1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/classLoaderData.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/dependencies.hpp"
  34 #include "gc_interface/collectedHeap.inline.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "memory/cardTableModRefBS.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/genCollectedHeap.hpp"
  39 #include "memory/genRemSet.hpp"
  40 #include "memory/generation.hpp"
  41 #include "memory/metadataFactory.hpp"
  42 #include "memory/metaspaceShared.hpp"
  43 #include "memory/oopFactory.hpp"
  44 #include "memory/space.hpp"
  45 #include "memory/universe.hpp"
  46 #include "memory/universe.inline.hpp"
  47 #include "oops/constantPool.hpp"
  48 #include "oops/instanceClassLoaderKlass.hpp"
  49 #include "oops/instanceKlass.hpp"
  50 #include "oops/instanceMirrorKlass.hpp"
  51 #include "oops/instanceRefKlass.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "oops/typeArrayKlass.hpp"
  54 #include "prims/jvmtiRedefineClassesTrace.hpp"
  55 #include "runtime/aprofiler.hpp"
  56 #include "runtime/arguments.hpp"
  57 #include "runtime/deoptimization.hpp"
  58 #include "runtime/fprofiler.hpp"
  59 #include "runtime/handles.inline.hpp"
  60 #include "runtime/init.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/synchronizer.hpp"
  65 #include "runtime/thread.inline.hpp"
  66 #include "runtime/timer.hpp"
  67 #include "runtime/vm_operations.hpp"
  68 #include "services/memoryService.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/hashtable.inline.hpp"
  72 #include "utilities/preserveException.hpp"
  73 #include "utilities/macros.hpp"
  74 #if INCLUDE_ALL_GCS
  75 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  76 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  77 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  78 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  79 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
  80 #endif // INCLUDE_ALL_GCS
  81 
  82 // Known objects
  83 Klass* Universe::_boolArrayKlassObj                 = NULL;
  84 Klass* Universe::_byteArrayKlassObj                 = NULL;
  85 Klass* Universe::_charArrayKlassObj                 = NULL;
  86 Klass* Universe::_intArrayKlassObj                  = NULL;
  87 Klass* Universe::_shortArrayKlassObj                = NULL;
  88 Klass* Universe::_longArrayKlassObj                 = NULL;
  89 Klass* Universe::_singleArrayKlassObj               = NULL;
  90 Klass* Universe::_doubleArrayKlassObj               = NULL;
  91 Klass* Universe::_typeArrayKlassObjs[T_VOID+1]      = { NULL /*, NULL...*/ };
  92 Klass* Universe::_objectArrayKlassObj               = NULL;
  93 oop Universe::_int_mirror                             = NULL;
  94 oop Universe::_float_mirror                           = NULL;
  95 oop Universe::_double_mirror                          = NULL;
  96 oop Universe::_byte_mirror                            = NULL;
  97 oop Universe::_bool_mirror                            = NULL;
  98 oop Universe::_char_mirror                            = NULL;
  99 oop Universe::_long_mirror                            = NULL;
 100 oop Universe::_short_mirror                           = NULL;
 101 oop Universe::_void_mirror                            = NULL;
 102 oop Universe::_mirrors[T_VOID+1]                      = { NULL /*, NULL...*/ };
 103 oop Universe::_main_thread_group                      = NULL;
 104 oop Universe::_system_thread_group                    = NULL;
 105 objArrayOop Universe::_the_empty_class_klass_array    = NULL;
 106 Array<Klass*>* Universe::_the_array_interfaces_array = NULL;
 107 oop Universe::_the_null_string                        = NULL;
 108 oop Universe::_the_min_jint_string                   = NULL;
 109 LatestMethodOopCache* Universe::_finalizer_register_cache = NULL;
 110 LatestMethodOopCache* Universe::_loader_addClass_cache    = NULL;
 111 ActiveMethodOopsCache* Universe::_reflect_invoke_cache    = NULL;
 112 oop Universe::_out_of_memory_error_java_heap          = NULL;
 113 oop Universe::_out_of_memory_error_perm_gen           = NULL;
 114 oop Universe::_out_of_memory_error_array_size         = NULL;
 115 oop Universe::_out_of_memory_error_gc_overhead_limit  = NULL;
 116 objArrayOop Universe::_preallocated_out_of_memory_error_array = NULL;
 117 volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0;
 118 bool Universe::_verify_in_progress                    = false;
 119 oop Universe::_null_ptr_exception_instance            = NULL;
 120 oop Universe::_arithmetic_exception_instance          = NULL;
 121 oop Universe::_virtual_machine_error_instance         = NULL;
 122 oop Universe::_vm_exception                           = NULL;
 123 Array<int>* Universe::_the_empty_int_array            = NULL;
 124 Array<u2>* Universe::_the_empty_short_array           = NULL;
 125 Array<Klass*>* Universe::_the_empty_klass_array     = NULL;
 126 Array<Method*>* Universe::_the_empty_method_array   = NULL;
 127 
 128 // These variables are guarded by FullGCALot_lock.
 129 debug_only(objArrayOop Universe::_fullgc_alot_dummy_array = NULL;)
 130 debug_only(int Universe::_fullgc_alot_dummy_next      = 0;)
 131 
 132 // Heap
 133 int             Universe::_verify_count = 0;
 134 
 135 int             Universe::_base_vtable_size = 0;
 136 bool            Universe::_bootstrapping = false;
 137 bool            Universe::_fully_initialized = false;
 138 
 139 size_t          Universe::_heap_capacity_at_last_gc;
 140 size_t          Universe::_heap_used_at_last_gc = 0;
 141 
 142 CollectedHeap*  Universe::_collectedHeap = NULL;
 143 
 144 NarrowPtrStruct Universe::_narrow_oop = { NULL, 0, true };
 145 NarrowPtrStruct Universe::_narrow_klass = { NULL, 0, true };
 146 address Universe::_narrow_ptrs_base;
 147 
 148 size_t          Universe::_class_metaspace_size;
 149 
 150 void Universe::basic_type_classes_do(void f(Klass*)) {
 151   f(boolArrayKlassObj());
 152   f(byteArrayKlassObj());
 153   f(charArrayKlassObj());
 154   f(intArrayKlassObj());
 155   f(shortArrayKlassObj());
 156   f(longArrayKlassObj());
 157   f(singleArrayKlassObj());
 158   f(doubleArrayKlassObj());
 159 }
 160 
 161 void Universe::oops_do(OopClosure* f, bool do_all) {
 162 
 163   f->do_oop((oop*) &_int_mirror);
 164   f->do_oop((oop*) &_float_mirror);
 165   f->do_oop((oop*) &_double_mirror);
 166   f->do_oop((oop*) &_byte_mirror);
 167   f->do_oop((oop*) &_bool_mirror);
 168   f->do_oop((oop*) &_char_mirror);
 169   f->do_oop((oop*) &_long_mirror);
 170   f->do_oop((oop*) &_short_mirror);
 171   f->do_oop((oop*) &_void_mirror);
 172 
 173   for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
 174     f->do_oop((oop*) &_mirrors[i]);
 175   }
 176   assert(_mirrors[0] == NULL && _mirrors[T_BOOLEAN - 1] == NULL, "checking");
 177 
 178   f->do_oop((oop*)&_the_empty_class_klass_array);
 179   f->do_oop((oop*)&_the_null_string);
 180   f->do_oop((oop*)&_the_min_jint_string);
 181   f->do_oop((oop*)&_out_of_memory_error_java_heap);
 182   f->do_oop((oop*)&_out_of_memory_error_perm_gen);
 183   f->do_oop((oop*)&_out_of_memory_error_array_size);
 184   f->do_oop((oop*)&_out_of_memory_error_gc_overhead_limit);
 185     f->do_oop((oop*)&_preallocated_out_of_memory_error_array);
 186   f->do_oop((oop*)&_null_ptr_exception_instance);
 187   f->do_oop((oop*)&_arithmetic_exception_instance);
 188   f->do_oop((oop*)&_virtual_machine_error_instance);
 189   f->do_oop((oop*)&_main_thread_group);
 190   f->do_oop((oop*)&_system_thread_group);
 191   f->do_oop((oop*)&_vm_exception);
 192   debug_only(f->do_oop((oop*)&_fullgc_alot_dummy_array);)
 193 }
 194 
 195 // Serialize metadata in and out of CDS archive, not oops.
