity"); 526 527 size_t split_region = src_region; 528 HeapWord* split_destination = destination; 529 size_t partial_obj_size = _region_data[src_region].partial_obj_size(); 530 531 if (destination + partial_obj_size > target_end) { 532 // The split point is just after the partial object (if any) in the 533 // src_region that contains the start of the object that overflowed the 534 // destination space. 535 // 536 // Find the start of the "overflow" object and set split_region to the 537 // region containing it. 538 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr(); 539 split_region = addr_to_region_idx(overflow_obj); 540 541 // Clear the source_region field of all destination regions whose first word 542 // came from data after the split point (a non-null source_region field 543 // implies a region must be filled). 544 // 545 // An alternative to the simple loop below: clear during post_compact(), 546 // which uses memcpy instead of individual stores, and is easy to 547 // parallelize. (The downside is that it clears the entire RegionData 548 // object as opposed to just one field.) 549 // 550 // post_compact() would have to clear the summary data up to the highest 551 // address that was written during the summary phase, which would be 552 // 553 // max(top, max(new_top, clear_top)) 554 // 555 // where clear_top is a new field in SpaceInfo. Would have to set clear_top 556 // to target_end. 557 const RegionData* const sr = region(split_region); 558 const size_t beg_idx = 559 addr_to_region_idx(region_align_up(sr->destination() + 560 sr->partial_obj_size())); 561 const size_t end_idx = addr_to_region_idx(target_end); 562 563 if (TraceParallelOldGCSummaryPhase) { 564 gclog_or_tty->print_cr("split: clearing source_region field in [" 565 SIZE_FORMAT ", " SIZE_FORMAT ")", 566 beg_idx, end_idx); 567 } 568 for (size_t idx = beg_idx; idx < end_idx; ++idx) { 569 _region_data[idx].set_source_region(0); 570 } 571 572 // Set split_destination and partial_obj_size to reflect the split region. 573 split_destination = sr->destination(); 574 partial_obj_size = sr->partial_obj_size(); 575 } 576 577 // The split is recorded only if a partial object extends onto the region. 578 if (partial_obj_size != 0) { 579 _region_data[split_region].set_partial_obj_size(0); 580 split_info.record(split_region, partial_obj_size, split_destination); 581 } 582 583 // Setup the continuation addresses. 584 *target_next = split_destination + partial_obj_size; 585 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size; 586 587 if (TraceParallelOldGCSummaryPhase) { 588 const char * split_type = partial_obj_size == 0 ? "easy" : "hard"; 589 gclog_or_tty->print_cr("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT 590 " pos=" SIZE_FORMAT, 591 split_type, source_next, split_region, 592 partial_obj_size); 593 gclog_or_tty->print_cr("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT 594 " tn=" PTR_FORMAT, 595 split_type, split_destination, 596 addr_to_region_idx(split_destination), 597 *target_next); 598 599 if (partial_obj_size != 0) { 600 HeapWord* const po_beg = split_info.destination(); 601 HeapWord* const po_end = po_beg + split_info.partial_obj_size(); 602 gclog_or_tty->print_cr("%s split: " 603 "po_beg=" PTR_FORMAT " " SIZE_FORMAT " " 604 "po_end=" PTR_FORMAT " " SIZE_FORMAT, 605 split_type, 606 po_beg, addr_to_region_idx(po_beg), 607 po_end, addr_to_region_idx(po_end)); 608 } 609 } 610 611 return source_next; 612 } 613 614 bool ParallelCompactData::summarize(SplitInfo& split_info, 615 HeapWord* source_beg, HeapWord* source_end, 616 HeapWord** source_next, 617 HeapWord* target_beg, HeapWord* target_end, 618 HeapWord** target_next) 619 { 620 if (TraceParallelOldGCSummaryPhase) { 621 HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next; 622 tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT 623 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT, 624 source_beg, source_end, source_next_val, 625 target_beg, target_end, *target_next); 626 } 627 628 size_t cur_region = addr_to_region_idx(source_beg); 629 const size_t end_region = addr_to_region_idx(region_align_up(source_end)); 630 631 HeapWord *dest_addr = target_beg; 632 while (cur_region < end_region) { 633 // The destination must be set even if the region has no data. 634 _region_data[cur_region].set_destination(dest_addr); 635 636 size_t words = _region_data[cur_region].data_size(); 637 if (words > 0) { 638 // If cur_region does not fit entirely into the target space, find a point 639 // at which the source space can be 'split' so that part is copied to the 640 // target space and the rest is copied elsewhere. 641 if (dest_addr + words > target_end) { 642 assert(source_next != NULL, "source_next is NULL when splitting"); 643 *source_next = summarize_split_space(cur_region, split_info, dest_addr, 644 target_end, target_next); 645 return false; 646 } 647 648 // Compute the destination_count for cur_region, and if necessary, update 649 // source_region for a destination region. The source_region field is 650 // updated if cur_region is the first (left-most) region to be copied to a 651 // destination region. 652 // 653 // The destination_count calculation is a bit subtle. A region that has 654 // data that compacts into itself does not count itself as a destination. 655 // This maintains the invariant that a zero count means the region is 656 // available and can be claimed and then filled. 657 uint destination_count = 0; 658 if (split_info.is_split(cur_region)) { 659 // The current region has been split: the partial object will be copied 660 // to one destination space and the remaining data will be copied to 661 // another destination space. Adjust the initial destination_count and, 662 // if necessary, set the source_region field if the partial object will 663 // cross a destination region boundary. 664 destination_count = split_info.destination_count(); 665 if (destination_count == 2) { 666 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr()); 667 _region_data[dest_idx].set_source_region(cur_region); 668 } 669 } 670 671 HeapWord* const last_addr = dest_addr + words - 1; 672 const size_t dest_region_1 = addr_to_region_idx(dest_addr); 673 const size_t dest_region_2 = addr_to_region_idx(last_addr); 674 675 // Initially assume that the destination regions will be the same and 676 // adjust the value below if necessary. Under this assumption, if 677 // cur_region == dest_region_2, then cur_region will be compacted 678 // completely into itself. 679 destination_count += cur_region == dest_region_2 ? 0 : 1; 680 if (dest_region_1 != dest_region_2) { 681 // Destination regions differ; adjust destination_count. 682 destination_count += 1; 683 // Data from cur_region will be copied to the start of dest_region_2. 684 _region_data[dest_region_2].set_source_region(cur_region); 685 } else if (region_offset(dest_addr) == 0) { 686 // Data from cur_region will be copied to the start of the destination 687 // region. 688 _region_data[dest_region_1].set_source_region(cur_region); 689 } 690 691 _region_data[cur_region].set_destination_count(destination_count); 692 _region_data[cur_region].set_data_location(region_to_addr(cur_region)); 693 dest_addr += words; 694 } 695 696 ++cur_region; 697 } 698 699 *target_next = dest_addr; 700 return true; 701 } 702 703 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) { 704 assert(addr != NULL, "Should detect NULL oop earlier"); 705 assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap"); 706 #ifdef ASSERT 707 if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) { 708 gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr); 709 } 710 #endif 711 assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked"); 712 713 // Region covering the object. 714 size_t region_index = addr_to_region_idx(addr); 715 const RegionData* const region_ptr = region(region_index); 716 HeapWord* const region_addr = region_align_down(addr); 717 718 assert(addr < region_addr + RegionSize, "Region does not cover object"); 719 assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check"); 720 721 HeapWord* result = region_ptr->destination(); 722 723 // If all the data in the region is live, then the new location of the object 724 // can be calculated from the destination of the region plus the offset of the 725 // object in the region. 726 if (region_ptr->data_size() == RegionSize) { 727 result += pointer_delta(addr, region_addr); 728 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);) 729 return result; 730 } 731 732 // The new location of the object is 733 // region destination + 734 // size of the partial object extending onto the region + 735 // sizes of the live objects in the Region that are to the left of addr 736 const size_t partial_obj_size = region_ptr->partial_obj_size(); 737 HeapWord* const search_start = region_addr + partial_obj_size; 738 739 const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap(); 740 size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr)); 741 742 result += partial_obj_size + live_to_left; 743 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);) 744 return result; 745 } 746 747 #ifdef ASSERT 748 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace) 749 { 750 const size_t* const beg = (const size_t*)vspace->committed_low_addr(); 751 const size_t* const end = (const size_t*)vspace->committed_high_addr(); 752 for (const size_t* p = beg; p < end; ++p) { 753 assert(*p == 0, "not zero"); 754 } 755 } 756 757 void ParallelCompactData::verify_clear() 758 { 759 verify_clear(_region_vspace); 760 } 761 #endif // #ifdef ASSERT 762 763 #ifdef NOT_PRODUCT 764 ParallelCompactData::RegionData* debug_region(size_t region_index) { 765 ParallelCompactData& sd = PSParallelCompact::summary_data(); 766 return sd.region(region_index); 767 } 768 #endif 769 770 elapsedTimer PSParallelCompact::_accumulated_time; 771 unsigned int PSParallelCompact::_total_invocations = 0; 772 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0; 773 jlong PSParallelCompact::_time_of_last_gc = 0; 774 CollectorCounters* PSParallelCompact::_counters = NULL; 775 ParMarkBitMap PSParallelCompact::_mark_bitmap; 776 ParallelCompactData PSParallelCompact::_summary_data; 777 778 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure; 779 780 void PSParallelCompact::IsAliveClosure::do_object(oop p) { ShouldNotReachHere(); } 781 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); } 782 783 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); } 784 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); } 785 786 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true); 787 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false); 788 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure; 789 790 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p) { adjust_pointer(p, _is_root); } 791 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); } 792 793 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); } 794 795 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p) { 796 mark_and_push(_compaction_manager, p); 797 } 798 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); } 799 800 void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) { 801 klass->oops_do(_mark_and_push_closure); 802 } 803 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) { 804 klass->oops_do(&PSParallelCompact::_adjust_root_pointer_closure); 805 } 806 807 void PSParallelCompact::post_initialize() { 808 ParallelScavengeHeap* heap = gc_heap(); 809 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); 810 811 MemRegion mr = heap->reserved_region(); 812 _ref_processor = 813 new ReferenceProcessor(mr, // span 814 ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing 815 (int) ParallelGCThreads, // mt processing degree 816 true, // mt discovery 817 (int) ParallelGCThreads, // mt discovery degree 818 true, // atomic_discovery 819 &_is_alive_closure, // non-header is alive closure 820 false); // write barrier for next field updates 821 _counters = new CollectorCounters("PSParallelCompact", 1); 822 823 // Initialize static fields in ParCompactionManager. 824 ParCompactionManager::initialize(mark_bitmap()); 825 } 826 827 bool PSParallelCompact::initialize() { 828 ParallelScavengeHeap* heap = gc_heap(); 829 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); 830 MemRegion mr = heap->reserved_region(); 831 832 // Was the old gen get allocated successfully? 833 if (!heap->old_gen()->is_allocated()) { 834 return false; 835 } 836 837 initialize_space_info(); 838 initialize_dead_wood_limiter(); 839 840 if (!_mark_bitmap.initialize(mr)) { 841 vm_shutdown_during_initialization("Unable to allocate bit map for " 842 "parallel garbage collection for the requested heap size."); 843 return false; 844 } 845 846 if (!