1 /*
   2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # define __STDC_FORMAT_MACROS
  26 
  27 // no precompiled headers
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "jvm_linux.h"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "mutex_linux.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/extendedPC.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/osThread.hpp"
  53 #include "runtime/perfMemory.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/statSampler.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "runtime/timer.hpp"
  59 #include "services/attachListener.hpp"
  60 #include "services/runtimeService.hpp"
  61 #include "thread_linux.inline.hpp"
  62 #include "utilities/decoder.hpp"
  63 #include "utilities/defaultStream.hpp"
  64 #include "utilities/events.hpp"
  65 #include "utilities/growableArray.hpp"
  66 #include "utilities/vmError.hpp"
  67 #ifdef TARGET_ARCH_x86
  68 # include "assembler_x86.inline.hpp"
  69 # include "nativeInst_x86.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_sparc
  72 # include "assembler_sparc.inline.hpp"
  73 # include "nativeInst_sparc.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_zero
  76 # include "assembler_zero.inline.hpp"
  77 # include "nativeInst_zero.hpp"
  78 #endif
  79 #ifdef TARGET_ARCH_arm
  80 # include "assembler_arm.inline.hpp"
  81 # include "nativeInst_arm.hpp"
  82 #endif
  83 #ifdef TARGET_ARCH_ppc
  84 # include "assembler_ppc.inline.hpp"
  85 # include "nativeInst_ppc.hpp"
  86 #endif
  87 #ifdef COMPILER1
  88 #include "c1/c1_Runtime1.hpp"
  89 #endif
  90 #ifdef COMPILER2
  91 #include "opto/runtime.hpp"
  92 #endif
  93 
  94 // put OS-includes here
  95 # include <sys/types.h>
  96 # include <sys/mman.h>
  97 # include <sys/stat.h>
  98 # include <sys/select.h>
  99 # include <pthread.h>
 100 # include <signal.h>
 101 # include <errno.h>
 102 # include <dlfcn.h>
 103 # include <stdio.h>
 104 # include <unistd.h>
 105 # include <sys/resource.h>
 106 # include <pthread.h>
 107 # include <sys/stat.h>
 108 # include <sys/time.h>
 109 # include <sys/times.h>
 110 # include <sys/utsname.h>
 111 # include <sys/socket.h>
 112 # include <sys/wait.h>
 113 # include <pwd.h>
 114 # include <poll.h>
 115 # include <semaphore.h>
 116 # include <fcntl.h>
 117 # include <string.h>
 118 # include <syscall.h>
 119 # include <sys/sysinfo.h>
 120 # include <gnu/libc-version.h>
 121 # include <sys/ipc.h>
 122 # include <sys/shm.h>
 123 # include <link.h>
 124 # include <stdint.h>
 125 # include <inttypes.h>
 126 # include <sys/ioctl.h>
 127 
 128 #ifdef AMD64
 129 #include <asm/vsyscall.h>
 130 #endif
 131 
 132 #define MAX_PATH    (2 * K)
 133 
 134 // for timer info max values which include all bits
 135 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 136 #define SEC_IN_NANOSECS  1000000000LL
 137 
 138 #define LARGEPAGES_BIT (1 << 6)
 139 ////////////////////////////////////////////////////////////////////////////////
 140 // global variables
 141 julong os::Linux::_physical_memory = 0;
 142 
 143 address   os::Linux::_initial_thread_stack_bottom = NULL;
 144 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 145 
 146 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 147 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 148 Mutex* os::Linux::_createThread_lock = NULL;
 149 pthread_t os::Linux::_main_thread;
 150 int os::Linux::_page_size = -1;
 151 bool os::Linux::_is_floating_stack = false;
 152 bool os::Linux::_is_NPTL = false;
 153 bool os::Linux::_supports_fast_thread_cpu_time = false;
 154 const char * os::Linux::_glibc_version = NULL;
 155 const char * os::Linux::_libpthread_version = NULL;
 156 
 157 static jlong initial_time_count=0;
 158 
 159 static int clock_tics_per_sec = 100;
 160 
 161 // For diagnostics to print a message once. see run_periodic_checks
 162 static sigset_t check_signal_done;
 163 static bool check_signals = true;;
 164 
 165 static pid_t _initial_pid = 0;
 166 
 167 /* Signal number used to suspend/resume a thread */
 168 
 169 /* do not use any signal number less than SIGSEGV, see 4355769 */
 170 static int SR_signum = SIGUSR2;
 171 sigset_t SR_sigset;
 172 
 173 /* Used to protect dlsym() calls */
 174 static pthread_mutex_t dl_mutex;
 175 
 176 #ifdef JAVASE_EMBEDDED
 177 class MemNotifyThread: public Thread {
 178   friend class VMStructs;
 179  public:
 180   virtual void run();
 181 
 182  private:
 183   static MemNotifyThread* _memnotify_thread;
 184   int _fd;
 185 
 186  public:
 187 
 188   // Constructor
 189   MemNotifyThread(int fd);
 190 
 191   // Tester
 192   bool is_memnotify_thread() const { return true; }
 193 
 194   // Printing
 195   char* name() const { return (char*)"Linux MemNotify Thread"; }
 196 
 197   // Returns the single instance of the MemNotifyThread
 198   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 199 
 200   // Create and start the single instance of MemNotifyThread
 201   static void start();
 202 };
 203 #endif // JAVASE_EMBEDDED
 204 
 205 // utility functions
 206 
 207 static int SR_initialize();
 208 static int SR_finalize();
 209 
 210 julong os::available_memory() {
 211   return Linux::available_memory();
 212 }
 213 
 214 julong os::Linux::available_memory() {
 215   // values in struct sysinfo are "unsigned long"
 216   struct sysinfo si;
 217   sysinfo(&si);
 218 
 219   return (julong)si.freeram * si.mem_unit;
 220 }
 221 
 222 julong os::physical_memory() {
 223   return Linux::physical_memory();
 224 }
 225 
 226 julong os::allocatable_physical_memory(julong size) {
 227 #ifdef _LP64
 228   return size;
 229 #else
 230   julong result = MIN2(size, (julong)3800*M);
 231    if (!is_allocatable(result)) {
 232      // See comments under solaris for alignment considerations
 233      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
 234      result =  MIN2(size, reasonable_size);
 235    }
 236    return result;
 237 #endif // _LP64
 238 }
 239 
 240 ////////////////////////////////////////////////////////////////////////////////
 241 // environment support
 242 
 243 bool os::getenv(const char* name, char* buf, int len) {
 244   const char* val = ::getenv(name);
 245   if (val != NULL && strlen(val) < (size_t)len) {
 246     strcpy(buf, val);
 247     return true;
 248   }
 249   if (len > 0) buf[0] = 0;  // return a null string
 250   return false;
 251 }
 252 
 253 
 254 // Return true if user is running as root.
 255 
 256 bool os::have_special_privileges() {
 257   static bool init = false;
 258   static bool privileges = false;
 259   if (!init) {
 260     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 261     init = true;
 262   }
 263   return privileges;
 264 }
 265 
 266 
 267 #ifndef SYS_gettid
 268 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 269 #ifdef __ia64__
 270 #define SYS_gettid 1105
 271 #elif __i386__
 272 #define SYS_gettid 224
 273 #elif __amd64__
 274 #define SYS_gettid 186
 275 #elif __sparc__
 276 #define SYS_gettid 143
 277 #else
 278 #error define gettid for the arch
 279 #endif
 280 #endif
 281 
 282 // Cpu architecture string
 283 #if   defined(ZERO)
 284 static char cpu_arch[] = ZERO_LIBARCH;
 285 #elif defined(IA64)
 286 static char cpu_arch[] = "ia64";
 287 #elif defined(IA32)
 288 static char cpu_arch[] = "i386";
 289 #elif defined(AMD64)
 290 static char cpu_arch[] = "amd64";
 291 #elif defined(ARM)
 292 static char cpu_arch[] = "arm";
 293 #elif defined(PPC)
 294 static char cpu_arch[] = "ppc";
 295 #elif defined(SPARC)
 296 #  ifdef _LP64
 297 static char cpu_arch[] = "sparcv9";
 298 #  else
 299 static char cpu_arch[] = "sparc";
 300 #  endif
 301 #else
 302 #error Add appropriate cpu_arch setting
 303 #endif
 304 
 305 
 306 // pid_t gettid()
 307 //
 308 // Returns the kernel thread id of the currently running thread. Kernel
 309 // thread id is used to access /proc.
 310 //
 311 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 312 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 313 //
 314 pid_t os::Linux::gettid() {
 315   int rslt = syscall(SYS_gettid);
 316   if (rslt == -1) {
 317      // old kernel, no NPTL support
 318      return getpid();
 319   } else {
 320      return (pid_t)rslt;
 321   }
 322 }
 323 
 324 // Most versions of linux have a bug where the number of processors are
 325 // determined by looking at the /proc file system.  In a chroot environment,
 326 // the system call returns 1.  This causes the VM to act as if it is
 327 // a single processor and elide locking (see is_MP() call).
 328 static bool unsafe_chroot_detected = false;
 329 static const char *unstable_chroot_error = "/proc file system not found.\n"
 330                      "Java may be unstable running multithreaded in a chroot "
 331                      "environment on Linux when /proc filesystem is not mounted.";
 332 
 333 void os::Linux::initialize_system_info() {
 334   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 335   if (processor_count() == 1) {
 336     pid_t pid = os::Linux::gettid();
 337     char fname[32];
 338     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 339     FILE *fp = fopen(fname, "r");
 340     if (fp == NULL) {
 341       unsafe_chroot_detected = true;
 342     } else {
 343       fclose(fp);
 344     }
 345   }
 346   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 347   assert(processor_count() > 0, "linux error");
 348 }
 349 
 350 void os::init_system_properties_values() {
 351 //  char arch[12];
 352 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 353 
 354   // The next steps are taken in the product version:
 355   //
 356   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
 357   // This library should be located at:
 358   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
 359   //
 360   // If "/jre/lib/" appears at the right place in the path, then we
 361   // assume libjvm[_g].so is installed in a JDK and we use this path.
 362   //
 363   // Otherwise exit with message: "Could not create the Java virtual machine."
 364   //
 365   // The following extra steps are taken in the debugging version:
 366   //
 367   // If "/jre/lib/" does NOT appear at the right place in the path
 368   // instead of exit check for $JAVA_HOME environment variable.
 369   //
 370   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 371   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
 372   // it looks like libjvm[_g].so is installed there
 373   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
 374   //
 375   // Otherwise exit.
 376   //
 377   // Important note: if the location of libjvm.so changes this
 378   // code needs to be changed accordingly.
 379 
 380   // The next few definitions allow the code to be verbatim:
 381 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
 382 #define getenv(n) ::getenv(n)
 383 
 384 /*
 385  * See ld(1):
 386  *      The linker uses the following search paths to locate required
 387  *      shared libraries:
 388  *        1: ...