 196 void Universe::serialize(SerializeClosure* f, bool do_all) {
 197 
 198   f->do_ptr((void**)&_boolArrayKlassObj);
 199   f->do_ptr((void**)&_byteArrayKlassObj);
 200   f->do_ptr((void**)&_charArrayKlassObj);
 201   f->do_ptr((void**)&_intArrayKlassObj);
 202   f->do_ptr((void**)&_shortArrayKlassObj);
 203   f->do_ptr((void**)&_longArrayKlassObj);
 204   f->do_ptr((void**)&_singleArrayKlassObj);
 205   f->do_ptr((void**)&_doubleArrayKlassObj);
 206   f->do_ptr((void**)&_objectArrayKlassObj);
 207 
 208   {
 209     for (int i = 0; i < T_VOID+1; i++) {
 210       if (_typeArrayKlassObjs[i] != NULL) {
 211         assert(i >= T_BOOLEAN, "checking");
 212         f->do_ptr((void**)&_typeArrayKlassObjs[i]);
 213       } else if (do_all) {
 214         f->do_ptr((void**)&_typeArrayKlassObjs[i]);
 215       }
 216     }
 217   }
 218 
 219   f->do_ptr((void**)&_the_array_interfaces_array);
 220   f->do_ptr((void**)&_the_empty_int_array);
 221   f->do_ptr((void**)&_the_empty_short_array);
 222   f->do_ptr((void**)&_the_empty_method_array);
 223   f->do_ptr((void**)&_the_empty_klass_array);
 224   _finalizer_register_cache->serialize(f);
 225   _loader_addClass_cache->serialize(f);
 226   _reflect_invoke_cache->serialize(f);
 227 }
 228 
 229 void Universe::check_alignment(uintx size, uintx alignment, const char* name) {
 230   if (size < alignment || size % alignment != 0) {
 231     vm_exit_during_initialization(
 232       err_msg("Size of %s (" UINTX_FORMAT " bytes) must be aligned to " UINTX_FORMAT " bytes", name, size, alignment));
 233   }
 234 }
 235 
 236 void initialize_basic_type_klass(Klass* k, TRAPS) {
 237   Klass* ok = SystemDictionary::Object_klass();
 238   if (UseSharedSpaces) {
 239     assert(k->super() == ok, "u3");
 240     k->restore_unshareable_info(CHECK);
 241   } else {
 242     k->initialize_supers(ok, CHECK);
 243   }
 244   k->append_to_sibling_list();
 245 }
 246 
 247 void Universe::genesis(TRAPS) {
 248   ResourceMark rm;
 249 
 250   { FlagSetting fs(_bootstrapping, true);
 251 
 252     { MutexLocker mc(Compile_lock);
 253 
 254       // determine base vtable size; without that we cannot create the array klasses
 255       compute_base_vtable_size();
 256 
 257       if (!UseSharedSpaces) {
 258         _boolArrayKlassObj      = TypeArrayKlass::create_klass(T_BOOLEAN, sizeof(jboolean), CHECK);
 259         _charArrayKlassObj      = TypeArrayKlass::create_klass(T_CHAR,    sizeof(jchar),    CHECK);
 260         _singleArrayKlassObj    = TypeArrayKlass::create_klass(T_FLOAT,   sizeof(jfloat),   CHECK);
 261         _doubleArrayKlassObj    = TypeArrayKlass::create_klass(T_DOUBLE,  sizeof(jdouble),  CHECK);
 262         _byteArrayKlassObj      = TypeArrayKlass::create_klass(T_BYTE,    sizeof(jbyte),    CHECK);
 263         _shortArrayKlassObj     = TypeArrayKlass::create_klass(T_SHORT,   sizeof(jshort),   CHECK);
 264         _intArrayKlassObj       = TypeArrayKlass::create_klass(T_INT,     sizeof(jint),     CHECK);
 265         _longArrayKlassObj      = TypeArrayKlass::create_klass(T_LONG,    sizeof(jlong),    CHECK);
 266 
 267         _typeArrayKlassObjs[T_BOOLEAN] = _boolArrayKlassObj;
 268         _typeArrayKlassObjs[T_CHAR]    = _charArrayKlassObj;
 269         _typeArrayKlassObjs[T_FLOAT]   = _singleArrayKlassObj;
 270         _typeArrayKlassObjs[T_DOUBLE]  = _doubleArrayKlassObj;
 271         _typeArrayKlassObjs[T_BYTE]    = _byteArrayKlassObj;
 272         _typeArrayKlassObjs[T_SHORT]   = _shortArrayKlassObj;
 273         _typeArrayKlassObjs[T_INT]     = _intArrayKlassObj;
 274         _typeArrayKlassObjs[T_LONG]    = _longArrayKlassObj;
 275 
 276         ClassLoaderData* null_cld = ClassLoaderData::the_null_class_loader_data();
 277 
 278         _the_array_interfaces_array = MetadataFactory::new_array<Klass*>(null_cld, 2, NULL, CHECK);
 279         _the_empty_int_array        = MetadataFactory::new_array<int>(null_cld, 0, CHECK);
 280         _the_empty_short_array      = MetadataFactory::new_array<u2>(null_cld, 0, CHECK);
 281         _the_empty_method_array     = MetadataFactory::new_array<Method*>(null_cld, 0, CHECK);
 282         _the_empty_klass_array      = MetadataFactory::new_array<Klass*>(null_cld, 0, CHECK);
 283       }
 284     }
 285 
 286     vmSymbols::initialize(CHECK);
 287 
 288     SystemDictionary::initialize(CHECK);
 289 
 290     Klass* ok = SystemDictionary::Object_klass();
 291 
 292     _the_null_string            = StringTable::intern("null", CHECK);
 293     _the_min_jint_string       = StringTable::intern("-2147483648", CHECK);
 294 
 295     if (UseSharedSpaces) {
 296       // Verify shared interfaces array.
 297       assert(_the_array_interfaces_array->at(0) ==
 298              SystemDictionary::Cloneable_klass(), "u3");
 299       assert(_the_array_interfaces_array->at(1) ==
 300              SystemDictionary::Serializable_klass(), "u3");
 301     } else {
 302       // Set up shared interfaces array.  (Do this before supers are set up.)
 303       _the_array_interfaces_array->at_put(0, SystemDictionary::Cloneable_klass());
 304       _the_array_interfaces_array->at_put(1, SystemDictionary::Serializable_klass());
 305     }
 306 
 307     initialize_basic_type_klass(boolArrayKlassObj(), CHECK);
 308     initialize_basic_type_klass(charArrayKlassObj(), CHECK);
 309     initialize_basic_type_klass(singleArrayKlassObj(), CHECK);
 310     initialize_basic_type_klass(doubleArrayKlassObj(), CHECK);
 311     initialize_basic_type_klass(byteArrayKlassObj(), CHECK);
 312     initialize_basic_type_klass(shortArrayKlassObj(), CHECK);
 313     initialize_basic_type_klass(intArrayKlassObj(), CHECK);
 314     initialize_basic_type_klass(longArrayKlassObj(), CHECK);
 315   } // end of core bootstrapping
 316 
 317   // Maybe this could be lifted up now that object array can be initialized
 318   // during the bootstrapping.
 319 
 320   // OLD
 321   // Initialize _objectArrayKlass after core bootstraping to make
 322   // sure the super class is set up properly for _objectArrayKlass.
 323   // ---
 324   // NEW
 325   // Since some of the old system object arrays have been converted to
 326   // ordinary object arrays, _objectArrayKlass will be loaded when
 327   // SystemDictionary::initialize(CHECK); is run. See the extra check
 328   // for Object_klass_loaded in objArrayKlassKlass::allocate_objArray_klass_impl.
 329   _objectArrayKlassObj = InstanceKlass::
 330     cast(SystemDictionary::Object_klass())->array_klass(1, CHECK);
 331   // OLD
 332   // Add the class to the class hierarchy manually to make sure that
 333   // its vtable is initialized after core bootstrapping is completed.
 334   // ---
 335   // New
 336   // Have already been initialized.
 337   _objectArrayKlassObj->append_to_sibling_list();
 338 
 339   // Compute is_jdk version flags.
 340   // Only 1.3 or later has the java.lang.Shutdown class.
 341   // Only 1.4 or later has the java.lang.CharSequence interface.
 342   // Only 1.5 or later has the java.lang.management.MemoryUsage class.
 343   if (JDK_Version::is_partially_initialized()) {
 344     uint8_t jdk_version;
 345     Klass* k = SystemDictionary::resolve_or_null(
 346         vmSymbols::java_lang_management_MemoryUsage(), THREAD);
 347     CLEAR_PENDING_EXCEPTION; // ignore exceptions
 348     if (k == NULL) {
 349       k = SystemDictionary::resolve_or_null(
 350           vmSymbols::java_lang_CharSequence(), THREAD);
 351       CLEAR_PENDING_EXCEPTION; // ignore exceptions
 352       if (k == NULL) {
 353         k = SystemDictionary::resolve_or_null(
 354             vmSymbols::java_lang_Shutdown(), THREAD);
 355         CLEAR_PENDING_EXCEPTION; // ignore exceptions
 356         if (k == NULL) {
 357           jdk_version = 2;
 358         } else {
 359           jdk_version = 3;
 360         }
 361       } else {
 362         jdk_version = 4;
 363       }
 364     } else {
 365       jdk_version = 5;
 366     }
 367     JDK_Version::fully_initialize(jdk_version);
 368   }
 369 
 370   #ifdef ASSERT
 371   if (FullGCALot) {
 372     // Allocate an array of dummy objects.