_summary_data.initialize(mr)) { 847 vm_shutdown_during_initialization("Unable to allocate tables for " 848 "parallel garbage collection for the requested heap size."); 849 return false; 850 } 851 852 return true; 853 } 854 855 void PSParallelCompact::initialize_space_info() 856 { 857 memset(&_space_info, 0, sizeof(_space_info)); 858 859 ParallelScavengeHeap* heap = gc_heap(); 860 PSYoungGen* young_gen = heap->young_gen(); 861 862 _space_info[old_space_id].set_space(heap->old_gen()->object_space()); 863 _space_info[eden_space_id].set_space(young_gen->eden_space()); 864 _space_info[from_space_id].set_space(young_gen->from_space()); 865 _space_info[to_space_id].set_space(young_gen->to_space()); 866 867 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array()); 868 } 869 870 void PSParallelCompact::initialize_dead_wood_limiter() 871 { 872 const size_t max = 100; 873 _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0; 874 _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0; 875 _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev); 876 DEBUG_ONLY(_dwl_initialized = true;) 877 _dwl_adjustment = normal_distribution(1.0); 878 } 879 880 // Simple class for storing info about the heap at the start of GC, to be used 881 // after GC for comparison/printing. 882 class PreGCValues { 883 public: 884 PreGCValues() { } 885 PreGCValues(ParallelScavengeHeap* heap) { fill(heap); } 886 887 void fill(ParallelScavengeHeap* heap) { 888 _heap_used = heap->used(); 889 _young_gen_used = heap->young_gen()->used_in_bytes(); 890 _old_gen_used = heap->old_gen()->used_in_bytes(); 891 _metadata_used = MetaspaceAux::used_in_bytes(); 892 }; 893 894 size_t heap_used() const { return _heap_used; } 895 size_t young_gen_used() const { return _young_gen_used; } 896 size_t old_gen_used() const { return _old_gen_used; } 897 size_t metadata_used() const { return _metadata_used; } 898 899 private: 900 size_t _heap_used; 901 size_t _young_gen_used; 902 size_t _old_gen_used; 903 size_t _metadata_used; 904 }; 905 906 void 907 PSParallelCompact::clear_data_covering_space(SpaceId id) 908 { 909 // At this point, top is the value before GC, new_top() is the value that will 910 // be set at the end of GC. The marking bitmap is cleared to top; nothing 911 // should be marked above top. The summary data is cleared to the larger of 912 // top & new_top. 913 MutableSpace* const space = _space_info[id].space(); 914 HeapWord* const bot = space->bottom(); 915 HeapWord* const top = space->top(); 916 HeapWord* const max_top = MAX2(top, _space_info[id].new_top()); 917 918 const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot); 919 const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top)); 920 _mark_bitmap.clear_range(beg_bit, end_bit); 921 922 const size_t beg_region = _summary_data.addr_to_region_idx(bot); 923 const size_t end_region = 924 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top)); 925 _summary_data.clear_range(beg_region, end_region); 926 927 // Clear the data used to 'split' regions. 928 SplitInfo& split_info = _space_info[id].split_info(); 929 if (split_info.is_valid()) { 930 split_info.clear(); 931 } 932 DEBUG_ONLY(split_info.verify_clear();) 933 } 934 935 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values) 936 { 937 // Update the from & to space pointers in space_info, since they are swapped 938 // at each young gen gc. Do the update unconditionally (even though a 939 // promotion failure does not swap spaces) because an unknown number of minor 940 // collections will have swapped the spaces an unknown number of times. 941 TraceTime tm("pre compact", print_phases(), true, gclog_or_tty); 942 ParallelScavengeHeap* heap = gc_heap(); 943 _space_info[from_space_id].set_space(heap->young_gen()->from_space()); 944 _space_info[to_space_id].set_space(heap->young_gen()->to_space()); 945 946 pre_gc_values->fill(heap); 947 948 NOT_PRODUCT(_mark_bitmap.reset_counters()); 949 DEBUG_ONLY(add_obj_count = add_obj_size = 0;) 950 DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;) 951 952 // Increment the invocation count 953 heap->increment_total_collections(true); 954 955 // We need to track unique mark sweep invocations as well. 956 _total_invocations++; 957 958 heap->print_heap_before_gc(); 959 960 // Fill in TLABs 961 heap->accumulate_statistics_all_tlabs(); 962 heap->ensure_parsability(true); // retire TLABs 963 964 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { 965 HandleMark hm; // Discard invalid handles created during verification 966 gclog_or_tty->print(" VerifyBeforeGC:"); 967 Universe::verify(); 968 } 969 970 // Verify object start arrays 971 if (VerifyObjectStartArray && 972 VerifyBeforeGC) { 973 heap->old_gen()->verify_object_start_array(); 974 } 975 976 DEBUG_ONLY(mark_bitmap()->verify_clear();) 977 DEBUG_ONLY(summary_data().verify_clear();) 978 979 // Have worker threads release resources the next time they run a task. 980 gc_task_manager()->release_all_resources(); 981 } 982 983 void PSParallelCompact::post_compact() 984 { 985 TraceTime tm("post compact", print_phases(), true, gclog_or_tty); 986 987 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 988 // Clear the marking bitmap, summary data and split info. 989 clear_data_covering_space(SpaceId(id)); 990 // Update top(). Must be done after clearing the bitmap and summary data. 991 _space_info[id].publish_new_top(); 992 } 993 994 MutableSpace* const eden_space = _space_info[eden_space_id].space(); 995 MutableSpace* const from_space = _space_info[from_space_id].space(); 996 MutableSpace* const to_space = _space_info[to_space_id].space(); 997 998 ParallelScavengeHeap* heap = gc_heap(); 999 bool eden_empty = eden_space->is_empty(); 1000 if (!eden_empty) { 1001 eden_empty = absorb_live_data_from_eden(heap->size_policy(), 1002 heap->young_gen(), heap->old_gen()); 1003 } 1004 1005 // Update heap occupancy information which is used as input to the soft ref 1006 // clearing policy at the next gc. 1007 Universe::update_heap_info_at_gc(); 1008 1009 bool young_gen_empty = eden_empty && from_space->is_empty() && 1010 to_space->is_empty(); 1011 1012 BarrierSet* bs = heap->barrier_set(); 1013 if (bs->is_a(BarrierSet::ModRef)) { 1014 ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs; 1015 MemRegion old_mr = heap->old_gen()->reserved(); 1016 1017 if (young_gen_empty) { 1018 modBS->clear(MemRegion(old_mr.start(), old_mr.end())); 1019 } else { 1020 modBS->invalidate(MemRegion(old_mr.start(), old_mr.end())); 1021 } 1022 } 1023 1024 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1025 ClassLoaderDataGraph::purge(); 1026 1027 Threads::gc_epilogue(); 1028 CodeCache::gc_epilogue(); 1029 JvmtiExport::gc_epilogue(); 1030 1031 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 1032 1033 ref_processor()->enqueue_discovered_references(NULL); 1034 1035 if (ZapUnusedHeapArea) { 1036 heap->gen_mangle_unused_area(); 1037 } 1038 1039 // Update time of last GC 1040 reset_millis_since_last_gc(); 1041 } 1042 1043 HeapWord* 1044 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id, 1045 bool maximum_compaction) 1046 { 1047 const size_t region_size = ParallelCompactData::RegionSize; 1048 const ParallelCompactData& sd = summary_data(); 1049 1050 const MutableSpace* const space = _space_info[id].space(); 1051 HeapWord* const top_aligned_up = sd.region_align_up(space->top()); 1052 const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom()); 1053 const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up); 1054 1055 // Skip full regions at the beginning of the space--they are necessarily part 1056 // of the dense prefix. 1057 size_t full_count = 0; 1058 const RegionData* cp; 1059 for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) { 1060 ++full_count; 1061 } 1062 1063 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity"); 1064 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num; 1065 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval; 1066 if (maximum_compaction || cp == end_cp || interval_ended) { 1067 _maximum_compaction_gc_num = total_invocations(); 1068 return sd.region_to_addr(cp); 1069 } 1070 1071 HeapWord* const new_top = _space_info[id].new_top(); 1072 const size_t space_live = pointer_delta(new_top, space->bottom()); 1073 const size_t space_used = space->used_in_words(); 1074 const size_t space_capacity = space->capacity_in_words(); 1075 1076 const double cur_density = double(space_live) / space_capacity; 1077 const double deadwood_density = 1078 (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density; 1079 const size_t deadwood_goal = size_t(space_capacity * deadwood_density); 1080 1081 if (TraceParallelOldGCDensePrefix) { 1082 tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT, 1083 cur_density, deadwood_density, deadwood_goal); 1084 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " " 1085 "space_cap=" SIZE_FORMAT, 1086 space_live, space_used, 1087 space_capacity); 1088 } 1089 1090 // XXX - Use binary search? 1091 HeapWord* dense_prefix = sd.region_to_addr(cp); 1092 const RegionData* full_cp = cp; 1093 const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1); 1094 while (cp < end_cp) { 1095 HeapWord* region_destination = cp->destination(); 1096 const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination); 1097 if (TraceParallelOldGCDensePrefix && Verbose) { 1098 tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " " 1099 "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8), 1100 sd.region(cp), region_destination, 1101 dense_prefix, cur_deadwood); 1102 } 1103 1104 if (cur_deadwood >= deadwood_goal) { 1105 // Found the region that has the correct amount of deadwood to the left. 1106 // This typically occurs after crossing a fairly sparse set of regions, so 1107 // iterate backwards over those sparse regions, looking for the region 1108 // that has the lowest density of live objects 'to the right.' 1109 size_t space_to_left = sd.region(cp) * region_size; 1110 size_t live_to_left = space_to_left - cur_deadwood; 1111 size_t space_to_right = space_capacity - space_to_left; 1112 size_t live_to_right = space_live - live_to_left; 1113 double density_to_right = double(live_to_right) / space_to_right; 1114 while (cp > full_cp) { 1115 --cp; 1116 const size_t prev_region_live_to_right = live_to_right - 1117 cp->data_size(); 1118 const size_t prev_region_space_to_right = space_to_right + region_size; 1119 double prev_region_density_to_right = 1120 double(prev_region_live_to_right) / prev_region_space_to_right; 1121 if (density_to_right <= prev_region_density_to_right) { 1122 return dense_prefix; 1123 } 1124 if (TraceParallelOldGCDensePrefix && Verbose) { 1125 tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f " 1126 "pc_d2r=%10.8f", sd.region(cp), density_to_right, 1127 prev_region_density_to_right); 1128 } 1129 dense_prefix -= region_size; 1130 live_to_right = prev_region_live_to_right; 1131 space_to_right = prev_region_space_to_right; 1132 density_to_right = prev_region_density_to_right; 1133 } 1134 return dense_prefix; 1135 } 1136 1137 dense_prefix += region_size; 1138 ++cp; 1139 } 1140 1141 return dense_prefix; 1142 } 1143 1144 #ifndef PRODUCT 1145 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm, 1146 const SpaceId id, 1147 const bool maximum_compaction, 1148 HeapWord* const addr) 1149 { 1150 const size_t region_idx = summary_data().addr_to_region_idx(addr); 1151 RegionData* const cp = summary_data().region(region_idx); 1152 const MutableSpace* const space = _space_info[id].space(); 1153 HeapWord* const new_top = _space_info[id].new_top(); 1154 1155 const size_t space_live = pointer_delta(new_top, space->bottom()); 1156 const size_t dead_to_left = pointer_delta(addr, cp->destination()); 1157 const size_t space_cap = space->capacity_in_words(); 1158 const double dead_to_left_pct = double(dead_to_left) / space_cap; 1159 const size_t live_to_right = new_top - cp->destination(); 1160 const size_t dead_to_right = space->top() - addr - live_to_right; 1161 1162 tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " " 1163 "spl=" SIZE_FORMAT " " 1164 "d2l=" SIZE_FORMAT " d2l%%=%6.4f " 1165 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT 1166 " ratio=%10.8f", 1167 algorithm, addr, region_idx, 1168 space_live, 1169 dead_to_left, dead_to_left_pct, 1170 dead_to_right, live_to_right, 1171 double(dead_to_right) / live_to_right); 1172 } 1173 #endif // #ifndef PRODUCT 1174 1175 // Return a fraction indicating how much of the generation can be treated as 1176 // "dead wood" (i.e., not reclaimed). The function uses a normal distribution 1177 // based on the density of live objects in the generation to determine a limit, 1178 // which is then adjusted so the return value is min_percent when the density is 1179 // 1. 1180 // 1181 // The following table shows some return values for a different values of the 1182 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and 1183 // min_percent is 1. 1184 // 1185 // fraction allowed as dead wood 1186 // ----------------------------------------------------------------- 1187 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95 1188 // ------- ---------- ---------- ---------- ---------- ---------- ---------- 1189 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 1190 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941 1191 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272 1192 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066 1193 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975 1194 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313 1195 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132 1196 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289 1197 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500 1198 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386 1199 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510 1200 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386 1201 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500 1202 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289 1203 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132 1204 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313 1205 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975 1206 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066 1207 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272 1208 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941 1209 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 1210 1211 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent) 1212 { 1213 assert(_dwl_initialized, "uninitialized"); 1214 1215 // The raw limit is the value of the normal distribution at x = density. 