 389  *        ...
 390  *        7: The default directories, normally /lib and /usr/lib.
 391  */
 392 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 393 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 394 #else
 395 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 396 #endif
 397 
 398 #define EXTENSIONS_DIR  "/lib/ext"
 399 #define ENDORSED_DIR    "/lib/endorsed"
 400 #define REG_DIR         "/usr/java/packages"
 401 
 402   {
 403     /* sysclasspath, java_home, dll_dir */
 404     {
 405         char *home_path;
 406         char *dll_path;
 407         char *pslash;
 408         char buf[MAXPATHLEN];
 409         os::jvm_path(buf, sizeof(buf));
 410 
 411         // Found the full path to libjvm.so.
 412         // Now cut the path to <java_home>/jre if we can.
 413         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 414         pslash = strrchr(buf, '/');
 415         if (pslash != NULL)
 416             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 417         dll_path = malloc(strlen(buf) + 1);
 418         if (dll_path == NULL)
 419             return;
 420         strcpy(dll_path, buf);
 421         Arguments::set_dll_dir(dll_path);
 422 
 423         if (pslash != NULL) {
 424             pslash = strrchr(buf, '/');
 425             if (pslash != NULL) {
 426                 *pslash = '\0';       /* get rid of /<arch> */
 427                 pslash = strrchr(buf, '/');
 428                 if (pslash != NULL)
 429                     *pslash = '\0';   /* get rid of /lib */
 430             }
 431         }
 432 
 433         home_path = malloc(strlen(buf) + 1);
 434         if (home_path == NULL)
 435             return;
 436         strcpy(home_path, buf);
 437         Arguments::set_java_home(home_path);
 438 
 439         if (!set_boot_path('/', ':'))
 440             return;
 441     }
 442 
 443     /*
 444      * Where to look for native libraries
 445      *
 446      * Note: Due to a legacy implementation, most of the library path
 447      * is set in the launcher.  This was to accomodate linking restrictions
 448      * on legacy Linux implementations (which are no longer supported).
 449      * Eventually, all the library path setting will be done here.
 450      *
 451      * However, to prevent the proliferation of improperly built native
 452      * libraries, the new path component /usr/java/packages is added here.
 453      * Eventually, all the library path setting will be done here.
 454      */
 455     {
 456         char *ld_library_path;
 457 
 458         /*
 459          * Construct the invariant part of ld_library_path. Note that the
 460          * space for the colon and the trailing null are provided by the
 461          * nulls included by the sizeof operator (so actually we allocate
 462          * a byte more than necessary).
 463          */
 464         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 465             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 466         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 467 
 468         /*
 469          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 470          * should always exist (until the legacy problem cited above is
 471          * addressed).
 472          */
 473         char *v = getenv("LD_LIBRARY_PATH");
 474         if (v != NULL) {
 475             char *t = ld_library_path;
 476             /* That's +1 for the colon and +1 for the trailing '\0' */
 477             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 478             sprintf(ld_library_path, "%s:%s", v, t);
 479         }
 480         Arguments::set_library_path(ld_library_path);
 481     }
 482 
 483     /*
 484      * Extensions directories.
 485      *
 486      * Note that the space for the colon and the trailing null are provided
 487      * by the nulls included by the sizeof operator (so actually one byte more
 488      * than necessary is allocated).
 489      */
 490     {
 491         char *buf = malloc(strlen(Arguments::get_java_home()) +
 492             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 493         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 494             Arguments::get_java_home());
 495         Arguments::set_ext_dirs(buf);
 496     }
 497 
 498     /* Endorsed standards default directory. */
 499     {
 500         char * buf;
 501         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 502         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 503         Arguments::set_endorsed_dirs(buf);
 504     }
 505   }
 506 
 507 #undef malloc
 508 #undef getenv
 509 #undef EXTENSIONS_DIR
 510 #undef ENDORSED_DIR
 511 
 512   // Done
 513   return;
 514 }
 515 
 516 ////////////////////////////////////////////////////////////////////////////////
 517 // breakpoint support
 518 
 519 void os::breakpoint() {
 520   BREAKPOINT;
 521 }
 522 
 523 extern "C" void breakpoint() {
 524   // use debugger to set breakpoint here
 525 }
 526 
 527 ////////////////////////////////////////////////////////////////////////////////
 528 // signal support
 529 
 530 debug_only(static bool signal_sets_initialized = false);
 531 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 532 
 533 bool os::Linux::is_sig_ignored(int sig) {
 534       struct sigaction oact;
 535       sigaction(sig, (struct sigaction*)NULL, &oact);
 536       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 537                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 538       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 539            return true;
 540       else
 541            return false;
 542 }
 543 
 544 void os::Linux::signal_sets_init() {
 545   // Should also have an assertion stating we are still single-threaded.
 546   assert(!signal_sets_initialized, "Already initialized");
 547   // Fill in signals that are necessarily unblocked for all threads in
 548   // the VM. Currently, we unblock the following signals:
 549   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 550   //                         by -Xrs (=ReduceSignalUsage));
 551   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 552   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 553   // the dispositions or masks wrt these signals.
 554   // Programs embedding the VM that want to use the above signals for their
 555   // own purposes must, at this time, use the "-Xrs" option to prevent
 556   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 557   // (See bug 4345157, and other related bugs).
 558   // In reality, though, unblocking these signals is really a nop, since
 559   // these signals are not blocked by default.
 560   sigemptyset(&unblocked_sigs);
 561   sigemptyset(&allowdebug_blocked_sigs);
 562   sigaddset(&unblocked_sigs, SIGILL);
 563   sigaddset(&unblocked_sigs, SIGSEGV);
 564   sigaddset(&unblocked_sigs, SIGBUS);
 565   sigaddset(&unblocked_sigs, SIGFPE);
 566   sigaddset(&unblocked_sigs, SR_signum);
 567 
 568   if (!ReduceSignalUsage) {
 569    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 570       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 571       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 572    }
 573    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 574       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 575       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 576    }
 577    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 578       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 579       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 580    }
 581   }
 582   // Fill in signals that are blocked by all but the VM thread.
 583   sigemptyset(&vm_sigs);
 584   if (!ReduceSignalUsage)
 585     sigaddset(&vm_sigs, BREAK_SIGNAL);
 586   debug_only(signal_sets_initialized = true);
 587 
 588 }
 589 
 590 // These are signals that are unblocked while a thread is running Java.
 591 // (For some reason, they get blocked by default.)
 592 sigset_t* os::Linux::unblocked_signals() {
 593   assert(signal_sets_initialized, "Not initialized");
 594   return &unblocked_sigs;
 595 }
 596 
 597 // These are the signals that are blocked while a (non-VM) thread is
 598 // running Java. Only the VM thread handles these signals.
 599 sigset_t* os::Linux::vm_signals() {
 600   assert(signal_sets_initialized, "Not initialized");
 601   return &vm_sigs;
 602 }
 603 
 604 // These are signals that are blocked during cond_wait to allow debugger in
 605 sigset_t* os::Linux::allowdebug_blocked_signals() {
 606   assert(signal_sets_initialized, "Not initialized");
 607   return &allowdebug_blocked_sigs;
 608 }
 609 
 610 void os::Linux::hotspot_sigmask(Thread* thread) {
 611 
 612   //Save caller's signal mask before setting VM signal mask
 613   sigset_t caller_sigmask;
 614   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 615 
 616   OSThread* osthread = thread->osthread();
 617   osthread->set_caller_sigmask(caller_sigmask);
 618 
 619   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 620 
 621   if (!ReduceSignalUsage) {
 622     if (thread->is_VM_thread()) {
 623       // Only the VM thread handles BREAK_SIGNAL ...
 624       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 625     } else {
 626       // ... all other threads block BREAK_SIGNAL
 627       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 628     }
 629   }
 630 }
 631 
 632 //////////////////////////////////////////////////////////////////////////////
 633 // detecting pthread library
 634 
 635 void os::Linux::libpthread_init() {
 636   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 637   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 638   // generic name for earlier versions.
 639   // Define macros here so we can build HotSpot on old systems.
 640 # ifndef _CS_GNU_LIBC_VERSION
 641 # define _CS_GNU_LIBC_VERSION 2
 642 # endif
 643 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 644 # define _CS_GNU_LIBPTHREAD_VERSION 3
 645 # endif
 646 
 647   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 648   if (n > 0) {
 649      char *str = (char *)malloc(n);
 650      confstr(_CS_GNU_LIBC_VERSION, str, n);
 651      os::Linux::set_glibc_version(str);
 652   } else {
 653      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 654      static char _gnu_libc_version[32];
 655      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 656               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 657      os::Linux::set_glibc_version(_gnu_libc_version);
 658   }
 659 
 660   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 661   if (n > 0) {
 662      char *str = (char *)malloc(n);
 663      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 664      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 665      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 666      // is the case. LinuxThreads has a hard limit on max number of threads.
 667      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 668      // On the other hand, NPTL does not have such a limit, sysconf()
 669      // will return -1 and errno is not changed. Check if it is really NPTL.
 670      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 671          strstr(str, "NPTL") &&
 672          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 673        free(str);
 674        os::Linux::set_libpthread_version("linuxthreads");
 675      } else {
 676        os::Linux::set_libpthread_version(str);
 677      }
 678   } else {
 679     // glibc before 2.3.2 only has LinuxThreads.
 680     os::Linux::set_libpthread_version("linuxthreads");
 681   }
 682 
 683   if (strstr(libpthread_version(), "NPTL")) {
 684      os::Linux::set_is_NPTL();
 685   } else {
 686      os::Linux::set_is_LinuxThreads();
 687   }
 688 
 689   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 690   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 691   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 692      os::Linux::set_is_floating_stack();
 693   }
 694 }
 695 
 696 /////////////////////////////////////////////////////////////////////////////
 697 // thread stack
 698 
 699 // Force Linux kernel to expand current thread stack. If "bottom" is close
 700 // to the stack guard, caller should block all signals.
 701 //
 702 // MAP_GROWSDOWN:
 703 //   A special mmap() flag that is used to implement thread stacks. It tells
 704 //   kernel that the memory region should extend downwards when needed. This
 705 //   allows early versions of LinuxThreads to only mmap the first few pages
 706 //   when creating a new thread. Linux kernel will automatically expand thread
 707 //   stack as needed (on page faults).
 708 //
 709 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 710 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 711 //   region, it's hard to tell if the fault is due to a legitimate stack
 712 //   access or because of reading/writing non-exist memory (e.g. buffer
 713 //   overrun). As a rule, if the fault happens below current stack pointer,
 714 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 715 //   application (see Linux kernel fault.c).
 716 //
 717 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 718 //   stack overflow detection.