 373     // We'd like these to be at the bottom of the old generation,
 374     // so that when we free one and then collect,
 375     // (almost) the whole heap moves
 376     // and we find out if we actually update all the oops correctly.
 377     // But we can't allocate directly in the old generation,
 378     // so we allocate wherever, and hope that the first collection
 379     // moves these objects to the bottom of the old generation.
 380     // We can allocate directly in the permanent generation, so we do.
 381     int size;
 382     if (UseConcMarkSweepGC) {
 383       warning("Using +FullGCALot with concurrent mark sweep gc "
 384               "will not force all objects to relocate");
 385       size = FullGCALotDummies;
 386     } else {
 387       size = FullGCALotDummies * 2;
 388     }
 389     objArrayOop    naked_array = oopFactory::new_objArray(SystemDictionary::Object_klass(), size, CHECK);
 390     objArrayHandle dummy_array(THREAD, naked_array);
 391     int i = 0;
 392     while (i < size) {
 393         // Allocate dummy in old generation
 394       oop dummy = InstanceKlass::cast(SystemDictionary::Object_klass())->allocate_instance(CHECK);
 395       dummy_array->obj_at_put(i++, dummy);
 396     }
 397     {
 398       // Only modify the global variable inside the mutex.
 399       // If we had a race to here, the other dummy_array instances
 400       // and their elements just get dropped on the floor, which is fine.
 401       MutexLocker ml(FullGCALot_lock);
 402       if (_fullgc_alot_dummy_array == NULL) {
 403         _fullgc_alot_dummy_array = dummy_array();
 404       }
 405     }
 406     assert(i == _fullgc_alot_dummy_array->length(), "just checking");
 407   }
 408   #endif
 409 
 410   // Initialize dependency array for null class loader
 411   ClassLoaderData::the_null_class_loader_data()->init_dependencies(CHECK);
 412 
 413 }
 414 
 415 // CDS support for patching vtables in metadata in the shared archive.
 416 // All types inherited from Metadata have vtables, but not types inherited
 417 // from MetaspaceObj, because the latter does not have virtual functions.
 418 // If the metadata type has a vtable, it cannot be shared in the read-only
 419 // section of the CDS archive, because the vtable pointer is patched.
 420 static inline void add_vtable(void** list, int* n, void* o, int count) {
 421   guarantee((*n) < count, "vtable list too small");
 422   void* vtable = dereference_vptr(o);
 423   assert(*(void**)(vtable) != NULL, "invalid vtable");
 424   list[(*n)++] = vtable;
 425 }
 426 
 427 void Universe::init_self_patching_vtbl_list(void** list, int count) {
 428   int n = 0;
 429   { InstanceKlass o;          add_vtable(list, &n, &o, count); }
 430   { InstanceClassLoaderKlass o; add_vtable(list, &n, &o, count); }
 431   { InstanceMirrorKlass o;    add_vtable(list, &n, &o, count); }
 432   { InstanceRefKlass o;       add_vtable(list, &n, &o, count); }
 433   { TypeArrayKlass o;         add_vtable(list, &n, &o, count); }
 434   { ObjArrayKlass o;          add_vtable(list, &n, &o, count); }
 435   { Method o;                 add_vtable(list, &n, &o, count); }
 436   { ConstantPool o;           add_vtable(list, &n, &o, count); }
 437 }
 438 
 439 void Universe::initialize_basic_type_mirrors(TRAPS) {
 440     assert(_int_mirror==NULL, "basic type mirrors already initialized");
 441     _int_mirror     =
 442       java_lang_Class::create_basic_type_mirror("int",    T_INT, CHECK);
 443     _float_mirror   =
 444       java_lang_Class::create_basic_type_mirror("float",  T_FLOAT,   CHECK);
 445     _double_mirror  =
 446       java_lang_Class::create_basic_type_mirror("double", T_DOUBLE,  CHECK);
 447     _byte_mirror    =
 448       java_lang_Class::create_basic_type_mirror("byte",   T_BYTE, CHECK);
 449     _bool_mirror    =
 450       java_lang_Class::create_basic_type_mirror("boolean",T_BOOLEAN, CHECK);
 451     _char_mirror    =
 452       java_lang_Class::create_basic_type_mirror("char",   T_CHAR, CHECK);
 453     _long_mirror    =
 454       java_lang_Class::create_basic_type_mirror("long",   T_LONG, CHECK);
 455     _short_mirror   =
 456       java_lang_Class::create_basic_type_mirror("short",  T_SHORT,   CHECK);
 457     _void_mirror    =
 458       java_lang_Class::create_basic_type_mirror("void",   T_VOID, CHECK);
 459 
 460     _mirrors[T_INT]     = _int_mirror;
 461     _mirrors[T_FLOAT]   = _float_mirror;
 462     _mirrors[T_DOUBLE]  = _double_mirror;
 463     _mirrors[T_BYTE]    = _byte_mirror;
 464     _mirrors[T_BOOLEAN] = _bool_mirror;
 465     _mirrors[T_CHAR]    = _char_mirror;
 466     _mirrors[T_LONG]    = _long_mirror;
 467     _mirrors[T_SHORT]   = _short_mirror;
 468     _mirrors[T_VOID]    = _void_mirror;
 469   //_mirrors[T_OBJECT]  = InstanceKlass::cast(_object_klass)->java_mirror();
 470   //_mirrors[T_ARRAY]   = InstanceKlass::cast(_object_klass)->java_mirror();
 471 }
 472 
 473 void Universe::fixup_mirrors(TRAPS) {
 474   // Bootstrap problem: all classes gets a mirror (java.lang.Class instance) assigned eagerly,
 475   // but we cannot do that for classes created before java.lang.Class is loaded. Here we simply
 476   // walk over permanent objects created so far (mostly classes) and fixup their mirrors. Note
 477   // that the number of objects allocated at this point is very small.
 478   assert(SystemDictionary::Class_klass_loaded(), "java.lang.Class should be loaded");
 479   HandleMark hm(THREAD);
 480   // Cache the start of the static fields
 481   InstanceMirrorKlass::init_offset_of_static_fields();
 482 
 483   GrowableArray <Klass*>* list = java_lang_Class::fixup_mirror_list();
 484   int list_length = list->length();
 485   for (int i = 0; i < list_length; i++) {
 486     Klass* k = list->at(i);
 487     assert(k->is_klass(), "List should only hold classes");
 488     EXCEPTION_MARK;
 489     KlassHandle kh(THREAD, k);
 490     java_lang_Class::fixup_mirror(kh, CATCH);
 491 }
 492   delete java_lang_Class::fixup_mirror_list();
 493   java_lang_Class::set_fixup_mirror_list(NULL);
 494 }
 495 
 496 static bool has_run_finalizers_on_exit = false;
 497 
 498 void Universe::run_finalizers_on_exit() {
 499   if (has_run_finalizers_on_exit) return;
 500   has_run_finalizers_on_exit = true;
 501 
 502   // Called on VM exit. This ought to be run in a separate thread.
 503   if (TraceReferenceGC) tty->print_cr("Callback to run finalizers on exit");
 504   {
 505     PRESERVE_EXCEPTION_MARK;
 506     KlassHandle finalizer_klass(THREAD, SystemDictionary::Finalizer_klass());
 507     JavaValue result(T_VOID);
 508     JavaCalls::call_static(
 509       &result,
 510       finalizer_klass,
 511       vmSymbols::run_finalizers_on_exit_name(),
 512       vmSymbols::void_method_signature(),
 513       THREAD
 514     );
 515     // Ignore any pending exceptions
 516     CLEAR_PENDING_EXCEPTION;
 517   }
 518 }
 519 
 520 
 521 // initialize_vtable could cause gc if
 522 // 1) we specified true to initialize_vtable and
 523 // 2) this ran after gc was enabled
 524 // In case those ever change we use handles for oops
 525 void Universe::reinitialize_vtable_of(KlassHandle k_h, TRAPS) {
 526   // init vtable of k and all subclasses
 527   Klass* ko = k_h();
 528   klassVtable* vt = ko->vtable();
 529   if (vt) vt->initialize_vtable(false, CHECK);
 530   if (ko->oop_is_instance()) {
 531     InstanceKlass* ik = (InstanceKlass*)ko;
 532     for (KlassHandle s_h(THREAD, ik->subklass()); s_h() != NULL; s_h = (THREAD, s_h()->next_sibling())) {
 533       reinitialize_vtable_of(s_h, CHECK);
 534     }
 535   }
 536 }
 537 
 538 
 539 void initialize_itable_for_klass(Klass* k, TRAPS) {
 540   InstanceKlass::cast(k)->itable()->initialize_itable(false, CHECK);
 541 }
 542 
 543 
 544 void Universe::reinitialize_itables(TRAPS) {
 545   SystemDictionary::classes_do(initialize_itable_for_klass, CHECK);
 546 
 547 }
 548 
 549 
 550 bool Universe::on_page_boundary(void* addr) {
 551   return ((uintptr_t) addr) % os::vm_page_size() == 0;
 552 }
 553 
 554 
 555 bool Universe::should_fill_in_stack_trace(Handle throwable) {
 556   // never attempt to fill in the stack trace of preallocated errors that do not have
 557   // backtrace. These errors are kept alive forever and may be "re-used" when all
 558   // preallocated errors with backtrace have been consumed. Also need to avoid
 559   // a potential loop which could happen if an out of memory occurs when attempting
 560   // to allocate the backtrace.