1216 const double raw_limit = normal_distribution(density); 1217 1218 // Adjust the raw limit so it becomes the minimum when the density is 1. 1219 // 1220 // First subtract the adjustment value (which is simply the precomputed value 1221 // normal_distribution(1.0)); this yields a value of 0 when the density is 1. 1222 // Then add the minimum value, so the minimum is returned when the density is 1223 // 1. Finally, prevent negative values, which occur when the mean is not 0.5. 1224 const double min = double(min_percent) / 100.0; 1225 const double limit = raw_limit - _dwl_adjustment + min; 1226 return MAX2(limit, 0.0); 1227 } 1228 1229 ParallelCompactData::RegionData* 1230 PSParallelCompact::first_dead_space_region(const RegionData* beg, 1231 const RegionData* end) 1232 { 1233 const size_t region_size = ParallelCompactData::RegionSize; 1234 ParallelCompactData& sd = summary_data(); 1235 size_t left = sd.region(beg); 1236 size_t right = end > beg ? sd.region(end) - 1 : left; 1237 1238 // Binary search. 1239 while (left < right) { 1240 // Equivalent to (left + right) / 2, but does not overflow. 1241 const size_t middle = left + (right - left) / 2; 1242 RegionData* const middle_ptr = sd.region(middle); 1243 HeapWord* const dest = middle_ptr->destination(); 1244 HeapWord* const addr = sd.region_to_addr(middle); 1245 assert(dest != NULL, "sanity"); 1246 assert(dest <= addr, "must move left"); 1247 1248 if (middle > left && dest < addr) { 1249 right = middle - 1; 1250 } else if (middle < right && middle_ptr->data_size() == region_size) { 1251 left = middle + 1; 1252 } else { 1253 return middle_ptr; 1254 } 1255 } 1256 return sd.region(left); 1257 } 1258 1259 ParallelCompactData::RegionData* 1260 PSParallelCompact::dead_wood_limit_region(const RegionData* beg, 1261 const RegionData* end, 1262 size_t dead_words) 1263 { 1264 ParallelCompactData& sd = summary_data(); 1265 size_t left = sd.region(beg); 1266 size_t right = end > beg ? sd.region(end) - 1 : left; 1267 1268 // Binary search. 1269 while (left < right) { 1270 // Equivalent to (left + right) / 2, but does not overflow. 1271 const size_t middle = left + (right - left) / 2; 1272 RegionData* const middle_ptr = sd.region(middle); 1273 HeapWord* const dest = middle_ptr->destination(); 1274 HeapWord* const addr = sd.region_to_addr(middle); 1275 assert(dest != NULL, "sanity"); 1276 assert(dest <= addr, "must move left"); 1277 1278 const size_t dead_to_left = pointer_delta(addr, dest); 1279 if (middle > left && dead_to_left > dead_words) { 1280 right = middle - 1; 1281 } else if (middle < right && dead_to_left < dead_words) { 1282 left = middle + 1; 1283 } else { 1284 return middle_ptr; 1285 } 1286 } 1287 return sd.region(left); 1288 } 1289 1290 // The result is valid during the summary phase, after the initial summarization 1291 // of each space into itself, and before final summarization. 1292 inline double 1293 PSParallelCompact::reclaimed_ratio(const RegionData* const cp, 1294 HeapWord* const bottom, 1295 HeapWord* const top, 1296 HeapWord* const new_top) 1297 { 1298 ParallelCompactData& sd = summary_data(); 1299 1300 assert(cp != NULL, "sanity"); 1301 assert(bottom != NULL, "sanity"); 1302 assert(top != NULL, "sanity"); 1303 assert(new_top != NULL, "sanity"); 1304 assert(top >= new_top, "summary data problem?"); 1305 assert(new_top > bottom, "space is empty; should not be here"); 1306 assert(new_top >= cp->destination(), "sanity"); 1307 assert(top >= sd.region_to_addr(cp), "sanity"); 1308 1309 HeapWord* const destination = cp->destination(); 1310 const size_t dense_prefix_live = pointer_delta(destination, bottom); 1311 const size_t compacted_region_live = pointer_delta(new_top, destination); 1312 const size_t compacted_region_used = pointer_delta(top, 1313 sd.region_to_addr(cp)); 1314 const size_t reclaimable = compacted_region_used - compacted_region_live; 1315 1316 const double divisor = dense_prefix_live + 1.25 * compacted_region_live; 1317 return double(reclaimable) / divisor; 1318 } 1319 1320 // Return the address of the end of the dense prefix, a.k.a. the start of the 1321 // compacted region. The address is always on a region boundary. 1322 // 1323 // Completely full regions at the left are skipped, since no compaction can 1324 // occur in those regions. Then the maximum amount of dead wood to allow is 1325 // computed, based on the density (amount live / capacity) of the generation; 1326 // the region with approximately that amount of dead space to the left is 1327 // identified as the limit region. Regions between the last completely full 1328 // region and the limit region are scanned and the one that has the best 1329 // (maximum) reclaimed_ratio() is selected. 1330 HeapWord* 1331 PSParallelCompact::compute_dense_prefix(const SpaceId id, 1332 bool maximum_compaction) 1333 { 1334 if (ParallelOldGCSplitALot) { 1335 if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) { 1336 // The value was chosen to provoke splitting a young gen space; use it. 1337 return _space_info[id].dense_prefix(); 1338 } 1339 } 1340 1341 const size_t region_size = ParallelCompactData::RegionSize; 1342 const ParallelCompactData& sd = summary_data(); 1343 1344 const MutableSpace* const space = _space_info[id].space(); 1345 HeapWord* const top = space->top(); 1346 HeapWord* const top_aligned_up = sd.region_align_up(top); 1347 HeapWord* const new_top = _space_info[id].new_top(); 1348 HeapWord* const new_top_aligned_up = sd.region_align_up(new_top); 1349 HeapWord* const bottom = space->bottom(); 1350 const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom); 1351 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); 1352 const RegionData* const new_top_cp = 1353 sd.addr_to_region_ptr(new_top_aligned_up); 1354 1355 // Skip full regions at the beginning of the space--they are necessarily part 1356 // of the dense prefix. 1357 const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp); 1358 assert(full_cp->destination() == sd.region_to_addr(full_cp) || 1359 space->is_empty(), "no dead space allowed to the left"); 1360 assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1, 1361 "region must have dead space"); 1362 1363 // The gc number is saved whenever a maximum compaction is done, and used to 1364 // determine when the maximum compaction interval has expired. This avoids 1365 // successive max compactions for different reasons. 1366 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity"); 1367 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num; 1368 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval || 1369 total_invocations() == HeapFirstMaximumCompactionCount; 1370 if (maximum_compaction || full_cp == top_cp || interval_ended) { 1371 _maximum_compaction_gc_num = total_invocations(); 1372 return sd.region_to_addr(full_cp); 1373 } 1374 1375 const size_t space_live = pointer_delta(new_top, bottom); 1376 const size_t space_used = space->used_in_words(); 1377 const size_t space_capacity = space->capacity_in_words(); 1378 1379 const double density = double(space_live) / double(space_capacity); 1380 const size_t min_percent_free = MarkSweepDeadRatio; 1381 const double limiter = dead_wood_limiter(density, min_percent_free); 1382 const size_t dead_wood_max = space_used - space_live; 1383 const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter), 1384 dead_wood_max); 1385 1386 if (TraceParallelOldGCDensePrefix) { 1387 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " " 1388 "space_cap=" SIZE_FORMAT, 1389 space_live, space_used, 1390 space_capacity); 1391 tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f " 1392 "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT, 1393 density, min_percent_free, limiter, 1394 dead_wood_max, dead_wood_limit); 1395 } 1396 1397 // Locate the region with the desired amount of dead space to the left. 1398 const RegionData* const limit_cp = 1399 dead_wood_limit_region(full_cp, top_cp, dead_wood_limit); 1400 1401 // Scan from the first region with dead space to the limit region and find the 1402 // one with the best (largest) reclaimed ratio. 1403 double best_ratio = 0.0; 1404 const RegionData* best_cp = full_cp; 1405 for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) { 1406 double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top); 1407 if (tmp_ratio > best_ratio) { 1408 best_cp = cp; 1409 best_ratio = tmp_ratio; 1410 } 1411 } 1412 1413 #if 0 1414 // Something to consider: if the region with the best ratio is 'close to' the 1415 // first region w/free space, choose the first region with free space 1416 // ("first-free"). The first-free region is usually near the start of the 1417 // heap, which means we are copying most of the heap already, so copy a bit 1418 // more to get complete compaction. 1419 if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) { 1420 _maximum_compaction_gc_num = total_invocations(); 1421 best_cp = full_cp; 1422 } 1423 #endif // #if 0 1424 1425 return sd.region_to_addr(best_cp); 1426 } 1427 1428 #ifndef PRODUCT 1429 void 1430 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start, 1431 size_t words) 1432 { 1433 if (TraceParallelOldGCSummaryPhase) { 1434 tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") " 1435 SIZE_FORMAT, start, start + words, words); 1436 } 1437 1438 ObjectStartArray* const start_array = _space_info[id].start_array(); 1439 CollectedHeap::fill_with_objects(start, words); 1440 for (HeapWord* p = start; p < start + words; p += oop(p)->size()) { 1441 _mark_bitmap.mark_obj(p, words); 1442 _summary_data.add_obj(p, words); 1443 start_array->allocate_block(p); 1444 } 1445 } 1446 1447 void 1448 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start) 1449 { 1450 ParallelCompactData& sd = summary_data(); 1451 MutableSpace* space = _space_info[id].space(); 1452 1453 // Find the source and destination start addresses. 1454 HeapWord* const src_addr = sd.region_align_down(start); 1455 HeapWord* dst_addr; 1456 if (src_addr < start) { 1457 dst_addr = sd.addr_to_region_ptr(src_addr)->destination(); 1458 } else if (src_addr > space->bottom()) { 1459 // The start (the original top() value) is aligned to a region boundary so 1460 // the associated region does not have a destination. Compute the 1461 // destination from the previous region. 1462 RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1; 1463 dst_addr = cp->destination() + cp->data_size(); 1464 } else { 1465 // Filling the entire space. 1466 dst_addr = space->bottom(); 1467 } 1468 assert(dst_addr != NULL, "sanity"); 1469 1470 // Update the summary data. 1471 bool result = _summary_data.summarize(_space_info[id].split_info(), 1472 src_addr, space->top(), NULL, 1473 dst_addr, space->end(), 1474 _space_info[id].new_top_addr()); 1475 assert(result, "should not fail: bad filler object size"); 1476 } 1477 1478 void 1479 PSParallelCompact::provoke_split_fill_survivor(SpaceId id) 1480 { 1481 if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) { 1482 return; 1483 } 1484 1485 MutableSpace* const space = _space_info[id].space(); 1486 if (space->is_empty()) { 1487 HeapWord* b = space->bottom(); 1488 HeapWord* t = b + space->capacity_in_words() / 2; 1489 space->set_top(t); 1490 if (ZapUnusedHeapArea) { 1491 space->set_top_for_allocations(); 1492 } 1493 1494 size_t min_size = CollectedHeap::min_fill_size(); 1495 size_t obj_len = min_size; 1496 while (b + obj_len <= t) { 1497 CollectedHeap::fill_with_object(b, obj_len); 1498 mark_bitmap()->mark_obj(b, obj_len); 1499 summary_data().add_obj(b, obj_len); 1500 b += obj_len; 1501 obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ... 1502 } 1503 if (b < t) { 1504 // The loop didn't completely fill to t (top); adjust top downward. 1505 space->set_top(b); 1506 if (ZapUnusedHeapArea) { 1507 space->set_top_for_allocations(); 1508 } 1509 } 1510 1511 HeapWord** nta = _space_info[id].new_top_addr(); 1512 bool result = summary_data().summarize(_space_info[id].split_info(), 1513 space->bottom(), space->top(), NULL, 1514 space->bottom(), space->end(), nta); 1515 assert(result, "space must fit into itself"); 1516 } 1517 } 1518 1519 void 1520 PSParallelCompact::provoke_split(bool & max_compaction) 1521 { 1522 if (total_invocations() % ParallelOldGCSplitInterval != 0) { 1523 return; 1524 } 1525 1526 const size_t region_size = ParallelCompactData::RegionSize; 1527 ParallelCompactData& sd = summary_data(); 1528 1529 MutableSpace* const eden_space = _space_info[eden_space_id].space(); 1530 MutableSpace* const from_space = _space_info[from_space_id].space(); 1531 const size_t eden_live = pointer_delta(eden_space->top(), 1532 _space_info[eden_space_id].new_top()); 1533 const size_t from_live = pointer_delta(from_space->top(), 1534 _space_info[from_space_id].new_top()); 1535 1536 const size_t min_fill_size = CollectedHeap::min_fill_size(); 1537 const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top()); 1538 const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0; 1539 const size_t from_free = pointer_delta(from_space->end(), from_space->top()); 1540 const size_t from_fillable = from_free >= min_fill_size ? from_free : 0; 1541 1542 // Choose the space to split; need at least 2 regions live (or fillable). 