 719 //
 720 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 721 //   not use this flag. However, the stack of initial thread is not created
 722 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 723 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 724 //   and then attach the thread to JVM.
 725 //
 726 // To get around the problem and allow stack banging on Linux, we need to
 727 // manually expand thread stack after receiving the SIGSEGV.
 728 //
 729 // There are two ways to expand thread stack to address "bottom", we used
 730 // both of them in JVM before 1.5:
 731 //   1. adjust stack pointer first so that it is below "bottom", and then
 732 //      touch "bottom"
 733 //   2. mmap() the page in question
 734 //
 735 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 736 // if current sp is already near the lower end of page 101, and we need to
 737 // call mmap() to map page 100, it is possible that part of the mmap() frame
 738 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 739 // That will destroy the mmap() frame and cause VM to crash.
 740 //
 741 // The following code works by adjusting sp first, then accessing the "bottom"
 742 // page to force a page fault. Linux kernel will then automatically expand the
 743 // stack mapping.
 744 //
 745 // _expand_stack_to() assumes its frame size is less than page size, which
 746 // should always be true if the function is not inlined.
 747 
 748 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 749 #define NOINLINE
 750 #else
 751 #define NOINLINE __attribute__ ((noinline))
 752 #endif
 753 
 754 static void _expand_stack_to(address bottom) NOINLINE;
 755 
 756 static void _expand_stack_to(address bottom) {
 757   address sp;
 758   size_t size;
 759   volatile char *p;
 760 
 761   // Adjust bottom to point to the largest address within the same page, it
 762   // gives us a one-page buffer if alloca() allocates slightly more memory.
 763   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 764   bottom += os::Linux::page_size() - 1;
 765 
 766   // sp might be slightly above current stack pointer; if that's the case, we
 767   // will alloca() a little more space than necessary, which is OK. Don't use
 768   // os::current_stack_pointer(), as its result can be slightly below current
 769   // stack pointer, causing us to not alloca enough to reach "bottom".
 770   sp = (address)&sp;
 771 
 772   if (sp > bottom) {
 773     size = sp - bottom;
 774     p = (volatile char *)alloca(size);
 775     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 776     p[0] = '\0';
 777   }
 778 }
 779 
 780 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 781   assert(t!=NULL, "just checking");
 782   assert(t->osthread()->expanding_stack(), "expand should be set");
 783   assert(t->stack_base() != NULL, "stack_base was not initialized");
 784 
 785   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 786     sigset_t mask_all, old_sigset;
 787     sigfillset(&mask_all);
 788     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 789     _expand_stack_to(addr);
 790     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 791     return true;
 792   }
 793   return false;
 794 }
 795 
 796 //////////////////////////////////////////////////////////////////////////////
 797 // create new thread
 798 
 799 static address highest_vm_reserved_address();
 800 
 801 // check if it's safe to start a new thread
 802 static bool _thread_safety_check(Thread* thread) {
 803   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 804     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 805     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 806     //   allocated (MAP_FIXED) from high address space. Every thread stack
 807     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 808     //   it to other values if they rebuild LinuxThreads).
 809     //
 810     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 811     // the memory region has already been mmap'ed. That means if we have too
 812     // many threads and/or very large heap, eventually thread stack will
 813     // collide with heap.
 814     //
 815     // Here we try to prevent heap/stack collision by comparing current
 816     // stack bottom with the highest address that has been mmap'ed by JVM
 817     // plus a safety margin for memory maps created by native code.
 818     //
 819     // This feature can be disabled by setting ThreadSafetyMargin to 0
 820     //
 821     if (ThreadSafetyMargin > 0) {
 822       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 823 
 824       // not safe if our stack extends below the safety margin
 825       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 826     } else {
 827       return true;
 828     }
 829   } else {
 830     // Floating stack LinuxThreads or NPTL:
 831     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 832     //   there's not enough space left, pthread_create() will fail. If we come
 833     //   here, that means enough space has been reserved for stack.
 834     return true;
 835   }
 836 }
 837 
 838 // Thread start routine for all newly created threads
 839 static void *java_start(Thread *thread) {
 840   // Try to randomize the cache line index of hot stack frames.
 841   // This helps when threads of the same stack traces evict each other's
 842   // cache lines. The threads can be either from the same JVM instance, or
 843   // from different JVM instances. The benefit is especially true for
 844   // processors with hyperthreading technology.
 845   static int counter = 0;
 846   int pid = os::current_process_id();
 847   alloca(((pid ^ counter++) & 7) * 128);
 848 
 849   ThreadLocalStorage::set_thread(thread);
 850 
 851   OSThread* osthread = thread->osthread();
 852   Monitor* sync = osthread->startThread_lock();
 853 
 854   // non floating stack LinuxThreads needs extra check, see above
 855   if (!_thread_safety_check(thread)) {
 856     // notify parent thread
 857     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 858     osthread->set_state(ZOMBIE);
 859     sync->notify_all();
 860     return NULL;
 861   }
 862 
 863   // thread_id is kernel thread id (similar to Solaris LWP id)
 864   osthread->set_thread_id(os::Linux::gettid());
 865 
 866   if (UseNUMA) {
 867     int lgrp_id = os::numa_get_group_id();
 868     if (lgrp_id != -1) {
 869       thread->set_lgrp_id(lgrp_id);
 870     }
 871   }
 872   // initialize signal mask for this thread
 873   os::Linux::hotspot_sigmask(thread);
 874 
 875   // initialize floating point control register
 876   os::Linux::init_thread_fpu_state();
 877 
 878   // handshaking with parent thread
 879   {
 880     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 881 
 882     // notify parent thread
 883     osthread->set_state(INITIALIZED);
 884     sync->notify_all();
 885 
 886     // wait until os::start_thread()
 887     while (osthread->get_state() == INITIALIZED) {
 888       sync->wait(Mutex::_no_safepoint_check_flag);
 889     }
 890   }
 891 
 892   // call one more level start routine
 893   thread->run();
 894 
 895   return 0;
 896 }
 897 
 898 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 899   assert(thread->osthread() == NULL, "caller responsible");
 900 
 901   // Allocate the OSThread object
 902   OSThread* osthread = new OSThread(NULL, NULL);
 903   if (osthread == NULL) {
 904     return false;
 905   }
 906 
 907   // set the correct thread state
 908   osthread->set_thread_type(thr_type);
 909 
 910   // Initial state is ALLOCATED but not INITIALIZED
 911   osthread->set_state(ALLOCATED);
 912 
 913   thread->set_osthread(osthread);
 914 
 915   // init thread attributes
 916   pthread_attr_t attr;
 917   pthread_attr_init(&attr);
 918   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 919 
 920   // stack size
 921   if (os::Linux::supports_variable_stack_size()) {
 922     // calculate stack size if it's not specified by caller
 923     if (stack_size == 0) {
 924       stack_size = os::Linux::default_stack_size(thr_type);
 925 
 926       switch (thr_type) {
 927       case os::java_thread:
 928         // Java threads use ThreadStackSize which default value can be
 929         // changed with the flag -Xss
 930         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 931         stack_size = JavaThread::stack_size_at_create();
 932         break;
 933       case os::compiler_thread:
 934         if (CompilerThreadStackSize > 0) {
 935           stack_size = (size_t)(CompilerThreadStackSize * K);
 936           break;
 937         } // else fall through:
 938           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 939       case os::vm_thread:
 940       case os::pgc_thread:
 941       case os::cgc_thread:
 942       case os::watcher_thread:
 943         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 944         break;
 945       }
 946     }
 947 
 948     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 949     pthread_attr_setstacksize(&attr, stack_size);
 950   } else {
 951     // let pthread_create() pick the default value.
 952   }
 953 
 954   // glibc guard page
 955   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 956 
 957   ThreadState state;
 958 
 959   {
 960     // Serialize thread creation if we are running with fixed stack LinuxThreads
 961     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 962     if (lock) {
 963       os::Linux::createThread_lock()->lock_without_safepoint_check();
 964     }
 965 
 966     pthread_t tid;
 967     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 968 
 969     pthread_attr_destroy(&attr);
 970 
 971     if (ret != 0) {
 972       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 973         perror("pthread_create()");
 974       }
 975       // Need to clean up stuff we've allocated so far
 976       thread->set_osthread(NULL);
 977       delete osthread;
 978       if (lock) os::Linux::createThread_lock()->unlock();
 979       return false;
 980     }
 981 
 982     // Store pthread info into the OSThread
 983     osthread->set_pthread_id(tid);
 984 
 985     // Wait until child thread is either initialized or aborted
 986     {
 987       Monitor* sync_with_child = osthread->startThread_lock();
 988       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 989       while ((state = osthread->get_state()) == ALLOCATED) {
 990         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 991       }
 992     }
 993 
 994     if (lock) {
 995       os::Linux::createThread_lock()->unlock();
 996     }
 997   }
 998 
 999   // Aborted due to thread limit being reached
1000   if (state == ZOMBIE) {
1001       thread->set_osthread(NULL);
1002       delete osthread;
1003       return false;
1004   }
1005 
1006   // The thread is returned suspended (in state INITIALIZED),
1007   // and is started higher up in the call chain
1008   assert(state == INITIALIZED, "race condition");
1009   return true;
1010 }
1011 
1012 /////////////////////////////////////////////////////////////////////////////
1013 // attach existing thread
1014 
1015 // bootstrap the main thread
1016 bool os::create_main_thread(JavaThread* thread) {
1017   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
1018   return create_attached_thread(thread);
1019 }
1020 
1021 bool os::create_attached_thread(JavaThread* thread) {
1022 #ifdef ASSERT
1023     thread->verify_not_published();
1024 #endif
1025 
1026   // Allocate the OSThread object
1027   OSThread* osthread = new OSThread(NULL, NULL);
1028 
1029   if (osthread == NULL) {
1030     return false;
1031   }
1032 
1033   // Store pthread info into the OSThread
1034   osthread->set_thread_id(os::Linux::gettid());
1035   osthread->set_pthread_id(::pthread_self());
1036 
1037   // initialize floating point control register
1038   os::Linux::init_thread_fpu_state();
1039 
1040   // Initial thread state is RUNNABLE
1041   osthread->set_state(RUNNABLE);
1042 
1043   thread->set_osthread(osthread);
1044 
1045   if (UseNUMA) {
1046     int lgrp_id = os::numa_get_group_id();
1047     if (lgrp_id != -1) {
1048       thread->set_lgrp_id(lgrp_id);
1049     }
1050   }
1051 
1052   if (os::Linux::is_initial_thread()) {
1053     // If current thread is initial thread, its stack is mapped on demand,
1054     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1055     // the entire stack region to avoid SEGV in stack banging.
1056     // It is also useful to get around the heap-stack-gap problem on SuSE
1057     // kernel (see 4821821 for details). We first expand stack to the top
1058     // of yellow zone, then enable stack yellow zone (order is significant,
1059     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1060     // is no gap between the last two virtual memory regions.