 561   return ((throwable() != Universe::_out_of_memory_error_java_heap) &&
 562           (throwable() != Universe::_out_of_memory_error_perm_gen)  &&
 563           (throwable() != Universe::_out_of_memory_error_array_size) &&
 564           (throwable() != Universe::_out_of_memory_error_gc_overhead_limit));
 565 }
 566 
 567 
 568 oop Universe::gen_out_of_memory_error(oop default_err) {
 569   // generate an out of memory error:
 570   // - if there is a preallocated error with backtrace available then return it wth
 571   //   a filled in stack trace.
 572   // - if there are no preallocated errors with backtrace available then return
 573   //   an error without backtrace.
 574   int next;
 575   if (_preallocated_out_of_memory_error_avail_count > 0) {
 576     next = (int)Atomic::add(-1, &_preallocated_out_of_memory_error_avail_count);
 577     assert(next < (int)PreallocatedOutOfMemoryErrorCount, "avail count is corrupt");
 578   } else {
 579     next = -1;
 580   }
 581   if (next < 0) {
 582     // all preallocated errors have been used.
 583     // return default
 584     return default_err;
 585   } else {
 586     // get the error object at the slot and set set it to NULL so that the
 587     // array isn't keeping it alive anymore.
 588     oop exc = preallocated_out_of_memory_errors()->obj_at(next);
 589     assert(exc != NULL, "slot has been used already");
 590     preallocated_out_of_memory_errors()->obj_at_put(next, NULL);
 591 
 592     // use the message from the default error
 593     oop msg = java_lang_Throwable::message(default_err);
 594     assert(msg != NULL, "no message");
 595     java_lang_Throwable::set_message(exc, msg);
 596 
 597     // populate the stack trace and return it.
 598     java_lang_Throwable::fill_in_stack_trace_of_preallocated_backtrace(exc);
 599     return exc;
 600   }
 601 }
 602 
 603 static intptr_t non_oop_bits = 0;
 604 
 605 void* Universe::non_oop_word() {
 606   // Neither the high bits nor the low bits of this value is allowed
 607   // to look like (respectively) the high or low bits of a real oop.
 608   //
 609   // High and low are CPU-specific notions, but low always includes
 610   // the low-order bit.  Since oops are always aligned at least mod 4,
 611   // setting the low-order bit will ensure that the low half of the
 612   // word will never look like that of a real oop.
 613   //
 614   // Using the OS-supplied non-memory-address word (usually 0 or -1)
 615   // will take care of the high bits, however many there are.
 616 
 617   if (non_oop_bits == 0) {
 618     non_oop_bits = (intptr_t)os::non_memory_address_word() | 1;
 619   }
 620 
 621   return (void*)non_oop_bits;
 622 }
 623 
 624 jint universe_init() {
 625   assert(!Universe::_fully_initialized, "called after initialize_vtables");
 626   guarantee(1 << LogHeapWordSize == sizeof(HeapWord),
 627          "LogHeapWordSize is incorrect.");
 628   guarantee(sizeof(oop) >= sizeof(HeapWord), "HeapWord larger than oop?");
 629   guarantee(sizeof(oop) % sizeof(HeapWord) == 0,
 630             "oop size is not not a multiple of HeapWord size");
 631   TraceTime timer("Genesis", TraceStartupTime);
 632   GC_locker::lock();  // do not allow gc during bootstrapping
 633   JavaClasses::compute_hard_coded_offsets();
 634 
 635   jint status = Universe::initialize_heap();
 636   if (status != JNI_OK) {
 637     return status;
 638   }
 639 
 640   // Create memory for metadata.  Must be after initializing heap for
 641   // DumpSharedSpaces.
 642   ClassLoaderData::init_null_class_loader_data();
 643 
 644   // We have a heap so create the Method* caches before
 645   // Metaspace::initialize_shared_spaces() tries to populate them.
 646   Universe::_finalizer_register_cache = new LatestMethodOopCache();
 647   Universe::_loader_addClass_cache    = new LatestMethodOopCache();
 648   Universe::_reflect_invoke_cache     = new ActiveMethodOopsCache();
 649 
 650   if (UseSharedSpaces) {
 651     // Read the data structures supporting the shared spaces (shared
 652     // system dictionary, symbol table, etc.).  After that, access to
 653     // the file (other than the mapped regions) is no longer needed, and
 654     // the file is closed. Closing the file does not affect the
 655     // currently mapped regions.
 656     MetaspaceShared::initialize_shared_spaces();
 657     StringTable::create_table();
 658   } else {
 659     SymbolTable::create_table();
 660     StringTable::create_table();
 661     ClassLoader::create_package_info_table();
 662   }
 663 
 664   return JNI_OK;
 665 }
 666 
 667 // Choose the heap base address and oop encoding mode
 668 // when compressed oops are used:
 669 // Unscaled  - Use 32-bits oops without encoding when
 670 //     NarrowOopHeapBaseMin + heap_size < 4Gb
 671 // ZeroBased - Use zero based compressed oops with encoding when
 672 //     NarrowOopHeapBaseMin + heap_size < 32Gb
 673 // HeapBased - Use compressed oops with heap base + encoding.
 674 
 675 // 4Gb
 676 static const uint64_t NarrowOopHeapMax = (uint64_t(max_juint) + 1);
 677 // 32Gb
 678 // OopEncodingHeapMax == NarrowOopHeapMax << LogMinObjAlignmentInBytes;
 679 
 680 char* Universe::preferred_heap_base(size_t heap_size, NARROW_OOP_MODE mode) {
 681   size_t base = 0;
 682 #ifdef _LP64
 683   if (UseCompressedOops) {
 684     assert(mode == UnscaledNarrowOop  ||
 685            mode == ZeroBasedNarrowOop ||
 686            mode == HeapBasedNarrowOop, "mode is invalid");
 687     const size_t total_size = heap_size + HeapBaseMinAddress;
 688     // Return specified base for the first request.
 689     if (!FLAG_IS_DEFAULT(HeapBaseMinAddress) && (mode == UnscaledNarrowOop)) {
 690       base = HeapBaseMinAddress;
 691 
 692     // If the total size and the metaspace size are small enough to allow
 693     // UnscaledNarrowOop then just use UnscaledNarrowOop.
 694     } else if ((total_size <= OopEncodingHeapMax) && (mode != HeapBasedNarrowOop) &&
 695         (!UseCompressedKlassPointers ||
 696           (((OopEncodingHeapMax - heap_size) + Universe::class_metaspace_size()) <= KlassEncodingMetaspaceMax))) {
 697       // We don't need to check the metaspace size here because it is always smaller
 698       // than total_size.
 699       if ((total_size <= NarrowOopHeapMax) && (mode == UnscaledNarrowOop) &&
 700           (Universe::narrow_oop_shift() == 0)) {
 701         // Use 32-bits oops without encoding and
 702         // place heap's top on the 4Gb boundary
 703         base = (NarrowOopHeapMax - heap_size);
 704       } else {
 705         // Can't reserve with NarrowOopShift == 0
 706         Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 707         if (mode == UnscaledNarrowOop ||
 708             mode == ZeroBasedNarrowOop && total_size <= NarrowOopHeapMax) {
 709           // Use zero based compressed oops with encoding and
 710           // place heap's top on the 32Gb boundary in case
 711           // total_size > 4Gb or failed to reserve below 4Gb.
 712           base = (OopEncodingHeapMax - heap_size);
 713         }
 714       }
 715 
 716     // See if ZeroBaseNarrowOop encoding will work for a heap based at
 717     // (KlassEncodingMetaspaceMax - class_metaspace_size()).