1543 SpaceId id; 1544 MutableSpace* space; 1545 size_t live_words; 1546 size_t fill_words; 1547 if (eden_live + eden_fillable >= region_size * 2) { 1548 id = eden_space_id; 1549 space = eden_space; 1550 live_words = eden_live; 1551 fill_words = eden_fillable; 1552 } else if (from_live + from_fillable >= region_size * 2) { 1553 id = from_space_id; 1554 space = from_space; 1555 live_words = from_live; 1556 fill_words = from_fillable; 1557 } else { 1558 return; // Give up. 1559 } 1560 assert(fill_words == 0 || fill_words >= min_fill_size, "sanity"); 1561 1562 if (live_words < region_size * 2) { 1563 // Fill from top() to end() w/live objects of mixed sizes. 1564 HeapWord* const fill_start = space->top(); 1565 live_words += fill_words; 1566 1567 space->set_top(fill_start + fill_words); 1568 if (ZapUnusedHeapArea) { 1569 space->set_top_for_allocations(); 1570 } 1571 1572 HeapWord* cur_addr = fill_start; 1573 while (fill_words > 0) { 1574 const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size; 1575 size_t cur_size = MIN2(align_object_size_(r), fill_words); 1576 if (fill_words - cur_size < min_fill_size) { 1577 cur_size = fill_words; // Avoid leaving a fragment too small to fill. 1578 } 1579 1580 CollectedHeap::fill_with_object(cur_addr, cur_size); 1581 mark_bitmap()->mark_obj(cur_addr, cur_size); 1582 sd.add_obj(cur_addr, cur_size); 1583 1584 cur_addr += cur_size; 1585 fill_words -= cur_size; 1586 } 1587 1588 summarize_new_objects(id, fill_start); 1589 } 1590 1591 max_compaction = false; 1592 1593 // Manipulate the old gen so that it has room for about half of the live data 1594 // in the target young gen space (live_words / 2). 1595 id = old_space_id; 1596 space = _space_info[id].space(); 1597 const size_t free_at_end = space->free_in_words(); 1598 const size_t free_target = align_object_size(live_words / 2); 1599 const size_t dead = pointer_delta(space->top(), _space_info[id].new_top()); 1600 1601 if (free_at_end >= free_target + min_fill_size) { 1602 // Fill space above top() and set the dense prefix so everything survives. 1603 HeapWord* const fill_start = space->top(); 1604 const size_t fill_size = free_at_end - free_target; 1605 space->set_top(space->top() + fill_size); 1606 if (ZapUnusedHeapArea) { 1607 space->set_top_for_allocations(); 1608 } 1609 fill_with_live_objects(id, fill_start, fill_size); 1610 summarize_new_objects(id, fill_start); 1611 _space_info[id].set_dense_prefix(sd.region_align_down(space->top())); 1612 } else if (dead + free_at_end > free_target) { 1613 // Find a dense prefix that makes the right amount of space available. 1614 HeapWord* cur = sd.region_align_down(space->top()); 1615 HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination(); 1616 size_t dead_to_right = pointer_delta(space->end(), cur_destination); 1617 while (dead_to_right < free_target) { 1618 cur -= region_size; 1619 cur_destination = sd.addr_to_region_ptr(cur)->destination(); 1620 dead_to_right = pointer_delta(space->end(), cur_destination); 1621 } 1622 _space_info[id].set_dense_prefix(cur); 1623 } 1624 } 1625 #endif // #ifndef PRODUCT 1626 1627 void PSParallelCompact::summarize_spaces_quick() 1628 { 1629 for (unsigned int i = 0; i < last_space_id; ++i) { 1630 const MutableSpace* space = _space_info[i].space(); 1631 HeapWord** nta = _space_info[i].new_top_addr(); 1632 bool result = _summary_data.summarize(_space_info[i].split_info(), 1633 space->bottom(), space->top(), NULL, 1634 space->bottom(), space->end(), nta); 1635 assert(result, "space must fit into itself"); 1636 _space_info[i].set_dense_prefix(space->bottom()); 1637 } 1638 1639 #ifndef PRODUCT 1640 if (ParallelOldGCSplitALot) { 1641 provoke_split_fill_survivor(to_space_id); 1642 } 1643 #endif // #ifndef PRODUCT 1644 } 1645 1646 void PSParallelCompact::fill_dense_prefix_end(SpaceId id) 1647 { 1648 HeapWord* const dense_prefix_end = dense_prefix(id); 1649 const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end); 1650 const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end); 1651 if (dead_space_crosses_boundary(region, dense_prefix_bit)) { 1652 // Only enough dead space is filled so that any remaining dead space to the 1653 // left is larger than the minimum filler object. (The remainder is filled 1654 // during the copy/update phase.) 1655 // 1656 // The size of the dead space to the right of the boundary is not a 1657 // concern, since compaction will be able to use whatever space is 1658 // available. 1659 // 1660 // Here '||' is the boundary, 'x' represents a don't care bit and a box 1661 // surrounds the space to be filled with an object. 1662 // 1663 // In the 32-bit VM, each bit represents two 32-bit words: 1664 // +---+ 1665 // a) beg_bits: ... x x x | 0 | || 0 x x ... 1666 // end_bits: ... x x x | 0 | || 0 x x ... 1667 // +---+ 1668 // 1669 // In the 64-bit VM, each bit represents one 64-bit word: 1670 // +------------+ 1671 // b) beg_bits: ... x x x | 0 || 0 | x x ... 1672 // end_bits: ... x x 1 | 0 || 0 | x x ... 1673 // +------------+ 1674 // +-------+ 1675 // c) beg_bits: ... x x | 0 0 | || 0 x x ... 1676 // end_bits: ... x 1 | 0 0 | || 0 x x ... 1677 // +-------+ 1678 // +-----------+ 1679 // d) beg_bits: ... x | 0 0 0 | || 0 x x ... 1680 // end_bits: ... 1 | 0 0 0 | || 0 x x ... 1681 // +-----------+ 1682 // +-------+ 1683 // e) beg_bits: ... 0 0 | 0 0 | || 0 x x ... 1684 // end_bits: ... 0 0 | 0 0 | || 0 x x ... 1685 // +-------+ 1686 1687 // Initially assume case a, c or e will apply. 1688 size_t obj_len = CollectedHeap::min_fill_size(); 1689 HeapWord* obj_beg = dense_prefix_end - obj_len; 1690 1691 #ifdef _LP64 1692 if (MinObjAlignment > 1) { // object alignment > heap word size 1693 // Cases a, c or e. 1694 } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) { 1695 // Case b above. 1696 obj_beg = dense_prefix_end - 1; 1697 } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) && 1698 _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) { 1699 // Case d above. 1700 obj_beg = dense_prefix_end - 3; 1701 obj_len = 3; 1702 } 1703 #endif // #ifdef _LP64 1704 1705 CollectedHeap::fill_with_object(obj_beg, obj_len); 1706 _mark_bitmap.mark_obj(obj_beg, obj_len); 1707 _summary_data.add_obj(obj_beg, obj_len); 1708 assert(start_array(id) != NULL, "sanity"); 1709 start_array(id)->allocate_block(obj_beg); 1710 } 1711 } 1712 1713 void 1714 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr) 1715 { 1716 RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr); 1717 HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr); 1718 RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up); 1719 for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) { 1720 cur->set_source_region(0); 1721 } 1722 } 1723 1724 void 1725 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction) 1726 { 1727 assert(id < last_space_id, "id out of range"); 1728 assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() || 1729 ParallelOldGCSplitALot && id == old_space_id, 1730 "should have been reset in summarize_spaces_quick()"); 1731 1732 const MutableSpace* space = _space_info[id].space(); 1733 if (_space_info[id].new_top() != space->bottom()) { 1734 HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction); 1735 _space_info[id].set_dense_prefix(dense_prefix_end); 1736 1737 #ifndef PRODUCT 1738 if (TraceParallelOldGCDensePrefix) { 1739 print_dense_prefix_stats("ratio", id, maximum_compaction, 1740 dense_prefix_end); 1741 HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction); 1742 print_dense_prefix_stats("density", id, maximum_compaction, addr); 1743 } 1744 #endif // #ifndef PRODUCT 1745 1746 // Recompute the summary data, taking into account the dense prefix. If 1747 // every last byte will be reclaimed, then the existing summary data which 1748 // compacts everything can be left in place. 1749 if (!maximum_compaction && dense_prefix_end != space->bottom()) { 1750 // If dead space crosses the dense prefix boundary, it is (at least 1751 // partially) filled with a dummy object, marked live and added to the 1752 // summary data. This simplifies the copy/update phase and must be done 1753 // before the final locations of objects are determined, to prevent 1754 // leaving a fragment of dead space that is too small to fill. 1755 fill_dense_prefix_end(id); 1756 1757 // Compute the destination of each Region, and thus each object. 1758 _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end); 1759 _summary_data.summarize(_space_info[id].split_info(), 1760 dense_prefix_end, space->top(), NULL, 1761 dense_prefix_end, space->end(), 1762 _space_info[id].new_top_addr()); 1763 } 1764 } 1765 1766 if (TraceParallelOldGCSummaryPhase) { 1767 const size_t region_size = ParallelCompactData::RegionSize; 1768 HeapWord* const dense_prefix_end = _space_info[id].dense_prefix(); 1769 const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end); 1770 const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom()); 1771 HeapWord* const new_top = _space_info[id].new_top(); 1772 const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top); 1773 const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end); 1774 tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " " 1775 "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " " 1776 "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT, 1777 id, space->capacity_in_words(), dense_prefix_end, 1778 dp_region, dp_words / region_size, 1779 cr_words / region_size, new_top); 1780 } 1781 } 1782 1783 #ifndef PRODUCT 1784 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id, 1785 HeapWord* dst_beg, HeapWord* dst_end, 1786 SpaceId src_space_id, 1787 HeapWord* src_beg, HeapWord* src_end) 1788 { 1789 if (TraceParallelOldGCSummaryPhase) { 1790 tty->print_cr("summarizing %d [%s] into %d [%s]: " 1791 "src=" PTR_FORMAT "-" PTR_FORMAT " " 1792 SIZE_FORMAT "-" SIZE_FORMAT " " 1793 "dst=" PTR_FORMAT "-" PTR_FORMAT " " 1794 SIZE_FORMAT "-" SIZE_FORMAT, 1795 src_space_id, space_names[src_space_id], 1796 dst_space_id, space_names[dst_space_id], 1797 src_beg, src_end, 1798 _summary_data.addr_to_region_idx(src_beg), 1799 _summary_data.addr_to_region_idx(src_end), 1800 dst_beg, dst_end, 1801 _summary_data.addr_to_region_idx(dst_beg), 1802 _summary_data.addr_to_region_idx(dst_end)); 1803 } 1804 } 1805 #endif // #ifndef PRODUCT 1806 1807 void PSParallelCompact::summary_phase(ParCompactionManager* cm, 1808 bool maximum_compaction) 1809 { 1810 TraceTime tm("summary phase", print_phases(), true, gclog_or_tty); 1811 // trace("2"); 1812 1813 #ifdef ASSERT 1814 if (TraceParallelOldGCMarkingPhase) { 1815 tty->print_cr("add_obj_count=" SIZE_FORMAT " " 1816 "add_obj_bytes=" SIZE_FORMAT, 1817 add_obj_count, add_obj_size * HeapWordSize); 1818 tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " " 1819 "mark_bitmap_bytes=" SIZE_FORMAT, 1820 mark_bitmap_count, mark_bitmap_size * HeapWordSize); 1821 } 1822 #endif // #ifdef ASSERT 1823 1824 // Quick summarization of each space into itself, to see how much is live. 1825 summarize_spaces_quick(); 1826 1827 if (TraceParallelOldGCSummaryPhase) { 1828 tty->print_cr("summary_phase: after summarizing each space to self"); 1829 Universe::print(); 1830 NOT_PRODUCT(print_region_ranges()); 1831 if (Verbose) { 1832 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info)); 1833 } 1834 } 1835 1836 // The amount of live data that will end up in old space (assuming it fits). 1837 size_t old_space_total_live = 0; 1838 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 1839 old_space_total_live += pointer_delta(_space_info[id].new_top(), 1840 _space_info[id].space()->bottom()); 1841 } 1842 1843 MutableSpace* const old_space = _space_info[old_space_id].space(); 1844 const size_t old_capacity = old_space->capacity_in_words(); 1845 if (old_space_total_live > old_capacity) { 1846 // XXX - should also try to expand 1847 maximum_compaction = true; 1848 } 1849 #ifndef PRODUCT 1850 if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) { 1851 provoke_split(maximum_compaction); 1852 } 1853 #endif // #ifndef PRODUCT 1854 1855 // Old generations. 1856 summarize_space(old_space_id, maximum_compaction); 1857 1858 // Summarize the remaining spaces in the young gen. The initial target space 1859 // is the old gen. If a space does not fit entirely into the target, then the 1860 // remainder is compacted into the space itself and that space becomes the new 1861 // target. 1862 SpaceId dst_space_id = old_space_id; 1863 HeapWord* dst_space_end = old_space->end(); 1864 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr(); 1865 for (unsigned int id = eden_space_id; id < last_space_id; ++id) { 1866 const MutableSpace* space = _space_info[id].space(); 1867 const size_t live = pointer_delta(_space_info[id].new_top(), 1868 space->bottom()); 1869 const size_t available = pointer_delta(dst_space_end, *new_top_addr); 1870 1871 NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end, 1872 SpaceId(id), space->bottom(), space->top());) 1873 if (live > 0 && live <= available) { 1874 // All the live data will fit. 1875 bool done = _summary_data.summarize(_space_info[id].split_info(), 1876 space->bottom(), space->top(), 1877 NULL, 1878 *new_top_addr, dst_space_end, 1879 new_top_addr); 1880 assert(done, "space must fit into old gen"); 1881 1882 // Reset the new_top value for the space. 