1061 
1062     JavaThread *jt = (JavaThread *)thread;
1063     address addr = jt->stack_yellow_zone_base();
1064     assert(addr != NULL, "initialization problem?");
1065     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1066 
1067     osthread->set_expanding_stack();
1068     os::Linux::manually_expand_stack(jt, addr);
1069     osthread->clear_expanding_stack();
1070   }
1071 
1072   // initialize signal mask for this thread
1073   // and save the caller's signal mask
1074   os::Linux::hotspot_sigmask(thread);
1075 
1076   return true;
1077 }
1078 
1079 void os::pd_start_thread(Thread* thread) {
1080   OSThread * osthread = thread->osthread();
1081   assert(osthread->get_state() != INITIALIZED, "just checking");
1082   Monitor* sync_with_child = osthread->startThread_lock();
1083   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1084   sync_with_child->notify();
1085 }
1086 
1087 // Free Linux resources related to the OSThread
1088 void os::free_thread(OSThread* osthread) {
1089   assert(osthread != NULL, "osthread not set");
1090 
1091   if (Thread::current()->osthread() == osthread) {
1092     // Restore caller's signal mask
1093     sigset_t sigmask = osthread->caller_sigmask();
1094     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1095    }
1096 
1097   delete osthread;
1098 }
1099 
1100 //////////////////////////////////////////////////////////////////////////////
1101 // thread local storage
1102 
1103 int os::allocate_thread_local_storage() {
1104   pthread_key_t key;
1105   int rslt = pthread_key_create(&key, NULL);
1106   assert(rslt == 0, "cannot allocate thread local storage");
1107   return (int)key;
1108 }
1109 
1110 // Note: This is currently not used by VM, as we don't destroy TLS key
1111 // on VM exit.
1112 void os::free_thread_local_storage(int index) {
1113   int rslt = pthread_key_delete((pthread_key_t)index);
1114   assert(rslt == 0, "invalid index");
1115 }
1116 
1117 void os::thread_local_storage_at_put(int index, void* value) {
1118   int rslt = pthread_setspecific((pthread_key_t)index, value);
1119   assert(rslt == 0, "pthread_setspecific failed");
1120 }
1121 
1122 extern "C" Thread* get_thread() {
1123   return ThreadLocalStorage::thread();
1124 }
1125 
1126 //////////////////////////////////////////////////////////////////////////////
1127 // initial thread
1128 
1129 // Check if current thread is the initial thread, similar to Solaris thr_main.
1130 bool os::Linux::is_initial_thread(void) {
1131   char dummy;
1132   // If called before init complete, thread stack bottom will be null.
1133   // Can be called if fatal error occurs before initialization.
1134   if (initial_thread_stack_bottom() == NULL) return false;
1135   assert(initial_thread_stack_bottom() != NULL &&
1136          initial_thread_stack_size()   != 0,
1137          "os::init did not locate initial thread's stack region");
1138   if ((address)&dummy >= initial_thread_stack_bottom() &&
1139       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1140        return true;
1141   else return false;
1142 }
1143 
1144 // Find the virtual memory area that contains addr
1145 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1146   FILE *fp = fopen("/proc/self/maps", "r");
1147   if (fp) {
1148     address low, high;
1149     while (!feof(fp)) {
1150       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1151         if (low <= addr && addr < high) {
1152            if (vma_low)  *vma_low  = low;
1153            if (vma_high) *vma_high = high;
1154            fclose (fp);
1155            return true;
1156         }
1157       }
1158       for (;;) {
1159         int ch = fgetc(fp);
1160         if (ch == EOF || ch == (int)'\n') break;
1161       }
1162     }
1163     fclose(fp);
1164   }
1165   return false;
1166 }
1167 
1168 // Locate initial thread stack. This special handling of initial thread stack
1169 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1170 // bogus value for initial thread.
1171 void os::Linux::capture_initial_stack(size_t max_size) {
1172   // stack size is the easy part, get it from RLIMIT_STACK
1173   size_t stack_size;
1174   struct rlimit rlim;
1175   getrlimit(RLIMIT_STACK, &rlim);
1176   stack_size = rlim.rlim_cur;
1177 
1178   // 6308388: a bug in ld.so will relocate its own .data section to the
1179   //   lower end of primordial stack; reduce ulimit -s value a little bit
1180   //   so we won't install guard page on ld.so's data section.
1181   stack_size -= 2 * page_size();
1182 
1183   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1184   //   7.1, in both cases we will get 2G in return value.
1185   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1186   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1187   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1188   //   in case other parts in glibc still assumes 2M max stack size.
1189   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1190 #ifndef IA64
1191   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1192 #else
1193   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1194   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1195 #endif
1196 
1197   // Try to figure out where the stack base (top) is. This is harder.
1198   //
1199   // When an application is started, glibc saves the initial stack pointer in
1200   // a global variable "__libc_stack_end", which is then used by system
1201   // libraries. __libc_stack_end should be pretty close to stack top. The
1202   // variable is available since the very early days. However, because it is
1203   // a private interface, it could disappear in the future.
1204   //
1205   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1206   // to __libc_stack_end, it is very close to stack top, but isn't the real
1207   // stack top. Note that /proc may not exist if VM is running as a chroot
1208   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1209   // /proc/<pid>/stat could change in the future (though unlikely).
1210   //
1211   // We try __libc_stack_end first. If that doesn't work, look for
1212   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1213   // as a hint, which should work well in most cases.
1214 
1215   uintptr_t stack_start;
1216 
1217   // try __libc_stack_end first
1218   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1219   if (p && *p) {
1220     stack_start = *p;
1221   } else {
1222     // see if we can get the start_stack field from /proc/self/stat
1223     FILE *fp;
1224     int pid;
1225     char state;
1226     int ppid;
1227     int pgrp;
1228     int session;
1229     int nr;
1230     int tpgrp;
1231     unsigned long flags;
1232     unsigned long minflt;
1233     unsigned long cminflt;
1234     unsigned long majflt;
1235     unsigned long cmajflt;
1236     unsigned long utime;
1237     unsigned long stime;
1238     long cutime;
1239     long cstime;
1240     long prio;
1241     long nice;
1242     long junk;
1243     long it_real;
1244     uintptr_t start;
1245     uintptr_t vsize;
1246     intptr_t rss;
1247     uintptr_t rsslim;
1248     uintptr_t scodes;
1249     uintptr_t ecode;
1250     int i;
1251 
1252     // Figure what the primordial thread stack base is. Code is inspired
1253     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1254     // followed by command name surrounded by parentheses, state, etc.
1255     char stat[2048];
1256     int statlen;
1257 
1258     fp = fopen("/proc/self/stat", "r");
1259     if (fp) {
1260       statlen = fread(stat, 1, 2047, fp);
1261       stat[statlen] = '\0';
1262       fclose(fp);
1263 
1264       // Skip pid and the command string. Note that we could be dealing with
1265       // weird command names, e.g. user could decide to rename java launcher
1266       // to "java 1.4.2 :)", then the stat file would look like
1267       //                1234 (java 1.4.2 :)) R ... ...
1268       // We don't really need to know the command string, just find the last
1269       // occurrence of ")" and then start parsing from there. See bug 4726580.
1270       char * s = strrchr(stat, ')');
1271 
1272       i = 0;
1273       if (s) {
1274         // Skip blank chars
1275         do s++; while (isspace(*s));
1276 
1277 #define _UFM UINTX_FORMAT
1278 #define _DFM INTX_FORMAT
1279 
1280         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1281         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1282         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1283              &state,          /* 3  %c  */
1284              &ppid,           /* 4  %d  */
1285              &pgrp,           /* 5  %d  */
1286              &session,        /* 6  %d  */
1287              &nr,             /* 7  %d  */
1288              &tpgrp,          /* 8  %d  */
1289              &flags,          /* 9  %lu  */
1290              &minflt,         /* 10 %lu  */
1291              &cminflt,        /* 11 %lu  */
1292              &majflt,         /* 12 %lu  */
1293              &cmajflt,        /* 13 %lu  */
1294              &utime,          /* 14 %lu  */
1295              &stime,          /* 15 %lu  */
1296              &cutime,         /* 16 %ld  */
1297              &cstime,         /* 17 %ld  */
1298              &prio,           /* 18 %ld  */
1299              &nice,           /* 19 %ld  */
1300              &junk,           /* 20 %ld  */
1301              &it_real,        /* 21 %ld  */
1302              &start,          /* 22 UINTX_FORMAT */
1303              &vsize,          /* 23 UINTX_FORMAT */
1304              &rss,            /* 24 INTX_FORMAT  */
1305              &rsslim,         /* 25 UINTX_FORMAT */
1306              &scodes,         /* 26 UINTX_FORMAT */
1307              &ecode,          /* 27 UINTX_FORMAT */
1308              &stack_start);   /* 28 UINTX_FORMAT */
1309       }
1310 
1311 #undef _UFM
1312 #undef _DFM
1313 
1314       if (i != 28 - 2) {
1315          assert(false, "Bad conversion from /proc/self/stat");
1316          // product mode - assume we are the initial thread, good luck in the
1317          // embedded case.
1318          warning("Can't detect initial thread stack location - bad conversion");
1319          stack_start = (uintptr_t) &rlim;
1320       }
1321     } else {
1322       // For some reason we can't open /proc/self/stat (for example, running on
1323       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1324       // most cases, so don't abort:
1325       warning("Can't detect initial thread stack location - no /proc/self/stat");
1326       stack_start = (uintptr_t) &rlim;
1327     }
1328   }
1329 
1330   // Now we have a pointer (stack_start) very close to the stack top, the
1331   // next thing to do is to figure out the exact location of stack top. We
1332   // can find out the virtual memory area that contains stack_start by
1333   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1334   // and its upper limit is the real stack top. (again, this would fail if
1335   // running inside chroot, because /proc may not exist.)
1336 
1337   uintptr_t stack_top;
1338   address low, high;
1339   if (find_vma((address)stack_start, &low, &high)) {
1340     // success, "high" is the true stack top. (ignore "low", because initial
1341     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1342     stack_top = (uintptr_t)high;
1343   } else {
1344     // failed, likely because /proc/self/maps does not exist
1345     warning("Can't detect initial thread stack location - find_vma failed");
1346     // best effort: stack_start is normally within a few pages below the real
1347     // stack top, use it as stack top, and reduce stack size so we won't put
1348     // guard page outside stack.
1349     stack_top = stack_start;
1350     stack_size -= 16 * page_size();
1351   }
1352 
1353   // stack_top could be partially down the page so align it
1354   stack_top = align_size_up(stack_top, page_size());
1355 
1356   if (max_size && stack_size > max_size) {
1357      _initial_thread_stack_size = max_size;
1358   } else {
1359      _initial_thread_stack_size = stack_size;
1360   }
1361 
1362   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1363   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1364 }
1365 
1366 ////////////////////////////////////////////////////////////////////////////////
1367 // time support
1368 
1369 // Time since start-up in seconds to a fine granularity.