 718     } else if (UseCompressedKlassPointers && (mode != HeapBasedNarrowOop) &&
 719         (Universe::class_metaspace_size() + HeapBaseMinAddress <= KlassEncodingMetaspaceMax) &&
 720         (KlassEncodingMetaspaceMax + heap_size - Universe::class_metaspace_size() <= OopEncodingHeapMax)) {
 721       base = (KlassEncodingMetaspaceMax - Universe::class_metaspace_size());
 722     } else {
 723       // UnscaledNarrowOop encoding didn't work, and no base was found for ZeroBasedOops or
 724       // HeapBasedNarrowOop encoding was requested.  So, can't reserve below 32Gb.
 725       Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 726     }
 727 
 728     // Set narrow_oop_base and narrow_oop_use_implicit_null_checks
 729     // used in ReservedHeapSpace() constructors.
 730     // The final values will be set in initialize_heap() below.
 731     if ((base != 0) && ((base + heap_size) <= OopEncodingHeapMax) &&
 732         (!UseCompressedKlassPointers || (base + Universe::class_metaspace_size()) <= KlassEncodingMetaspaceMax)) {
 733       // Use zero based compressed oops
 734       Universe::set_narrow_oop_base(NULL);
 735       // Don't need guard page for implicit checks in indexed
 736       // addressing mode with zero based Compressed Oops.
 737       Universe::set_narrow_oop_use_implicit_null_checks(true);
 738     } else {
 739       // Set to a non-NULL value so the ReservedSpace ctor computes
 740       // the correct no-access prefix.
 741       // The final value will be set in initialize_heap() below.
 742       Universe::set_narrow_oop_base((address)NarrowOopHeapMax);
 743 #ifdef _WIN64
 744       if (UseLargePages) {
 745         // Cannot allocate guard pages for implicit checks in indexed
 746         // addressing mode when large pages are specified on windows.
 747         Universe::set_narrow_oop_use_implicit_null_checks(false);
 748       }
 749 #endif //  _WIN64
 750     }
 751   }
 752 #endif
 753   return (char*)base; // also return NULL (don't care) for 32-bit VM
 754 }
 755 
 756 jint Universe::initialize_heap() {
 757 
 758   if (UseParallelGC) {
 759 #if INCLUDE_ALL_GCS
 760     Universe::_collectedHeap = new ParallelScavengeHeap();
 761 #else  // INCLUDE_ALL_GCS
 762     fatal("UseParallelGC not supported in this VM.");
 763 #endif // INCLUDE_ALL_GCS
 764 
 765   } else if (UseG1GC) {
 766 #if INCLUDE_ALL_GCS
 767     G1CollectorPolicy* g1p = new G1CollectorPolicy();
 768     G1CollectedHeap* g1h = new G1CollectedHeap(g1p);
 769     Universe::_collectedHeap = g1h;
 770 #else  // INCLUDE_ALL_GCS
 771     fatal("UseG1GC not supported in java kernel vm.");
 772 #endif // INCLUDE_ALL_GCS
 773 
 774   } else {
 775     GenCollectorPolicy *gc_policy;
 776 
 777     if (UseSerialGC) {
 778       gc_policy = new MarkSweepPolicy();
 779     } else if (UseConcMarkSweepGC) {
 780 #if INCLUDE_ALL_GCS
 781       if (UseAdaptiveSizePolicy) {
 782         gc_policy = new ASConcurrentMarkSweepPolicy();
 783       } else {
 784         gc_policy = new ConcurrentMarkSweepPolicy();
 785       }
 786 #else  // INCLUDE_ALL_GCS
 787     fatal("UseConcMarkSweepGC not supported in this VM.");
 788 #endif // INCLUDE_ALL_GCS
 789     } else { // default old generation
 790       gc_policy = new MarkSweepPolicy();
 791     }
 792 
 793     Universe::_collectedHeap = new GenCollectedHeap(gc_policy);
 794   }
 795 
 796   jint status = Universe::heap()->initialize();
 797   if (status != JNI_OK) {
 798     return status;
 799   }
 800 
 801 #ifdef _LP64
 802   if (UseCompressedOops) {
 803     // Subtract a page because something can get allocated at heap base.
 804     // This also makes implicit null checking work, because the
 805     // memory+1 page below heap_base needs to cause a signal.
 806     // See needs_explicit_null_check.
 807     // Only set the heap base for compressed oops because it indicates
 808     // compressed oops for pstack code.
 809     bool verbose = PrintCompressedOopsMode || (PrintMiscellaneous && Verbose);
 810     if (verbose) {
 811       tty->cr();
 812       tty->print("heap address: " PTR_FORMAT ", size: " SIZE_FORMAT " MB",
 813                  Universe::heap()->base(), Universe::heap()->reserved_region().byte_size()/M);
 814     }
 815     if (((uint64_t)Universe::heap()->reserved_region().end() > OopEncodingHeapMax) ||
 816         (UseCompressedKlassPointers &&
 817         ((uint64_t)Universe::heap()->base() + Universe::class_metaspace_size() > KlassEncodingMetaspaceMax))) {
 818       // Can't reserve heap below 32Gb.
 819       // keep the Universe::narrow_oop_base() set in Universe::reserve_heap()
 820       Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 821       if (verbose) {
 822         tty->print(", Compressed Oops with base: "PTR_FORMAT, Universe::narrow_oop_base());
 823       }
 824     } else {
 825       Universe::set_narrow_oop_base(0);
 826       if (verbose) {
 827         tty->print(", zero based Compressed Oops");
 828       }
 829 #ifdef _WIN64
 830       if (!Universe::narrow_oop_use_implicit_null_checks()) {
 831         // Don't need guard page for implicit checks in indexed addressing
 832         // mode with zero based Compressed Oops.
 833         Universe::set_narrow_oop_use_implicit_null_checks(true);
 834       }
 835 #endif //  _WIN64
 836       if((uint64_t)Universe::heap()->reserved_region().end() > NarrowOopHeapMax) {
 837         // Can't reserve heap below 4Gb.
 838         Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 839       } else {
 840         Universe::set_narrow_oop_shift(0);
 841         if (verbose) {
 842           tty->print(", 32-bits Oops");
 843         }
 844       }
 845     }
 846     if (verbose) {
 847       tty->cr();
 848       tty->cr();
 849     }
 850     if (UseCompressedKlassPointers) {
 851       Universe::set_narrow_klass_base(Universe::narrow_oop_base());
 852       Universe::set_narrow_klass_shift(MIN2(Universe::narrow_oop_shift(), LogKlassAlignmentInBytes));
 853     }
 854     Universe::set_narrow_ptrs_base(Universe::narrow_oop_base());
 855   }
 856   // Universe::narrow_oop_base() is one page below the metaspace
 857   // base. The actual metaspace base depends on alignment constraints
 858   // so we don't know its exact location here.
 859   assert((intptr_t)Universe::narrow_oop_base() <= (intptr_t)(Universe::heap()->base() - os::vm_page_size() - ClassMetaspaceSize) ||
 860          Universe::narrow_oop_base() == NULL, "invalid value");
 861   assert(Universe::narrow_oop_shift() == LogMinObjAlignmentInBytes ||
 862          Universe::narrow_oop_shift() == 0, "invalid value");
 863 #endif
 864 
 865   // We will never reach the CATCH below since Exceptions::_throw will cause
 866   // the VM to exit if an exception is thrown during initialization
 867 
 868   if (UseTLAB) {
 869     assert(Universe::heap()->supports_tlab_allocation(),
 870            "Should support thread-local allocation buffers");
 871     ThreadLocalAllocBuffer::startup_initialization();
 872   }
 873   return JNI_OK;
 874 }
 875 
 876 
 877 // Reserve the Java heap, which is now the same for all GCs.
 878 ReservedSpace Universe::reserve_heap(size_t heap_size, size_t alignment) {
 879   // Add in the class metaspace area so the classes in the headers can
 880   // be compressed the same as instances.
 881   // Need to round class space size up because it's below the heap and
 882   // the actual alignment depends on its size.
 883   Universe::set_class_metaspace_size(align_size_up(ClassMetaspaceSize, alignment));
 884   size_t total_reserved = align_size_up(heap_size + Universe::class_metaspace_size(), alignment);
 885   assert(!UseCompressedOops || (total_reserved <= (OopEncodingHeapMax - os::vm_page_size())),
 886       "heap size is too big for compressed oops");
 887   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
 888 
 889   ReservedHeapSpace total_rs(total_reserved, alignment, UseLargePages, addr);
 890 
 891   if (UseCompressedOops) {
 892     if (addr != NULL && !total_rs.is_reserved()) {
 893       // Failed to reserve at specified address - the requested memory
 894       // region is taken already, for example, by 'java' launcher.
 895       // Try again to reserver heap higher.