1883 _space_info[id].set_new_top(space->bottom()); 1884 } else if (live > 0) { 1885 // Attempt to fit part of the source space into the target space. 1886 HeapWord* next_src_addr = NULL; 1887 bool done = _summary_data.summarize(_space_info[id].split_info(), 1888 space->bottom(), space->top(), 1889 &next_src_addr, 1890 *new_top_addr, dst_space_end, 1891 new_top_addr); 1892 assert(!done, "space should not fit into old gen"); 1893 assert(next_src_addr != NULL, "sanity"); 1894 1895 // The source space becomes the new target, so the remainder is compacted 1896 // within the space itself. 1897 dst_space_id = SpaceId(id); 1898 dst_space_end = space->end(); 1899 new_top_addr = _space_info[id].new_top_addr(); 1900 NOT_PRODUCT(summary_phase_msg(dst_space_id, 1901 space->bottom(), dst_space_end, 1902 SpaceId(id), next_src_addr, space->top());) 1903 done = _summary_data.summarize(_space_info[id].split_info(), 1904 next_src_addr, space->top(), 1905 NULL, 1906 space->bottom(), dst_space_end, 1907 new_top_addr); 1908 assert(done, "space must fit when compacted into itself"); 1909 assert(*new_top_addr <= space->top(), "usage should not grow"); 1910 } 1911 } 1912 1913 if (TraceParallelOldGCSummaryPhase) { 1914 tty->print_cr("summary_phase: after final summarization"); 1915 Universe::print(); 1916 NOT_PRODUCT(print_region_ranges()); 1917 if (Verbose) { 1918 NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info)); 1919 } 1920 } 1921 } 1922 1923 // This method should contain all heap-specific policy for invoking a full 1924 // collection. invoke_no_policy() will only attempt to compact the heap; it 1925 // will do nothing further. If we need to bail out for policy reasons, scavenge 1926 // before full gc, or any other specialized behavior, it needs to be added here. 1927 // 1928 // Note that this method should only be called from the vm_thread while at a 1929 // safepoint. 1930 // 1931 // Note that the all_soft_refs_clear flag in the collector policy 1932 // may be true because this method can be called without intervening 1933 // activity. For example when the heap space is tight and full measure 1934 // are being taken to free space. 1935 void PSParallelCompact::invoke(bool maximum_heap_compaction) { 1936 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 1937 assert(Thread::current() == (Thread*)VMThread::vm_thread(), 1938 "should be in vm thread"); 1939 1940 ParallelScavengeHeap* heap = gc_heap(); 1941 GCCause::Cause gc_cause = heap->gc_cause(); 1942 assert(!heap->is_gc_active(), "not reentrant"); 1943 1944 PSAdaptiveSizePolicy* policy = heap->size_policy(); 1945 IsGCActiveMark mark; 1946 1947 if (ScavengeBeforeFullGC) { 1948 PSScavenge::invoke_no_policy(); 1949 } 1950 1951 const bool clear_all_soft_refs = 1952 heap->collector_policy()->should_clear_all_soft_refs(); 1953 1954 PSParallelCompact::invoke_no_policy(clear_all_soft_refs || 1955 maximum_heap_compaction); 1956 } 1957 1958 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) { 1959 size_t addr_region_index = addr_to_region_idx(addr); 1960 return region_index == addr_region_index; 1961 } 1962 1963 // This method contains no policy. You should probably 1964 // be calling invoke() instead. 1965 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) { 1966 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); 1967 assert(ref_processor() != NULL, "Sanity"); 1968 1969 if (GC_locker::check_active_before_gc()) { 1970 return false; 1971 } 1972 1973 TimeStamp marking_start; 1974 TimeStamp compaction_start; 1975 TimeStamp collection_exit; 1976 1977 ParallelScavengeHeap* heap = gc_heap(); 1978 GCCause::Cause gc_cause = heap->gc_cause(); 1979 PSYoungGen* young_gen = heap->young_gen(); 1980 PSOldGen* old_gen = heap->old_gen(); 1981 PSAdaptiveSizePolicy* size_policy = heap->size_policy(); 1982 1983 // The scope of casr should end after code that can change 1984 // CollectorPolicy::_should_clear_all_soft_refs. 1985 ClearedAllSoftRefs casr(maximum_heap_compaction, 1986 heap->collector_policy()); 1987 1988 if (ZapUnusedHeapArea) { 1989 // Save information needed to minimize mangling 1990 heap->record_gen_tops_before_GC(); 1991 } 1992 1993 heap->pre_full_gc_dump(); 1994 1995 _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes; 1996 1997 // Make sure data structures are sane, make the heap parsable, and do other 1998 // miscellaneous bookkeeping. 1999 PreGCValues pre_gc_values; 2000 pre_compact(&pre_gc_values); 2001 2002 // Get the compaction manager reserved for the VM thread. 2003 ParCompactionManager* const vmthread_cm = 2004 ParCompactionManager::manager_array(gc_task_manager()->workers()); 2005 2006 // Place after pre_compact() where the number of invocations is incremented. 2007 AdaptiveSizePolicyOutput(size_policy, heap->total_collections()); 2008 2009 { 2010 ResourceMark rm; 2011 HandleMark hm; 2012 2013 // Set the number of GC threads to be used in this collection 2014 gc_task_manager()->set_active_gang(); 2015 gc_task_manager()->task_idle_workers(); 2016 heap->set_par_threads(gc_task_manager()->active_workers()); 2017 2018 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps); 2019 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 2020 TraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty); 2021 TraceCollectorStats tcs(counters()); 2022 TraceMemoryManagerStats tms(true /* Full GC */,gc_cause); 2023 2024 if (TraceGen1Time) accumulated_time()->start(); 2025 2026 // Let the size policy know we're starting 2027 size_policy->major_collection_begin(); 2028 2029 CodeCache::gc_prologue(); 2030 Threads::gc_prologue(); 2031 2032 COMPILER2_PRESENT(DerivedPointerTable::clear()); 2033 2034 ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/); 2035 ref_processor()->setup_policy(maximum_heap_compaction); 2036 2037 bool marked_for_unloading = false; 2038 2039 marking_start.update(); 2040 marking_phase(vmthread_cm, maximum_heap_compaction); 2041 2042 #ifndef PRODUCT 2043 if (TraceParallelOldGCMarkingPhase) { 2044 gclog_or_tty->print_cr("marking_phase: cas_tries %d cas_retries %d " 2045 "cas_by_another %d", 2046 mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(), 2047 mark_bitmap()->cas_by_another()); 2048 } 2049 #endif // #ifndef PRODUCT 2050 2051 bool max_on_system_gc = UseMaximumCompactionOnSystemGC 2052 && gc_cause == GCCause::_java_lang_system_gc; 2053 summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc); 2054 2055 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity")); 2056 COMPILER2_PRESENT(DerivedPointerTable::set_active(false)); 2057 2058 // adjust_roots() updates Universe::_intArrayKlassObj which is 2059 // needed by the compaction for filling holes in the dense prefix. 2060 adjust_roots(); 2061 2062 compaction_start.update(); 2063 compact(); 2064 2065 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be 2066 // done before resizing. 2067 post_compact(); 2068 2069 // Let the size policy know we're done 2070 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause); 2071 2072 if (UseAdaptiveSizePolicy) { 2073 if (PrintAdaptiveSizePolicy) { 2074 gclog_or_tty->print("AdaptiveSizeStart: "); 2075 gclog_or_tty->stamp(); 2076 gclog_or_tty->print_cr(" collection: %d ", 2077 heap->total_collections()); 2078 if (Verbose) { 2079 gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d", 2080 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes()); 2081 } 2082 } 2083 2084 // Don't check if the size_policy is ready here. Let 2085 // the size_policy check that internally. 2086 if (UseAdaptiveGenerationSizePolicyAtMajorCollection && 2087 ((gc_cause != GCCause::_java_lang_system_gc) || 2088 UseAdaptiveSizePolicyWithSystemGC)) { 2089 // Calculate optimal free space amounts 2090 assert(young_gen->max_size() > 2091 young_gen->from_space()->capacity_in_bytes() + 2092 young_gen->to_space()->capacity_in_bytes(), 2093 "Sizes of space in young gen are out-of-bounds"); 2094 size_t max_eden_size = young_gen->max_size() - 2095 young_gen->from_space()->capacity_in_bytes() - 2096 young_gen->to_space()->capacity_in_bytes(); 2097 size_policy->compute_generations_free_space( 2098 young_gen->used_in_bytes(), 2099 young_gen->eden_space()->used_in_bytes(), 2100 old_gen->used_in_bytes(), 2101 young_gen->eden_space()->capacity_in_bytes(), 2102 old_gen->max_gen_size(), 2103 max_eden_size, 2104 true /* full gc*/, 2105 gc_cause, 2106 heap->collector_policy()); 2107 2108 heap->resize_old_gen( 2109 size_policy->calculated_old_free_size_in_bytes()); 2110 2111 // Don't resize the young generation at an major collection. A 2112 // desired young generation size may have been calculated but 2113 // resizing the young generation complicates the code because the 2114 // resizing of the old generation may have moved the boundary 2115 // between the young generation and the old generation. Let the 2116 // young generation resizing happen at the minor collections. 2117 } 2118 if (PrintAdaptiveSizePolicy) { 2119 gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ", 2120 heap->total_collections()); 2121 } 2122 } 2123 2124 if (UsePerfData) { 2125 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters(); 2126 counters->update_counters(); 2127 counters->update_old_capacity(old_gen->capacity_in_bytes()); 2128 counters->update_young_capacity(young_gen->capacity_in_bytes()); 2129 } 2130 2131 heap->resize_all_tlabs(); 2132 2133 // Resize the metaspace capactiy after a collection 2134 MetaspaceGC::compute_new_size(); 2135 2136 if (TraceGen1Time) accumulated_time()->stop(); 2137 2138 if (PrintGC) { 2139 if (PrintGCDetails) { 2140 // No GC timestamp here. This is after GC so it would be confusing. 2141 young_gen->print_used_change(pre_gc_values.young_gen_used()); 2142 old_gen->print_used_change(pre_gc_values.old_gen_used()); 2143 heap->print_heap_change(pre_gc_values.heap_used()); 2144 MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used()); 2145 } else { 2146 heap->print_heap_change(pre_gc_values.heap_used()); 2147 } 2148 } 2149 2150 // Track memory usage and detect low memory 2151 MemoryService::track_memory_usage(); 2152 heap->update_counters(); 2153 gc_task_manager()->release_idle_workers(); 2154 } 2155 2156 #ifdef ASSERT 2157 for (size_t i = 0; i < ParallelGCThreads + 1; ++i) { 2158 ParCompactionManager* const cm = 2159 ParCompactionManager::manager_array(int(i)); 2160 assert(cm->marking_stack()->is_empty(), "should be empty"); 2161 assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty"); 2162 } 2163 #endif // ASSERT 2164 2165 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { 2166 HandleMark hm; // Discard invalid handles created during verification 2167 gclog_or_tty->print(" VerifyAfterGC:"); 2168 Universe::verify(); 2169 } 2170 2171 // Re-verify object start arrays 2172 if (VerifyObjectStartArray && 2173 VerifyAfterGC) { 2174 old_gen->verify_object_start_array(); 2175 } 2176 2177 if (ZapUnusedHeapArea) { 2178 old_gen->object_space()->check_mangled_unused_area_complete(); 2179 } 2180 2181 NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); 2182 2183 collection_exit.update(); 2184 2185 heap->print_heap_after_gc(); 2186 if (PrintGCTaskTimeStamps) { 2187 gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " " 2188 INT64_FORMAT, 2189 marking_start.ticks(), compaction_start.ticks(), 2190 collection_exit.ticks()); 2191 gc_task_manager()->print_task_time_stamps(); 2192 } 2193 2194 heap->post_full_gc_dump(); 2195 2196 #ifdef TRACESPINNING 2197 ParallelTaskTerminator::print_termination_counts(); 2198 #endif 2199 2200 return true; 2201 } 2202 2203 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy, 2204 PSYoungGen* young_gen, 2205 PSOldGen* old_gen) { 2206 MutableSpace* const eden_space = young_gen->eden_space(); 2207 assert(!eden_space->is_empty(), "eden must be non-empty"); 2208 assert(young_gen->virtual_space()->alignment() == 2209 old_gen->virtual_space()->alignment(), "alignments do not match"); 2210 2211 if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) { 2212 return false; 2213 } 2214 2215 // Both generations must be completely committed. 