1370 // Used by VMSelfDestructTimer and the MemProfiler.
1371 double os::elapsedTime() {
1372 
1373   return (double)(os::elapsed_counter()) * 0.000001;
1374 }
1375 
1376 jlong os::elapsed_counter() {
1377   timeval time;
1378   int status = gettimeofday(&time, NULL);
1379   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1380 }
1381 
1382 jlong os::elapsed_frequency() {
1383   return (1000 * 1000);
1384 }
1385 
1386 // For now, we say that linux does not support vtime.  I have no idea
1387 // whether it can actually be made to (DLD, 9/13/05).
1388 
1389 bool os::supports_vtime() { return false; }
1390 bool os::enable_vtime()   { return false; }
1391 bool os::vtime_enabled()  { return false; }
1392 double os::elapsedVTime() {
1393   // better than nothing, but not much
1394   return elapsedTime();
1395 }
1396 
1397 jlong os::javaTimeMillis() {
1398   timeval time;
1399   int status = gettimeofday(&time, NULL);
1400   assert(status != -1, "linux error");
1401   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1402 }
1403 
1404 #ifndef CLOCK_MONOTONIC
1405 #define CLOCK_MONOTONIC (1)
1406 #endif
1407 
1408 void os::Linux::clock_init() {
1409   // we do dlopen's in this particular order due to bug in linux
1410   // dynamical loader (see 6348968) leading to crash on exit
1411   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1412   if (handle == NULL) {
1413     handle = dlopen("librt.so", RTLD_LAZY);
1414   }
1415 
1416   if (handle) {
1417     int (*clock_getres_func)(clockid_t, struct timespec*) =
1418            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1419     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1420            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1421     if (clock_getres_func && clock_gettime_func) {
1422       // See if monotonic clock is supported by the kernel. Note that some
1423       // early implementations simply return kernel jiffies (updated every
1424       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1425       // for nano time (though the monotonic property is still nice to have).
1426       // It's fixed in newer kernels, however clock_getres() still returns
1427       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1428       // resolution for now. Hopefully as people move to new kernels, this
1429       // won't be a problem.
1430       struct timespec res;
1431       struct timespec tp;
1432       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1433           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1434         // yes, monotonic clock is supported
1435         _clock_gettime = clock_gettime_func;
1436       } else {
1437         // close librt if there is no monotonic clock
1438         dlclose(handle);
1439       }
1440     }
1441   }
1442 }
1443 
1444 #ifndef SYS_clock_getres
1445 
1446 #if defined(IA32) || defined(AMD64)
1447 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1448 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1449 #else
1450 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1451 #define sys_clock_getres(x,y)  -1
1452 #endif
1453 
1454 #else
1455 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1456 #endif
1457 
1458 void os::Linux::fast_thread_clock_init() {
1459   if (!UseLinuxPosixThreadCPUClocks) {
1460     return;
1461   }
1462   clockid_t clockid;
1463   struct timespec tp;
1464   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1465       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1466 
1467   // Switch to using fast clocks for thread cpu time if
1468   // the sys_clock_getres() returns 0 error code.
1469   // Note, that some kernels may support the current thread
1470   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1471   // returned by the pthread_getcpuclockid().
1472   // If the fast Posix clocks are supported then the sys_clock_getres()
1473   // must return at least tp.tv_sec == 0 which means a resolution
1474   // better than 1 sec. This is extra check for reliability.
1475 
1476   if(pthread_getcpuclockid_func &&
1477      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1478      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1479 
1480     _supports_fast_thread_cpu_time = true;
1481     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1482   }
1483 }
1484 
1485 jlong os::javaTimeNanos() {
1486   if (Linux::supports_monotonic_clock()) {
1487     struct timespec tp;
1488     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1489     assert(status == 0, "gettime error");
1490     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1491     return result;
1492   } else {
1493     timeval time;
1494     int status = gettimeofday(&time, NULL);
1495     assert(status != -1, "linux error");
1496     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1497     return 1000 * usecs;
1498   }
1499 }
1500 
1501 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1502   if (Linux::supports_monotonic_clock()) {
1503     info_ptr->max_value = ALL_64_BITS;
1504 
1505     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1506     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1507     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1508   } else {
1509     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1510     info_ptr->max_value = ALL_64_BITS;
1511 
1512     // gettimeofday is a real time clock so it skips
1513     info_ptr->may_skip_backward = true;
1514     info_ptr->may_skip_forward = true;
1515   }
1516 
1517   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1518 }
1519 
1520 // Return the real, user, and system times in seconds from an
1521 // arbitrary fixed point in the past.
1522 bool os::getTimesSecs(double* process_real_time,
1523                       double* process_user_time,
1524                       double* process_system_time) {
1525   struct tms ticks;
1526   clock_t real_ticks = times(&ticks);
1527 
1528   if (real_ticks == (clock_t) (-1)) {
1529     return false;
1530   } else {
1531     double ticks_per_second = (double) clock_tics_per_sec;
1532     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1533     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1534     *process_real_time = ((double) real_ticks) / ticks_per_second;
1535 
1536     return true;
1537   }
1538 }
1539 
1540 
1541 char * os::local_time_string(char *buf, size_t buflen) {
1542   struct tm t;
1543   time_t long_time;
1544   time(&long_time);
1545   localtime_r(&long_time, &t);
1546   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1547                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1548                t.tm_hour, t.tm_min, t.tm_sec);
1549   return buf;
1550 }
1551 
1552 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1553   return localtime_r(clock, res);
1554 }
1555 
1556 ////////////////////////////////////////////////////////////////////////////////
1557 // runtime exit support
1558 
1559 // Note: os::shutdown() might be called very early during initialization, or
1560 // called from signal handler. Before adding something to os::shutdown(), make
1561 // sure it is async-safe and can handle partially initialized VM.
1562 void os::shutdown() {
1563 
1564   // allow PerfMemory to attempt cleanup of any persistent resources
1565   perfMemory_exit();
1566 
1567   // needs to remove object in file system
1568   AttachListener::abort();
1569 
1570   // flush buffered output, finish log files
1571   ostream_abort();
1572 
1573   // Check for abort hook
1574   abort_hook_t abort_hook = Arguments::abort_hook();
1575   if (abort_hook != NULL) {
1576     abort_hook();
1577   }
1578 
1579 }
1580 
1581 // Note: os::abort() might be called very early during initialization, or
1582 // called from signal handler. Before adding something to os::abort(), make
1583 // sure it is async-safe and can handle partially initialized VM.
1584 void os::abort(bool dump_core) {
1585   os::shutdown();
1586   if (dump_core) {
1587 #ifndef PRODUCT
1588     fdStream out(defaultStream::output_fd());
1589     out.print_raw("Current thread is ");
1590     char buf[16];
1591     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1592     out.print_raw_cr(buf);
1593     out.print_raw_cr("Dumping core ...");
1594 #endif
1595     ::abort(); // dump core
1596   }
1597 
1598   ::exit(1);
1599 }
1600 
1601 // Die immediately, no exit hook, no abort hook, no cleanup.
1602 void os::die() {
1603   // _exit() on LinuxThreads only kills current thread
1604   ::abort();
1605 }
1606 
1607 // unused on linux for now.
1608 void os::set_error_file(const char *logfile) {}
1609 
1610 
1611 // This method is a copy of JDK's sysGetLastErrorString
1612 // from src/solaris/hpi/src/system_md.c
1613 
1614 size_t os::lasterror(char *buf, size_t len) {
1615 
1616   if (errno == 0)  return 0;
1617 
1618   const char *s = ::strerror(errno);
1619   size_t n = ::strlen(s);
1620   if (n >= len) {
1621     n = len - 1;
1622   }
1623   ::strncpy(buf, s, n);
1624   buf[n] = '\0';
1625   return n;
1626 }
1627 
1628 intx os::current_thread_id() { return (intx)pthread_self(); }
1629 int os::current_process_id() {
1630 
1631   // Under the old linux thread library, linux gives each thread
1632   // its own process id. Because of this each thread will return
1633   // a different pid if this method were to return the result
1634   // of getpid(2). Linux provides no api that returns the pid
1635   // of the launcher thread for the vm. This implementation
1636   // returns a unique pid, the pid of the launcher thread
1637   // that starts the vm 'process'.
1638 
1639   // Under the NPTL, getpid() returns the same pid as the
1640   // launcher thread rather than a unique pid per thread.
1641   // Use gettid() if you want the old pre NPTL behaviour.
1642 
1643   // if you are looking for the result of a call to getpid() that
1644   // returns a unique pid for the calling thread, then look at the
1645   // OSThread::thread_id() method in osThread_linux.hpp file
1646 
1647   return (int)(_initial_pid ? _initial_pid : getpid());
1648 }
1649 
1650 // DLL functions
1651 
1652 const char* os::dll_file_extension() { return ".so"; }
1653 
1654 // This must be hard coded because it's the system's temporary
1655 // directory not the java application's temp directory, ala java.io.tmpdir.
1656 const char* os::get_temp_directory() { return "/tmp"; }
1657 
1658 static bool file_exists(const char* filename) {
1659   struct stat statbuf;
1660   if (filename == NULL || strlen(filename) == 0) {
1661     return false;
1662   }
1663   return os::stat(filename, &statbuf) == 0;
1664 }
1665 
1666 void os::dll_build_name(char* buffer, size_t buflen,
1667                         const char* pname, const char* fname) {
1668   // Copied from libhpi
1669   const size_t pnamelen = pname ? strlen(pname) : 0;
1670 
1671   // Quietly truncate on buffer overflow.  Should be an error.