 896       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
 897 
 898       ReservedHeapSpace total_rs0(total_reserved, alignment,
 899                                   UseLargePages, addr);
 900 
 901       if (addr != NULL && !total_rs0.is_reserved()) {
 902         // Failed to reserve at specified address again - give up.
 903         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
 904         assert(addr == NULL, "");
 905 
 906         ReservedHeapSpace total_rs1(total_reserved, alignment,
 907                                     UseLargePages, addr);
 908         total_rs = total_rs1;
 909       } else {
 910         total_rs = total_rs0;
 911       }
 912     }
 913   }
 914 
 915   if (!total_rs.is_reserved()) {
 916     vm_exit_during_initialization(err_msg("Could not reserve enough space for " SIZE_FORMAT "KB object heap", total_reserved/K));
 917     return total_rs;
 918   }
 919 
 920   // Split the reserved space into main Java heap and a space for
 921   // classes so that they can be compressed using the same algorithm
 922   // as compressed oops. If compress oops and compress klass ptrs are
 923   // used we need the meta space first: if the alignment used for
 924   // compressed oops is greater than the one used for compressed klass
 925   // ptrs, a metadata space on top of the heap could become
 926   // unreachable.
 927   ReservedSpace class_rs = total_rs.first_part(Universe::class_metaspace_size());
 928   ReservedSpace heap_rs = total_rs.last_part(Universe::class_metaspace_size(), alignment);
 929   Metaspace::initialize_class_space(class_rs);
 930 
 931   if (UseCompressedOops) {
 932     // Universe::initialize_heap() will reset this to NULL if unscaled
 933     // or zero-based narrow oops are actually used.
 934     address base = (address)(total_rs.base() - os::vm_page_size());
 935     Universe::set_narrow_oop_base(base);
 936   }
 937   return heap_rs;
 938 }
 939 
 940 
 941 // It's the caller's repsonsibility to ensure glitch-freedom
 942 // (if required).
 943 void Universe::update_heap_info_at_gc() {
 944   _heap_capacity_at_last_gc = heap()->capacity();
 945   _heap_used_at_last_gc     = heap()->used();
 946 }
 947 
 948 
 949 
 950 void universe2_init() {
 951   EXCEPTION_MARK;
 952   Universe::genesis(CATCH);
 953 }
 954 
 955 
 956 // This function is defined in JVM.cpp
 957 extern void initialize_converter_functions();
 958 
 959 bool universe_post_init() {
 960   assert(!is_init_completed(), "Error: initialization not yet completed!");
 961   Universe::_fully_initialized = true;
 962   EXCEPTION_MARK;
 963   { ResourceMark rm;
 964     Interpreter::initialize();      // needed for interpreter entry points
 965     if (!UseSharedSpaces) {
 966       HandleMark hm(THREAD);
 967       KlassHandle ok_h(THREAD, SystemDictionary::Object_klass());
 968       Universe::reinitialize_vtable_of(ok_h, CHECK_false);
 969       Universe::reinitialize_itables(CHECK_false);
 970     }
 971   }
 972 
 973   HandleMark hm(THREAD);
 974   Klass* k;
 975   instanceKlassHandle k_h;
 976     // Setup preallocated empty java.lang.Class array
 977     Universe::_the_empty_class_klass_array = oopFactory::new_objArray(SystemDictionary::Class_klass(), 0, CHECK_false);
 978 
 979     // Setup preallocated OutOfMemoryError errors
 980     k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_OutOfMemoryError(), true, CHECK_false);
 981     k_h = instanceKlassHandle(THREAD, k);
 982     Universe::_out_of_memory_error_java_heap = k_h->allocate_instance(CHECK_false);
 983     Universe::_out_of_memory_error_perm_gen = k_h->allocate_instance(CHECK_false);
 984     Universe::_out_of_memory_error_array_size = k_h->allocate_instance(CHECK_false);
 985     Universe::_out_of_memory_error_gc_overhead_limit =
 986       k_h->allocate_instance(CHECK_false);
 987 
 988     // Setup preallocated NullPointerException
 989     // (this is currently used for a cheap & dirty solution in compiler exception handling)
 990     k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_NullPointerException(), true, CHECK_false);
 991     Universe::_null_ptr_exception_instance = InstanceKlass::cast(k)->allocate_instance(CHECK_false);
 992     // Setup preallocated ArithmeticException
 993     // (this is currently used for a cheap & dirty solution in compiler exception handling)
 994     k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ArithmeticException(), true, CHECK_false);
 995     Universe::_arithmetic_exception_instance = InstanceKlass::cast(k)->allocate_instance(CHECK_false);
 996     // Virtual Machine Error for when we get into a situation we can't resolve
 997     k = SystemDictionary::resolve_or_fail(
 998       vmSymbols::java_lang_VirtualMachineError(), true, CHECK_false);
 999     bool linked = InstanceKlass::cast(k)->link_class_or_fail(CHECK_false);
1000     if (!linked) {
1001       tty->print_cr("Unable to link/verify VirtualMachineError class");
1002       return false; // initialization failed
1003     }
1004     Universe::_virtual_machine_error_instance =
1005       InstanceKlass::cast(k)->allocate_instance(CHECK_false);
1006 
1007     Universe::_vm_exception               = InstanceKlass::cast(k)->allocate_instance(CHECK_false);
1008 
1009   if (!DumpSharedSpaces) {
1010     // These are the only Java fields that are currently set during shared space dumping.
1011     // We prefer to not handle this generally, so we always reinitialize these detail messages.
1012     Handle msg = java_lang_String::create_from_str("Java heap space", CHECK_false);
1013     java_lang_Throwable::set_message(Universe::_out_of_memory_error_java_heap, msg());
1014 
1015     msg = java_lang_String::create_from_str("Metadata space", CHECK_false);
1016     java_lang_Throwable::set_message(Universe::_out_of_memory_error_perm_gen, msg());
1017 
1018     msg = java_lang_String::create_from_str("Requested array size exceeds VM limit", CHECK_false);
1019     java_lang_Throwable::set_message(Universe::_out_of_memory_error_array_size, msg());
1020 
1021     msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK_false);
1022     java_lang_Throwable::set_message(Universe::_out_of_memory_error_gc_overhead_limit, msg());
1023 
1024     msg = java_lang_String::create_from_str("/ by zero", CHECK_false);
1025     java_lang_Throwable::set_message(Universe::_arithmetic_exception_instance, msg());
1026 
1027     // Setup the array of errors that have preallocated backtrace
1028     k = Universe::_out_of_memory_error_java_heap->klass();
1029     assert(k->name() == vmSymbols::java_lang_OutOfMemoryError(), "should be out of memory error");
1030     k_h = instanceKlassHandle(THREAD, k);
1031 
1032     int len = (StackTraceInThrowable) ? (int)PreallocatedOutOfMemoryErrorCount : 0;
1033     Universe::_preallocated_out_of_memory_error_array = oopFactory::new_objArray(k_h(), len, CHECK_false);
1034     for (int i=0; i<len; i++) {
1035       oop err = k_h->allocate_instance(CHECK_false);
1036       Handle err_h = Handle(THREAD, err);
1037       java_lang_Throwable::allocate_backtrace(err_h, CHECK_false);
1038       Universe::preallocated_out_of_memory_errors()->obj_at_put(i, err_h());
1039     }
1040     Universe::_preallocated_out_of_memory_error_avail_count = (jint)len;
1041   }
1042 
1043 
1044   // Setup static method for registering finalizers
1045   // The finalizer klass must be linked before looking up the method, in
1046   // case it needs to get rewritten.
1047   InstanceKlass::cast(SystemDictionary::Finalizer_klass())->link_class(CHECK_false);
1048   Method* m = InstanceKlass::cast(SystemDictionary::Finalizer_klass())->find_method(
1049                                   vmSymbols::register_method_name(),
1050                                   vmSymbols::register_method_signature());
1051   if (m == NULL || !m->is_static()) {
1052     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1053       "java.lang.ref.Finalizer.register", false);
1054   }
1055   Universe::_finalizer_register_cache->init(
1056     SystemDictionary::Finalizer_klass(), m, CHECK_false);
1057 
1058   // Resolve on first use and initialize class.