2216 if (young_gen->virtual_space()->uncommitted_size() != 0) { 2217 return false; 2218 } 2219 if (old_gen->virtual_space()->uncommitted_size() != 0) { 2220 return false; 2221 } 2222 2223 // Figure out how much to take from eden. Include the average amount promoted 2224 // in the total; otherwise the next young gen GC will simply bail out to a 2225 // full GC. 2226 const size_t alignment = old_gen->virtual_space()->alignment(); 2227 const size_t eden_used = eden_space->used_in_bytes(); 2228 const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average(); 2229 const size_t absorb_size = align_size_up(eden_used + promoted, alignment); 2230 const size_t eden_capacity = eden_space->capacity_in_bytes(); 2231 2232 if (absorb_size >= eden_capacity) { 2233 return false; // Must leave some space in eden. 2234 } 2235 2236 const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size; 2237 if (new_young_size < young_gen->min_gen_size()) { 2238 return false; // Respect young gen minimum size. 2239 } 2240 2241 if (TraceAdaptiveGCBoundary && Verbose) { 2242 gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: " 2243 "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K " 2244 "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K " 2245 "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ", 2246 absorb_size / K, 2247 eden_capacity / K, (eden_capacity - absorb_size) / K, 2248 young_gen->from_space()->used_in_bytes() / K, 2249 young_gen->to_space()->used_in_bytes() / K, 2250 young_gen->capacity_in_bytes() / K, new_young_size / K); 2251 } 2252 2253 // Fill the unused part of the old gen. 2254 MutableSpace* const old_space = old_gen->object_space(); 2255 HeapWord* const unused_start = old_space->top(); 2256 size_t const unused_words = pointer_delta(old_space->end(), unused_start); 2257 2258 if (unused_words > 0) { 2259 if (unused_words < CollectedHeap::min_fill_size()) { 2260 return false; // If the old gen cannot be filled, must give up. 2261 } 2262 CollectedHeap::fill_with_objects(unused_start, unused_words); 2263 } 2264 2265 // Take the live data from eden and set both top and end in the old gen to 2266 // eden top. (Need to set end because reset_after_change() mangles the region 2267 // from end to virtual_space->high() in debug builds). 2268 HeapWord* const new_top = eden_space->top(); 2269 old_gen->virtual_space()->expand_into(young_gen->virtual_space(), 2270 absorb_size); 2271 young_gen->reset_after_change(); 2272 old_space->set_top(new_top); 2273 old_space->set_end(new_top); 2274 old_gen->reset_after_change(); 2275 2276 // Update the object start array for the filler object and the data from eden. 2277 ObjectStartArray* const start_array = old_gen->start_array(); 2278 for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) { 2279 start_array->allocate_block(p); 2280 } 2281 2282 // Could update the promoted average here, but it is not typically updated at 2283 // full GCs and the value to use is unclear. Something like 2284 // 2285 // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc. 2286 2287 size_policy->set_bytes_absorbed_from_eden(absorb_size); 2288 return true; 2289 } 2290 2291 GCTaskManager* const PSParallelCompact::gc_task_manager() { 2292 assert(ParallelScavengeHeap::gc_task_manager() != NULL, 2293 "shouldn't return NULL"); 2294 return ParallelScavengeHeap::gc_task_manager(); 2295 } 2296 2297 void PSParallelCompact::marking_phase(ParCompactionManager* cm, 2298 bool maximum_heap_compaction) { 2299 // Recursively traverse all live objects and mark them 2300 TraceTime tm("marking phase", print_phases(), true, gclog_or_tty); 2301 2302 ParallelScavengeHeap* heap = gc_heap(); 2303 uint parallel_gc_threads = heap->gc_task_manager()->workers(); 2304 uint active_gc_threads = heap->gc_task_manager()->active_workers(); 2305 TaskQueueSetSuper* qset = ParCompactionManager::region_array(); 2306 ParallelTaskTerminator terminator(active_gc_threads, qset); 2307 2308 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm); 2309 PSParallelCompact::FollowStackClosure follow_stack_closure(cm); 2310 2311 // Need new claim bits before marking starts. 2312 ClassLoaderDataGraph::clear_claimed_marks(); 2313 2314 { 2315 TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty); 2316 ParallelScavengeHeap::ParStrongRootsScope psrs; 2317 2318 GCTaskQueue* q = GCTaskQueue::create(); 2319 2320 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe)); 2321 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles)); 2322 // We scan the thread roots in parallel 2323 Threads::create_thread_roots_marking_tasks(q); 2324 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer)); 2325 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler)); 2326 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management)); 2327 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary)); 2328 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti)); 2329 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache)); 2330 2331 if (active_gc_threads > 1) { 2332 for (uint j = 0; j < active_gc_threads; j++) { 2333 q->enqueue(new StealMarkingTask(&terminator)); 2334 } 2335 } 2336 2337 gc_task_manager()->execute_and_wait(q); 2338 } 2339 2340 // Process reference objects found during marking 2341 { 2342 TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty); 2343 if (ref_processor()->processing_is_mt()) { 2344 RefProcTaskExecutor task_executor; 2345 ref_processor()->process_discovered_references( 2346 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, 2347 &task_executor); 2348 } else { 2349 ref_processor()->process_discovered_references( 2350 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL); 2351 } 2352 } 2353 2354 TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty); 2355 // Follow system dictionary roots and unload classes. 2356 bool purged_class = SystemDictionary::do_unloading(is_alive_closure()); 2357 2358 // Follow code cache roots. 2359 CodeCache::do_unloading(is_alive_closure(), purged_class); 2360 cm->follow_marking_stacks(); // Flush marking stack. 2361 2362 // Update subklass/sibling/implementor links of live klasses 2363 Klass::clean_weak_klass_links(is_alive_closure()); 2364 2365 // Visit interned string tables and delete unmarked oops 2366 StringTable::unlink(is_alive_closure()); 2367 // Clean up unreferenced symbols in symbol table. 2368 SymbolTable::unlink(); 2369 2370 assert(cm->marking_stacks_empty(), "marking stacks should be empty"); 2371 } 2372 2373 void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) { 2374 ClassLoaderData* cld = klass->class_loader_data(); 2375 // The actual processing of the klass is done when we 2376 // traverse the list of Klasses in the class loader data. 2377 PSParallelCompact::follow_class_loader(cm, cld); 2378 } 2379 2380 void PSParallelCompact::adjust_klass(ParCompactionManager* cm, Klass* klass) { 2381 ClassLoaderData* cld = klass->class_loader_data(); 2382 // The actual processing of the klass is done when we 2383 // traverse the list of Klasses in the class loader data. 2384 PSParallelCompact::adjust_class_loader(cm, cld); 2385 } 2386 2387 void PSParallelCompact::follow_class_loader(ParCompactionManager* cm, 2388 ClassLoaderData* cld) { 2389 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm); 2390 PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure); 2391 2392 cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true); 2393 } 2394 2395 void PSParallelCompact::adjust_class_loader(ParCompactionManager* cm, 2396 ClassLoaderData* cld) { 2397 cld->oops_do(PSParallelCompact::adjust_root_pointer_closure(), 2398 PSParallelCompact::adjust_klass_closure(), 2399 true); 2400 } 2401 2402 // This should be moved to the shared markSweep code! 2403 class PSAlwaysTrueClosure: public BoolObjectClosure { 2404 public: 2405 void do_object(oop p) { ShouldNotReachHere(); } 2406 bool do_object_b(oop p) { return true; } 2407 }; 2408 static PSAlwaysTrueClosure always_true; 2409 2410 void PSParallelCompact::adjust_roots() { 2411 // Adjust the pointers to reflect the new locations 2412 TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty); 2413 2414 // Need new claim bits when tracing through and adjusting pointers. 2415 ClassLoaderDataGraph::clear_claimed_marks(); 2416 2417 // General strong roots. 2418 Universe::oops_do(adjust_root_pointer_closure()); 2419 JNIHandles::oops_do(adjust_root_pointer_closure()); // Global (strong) JNI handles 2420 CLDToOopClosure adjust_from_cld(adjust_root_pointer_closure()); 2421 Threads::oops_do(adjust_root_pointer_closure(), &adjust_from_cld, NULL); 2422 ObjectSynchronizer::oops_do(adjust_root_pointer_closure()); 2423 FlatProfiler::oops_do(adjust_root_pointer_closure()); 2424 Management::oops_do(adjust_root_pointer_closure()); 2425 JvmtiExport::oops_do(adjust_root_pointer_closure()); 2426 // SO_AllClasses 2427 SystemDictionary::oops_do(adjust_root_pointer_closure()); 2428 ClassLoaderDataGraph::oops_do(adjust_root_pointer_closure(), adjust_klass_closure(), true); 2429 2430 // Now adjust pointers in remaining weak roots. (All of which should 2431 // have been cleared if they pointed to non-surviving objects.) 2432 // Global (weak) JNI handles 2433 JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure()); 2434 2435 CodeCache::oops_do(adjust_pointer_closure()); 2436 StringTable::oops_do(adjust_root_pointer_closure()); 2437 ref_processor()->weak_oops_do(adjust_root_pointer_closure()); 2438 // Roots were visited so references into the young gen in roots 2439 // may have been scanned. Process them also. 2440 // Should the reference processor have a span that excludes 2441 // young gen objects? 2442 PSScavenge::reference_processor()->weak_oops_do( 2443 adjust_root_pointer_closure()); 2444 } 2445 2446 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q, 2447 uint parallel_gc_threads) 2448 { 2449 TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty); 2450 2451 // Find the threads that are active 2452 unsigned int which = 0; 2453 2454 const uint task_count = MAX2(parallel_gc_threads, 1U); 2455 for (uint j = 0; j < task_count; j++) { 2456 q->enqueue(new DrainStacksCompactionTask(j)); 2457 ParCompactionManager::verify_region_list_empty(j); 2458 // Set the region stacks variables to "no" region stack values 2459 // so that they will be recognized and needing a region stack 2460 // in the stealing tasks if they do not get one by executing 2461 // a draining stack. 2462 ParCompactionManager* cm = ParCompactionManager::manager_array(j); 2463 cm->set_region_stack(NULL); 2464 cm->set_region_stack_index((uint)max_uintx); 2465 } 2466 ParCompactionManager::reset_recycled_stack_index(); 2467 2468 // Find all regions that are available (can be filled immediately) and 2469 // distribute them to the thread stacks. The iteration is done in reverse 2470 // order (high to low) so the regions will be removed in ascending order. 2471 2472 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 2473 2474 size_t fillable_regions = 0; // A count for diagnostic purposes. 2475 // A region index which corresponds to the tasks created above. 2476 // "which" must be 0 <= which < task_count 2477 2478 which = 0; 2479 // id + 1 is used to test termination so unsigned can 2480 // be used with an old_space_id == 0. 2481 for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) { 2482 SpaceInfo* const space_info = _space_info + id; 2483 MutableSpace* const space = space_info->space(); 2484 HeapWord* const new_top = space_info->new_top(); 2485 2486 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix()); 2487 const size_t end_region = 2488 sd.addr_to_region_idx(sd.region_align_up(new_top)); 2489 2490 for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) { 2491 if (sd.region(cur)->claim_unsafe()) { 2492 ParCompactionManager::region_list_push(which, cur); 2493 2494 if (TraceParallelOldGCCompactionPhase && Verbose) { 2495 const size_t count_mod_8 = fillable_regions & 7; 2496 if (count_mod_8 == 0) gclog_or_tty->print("fillable: "); 2497 gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur); 2498 if (count_mod_8 == 7) gclog_or_tty->cr(); 2499 } 2500 2501 NOT_PRODUCT(++fillable_regions;) 2502 2503 // Assign regions to tasks in round-robin fashion. 2504 if (++which == task_count) { 2505 assert(which <= parallel_gc_threads, 2506 "Inconsistent number of workers"); 2507 which = 0; 2508 } 2509 } 2510 } 2511 } 2512 2513 if (TraceParallelOldGCCompactionPhase) { 2514 if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr(); 2515 gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions); 2516 } 2517 } 2518 2519 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4 2520 2521 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q, 2522 uint parallel_gc_threads) { 2523 TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty); 2524 2525 ParallelCompactData& sd = PSParallelCompact::summary_data(); 2526 2527 // Iterate over all the spaces adding tasks for updating 2528 // regions in the dense prefix. Assume that 1 gc thread 2529 // will work on opening the gaps and the remaining gc threads 2530 // will work on the dense prefix. 2531 unsigned int space_id; 2532 for (space_id = old_space_id; space_id < last_space_id; ++ space_id) { 2533 HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix(); 2534 const MutableSpace* const space = _space_info[space_id].space(); 2535 2536 if (dense_prefix_end == space->bottom()) { 2537 // There is no dense prefix for this space. 2538 continue; 2539 } 2540 2541 // The dense prefix is before this region. 2542 size_t region_index_end_dense_prefix = 2543 sd.addr_to_region_idx(dense_prefix_end); 2544 RegionData* const dense_prefix_cp = 2545 sd.region(region_index_end_dense_prefix); 2546 assert(dense_prefix_end == space->end() || 2547 dense_prefix_cp->available() || 2548 dense_prefix_cp->claimed(), 2549 "The region after the dense prefix should always be ready to fill"); 2550 2551 size_t region_index_start = sd.addr_to_region_idx(space->bottom()); 2552 2553 // Is there dense prefix work? 2554 size_t total_dense_prefix_regions = 2555 region_index_end_dense_prefix - region_index_start; 2556 // How many regions of the dense prefix should be given to 2557 // each thread? 