1672   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1673       *buffer = '\0';
1674       return;
1675   }
1676 
1677   if (pnamelen == 0) {
1678     snprintf(buffer, buflen, "lib%s.so", fname);
1679   } else if (strchr(pname, *os::path_separator()) != NULL) {
1680     int n;
1681     char** pelements = split_path(pname, &n);
1682     for (int i = 0 ; i < n ; i++) {
1683       // Really shouldn't be NULL, but check can't hurt
1684       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1685         continue; // skip the empty path values
1686       }
1687       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1688       if (file_exists(buffer)) {
1689         break;
1690       }
1691     }
1692     // release the storage
1693     for (int i = 0 ; i < n ; i++) {
1694       if (pelements[i] != NULL) {
1695         FREE_C_HEAP_ARRAY(char, pelements[i]);
1696       }
1697     }
1698     if (pelements != NULL) {
1699       FREE_C_HEAP_ARRAY(char*, pelements);
1700     }
1701   } else {
1702     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1703   }
1704 }
1705 
1706 const char* os::get_current_directory(char *buf, int buflen) {
1707   return getcwd(buf, buflen);
1708 }
1709 
1710 // check if addr is inside libjvm[_g].so
1711 bool os::address_is_in_vm(address addr) {
1712   static address libjvm_base_addr;
1713   Dl_info dlinfo;
1714 
1715   if (libjvm_base_addr == NULL) {
1716     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1717     libjvm_base_addr = (address)dlinfo.dli_fbase;
1718     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1719   }
1720 
1721   if (dladdr((void *)addr, &dlinfo)) {
1722     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1723   }
1724 
1725   return false;
1726 }
1727 
1728 bool os::dll_address_to_function_name(address addr, char *buf,
1729                                       int buflen, int *offset) {
1730   Dl_info dlinfo;
1731 
1732   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1733     if (buf != NULL) {
1734       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1735         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1736       }
1737     }
1738     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1739     return true;
1740   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1741     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1742        dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
1743        return true;
1744     }
1745   }
1746 
1747   if (buf != NULL) buf[0] = '\0';
1748   if (offset != NULL) *offset = -1;
1749   return false;
1750 }
1751 
1752 struct _address_to_library_name {
1753   address addr;          // input : memory address
1754   size_t  buflen;        //         size of fname
1755   char*   fname;         // output: library name
1756   address base;          //         library base addr
1757 };
1758 
1759 static int address_to_library_name_callback(struct dl_phdr_info *info,
1760                                             size_t size, void *data) {
1761   int i;
1762   bool found = false;
1763   address libbase = NULL;
1764   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1765 
1766   // iterate through all loadable segments
1767   for (i = 0; i < info->dlpi_phnum; i++) {
1768     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1769     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1770       // base address of a library is the lowest address of its loaded
1771       // segments.
1772       if (libbase == NULL || libbase > segbase) {
1773         libbase = segbase;
1774       }
1775       // see if 'addr' is within current segment
1776       if (segbase <= d->addr &&
1777           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1778         found = true;
1779       }
1780     }
1781   }
1782 
1783   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1784   // so dll_address_to_library_name() can fall through to use dladdr() which
1785   // can figure out executable name from argv[0].
1786   if (found && info->dlpi_name && info->dlpi_name[0]) {
1787     d->base = libbase;
1788     if (d->fname) {
1789       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1790     }
1791     return 1;
1792   }
1793   return 0;
1794 }
1795 
1796 bool os::dll_address_to_library_name(address addr, char* buf,
1797                                      int buflen, int* offset) {
1798   Dl_info dlinfo;
1799   struct _address_to_library_name data;
1800 
1801   // There is a bug in old glibc dladdr() implementation that it could resolve
1802   // to wrong library name if the .so file has a base address != NULL. Here
1803   // we iterate through the program headers of all loaded libraries to find
1804   // out which library 'addr' really belongs to. This workaround can be
1805   // removed once the minimum requirement for glibc is moved to 2.3.x.
1806   data.addr = addr;
1807   data.fname = buf;
1808   data.buflen = buflen;
1809   data.base = NULL;
1810   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1811 
1812   if (rslt) {
1813      // buf already contains library name
1814      if (offset) *offset = addr - data.base;
1815      return true;
1816   } else if (dladdr((void*)addr, &dlinfo)){
1817      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1818      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1819      return true;
1820   } else {
1821      if (buf) buf[0] = '\0';
1822      if (offset) *offset = -1;
1823      return false;
1824   }
1825 }
1826 
1827   // Loads .dll/.so and
1828   // in case of error it checks if .dll/.so was built for the
1829   // same architecture as Hotspot is running on
1830 
1831 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1832 {
1833   void * result= ::dlopen(filename, RTLD_LAZY);
1834   if (result != NULL) {
1835     // Successful loading
1836     return result;
1837   }
1838 
1839   Elf32_Ehdr elf_head;
1840 
1841   // Read system error message into ebuf
1842   // It may or may not be overwritten below
1843   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1844   ebuf[ebuflen-1]='\0';
1845   int diag_msg_max_length=ebuflen-strlen(ebuf);
1846   char* diag_msg_buf=ebuf+strlen(ebuf);
1847 
1848   if (diag_msg_max_length==0) {
1849     // No more space in ebuf for additional diagnostics message
1850     return NULL;
1851   }
1852 
1853 
1854   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1855 
1856   if (file_descriptor < 0) {
1857     // Can't open library, report dlerror() message
1858     return NULL;
1859   }
1860 
1861   bool failed_to_read_elf_head=
1862     (sizeof(elf_head)!=
1863         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1864 
1865   ::close(file_descriptor);
1866   if (failed_to_read_elf_head) {
1867     // file i/o error - report dlerror() msg
1868     return NULL;
1869   }
1870 
1871   typedef struct {
1872     Elf32_Half  code;         // Actual value as defined in elf.h
1873     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1874     char        elf_class;    // 32 or 64 bit
1875     char        endianess;    // MSB or LSB
1876     char*       name;         // String representation
1877   } arch_t;
1878 
1879   #ifndef EM_486
1880   #define EM_486          6               /* Intel 80486 */
1881   #endif
1882 
1883   static const arch_t arch_array[]={
1884     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1885     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1886     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1887     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1888     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1889     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1890     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1891     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1892     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1893     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1894     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1895     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1896     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1897     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1898     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1899     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1900   };
1901 
1902   #if  (defined IA32)
1903     static  Elf32_Half running_arch_code=EM_386;
1904   #elif   (defined AMD64)
1905     static  Elf32_Half running_arch_code=EM_X86_64;
1906   #elif  (defined IA64)
1907     static  Elf32_Half running_arch_code=EM_IA_64;
1908   #elif  (defined __sparc) && (defined _LP64)
1909     static  Elf32_Half running_arch_code=EM_SPARCV9;
1910   #elif  (defined __sparc) && (!defined _LP64)
1911     static  Elf32_Half running_arch_code=EM_SPARC;
1912   #elif  (defined __powerpc64__)
1913     static  Elf32_Half running_arch_code=EM_PPC64;
1914   #elif  (defined __powerpc__)
1915     static  Elf32_Half running_arch_code=EM_PPC;
1916   #elif  (defined ARM)
1917     static  Elf32_Half running_arch_code=EM_ARM;
1918   #elif  (defined S390)
1919     static  Elf32_Half running_arch_code=EM_S390;
1920   #elif  (defined ALPHA)
1921     static  Elf32_Half running_arch_code=EM_ALPHA;
1922   #elif  (defined MIPSEL)
1923     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1924   #elif  (defined PARISC)
1925     static  Elf32_Half running_arch_code=EM_PARISC;
1926   #elif  (defined MIPS)
1927     static  Elf32_Half running_arch_code=EM_MIPS;
1928   #elif  (defined M68K)
1929     static  Elf32_Half running_arch_code=EM_68K;
1930   #else
1931     #error Method os::dll_load requires that one of following is defined:\
1932          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1933   #endif
1934 
1935   // Identify compatability class for VM's architecture and library's architecture
1936   // Obtain string descriptions for architectures
1937 
1938   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1939   int running_arch_index=-1;
1940 
1941   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1942     if (running_arch_code == arch_array[i].code) {
1943       running_arch_index    = i;
1944     }
1945     if (lib_arch.code == arch_array[i].code) {
1946       lib_arch.compat_class = arch_array[i].compat_class;
1947       lib_arch.name         = arch_array[i].name;
1948     }
1949   }
1950 
1951   assert(running_arch_index != -1,
1952     "Didn't find running architecture code (running_arch_code) in arch_array");
1953   if (running_arch_index == -1) {
1954     // Even though running architecture detection failed
1955     // we may still continue with reporting dlerror() message
1956     return NULL;
1957   }
1958 
1959   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1960     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1961     return NULL;
1962   }
1963 
1964 #ifndef S390
1965   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1966     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1967     return NULL;
1968   }
1969 #endif // !S390
1970 
1971   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1972     if ( lib_arch.name!=NULL ) {
1973       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1974         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1975         lib_arch.name, arch_array[running_arch_index].name);
1976     } else {
1977       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1978       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1979         lib_arch.code,
1980         arch_array[running_arch_index].name);
1981     }
1982   }
1983 
1984   return NULL;
1985 }
1986 
1987 /*
1988  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1989  * chances are you might want to run the generated bits against glibc-2.0
1990  * libdl.so, so always use locking for any version of glibc.
1991  */
1992 void* os::dll_lookup(void* handle, const char* name) {
1993   pthread_mutex_lock(&dl_mutex);
1994   void* res = dlsym(handle, name);
1995   pthread_mutex_unlock(&dl_mutex);
1996   return res;
1997 }
1998 
1999 
2000 static bool _print_ascii_file(const char* filename, outputStream* st) {
2001   int fd = ::open(filename, O_RDONLY);
2002   if (fd == -1) {
2003      return false;
2004   }
2005 
2006   char buf[32];
2007   int bytes;
2008   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2009     st->print_raw(buf, bytes);
2010   }
2011 
2012   ::close(fd);
2013 
2014   return true;
2015 }
2016 
2017 void os::print_dll_info(outputStream *st) {
2018    st->print_cr("Dynamic libraries:");
2019 
2020    char fname[32];
2021    pid_t pid = os::Linux::gettid();
2022 
2023    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2024 
2025    if (!_print_ascii_file(fname, st)) {
2026      st->print("Can not get library information for pid = %d\n", pid);
2027    }
2028 }
2029 
2030 
2031 void os::print_os_info(outputStream* st) {
2032   st->print("OS:");
2033 
2034   // Try to identify popular distros.
2035   // Most Linux distributions have /etc/XXX-release file, which contains
2036   // the OS version string. Some have more than one /etc/XXX-release file
2037   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2038   // so the order is important.