1059   // Note: No race-condition here, since a resolve will always return the same result
1060 
1061   // Setup method for security checks
1062   k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_reflect_Method(), true, CHECK_false);
1063   k_h = instanceKlassHandle(THREAD, k);
1064   k_h->link_class(CHECK_false);
1065   m = k_h->find_method(vmSymbols::invoke_name(), vmSymbols::object_object_array_object_signature());
1066   if (m == NULL || m->is_static()) {
1067     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1068       "java.lang.reflect.Method.invoke", false);
1069   }
1070   Universe::_reflect_invoke_cache->init(k_h(), m, CHECK_false);
1071 
1072   // Setup method for registering loaded classes in class loader vector
1073   InstanceKlass::cast(SystemDictionary::ClassLoader_klass())->link_class(CHECK_false);
1074   m = InstanceKlass::cast(SystemDictionary::ClassLoader_klass())->find_method(vmSymbols::addClass_name(), vmSymbols::class_void_signature());
1075   if (m == NULL || m->is_static()) {
1076     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1077       "java.lang.ClassLoader.addClass", false);
1078   }
1079   Universe::_loader_addClass_cache->init(
1080     SystemDictionary::ClassLoader_klass(), m, CHECK_false);
1081 
1082   // The folowing is initializing converter functions for serialization in
1083   // JVM.cpp. If we clean up the StrictMath code above we may want to find
1084   // a better solution for this as well.
1085   initialize_converter_functions();
1086 
1087   // This needs to be done before the first scavenge/gc, since
1088   // it's an input to soft ref clearing policy.
1089   {
1090     MutexLocker x(Heap_lock);
1091     Universe::update_heap_info_at_gc();
1092   }
1093 
1094   // ("weak") refs processing infrastructure initialization
1095   Universe::heap()->post_initialize();
1096 
1097   // Initialize performance counters for metaspaces
1098   MetaspaceCounters::initialize_performance_counters();
1099 
1100   GC_locker::unlock();  // allow gc after bootstrapping
1101 
1102   MemoryService::set_universe_heap(Universe::_collectedHeap);
1103   return true;
1104 }
1105 
1106 
1107 void Universe::compute_base_vtable_size() {
1108   _base_vtable_size = ClassLoader::compute_Object_vtable();
1109 }
1110 
1111 
1112 // %%% The Universe::flush_foo methods belong in CodeCache.
1113 
1114 // Flushes compiled methods dependent on dependee.
1115 void Universe::flush_dependents_on(instanceKlassHandle dependee) {
1116   assert_lock_strong(Compile_lock);
1117 
1118   if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1119 
1120   // CodeCache can only be updated by a thread_in_VM and they will all be
1121   // stopped dring the safepoint so CodeCache will be safe to update without
1122   // holding the CodeCache_lock.
1123 
1124   KlassDepChange changes(dependee);
1125 
1126   // Compute the dependent nmethods
1127   if (CodeCache::mark_for_deoptimization(changes) > 0) {
1128     // At least one nmethod has been marked for deoptimization
1129     VM_Deoptimize op;
1130     VMThread::execute(&op);
1131   }
1132 }
1133 
1134 // Flushes compiled methods dependent on a particular CallSite
1135 // instance when its target is different than the given MethodHandle.
1136 void Universe::flush_dependents_on(Handle call_site, Handle method_handle) {
1137   assert_lock_strong(Compile_lock);
1138 
1139   if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1140 
1141   // CodeCache can only be updated by a thread_in_VM and they will all be
1142   // stopped dring the safepoint so CodeCache will be safe to update without
1143   // holding the CodeCache_lock.
1144 
1145   CallSiteDepChange changes(call_site(), method_handle());
1146 
1147   // Compute the dependent nmethods that have a reference to a
1148   // CallSite object.  We use InstanceKlass::mark_dependent_nmethod
1149   // directly instead of CodeCache::mark_for_deoptimization because we
1150   // want dependents on the call site class only not all classes in
1151   // the ContextStream.
1152   int marked = 0;
1153   {
1154     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1155     InstanceKlass* call_site_klass = InstanceKlass::cast(call_site->klass());
1156     marked = call_site_klass->mark_dependent_nmethods(changes);
1157   }
1158   if (marked > 0) {
1159     // At least one nmethod has been marked for deoptimization
1160     VM_Deoptimize op;
1161     VMThread::execute(&op);
1162   }
1163 }
1164 
1165 #ifdef HOTSWAP
1166 // Flushes compiled methods dependent on dependee in the evolutionary sense
1167 void Universe::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
1168   // --- Compile_lock is not held. However we are at a safepoint.
1169   assert_locked_or_safepoint(Compile_lock);
1170   if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1171 
1172   // CodeCache can only be updated by a thread_in_VM and they will all be
1173   // stopped dring the safepoint so CodeCache will be safe to update without
1174   // holding the CodeCache_lock.
1175 
1176   // Compute the dependent nmethods
1177   if (CodeCache::mark_for_evol_deoptimization(ev_k_h) > 0) {
1178     // At least one nmethod has been marked for deoptimization
1179 
1180     // All this already happens inside a VM_Operation, so we'll do all the work here.
1181     // Stuff copied from VM_Deoptimize and modified slightly.
1182 
1183     // We do not want any GCs to happen while we are in the middle of this VM operation
1184     ResourceMark rm;
1185     DeoptimizationMarker dm;
1186 
1187     // Deoptimize all activations depending on marked nmethods
1188     Deoptimization::deoptimize_dependents();
1189 
1190     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1191     CodeCache::make_marked_nmethods_not_entrant();
1192   }
1193 }
1194 #endif // HOTSWAP
1195 
1196 
1197 // Flushes compiled methods dependent on dependee
1198 void Universe::flush_dependents_on_method(methodHandle m_h) {
1199   // --- Compile_lock is not held. However we are at a safepoint.
1200   assert_locked_or_safepoint(Compile_lock);
1201 
1202   // CodeCache can only be updated by a thread_in_VM and they will all be
1203   // stopped dring the safepoint so CodeCache will be safe to update without
1204   // holding the CodeCache_lock.
1205 
1206   // Compute the dependent nmethods
1207   if (CodeCache::mark_for_deoptimization(m_h()) > 0) {
1208     // At least one nmethod has been marked for deoptimization
1209 
1210     // All this already happens inside a VM_Operation, so we'll do all the work here.
1211     // Stuff copied from VM_Deoptimize and modified slightly.
1212 
1213     // We do not want any GCs to happen while we are in the middle of this VM operation
1214     ResourceMark rm;
1215     DeoptimizationMarker dm;
1216 
1217     // Deoptimize all activations depending on marked nmethods
1218     Deoptimization::deoptimize_dependents();
1219 
1220     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1221     CodeCache::make_marked_nmethods_not_entrant();
1222   }
1223 }
1224 
1225 void Universe::print() {
1226   print_on(gclog_or_tty);
1227 }
1228 
1229 void Universe::print_on(outputStream* st, bool extended) {
1230   st->print_cr("Heap");
1231   if (!extended) {
1232     heap()->print_on(st);
1233   } else {
1234     heap()->print_extended_on(st);
1235   }
1236 }
1237 
1238 void Universe::print_heap_at_SIGBREAK() {
1239   if (PrintHeapAtSIGBREAK) {
1240     MutexLocker hl(Heap_lock);
1241     print_on(tty);
1242     tty->cr();
1243     tty->flush();
1244   }
1245 }
1246 
1247 void Universe::print_heap_before_gc(outputStream* st, bool ignore_extended) {
1248   st->print_cr("{Heap before GC invocations=%u (full %u):",
1249                heap()->total_collections(),
1250                heap()->total_full_collections());
1251   if (!PrintHeapAtGCExtended || ignore_extended) {
1252     heap()->print_on(st);
1253   } else {
1254     heap()->print_extended_on(st);
1255   }
1256 }
1257 
1258 void Universe::print_heap_after_gc(outputStream* st, bool ignore_extended) {
1259   st->print_cr("Heap after GC invocations=%u (full %u):",
1260                heap()->total_collections(),
1261                heap()->total_full_collections());
1262   if (!PrintHeapAtGCExtended || ignore_extended) {
1263     heap()->print_on(st);
1264   } else {
1265     heap()->print_extended_on(st);
1266   }
1267   st->print_cr("}");
1268 }
1269 
1270 void Universe::verify(VerifyOption option, const char* prefix, bool silent) {
1271   // The use of _verify_in_progress is a temporary work around for
1272   // 6320749.  Don't bother with a creating a class to set and clear
1273   // it since it is only used in this method and the control flow is
1274   // straight forward.