2558 if (total_dense_prefix_regions > 0) { 2559 uint tasks_for_dense_prefix = 1; 2560 if (total_dense_prefix_regions <= 2561 (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) { 2562 // Don't over partition. This assumes that 2563 // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value 2564 // so there are not many regions to process. 2565 tasks_for_dense_prefix = parallel_gc_threads; 2566 } else { 2567 // Over partition 2568 tasks_for_dense_prefix = parallel_gc_threads * 2569 PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING; 2570 } 2571 size_t regions_per_thread = total_dense_prefix_regions / 2572 tasks_for_dense_prefix; 2573 // Give each thread at least 1 region. 2574 if (regions_per_thread == 0) { 2575 regions_per_thread = 1; 2576 } 2577 2578 for (uint k = 0; k < tasks_for_dense_prefix; k++) { 2579 if (region_index_start >= region_index_end_dense_prefix) { 2580 break; 2581 } 2582 // region_index_end is not processed 2583 size_t region_index_end = MIN2(region_index_start + regions_per_thread, 2584 region_index_end_dense_prefix); 2585 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id), 2586 region_index_start, 2587 region_index_end)); 2588 region_index_start = region_index_end; 2589 } 2590 } 2591 // This gets any part of the dense prefix that did not 2592 // fit evenly. 2593 if (region_index_start < region_index_end_dense_prefix) { 2594 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id), 2595 region_index_start, 2596 region_index_end_dense_prefix)); 2597 } 2598 } 2599 } 2600 2601 void PSParallelCompact::enqueue_region_stealing_tasks( 2602 GCTaskQueue* q, 2603 ParallelTaskTerminator* terminator_ptr, 2604 uint parallel_gc_threads) { 2605 TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty); 2606 2607 // Once a thread has drained it's stack, it should try to steal regions from 2608 // other threads. 2609 if (parallel_gc_threads > 1) { 2610 for (uint j = 0; j < parallel_gc_threads; j++) { 2611 q->enqueue(new StealRegionCompactionTask(terminator_ptr)); 2612 } 2613 } 2614 } 2615 2616 void PSParallelCompact::compact() { 2617 // trace("5"); 2618 TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty); 2619 2620 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); 2621 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); 2622 PSOldGen* old_gen = heap->old_gen(); 2623 old_gen->start_array()->reset(); 2624 uint parallel_gc_threads = heap->gc_task_manager()->workers(); 2625 uint active_gc_threads = heap->gc_task_manager()->active_workers(); 2626 TaskQueueSetSuper* qset = ParCompactionManager::region_array(); 2627 ParallelTaskTerminator terminator(active_gc_threads, qset); 2628 2629 GCTaskQueue* q = GCTaskQueue::create(); 2630 enqueue_region_draining_tasks(q, active_gc_threads); 2631 enqueue_dense_prefix_tasks(q, active_gc_threads); 2632 enqueue_region_stealing_tasks(q, &terminator, active_gc_threads); 2633 2634 { 2635 TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty); 2636 2637 gc_task_manager()->execute_and_wait(q); 2638 2639 #ifdef ASSERT 2640 // Verify that all regions have been processed before the deferred updates. 2641 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2642 verify_complete(SpaceId(id)); 2643 } 2644 #endif 2645 } 2646 2647 { 2648 // Update the deferred objects, if any. Any compaction manager can be used. 2649 TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty); 2650 ParCompactionManager* cm = ParCompactionManager::manager_array(0); 2651 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2652 update_deferred_objects(cm, SpaceId(id)); 2653 } 2654 } 2655 } 2656 2657 #ifdef ASSERT 2658 void PSParallelCompact::verify_complete(SpaceId space_id) { 2659 // All Regions between space bottom() to new_top() should be marked as filled 2660 // and all Regions between new_top() and top() should be available (i.e., 2661 // should have been emptied). 2662 ParallelCompactData& sd = summary_data(); 2663 SpaceInfo si = _space_info[space_id]; 2664 HeapWord* new_top_addr = sd.region_align_up(si.new_top()); 2665 HeapWord* old_top_addr = sd.region_align_up(si.space()->top()); 2666 const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom()); 2667 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr); 2668 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr); 2669 2670 bool issued_a_warning = false; 2671 2672 size_t cur_region; 2673 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) { 2674 const RegionData* const c = sd.region(cur_region); 2675 if (!c->completed()) { 2676 warning("region " SIZE_FORMAT " not filled: " 2677 "destination_count=" SIZE_FORMAT, 2678 cur_region, c->destination_count()); 2679 issued_a_warning = true; 2680 } 2681 } 2682 2683 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) { 2684 const RegionData* const c = sd.region(cur_region); 2685 if (!c->available()) { 2686 warning("region " SIZE_FORMAT " not empty: " 2687 "destination_count=" SIZE_FORMAT, 2688 cur_region, c->destination_count()); 2689 issued_a_warning = true; 2690 } 2691 } 2692 2693 if (issued_a_warning) { 2694 print_region_ranges(); 2695 } 2696 } 2697 #endif // #ifdef ASSERT 2698 2699 // Update interior oops in the ranges of regions [beg_region, end_region). 2700 void 2701 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm, 2702 SpaceId space_id, 2703 size_t beg_region, 2704 size_t end_region) { 2705 ParallelCompactData& sd = summary_data(); 2706 ParMarkBitMap* const mbm = mark_bitmap(); 2707 2708 HeapWord* beg_addr = sd.region_to_addr(beg_region); 2709 HeapWord* const end_addr = sd.region_to_addr(end_region); 2710 assert(beg_region <= end_region, "bad region range"); 2711 assert(end_addr <= dense_prefix(space_id), "not in the dense prefix"); 2712 2713 #ifdef ASSERT 2714 // Claim the regions to avoid triggering an assert when they are marked as 2715 // filled. 2716 for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) { 2717 assert(sd.region(claim_region)->claim_unsafe(), "claim() failed"); 2718 } 2719 #endif // #ifdef ASSERT 2720 2721 if (beg_addr != space(space_id)->bottom()) { 2722 // Find the first live object or block of dead space that *starts* in this 2723 // range of regions. If a partial object crosses onto the region, skip it; 2724 // it will be marked for 'deferred update' when the object head is 2725 // processed. If dead space crosses onto the region, it is also skipped; it 2726 // will be filled when the prior region is processed. If neither of those 2727 // apply, the first word in the region is the start of a live object or dead 2728 // space. 2729 assert(beg_addr > space(space_id)->bottom(), "sanity"); 2730 const RegionData* const cp = sd.region(beg_region); 2731 if (cp->partial_obj_size() != 0) { 2732 beg_addr = sd.partial_obj_end(beg_region); 2733 } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) { 2734 beg_addr = mbm->find_obj_beg(beg_addr, end_addr); 2735 } 2736 } 2737 2738 if (beg_addr < end_addr) { 2739 // A live object or block of dead space starts in this range of Regions. 2740 HeapWord* const dense_prefix_end = dense_prefix(space_id); 2741 2742 // Create closures and iterate. 2743 UpdateOnlyClosure update_closure(mbm, cm, space_id); 2744 FillClosure fill_closure(cm, space_id); 2745 ParMarkBitMap::IterationStatus status; 2746 status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr, 2747 dense_prefix_end); 2748 if (status == ParMarkBitMap::incomplete) { 2749 update_closure.do_addr(update_closure.source()); 2750 } 2751 } 2752 2753 // Mark the regions as filled. 2754 RegionData* const beg_cp = sd.region(beg_region); 2755 RegionData* const end_cp = sd.region(end_region); 2756 for (RegionData* cp = beg_cp; cp < end_cp; ++cp) { 2757 cp->set_completed(); 2758 } 2759 } 2760 2761 // Return the SpaceId for the space containing addr. If addr is not in the 2762 // heap, last_space_id is returned. In debug mode it expects the address to be 2763 // in the heap and asserts such. 2764 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) { 2765 assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap"); 2766 2767 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2768 if (_space_info[id].space()->contains(addr)) { 2769 return SpaceId(id); 2770 } 2771 } 2772 2773 assert(false, "no space contains the addr"); 2774 return last_space_id; 2775 } 2776 2777 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm, 2778 SpaceId id) { 2779 assert(id < last_space_id, "bad space id"); 2780 2781 ParallelCompactData& sd = summary_data(); 2782 const SpaceInfo* const space_info = _space_info + id; 2783 ObjectStartArray* const start_array = space_info->start_array(); 2784 2785 const MutableSpace* const space = space_info->space(); 2786 assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set"); 2787 HeapWord* const beg_addr = space_info->dense_prefix(); 2788 HeapWord* const end_addr = sd.region_align_up(space_info->new_top()); 2789 2790 const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr); 2791 const RegionData* const end_region = sd.addr_to_region_ptr(end_addr); 2792 const RegionData* cur_region; 2793 for (cur_region = beg_region; cur_region < end_region; ++cur_region) { 2794 HeapWord* const addr = cur_region->deferred_obj_addr(); 2795 if (addr != NULL) { 2796 if (start_array != NULL) { 2797 start_array->allocate_block(addr); 2798 } 2799 oop(addr)->update_contents(cm); 2800 assert(oop(addr)->is_oop_or_null(), "should be an oop now"); 2801 } 2802 } 2803 } 2804 2805 // Skip over count live words starting from beg, and return the address of the 2806 // next live word. Unless marked, the word corresponding to beg is assumed to 2807 // be dead. Callers must either ensure beg does not correspond to the middle of 2808 // an object, or account for those live words in some other way. Callers must 2809 // also ensure that there are enough live words in the range [beg, end) to skip. 2810 HeapWord* 2811 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count) 2812 { 2813 assert(count > 0, "sanity"); 2814 2815 ParMarkBitMap* m = mark_bitmap(); 2816 idx_t bits_to_skip = m->words_to_bits(count); 2817 idx_t cur_beg = m->addr_to_bit(beg); 2818 const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end)); 2819 2820 do { 2821 cur_beg = m->find_obj_beg(cur_beg, search_end); 2822 idx_t cur_end = m->find_obj_end(cur_beg, search_end); 2823 const size_t obj_bits = cur_end - cur_beg + 1; 2824 if (obj_bits > bits_to_skip) { 2825 return m->bit_to_addr(cur_beg + bits_to_skip); 2826 } 2827 bits_to_skip -= obj_bits; 2828 cur_beg = cur_end + 1; 2829 } while (bits_to_skip > 0); 2830 2831 // Skipping the desired number of words landed just past the end of an object. 2832 // Find the start of the next object. 2833 cur_beg = m->find_obj_beg(cur_beg, search_end); 2834 assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip"); 2835 return m->bit_to_addr(cur_beg); 2836 } 2837 2838 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr, 2839 SpaceId src_space_id, 2840 size_t src_region_idx) 2841 { 2842 assert(summary_data().is_region_aligned(dest_addr), "not aligned"); 2843 2844 const SplitInfo& split_info = _space_info[src_space_id].split_info(); 2845 if (split_info.dest_region_addr() == dest_addr) { 2846 // The partial object ending at the split point contains the first word to 2847 // be copied to dest_addr. 2848 return split_info.first_src_addr(); 2849 } 2850 2851 const ParallelCompactData& sd = summary_data(); 2852 ParMarkBitMap* const bitmap = mark_bitmap(); 2853 const size_t RegionSize = ParallelCompactData::RegionSize; 2854 2855 assert(sd.is_region_aligned(dest_addr), "not aligned"); 2856 const RegionData* const src_region_ptr = sd.region(src_region_idx); 2857 const size_t partial_obj_size = src_region_ptr->partial_obj_size(); 2858 HeapWord* const src_region_destination = src_region_ptr->destination(); 2859 2860 assert(dest_addr >= src_region_destination, "wrong src region"); 2861 assert(src_region_ptr->data_size() > 0, "src region cannot be empty"); 2862 2863 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx); 2864 HeapWord* const src_region_end = src_region_beg + RegionSize; 2865 2866 HeapWord* addr = src_region_beg; 2867 if (dest_addr == src_region_destination) { 2868 // Return the first live word in the source region. 2869 if (partial_obj_size == 0) { 2870 addr = bitmap->find_obj_beg(addr, src_region_end); 2871 assert(addr < src_region_end, "no objects start in src region"); 2872 } 2873 return addr; 2874 } 2875 2876 // Must skip some live data. 2877 size_t words_to_skip = dest_addr - src_region_destination; 2878 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region"); 2879 2880 if (partial_obj_size >= words_to_skip) { 2881 // All the live words to skip are part of the partial object. 2882 addr += words_to_skip; 2883 if (partial_obj_size == words_to_skip) { 2884 // Find the first live word past the partial object. 2885 addr = bitmap->find_obj_beg(addr, src_region_end); 2886 assert(addr < src_region_end, "wrong src region"); 2887 } 2888 return addr; 2889 } 2890 2891 // Skip over the partial object (if any). 2892 if (partial_obj_size != 0) { 2893 words_to_skip -= partial_obj_size; 2894 addr += partial_obj_size; 2895 } 2896 2897 // Skip over live words due to objects that start in the region. 