2039   if (!_print_ascii_file("/etc/mandrake-release", st) &&
2040       !_print_ascii_file("/etc/sun-release", st) &&
2041       !_print_ascii_file("/etc/redhat-release", st) &&
2042       !_print_ascii_file("/etc/SuSE-release", st) &&
2043       !_print_ascii_file("/etc/turbolinux-release", st) &&
2044       !_print_ascii_file("/etc/gentoo-release", st) &&
2045       !_print_ascii_file("/etc/debian_version", st) &&
2046       !_print_ascii_file("/etc/ltib-release", st) &&
2047       !_print_ascii_file("/etc/angstrom-version", st)) {
2048       st->print("Linux");
2049   }
2050   st->cr();
2051 
2052   // kernel
2053   st->print("uname:");
2054   struct utsname name;
2055   uname(&name);
2056   st->print(name.sysname); st->print(" ");
2057   st->print(name.release); st->print(" ");
2058   st->print(name.version); st->print(" ");
2059   st->print(name.machine);
2060   st->cr();
2061 
2062   // Print warning if unsafe chroot environment detected
2063   if (unsafe_chroot_detected) {
2064     st->print("WARNING!! ");
2065     st->print_cr(unstable_chroot_error);
2066   }
2067 
2068   // libc, pthread
2069   st->print("libc:");
2070   st->print(os::Linux::glibc_version()); st->print(" ");
2071   st->print(os::Linux::libpthread_version()); st->print(" ");
2072   if (os::Linux::is_LinuxThreads()) {
2073      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2074   }
2075   st->cr();
2076 
2077   // rlimit
2078   st->print("rlimit:");
2079   struct rlimit rlim;
2080 
2081   st->print(" STACK ");
2082   getrlimit(RLIMIT_STACK, &rlim);
2083   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2084   else st->print("%uk", rlim.rlim_cur >> 10);
2085 
2086   st->print(", CORE ");
2087   getrlimit(RLIMIT_CORE, &rlim);
2088   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2089   else st->print("%uk", rlim.rlim_cur >> 10);
2090 
2091   st->print(", NPROC ");
2092   getrlimit(RLIMIT_NPROC, &rlim);
2093   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2094   else st->print("%d", rlim.rlim_cur);
2095 
2096   st->print(", NOFILE ");
2097   getrlimit(RLIMIT_NOFILE, &rlim);
2098   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2099   else st->print("%d", rlim.rlim_cur);
2100 
2101   st->print(", AS ");
2102   getrlimit(RLIMIT_AS, &rlim);
2103   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2104   else st->print("%uk", rlim.rlim_cur >> 10);
2105   st->cr();
2106 
2107   // load average
2108   st->print("load average:");
2109   double loadavg[3];
2110   os::loadavg(loadavg, 3);
2111   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2112   st->cr();
2113 
2114   // meminfo
2115   st->print("\n/proc/meminfo:\n");
2116   _print_ascii_file("/proc/meminfo", st);
2117   st->cr();
2118 }
2119 
2120 void os::pd_print_cpu_info(outputStream* st) {
2121   st->print("\n/proc/cpuinfo:\n");
2122   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2123     st->print("  <Not Available>");
2124   }
2125   st->cr();
2126 }
2127 
2128 void os::print_memory_info(outputStream* st) {
2129 
2130   st->print("Memory:");
2131   st->print(" %dk page", os::vm_page_size()>>10);
2132 
2133   // values in struct sysinfo are "unsigned long"
2134   struct sysinfo si;
2135   sysinfo(&si);
2136 
2137   st->print(", physical " UINT64_FORMAT "k",
2138             os::physical_memory() >> 10);
2139   st->print("(" UINT64_FORMAT "k free)",
2140             os::available_memory() >> 10);
2141   st->print(", swap " UINT64_FORMAT "k",
2142             ((jlong)si.totalswap * si.mem_unit) >> 10);
2143   st->print("(" UINT64_FORMAT "k free)",
2144             ((jlong)si.freeswap * si.mem_unit) >> 10);
2145   st->cr();
2146 }
2147 
2148 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2149 // but they're the same for all the linux arch that we support
2150 // and they're the same for solaris but there's no common place to put this.
2151 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2152                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2153                           "ILL_COPROC", "ILL_BADSTK" };
2154 
2155 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2156                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2157                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2158 
2159 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2160 
2161 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2162 
2163 void os::print_siginfo(outputStream* st, void* siginfo) {
2164   st->print("siginfo:");
2165 
2166   const int buflen = 100;
2167   char buf[buflen];
2168   siginfo_t *si = (siginfo_t*)siginfo;
2169   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2170   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2171     st->print("si_errno=%s", buf);
2172   } else {
2173     st->print("si_errno=%d", si->si_errno);
2174   }
2175   const int c = si->si_code;
2176   assert(c > 0, "unexpected si_code");
2177   switch (si->si_signo) {
2178   case SIGILL:
2179     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2180     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2181     break;
2182   case SIGFPE:
2183     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2184     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2185     break;
2186   case SIGSEGV:
2187     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2188     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2189     break;
2190   case SIGBUS:
2191     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2192     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2193     break;
2194   default:
2195     st->print(", si_code=%d", si->si_code);
2196     // no si_addr
2197   }
2198 
2199   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2200       UseSharedSpaces) {
2201     FileMapInfo* mapinfo = FileMapInfo::current_info();
2202     if (mapinfo->is_in_shared_space(si->si_addr)) {
2203       st->print("\n\nError accessing class data sharing archive."   \
2204                 " Mapped file inaccessible during execution, "      \
2205                 " possible disk/network problem.");
2206     }
2207   }
2208   st->cr();
2209 }
2210 
2211 
2212 static void print_signal_handler(outputStream* st, int sig,
2213                                  char* buf, size_t buflen);
2214 
2215 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2216   st->print_cr("Signal Handlers:");
2217   print_signal_handler(st, SIGSEGV, buf, buflen);
2218   print_signal_handler(st, SIGBUS , buf, buflen);
2219   print_signal_handler(st, SIGFPE , buf, buflen);
2220   print_signal_handler(st, SIGPIPE, buf, buflen);
2221   print_signal_handler(st, SIGXFSZ, buf, buflen);
2222   print_signal_handler(st, SIGILL , buf, buflen);
2223   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2224   print_signal_handler(st, SR_signum, buf, buflen);
2225   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2226   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2227   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2228   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2229 }
2230 
2231 static char saved_jvm_path[MAXPATHLEN] = {0};
2232 
2233 // Find the full path to the current module, libjvm.so or libjvm_g.so
2234 void os::jvm_path(char *buf, jint buflen) {
2235   // Error checking.
2236   if (buflen < MAXPATHLEN) {
2237     assert(false, "must use a large-enough buffer");
2238     buf[0] = '\0';
2239     return;
2240   }
2241   // Lazy resolve the path to current module.
2242   if (saved_jvm_path[0] != 0) {
2243     strcpy(buf, saved_jvm_path);
2244     return;
2245   }
2246 
2247   char dli_fname[MAXPATHLEN];
2248   bool ret = dll_address_to_library_name(
2249                 CAST_FROM_FN_PTR(address, os::jvm_path),
2250                 dli_fname, sizeof(dli_fname), NULL);
2251   assert(ret != 0, "cannot locate libjvm");
2252   char *rp = realpath(dli_fname, buf);
2253   if (rp == NULL)
2254     return;
2255 
2256   if (Arguments::created_by_gamma_launcher()) {
2257     // Support for the gamma launcher.  Typical value for buf is
2258     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2259     // the right place in the string, then assume we are installed in a JDK and
2260     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2261     // up the path so it looks like libjvm.so is installed there (append a
2262     // fake suffix hotspot/libjvm.so).
2263     const char *p = buf + strlen(buf) - 1;
2264     for (int count = 0; p > buf && count < 5; ++count) {
2265       for (--p; p > buf && *p != '/'; --p)
2266         /* empty */ ;
2267     }
2268 
2269     if (strncmp(p, "/jre/lib/", 9) != 0) {
2270       // Look for JAVA_HOME in the environment.
2271       char* java_home_var = ::getenv("JAVA_HOME");
2272       if (java_home_var != NULL && java_home_var[0] != 0) {
2273         char* jrelib_p;
2274         int len;
2275 
2276         // Check the current module name "libjvm.so" or "libjvm_g.so".
2277         p = strrchr(buf, '/');
2278         assert(strstr(p, "/libjvm") == p, "invalid library name");
2279         p = strstr(p, "_g") ? "_g" : "";
2280 
2281         rp = realpath(java_home_var, buf);
2282         if (rp == NULL)
2283           return;
2284 
2285         // determine if this is a legacy image or modules image
2286         // modules image doesn't have "jre" subdirectory
2287         len = strlen(buf);
2288         jrelib_p = buf + len;
2289         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2290         if (0 != access(buf, F_OK)) {
2291           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2292         }
2293 
2294         if (0 == access(buf, F_OK)) {
2295           // Use current module name "libjvm[_g].so" instead of
2296           // "libjvm"debug_only("_g")".so" since for fastdebug version
2297           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2298           len = strlen(buf);
2299           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2300         } else {
2301           // Go back to path of .so
2302           rp = realpath(dli_fname, buf);
2303           if (rp == NULL)
2304             return;
2305         }
2306       }
2307     }
2308   }
2309 
2310   strcpy(saved_jvm_path, buf);
2311 }
2312 
2313 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2314   // no prefix required, not even "_"
2315 }
2316 
2317 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2318   // no suffix required
2319 }
2320 
2321 ////////////////////////////////////////////////////////////////////////////////
2322 // sun.misc.Signal support
2323 
2324 static volatile jint sigint_count = 0;
2325 
2326 static void
2327 UserHandler(int sig, void *siginfo, void *context) {
2328   // 4511530 - sem_post is serialized and handled by the manager thread. When
2329   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2330   // don't want to flood the manager thread with sem_post requests.
2331   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2332       return;
2333 
2334   // Ctrl-C is pressed during error reporting, likely because the error
2335   // handler fails to abort. Let VM die immediately.
2336   if (sig == SIGINT && is_error_reported()) {
2337      os::die();
2338   }
2339 
2340   os::signal_notify(sig);
2341 }
2342 
2343 void* os::user_handler() {
2344   return CAST_FROM_FN_PTR(void*, UserHandler);
2345 }
2346 
2347 extern "C" {
2348   typedef void (*sa_handler_t)(int);
2349   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2350 }
2351 
2352 void* os::signal(int signal_number, void* handler) {
2353   struct sigaction sigAct, oldSigAct;
2354 
2355   sigfillset(&(sigAct.sa_mask));
2356   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2357   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2358 
2359   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2360     // -1 means registration failed
2361     return (void *)-1;
2362   }
2363 
2364   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2365 }
2366 
2367 void os::signal_raise(int signal_number) {
2368   ::raise(signal_number);
2369 }
2370 
2371 /*
2372  * The following code is moved from os.cpp for making this
2373  * code platform specific, which it is by its very nature.
2374  */
2375 
2376 // Will be modified when max signal is changed to be dynamic
2377 int os::sigexitnum_pd() {
2378   return NSIG;
2379 }
2380 
2381 // a counter for each possible signal value
2382 static volatile jint pending_signals[NSIG+1] = { 0 };
2383 
2384 // Linux(POSIX) specific hand shaking semaphore.