1275   _verify_in_progress = true;
1276 
1277   COMPILER2_PRESENT(
1278     assert(!DerivedPointerTable::is_active(),
1279          "DPT should not be active during verification "
1280          "(of thread stacks below)");
1281   )
1282 
1283   ResourceMark rm;
1284   HandleMark hm;  // Handles created during verification can be zapped
1285   _verify_count++;
1286 
1287   if (!silent) gclog_or_tty->print(prefix);
1288   if (!silent) gclog_or_tty->print("[Verifying ");
1289   if (!silent) gclog_or_tty->print("threads ");
1290   Threads::verify();
1291   if (!silent) gclog_or_tty->print("heap ");
1292   heap()->verify(silent, option);
1293   if (!silent) gclog_or_tty->print("syms ");
1294   SymbolTable::verify();
1295   if (!silent) gclog_or_tty->print("strs ");
1296   StringTable::verify();
1297   {
1298     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1299     if (!silent) gclog_or_tty->print("zone ");
1300     CodeCache::verify();
1301   }
1302   if (!silent) gclog_or_tty->print("dict ");
1303   SystemDictionary::verify();
1304 #ifndef PRODUCT
1305   if (!silent) gclog_or_tty->print("cldg ");
1306   ClassLoaderDataGraph::verify();
1307 #endif
1308   if (!silent) gclog_or_tty->print("metaspace chunks ");
1309   MetaspaceAux::verify_free_chunks();
1310   if (!silent) gclog_or_tty->print("hand ");
1311   JNIHandles::verify();
1312   if (!silent) gclog_or_tty->print("C-heap ");
1313   os::check_heap();
1314   if (!silent) gclog_or_tty->print("code cache ");
1315   CodeCache::verify_oops();
1316   if (!silent) gclog_or_tty->print_cr("]");
1317 
1318   _verify_in_progress = false;
1319 }
1320 
1321 // Oop verification (see MacroAssembler::verify_oop)
1322 
1323 static uintptr_t _verify_oop_data[2]   = {0, (uintptr_t)-1};
1324 static uintptr_t _verify_klass_data[2] = {0, (uintptr_t)-1};
1325 
1326 
1327 #ifndef PRODUCT
1328 
1329 static void calculate_verify_data(uintptr_t verify_data[2],
1330                                   HeapWord* low_boundary,
1331                                   HeapWord* high_boundary) {
1332   assert(low_boundary < high_boundary, "bad interval");
1333 
1334   // decide which low-order bits we require to be clear:
1335   size_t alignSize = MinObjAlignmentInBytes;
1336   size_t min_object_size = CollectedHeap::min_fill_size();
1337 
1338   // make an inclusive limit:
1339   uintptr_t max = (uintptr_t)high_boundary - min_object_size*wordSize;
1340   uintptr_t min = (uintptr_t)low_boundary;
1341   assert(min < max, "bad interval");
1342   uintptr_t diff = max ^ min;
1343 
1344   // throw away enough low-order bits to make the diff vanish
1345   uintptr_t mask = (uintptr_t)(-1);
1346   while ((mask & diff) != 0)
1347     mask <<= 1;
1348   uintptr_t bits = (min & mask);
1349   assert(bits == (max & mask), "correct mask");
1350   // check an intermediate value between min and max, just to make sure:
1351   assert(bits == ((min + (max-min)/2) & mask), "correct mask");
1352 
1353   // require address alignment, too:
1354   mask |= (alignSize - 1);
1355 
1356   if (!(verify_data[0] == 0 && verify_data[1] == (uintptr_t)-1)) {
1357     assert(verify_data[0] == mask && verify_data[1] == bits, "mask stability");
1358   }
1359   verify_data[0] = mask;
1360   verify_data[1] = bits;
1361 }
1362 
1363 // Oop verification (see MacroAssembler::verify_oop)
1364 
1365 uintptr_t Universe::verify_oop_mask() {
1366   MemRegion m = heap()->reserved_region();
1367   calculate_verify_data(_verify_oop_data,
1368                         m.start(),
1369                         m.end());
1370   return _verify_oop_data[0];
1371 }
1372 
1373 
1374 
1375 uintptr_t Universe::verify_oop_bits() {
1376   verify_oop_mask();
1377   return _verify_oop_data[1];
1378 }
1379 
1380 uintptr_t Universe::verify_mark_mask() {
1381   return markOopDesc::lock_mask_in_place;
1382 }
1383 
1384 uintptr_t Universe::verify_mark_bits() {
1385   intptr_t mask = verify_mark_mask();
1386   intptr_t bits = (intptr_t)markOopDesc::prototype();
1387   assert((bits & ~mask) == 0, "no stray header bits");
1388   return bits;
1389 }
1390 #endif // PRODUCT
1391 
1392 
1393 void Universe::compute_verify_oop_data() {
1394   verify_oop_mask();
1395   verify_oop_bits();
1396   verify_mark_mask();
1397   verify_mark_bits();
1398 }
1399 
1400 
1401 void CommonMethodOopCache::init(Klass* k, Method* m, TRAPS) {
1402   if (!UseSharedSpaces) {
1403     _klass = k;
1404   }
1405 #ifndef PRODUCT
1406   else {
1407     // sharing initilization should have already set up _klass
1408     assert(_klass != NULL, "just checking");
1409   }
1410 #endif
1411 
1412   _method_idnum = m->method_idnum();
1413   assert(_method_idnum >= 0, "sanity check");
1414 }
1415 
1416 
1417 ActiveMethodOopsCache::~ActiveMethodOopsCache() {
1418   if (_prev_methods != NULL) {
1419     delete _prev_methods;
1420     _prev_methods = NULL;
1421   }
1422 }
1423 
1424 
1425 void ActiveMethodOopsCache::add_previous_version(Method* method) {
1426   assert(Thread::current()->is_VM_thread(),
1427     "only VMThread can add previous versions");
1428 
1429   // Only append the previous method if it is executing on the stack.
1430   if (method->on_stack()) {
1431 
1432     if (_prev_methods == NULL) {
1433       // This is the first previous version so make some space.
1434       // Start with 2 elements under the assumption that the class
1435       // won't be redefined much.
1436       _prev_methods = new (ResourceObj::C_HEAP, mtClass) GrowableArray<Method*>(2, true);
1437     }
1438 
1439     // RC_TRACE macro has an embedded ResourceMark
1440     RC_TRACE(0x00000100,
1441       ("add: %s(%s): adding prev version ref for cached method @%d",
1442         method->name()->as_C_string(), method->signature()->as_C_string(),
1443         _prev_methods->length()));
1444 
1445     _prev_methods->append(method);
1446   }
1447 
1448 
1449   // Since the caller is the VMThread and we are at a safepoint, this is a good
1450   // time to clear out unused method references.
1451 
1452   if (_prev_methods == NULL) return;
1453 
1454   for (int i = _prev_methods->length() - 1; i >= 0; i--) {
1455     Method* method = _prev_methods->at(i);
1456     assert(method != NULL, "weak method ref was unexpectedly cleared");
1457 
1458     if (!method->on_stack()) {
1459       // This method isn't running anymore so remove it
1460       _prev_methods->remove_at(i);
1461       MetadataFactory::free_metadata(method->method_holder()->class_loader_data(), method);
1462     } else {
1463       // RC_TRACE macro has an embedded ResourceMark
1464       RC_TRACE(0x00000400,
1465         ("add: %s(%s): previous cached method @%d is alive",
1466          method->name()->as_C_string(), method->signature()->as_C_string(), i));
1467     }
1468   }
1469 } // end add_previous_version()
1470 
1471 
1472 bool ActiveMethodOopsCache::is_same_method(const Method* method) const {
1473   InstanceKlass* ik = InstanceKlass::cast(klass());
1474   const Method* check_method = ik->method_with_idnum(method_idnum());
1475   assert(check_method != NULL, "sanity check");
1476   if (check_method == method) {
1477     // done with the easy case
1478     return true;
1479   }
1480 
1481   if (_prev_methods != NULL) {
1482     // The cached method has been redefined at least once so search
1483     // the previous versions for a match.
1484     for (int i = 0; i < _prev_methods->length(); i++) {
1485       check_method = _prev_methods->at(i);
1486       if (check_method == method) {
1487         // a previous version matches
1488         return true;
1489       }
1490     }
1491   }
1492 
1493   // either no previous versions or no previous version matched
1494   return false;
1495 }
1496 
1497 
1498 Method* LatestMethodOopCache::get_Method() {
1499   InstanceKlass* ik = InstanceKlass::cast(klass());
1500   Method* m = ik->method_with_idnum(method_idnum());
1501   assert(m != NULL, "sanity check");
1502   return m;
1503 }
1504 
1505 
1506 #ifdef ASSERT
1507 // Release dummy object(s) at bottom of heap
1508 bool Universe::release_fullgc_alot_dummy() {
1509   MutexLocker ml(FullGCALot_lock);
1510   if (_fullgc_alot_dummy_array != NULL) {
1511     if (_fullgc_alot_dummy_next >= _fullgc_alot_dummy_array->length()) {
1512       // No more dummies to release, release entire array instead
1513       _fullgc_alot_dummy_array = NULL;
1514       return false;
1515     }
1516     if (!UseConcMarkSweepGC) {
1517       // Release dummy at bottom of old generation
1518       _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
1519     }
1520     // Release dummy at bottom of permanent generation
1521     _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
1522   }
1523   return true;
1524 }
1525 
1526 #endif // ASSERT