2898 addr = skip_live_words(addr, src_region_end, words_to_skip); 2899 assert(addr < src_region_end, "wrong src region"); 2900 return addr; 2901 } 2902 2903 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm, 2904 SpaceId src_space_id, 2905 size_t beg_region, 2906 HeapWord* end_addr) 2907 { 2908 ParallelCompactData& sd = summary_data(); 2909 2910 #ifdef ASSERT 2911 MutableSpace* const src_space = _space_info[src_space_id].space(); 2912 HeapWord* const beg_addr = sd.region_to_addr(beg_region); 2913 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(), 2914 "src_space_id does not match beg_addr"); 2915 assert(src_space->contains(end_addr) || end_addr == src_space->end(), 2916 "src_space_id does not match end_addr"); 2917 #endif // #ifdef ASSERT 2918 2919 RegionData* const beg = sd.region(beg_region); 2920 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr)); 2921 2922 // Regions up to new_top() are enqueued if they become available. 2923 HeapWord* const new_top = _space_info[src_space_id].new_top(); 2924 RegionData* const enqueue_end = 2925 sd.addr_to_region_ptr(sd.region_align_up(new_top)); 2926 2927 for (RegionData* cur = beg; cur < end; ++cur) { 2928 assert(cur->data_size() > 0, "region must have live data"); 2929 cur->decrement_destination_count(); 2930 if (cur < enqueue_end && cur->available() && cur->claim()) { 2931 cm->push_region(sd.region(cur)); 2932 } 2933 } 2934 } 2935 2936 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure, 2937 SpaceId& src_space_id, 2938 HeapWord*& src_space_top, 2939 HeapWord* end_addr) 2940 { 2941 typedef ParallelCompactData::RegionData RegionData; 2942 2943 ParallelCompactData& sd = PSParallelCompact::summary_data(); 2944 const size_t region_size = ParallelCompactData::RegionSize; 2945 2946 size_t src_region_idx = 0; 2947 2948 // Skip empty regions (if any) up to the top of the space. 2949 HeapWord* const src_aligned_up = sd.region_align_up(end_addr); 2950 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up); 2951 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top); 2952 const RegionData* const top_region_ptr = 2953 sd.addr_to_region_ptr(top_aligned_up); 2954 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) { 2955 ++src_region_ptr; 2956 } 2957 2958 if (src_region_ptr < top_region_ptr) { 2959 // The next source region is in the current space. Update src_region_idx 2960 // and the source address to match src_region_ptr. 2961 src_region_idx = sd.region(src_region_ptr); 2962 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx); 2963 if (src_region_addr > closure.source()) { 2964 closure.set_source(src_region_addr); 2965 } 2966 return src_region_idx; 2967 } 2968 2969 // Switch to a new source space and find the first non-empty region. 2970 unsigned int space_id = src_space_id + 1; 2971 assert(space_id < last_space_id, "not enough spaces"); 2972 2973 HeapWord* const destination = closure.destination(); 2974 2975 do { 2976 MutableSpace* space = _space_info[space_id].space(); 2977 HeapWord* const bottom = space->bottom(); 2978 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom); 2979 2980 // Iterate over the spaces that do not compact into themselves. 2981 if (bottom_cp->destination() != bottom) { 2982 HeapWord* const top_aligned_up = sd.region_align_up(space->top()); 2983 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); 2984 2985 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) { 2986 if (src_cp->live_obj_size() > 0) { 2987 // Found it. 2988 assert(src_cp->destination() == destination, 2989 "first live obj in the space must match the destination"); 2990 assert(src_cp->partial_obj_size() == 0, 2991 "a space cannot begin with a partial obj"); 2992 2993 src_space_id = SpaceId(space_id); 2994 src_space_top = space->top(); 2995 const size_t src_region_idx = sd.region(src_cp); 2996 closure.set_source(sd.region_to_addr(src_region_idx)); 2997 return src_region_idx; 2998 } else { 2999 assert(src_cp->data_size() == 0, "sanity"); 3000 } 3001 } 3002 } 3003 } while (++space_id < last_space_id); 3004 3005 assert(false, "no source region was found"); 3006 return 0; 3007 } 3008 3009 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx) 3010 { 3011 typedef ParMarkBitMap::IterationStatus IterationStatus; 3012 const size_t RegionSize = ParallelCompactData::RegionSize; 3013 ParMarkBitMap* const bitmap = mark_bitmap(); 3014 ParallelCompactData& sd = summary_data(); 3015 RegionData* const region_ptr = sd.region(region_idx); 3016 3017 // Get the items needed to construct the closure. 3018 HeapWord* dest_addr = sd.region_to_addr(region_idx); 3019 SpaceId dest_space_id = space_id(dest_addr); 3020 ObjectStartArray* start_array = _space_info[dest_space_id].start_array(); 3021 HeapWord* new_top = _space_info[dest_space_id].new_top(); 3022 assert(dest_addr < new_top, "sanity"); 3023 const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize); 3024 3025 // Get the source region and related info. 3026 size_t src_region_idx = region_ptr->source_region(); 3027 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx)); 3028 HeapWord* src_space_top = _space_info[src_space_id].space()->top(); 3029 3030 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words); 3031 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx)); 3032 3033 // Adjust src_region_idx to prepare for decrementing destination counts (the 3034 // destination count is not decremented when a region is copied to itself). 3035 if (src_region_idx == region_idx) { 3036 src_region_idx += 1; 3037 } 3038 3039 if (bitmap->is_unmarked(closure.source())) { 3040 // The first source word is in the middle of an object; copy the remainder 3041 // of the object or as much as will fit. The fact that pointer updates were 3042 // deferred will be noted when the object header is processed. 3043 HeapWord* const old_src_addr = closure.source(); 3044 closure.copy_partial_obj(); 3045 if (closure.is_full()) { 3046 decrement_destination_counts(cm, src_space_id, src_region_idx, 3047 closure.source()); 3048 region_ptr->set_deferred_obj_addr(NULL); 3049 region_ptr->set_completed(); 3050 return; 3051 } 3052 3053 HeapWord* const end_addr = sd.region_align_down(closure.source()); 3054 if (sd.region_align_down(old_src_addr) != end_addr) { 3055 // The partial object was copied from more than one source region. 3056 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 3057 3058 // Move to the next source region, possibly switching spaces as well. All 3059 // args except end_addr may be modified. 3060 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 3061 end_addr); 3062 } 3063 } 3064 3065 do { 3066 HeapWord* const cur_addr = closure.source(); 3067 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1), 3068 src_space_top); 3069 IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr); 3070 3071 if (status == ParMarkBitMap::incomplete) { 3072 // The last obj that starts in the source region does not end in the 3073 // region. 3074 assert(closure.source() < end_addr, "sanity"); 3075 HeapWord* const obj_beg = closure.source(); 3076 HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(), 3077 src_space_top); 3078 HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end); 3079 if (obj_end < range_end) { 3080 // The end was found; the entire object will fit. 3081 status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end)); 3082 assert(status != ParMarkBitMap::would_overflow, "sanity"); 3083 } else { 3084 // The end was not found; the object will not fit. 3085 assert(range_end < src_space_top, "obj cannot cross space boundary"); 3086 status = ParMarkBitMap::would_overflow; 3087 } 3088 } 3089 3090 if (status == ParMarkBitMap::would_overflow) { 3091 // The last object did not fit. Note that interior oop updates were 3092 // deferred, then copy enough of the object to fill the region. 3093 region_ptr->set_deferred_obj_addr(closure.destination()); 3094 status = closure.copy_until_full(); // copies from closure.source() 3095 3096 decrement_destination_counts(cm, src_space_id, src_region_idx, 3097 closure.source()); 3098 region_ptr->set_completed(); 3099 return; 3100 } 3101 3102 if (status == ParMarkBitMap::full) { 3103 decrement_destination_counts(cm, src_space_id, src_region_idx, 3104 closure.source()); 3105 region_ptr->set_deferred_obj_addr(NULL); 3106 region_ptr->set_completed(); 3107 return; 3108 } 3109 3110 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 3111 3112 // Move to the next source region, possibly switching spaces as well. All 3113 // args except end_addr may be modified. 3114 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 3115 end_addr); 3116 } while (true); 3117 } 3118 3119 void 3120 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) { 3121 const MutableSpace* sp = space(space_id); 3122 if (sp->is_empty()) { 3123 return; 3124 } 3125 3126 ParallelCompactData& sd = PSParallelCompact::summary_data(); 3127 ParMarkBitMap* const bitmap = mark_bitmap(); 3128 HeapWord* const dp_addr = dense_prefix(space_id); 3129 HeapWord* beg_addr = sp->bottom(); 3130 HeapWord* end_addr = sp->top(); 3131 3132 assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix"); 3133 3134 const size_t beg_region = sd.addr_to_region_idx(beg_addr); 3135 const size_t dp_region = sd.addr_to_region_idx(dp_addr); 3136 if (beg_region < dp_region) { 3137 update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region); 3138 } 3139 3140 // The destination of the first live object that starts in the region is one 3141 // past the end of the partial object entering the region (if any). 3142 HeapWord* const dest_addr = sd.partial_obj_end(dp_region); 3143 HeapWord* const new_top = _space_info[space_id].new_top(); 3144 assert(new_top >= dest_addr, "bad new_top value"); 3145 const size_t words = pointer_delta(new_top, dest_addr); 3146 3147 if (words > 0) { 3148 ObjectStartArray* start_array = _space_info[space_id].start_array(); 3149 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words); 3150 3151 ParMarkBitMap::IterationStatus status; 3152 status = bitmap->iterate(&closure, dest_addr, end_addr); 3153 assert(status == ParMarkBitMap::full, "iteration not complete"); 3154 assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr, 3155 "live objects skipped because closure is full"); 3156 } 3157 } 3158 3159 jlong PSParallelCompact::millis_since_last_gc() { 3160 // We need a monotonically non-deccreasing time in ms but 3161 // os::javaTimeMillis() does not guarantee monotonicity. 3162 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 3163 jlong ret_val = now - _time_of_last_gc; 3164 // XXX See note in genCollectedHeap::millis_since_last_gc(). 3165 if (ret_val < 0) { 3166 NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);) 3167 return 0; 3168 } 3169 return ret_val; 3170 } 3171 3172 void PSParallelCompact::reset_millis_since_last_gc() { 3173 // We need a monotonically non-deccreasing time in ms but 3174 // os::javaTimeMillis() does not guarantee monotonicity. 3175 _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 3176 } 3177 3178 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full() 3179 { 3180 if (source() != destination()) { 3181 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 3182 Copy::aligned_conjoint_words(source(), destination(), words_remaining()); 3183 } 3184 update_state(words_remaining()); 3185 assert(is_full(), "sanity"); 3186 return ParMarkBitMap::full; 3187 } 3188 3189 void MoveAndUpdateClosure::copy_partial_obj() 3190 { 3191 size_t words = words_remaining(); 3192 3193 HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end()); 3194 HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end); 3195 if (end_addr < range_end) { 3196 words = bitmap()->obj_size(source(), end_addr); 3197 } 3198 3199 // This test is necessary; if omitted, the pointer updates to a partial object 3200 // that crosses the dense prefix boundary could be overwritten. 3201 if (source() != destination()) { 3202 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 3203 Copy::aligned_conjoint_words(source(), destination(), words); 3204 } 3205 update_state(words); 3206 } 3207 3208 ParMarkBitMapClosure::IterationStatus 3209 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) { 3210 assert(destination() != NULL, "sanity"); 3211 assert(bitmap()->obj_size(addr) == words, "bad size"); 3212 3213 _source = addr; 3214 assert(PSParallelCompact::summary_data().calc_new_pointer(source()) == 3215 destination(), "wrong destination"); 3216 3217 if (words > words_remaining()) { 3218 return ParMarkBitMap::would_overflow; 3219 } 3220 3221 // The start_array must be updated even if the object is not moving. 3222 if (_start_array != NULL) { 3223 _start_array->allocate_block(destination()); 3224 } 3225 3226 if (destination() != source()) { 3227 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 3228 Copy::aligned_conjoint_words(source(), destination(), words); 3229 } 3230 3231 oop moved_oop = (oop) destination(); 3232 moved_oop->update_contents(compaction_manager()); 3233 assert(moved_oop->is_oop_or_null(), "Object should be whole at this point"); 3234 3235 update_state(words); 3236 assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity"); 3237 return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete; 3238 } 3239 3240 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm, 3241 ParCompactionManager* cm, 3242 PSParallelCompact::SpaceId space_id) : 3243 ParMarkBitMapClosure(mbm, cm), 3244 _space_id(space_id), 3245 _start_array(PSParallelCompact::start_array(space_id)) 3246 { 3247 } 3248 3249 // Updates the references in the object to their new values. 3250 ParMarkBitMapClosure::IterationStatus 3251 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) { 3252 do_addr(addr); 3253 return ParMarkBitMap::incomplete; 3254 }