2385 static sem_t sig_sem;
2386 
2387 void os::signal_init_pd() {
2388   // Initialize signal structures
2389   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2390 
2391   // Initialize signal semaphore
2392   ::sem_init(&sig_sem, 0, 0);
2393 }
2394 
2395 void os::signal_notify(int sig) {
2396   Atomic::inc(&pending_signals[sig]);
2397   ::sem_post(&sig_sem);
2398 }
2399 
2400 static int check_pending_signals(bool wait) {
2401   Atomic::store(0, &sigint_count);
2402   for (;;) {
2403     for (int i = 0; i < NSIG + 1; i++) {
2404       jint n = pending_signals[i];
2405       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2406         return i;
2407       }
2408     }
2409     if (!wait) {
2410       return -1;
2411     }
2412     JavaThread *thread = JavaThread::current();
2413     ThreadBlockInVM tbivm(thread);
2414 
2415     bool threadIsSuspended;
2416     do {
2417       thread->set_suspend_equivalent();
2418       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2419       ::sem_wait(&sig_sem);
2420 
2421       // were we externally suspended while we were waiting?
2422       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2423       if (threadIsSuspended) {
2424         //
2425         // The semaphore has been incremented, but while we were waiting
2426         // another thread suspended us. We don't want to continue running
2427         // while suspended because that would surprise the thread that
2428         // suspended us.
2429         //
2430         ::sem_post(&sig_sem);
2431 
2432         thread->java_suspend_self();
2433       }
2434     } while (threadIsSuspended);
2435   }
2436 }
2437 
2438 int os::signal_lookup() {
2439   return check_pending_signals(false);
2440 }
2441 
2442 int os::signal_wait() {
2443   return check_pending_signals(true);
2444 }
2445 
2446 ////////////////////////////////////////////////////////////////////////////////
2447 // Virtual Memory
2448 
2449 int os::vm_page_size() {
2450   // Seems redundant as all get out
2451   assert(os::Linux::page_size() != -1, "must call os::init");
2452   return os::Linux::page_size();
2453 }
2454 
2455 // Solaris allocates memory by pages.
2456 int os::vm_allocation_granularity() {
2457   assert(os::Linux::page_size() != -1, "must call os::init");
2458   return os::Linux::page_size();
2459 }
2460 
2461 // Rationale behind this function:
2462 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2463 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2464 //  samples for JITted code. Here we create private executable mapping over the code cache
2465 //  and then we can use standard (well, almost, as mapping can change) way to provide
2466 //  info for the reporting script by storing timestamp and location of symbol
2467 void linux_wrap_code(char* base, size_t size) {
2468   static volatile jint cnt = 0;
2469 
2470   if (!UseOprofile) {
2471     return;
2472   }
2473 
2474   char buf[PATH_MAX+1];
2475   int num = Atomic::add(1, &cnt);
2476 
2477   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2478            os::get_temp_directory(), os::current_process_id(), num);
2479   unlink(buf);
2480 
2481   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2482 
2483   if (fd != -1) {
2484     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2485     if (rv != (off_t)-1) {
2486       if (::write(fd, "", 1) == 1) {
2487         mmap(base, size,
2488              PROT_READ|PROT_WRITE|PROT_EXEC,
2489              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2490       }
2491     }
2492     ::close(fd);
2493     unlink(buf);
2494   }
2495 }
2496 
2497 // NOTE: Linux kernel does not really reserve the pages for us.
2498 //       All it does is to check if there are enough free pages
2499 //       left at the time of mmap(). This could be a potential
2500 //       problem.
2501 bool os::commit_memory(char* addr, size_t size, bool exec) {
2502   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2503   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2504                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2505   return res != (uintptr_t) MAP_FAILED;
2506 }
2507 
2508 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2509 #ifndef MAP_HUGETLB
2510 #define MAP_HUGETLB 0x40000
2511 #endif
2512 
2513 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2514 #ifndef MADV_HUGEPAGE
2515 #define MADV_HUGEPAGE 14
2516 #endif
2517 
2518 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2519                        bool exec) {
2520   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2521     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2522     uintptr_t res =
2523       (uintptr_t) ::mmap(addr, size, prot,
2524                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2525                          -1, 0);
2526     return res != (uintptr_t) MAP_FAILED;
2527   }
2528 
2529   return commit_memory(addr, size, exec);
2530 }
2531 
2532 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2533   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2534     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2535     // be supported or the memory may already be backed by huge pages.
2536     ::madvise(addr, bytes, MADV_HUGEPAGE);
2537   }
2538 }
2539 
2540 void os::free_memory(char *addr, size_t bytes) {
2541   commit_memory(addr, bytes, false);
2542 }
2543 
2544 void os::numa_make_global(char *addr, size_t bytes) {
2545   Linux::numa_interleave_memory(addr, bytes);
2546 }
2547 
2548 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2549   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2550 }
2551 
2552 bool os::numa_topology_changed()   { return false; }
2553 
2554 size_t os::numa_get_groups_num() {
2555   int max_node = Linux::numa_max_node();
2556   return max_node > 0 ? max_node + 1 : 1;
2557 }
2558 
2559 int os::numa_get_group_id() {
2560   int cpu_id = Linux::sched_getcpu();
2561   if (cpu_id != -1) {
2562     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2563     if (lgrp_id != -1) {
2564       return lgrp_id;
2565     }
2566   }
2567   return 0;
2568 }
2569 
2570 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2571   for (size_t i = 0; i < size; i++) {
2572     ids[i] = i;
2573   }
2574   return size;
2575 }
2576 
2577 bool os::get_page_info(char *start, page_info* info) {
2578   return false;
2579 }
2580 
2581 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2582   return end;
2583 }
2584 
2585 
2586 int os::Linux::sched_getcpu_syscall(void) {
2587   unsigned int cpu;
2588   int retval = -1;
2589 
2590 #if defined(IA32)
2591   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2592 #elif defined(AMD64)
2593   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2594   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2595   retval = vgetcpu(&cpu, NULL, NULL);
2596 #endif
2597 
2598   return (retval == -1) ? retval : cpu;
2599 }
2600 
2601 // Something to do with the numa-aware allocator needs these symbols
2602 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2603 extern "C" JNIEXPORT void numa_error(char *where) { }
2604 extern "C" JNIEXPORT int fork1() { return fork(); }
2605 
2606 
2607 // If we are running with libnuma version > 2, then we should
2608 // be trying to use symbols with versions 1.1
2609 // If we are running with earlier version, which did not have symbol versions,
2610 // we should use the base version.
2611 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2612   void *f = dlvsym(handle, name, "libnuma_1.1");
2613   if (f == NULL) {
2614     f = dlsym(handle, name);
2615   }
2616   return f;
2617 }
2618 
2619 bool os::Linux::libnuma_init() {
2620   // sched_getcpu() should be in libc.
2621   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2622                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2623 
2624   // If it's not, try a direct syscall.
2625   if (sched_getcpu() == -1)
2626     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2627 
2628   if (sched_getcpu() != -1) { // Does it work?
2629     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2630     if (handle != NULL) {
2631       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2632                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2633       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2634                                        libnuma_dlsym(handle, "numa_max_node")));
2635       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2636                                         libnuma_dlsym(handle, "numa_available")));
2637       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2638                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2639       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2640                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2641 
2642 
2643       if (numa_available() != -1) {
2644         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2645         // Create a cpu -> node mapping
2646         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2647         rebuild_cpu_to_node_map();
2648         return true;
2649       }
2650     }
2651   }
2652   return false;
2653 }
2654 
2655 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2656 // The table is later used in get_node_by_cpu().
2657 void os::Linux::rebuild_cpu_to_node_map() {
2658   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2659                               // in libnuma (possible values are starting from 16,
2660                               // and continuing up with every other power of 2, but less
2661                               // than the maximum number of CPUs supported by kernel), and
2662                               // is a subject to change (in libnuma version 2 the requirements
2663                               // are more reasonable) we'll just hardcode the number they use
2664                               // in the library.
2665   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2666 
2667   size_t cpu_num = os::active_processor_count();
2668   size_t cpu_map_size = NCPUS / BitsPerCLong;
2669   size_t cpu_map_valid_size =
2670     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2671 
2672   cpu_to_node()->clear();
2673   cpu_to_node()->at_grow(cpu_num - 1);
2674   size_t node_num = numa_get_groups_num();
2675 
2676   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2677   for (size_t i = 0; i < node_num; i++) {
2678     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2679       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2680         if (cpu_map[j] != 0) {
2681           for (size_t k = 0; k < BitsPerCLong; k++) {
2682             if (cpu_map[j] & (1UL << k)) {
2683               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2684             }
2685           }
2686         }
2687       }
2688     }
2689   }
2690   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2691 }
2692 
2693 int os::Linux::get_node_by_cpu(int cpu_id) {
2694   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2695     return cpu_to_node()->at(cpu_id);
2696   }
2697   return -1;
2698 }
2699 
2700 GrowableArray<int>* os::Linux::_cpu_to_node;
2701 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2702 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2703 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2704 os::Linux::numa_available_func_t os::Linux::_numa_available;
2705 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2706 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2707 unsigned long* os::Linux::_numa_all_nodes;
2708 
2709 bool os::uncommit_memory(char* addr, size_t size) {
2710   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2711                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2712   return res  != (uintptr_t) MAP_FAILED;
2713 }
2714 
2715 // Linux uses a growable mapping for the stack, and if the mapping for
2716 // the stack guard pages is not removed when we detach a thread the
2717 // stack cannot grow beyond the pages where the stack guard was
2718 // mapped.  If at some point later in the process the stack expands to
2719 // that point, the Linux kernel cannot expand the stack any further
2720 // because the guard pages are in the way, and a segfault occurs.
2721 //
2722 // However, it's essential not to split the stack region by unmapping
2723 // a region (leaving a hole) that's already part of the stack mapping,
2724 // so if the stack mapping has already grown beyond the guard pages at
2725 // the time we create them, we have to truncate the stack mapping.
2726 // So, we need to know the extent of the stack mapping when
2727 // create_stack_guard_pages() is called.
2728 
2729 // Find the bounds of the stack mapping.  Return true for success.
2730 //
2731 // We only need this for stacks that are growable: at the time of
2732 // writing thread stacks don't use growable mappings (i.e. those
2733 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2734 // only applies to the main thread.
2735 
2736 static
2737 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2738 
2739   char buf[128];
2740   int fd, sz;
2741 
2742   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2743     return false;
2744   }
2745 
2746   const char kw[] = "[stack]";
2747   const int kwlen = sizeof(kw)-1;
2748 
2749   // Address part of /proc/self/maps couldn't be more than 128 bytes
2750   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2751      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2752         // Extract addresses
2753         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2754            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2755            if (sp >= *bottom && sp <= *top) {
2756               ::close(fd);
2757               return true;
2758            }
2759         }
2760      }
2761   }
2762 
2763  ::close(fd);
2764   return false;
2765 }
2766 
2767 
2768 // If the (growable) stack mapping already extends beyond the point
2769 // where we're going to put our guard pages, truncate the mapping at
2770 // that point by munmap()ping it.  This ensures that when we later
2771 // munmap() the guard pages we don't leave a hole in the stack
2772 // mapping. This only affects the main/initial thread, but guard
2773 // against future OS changes
2774 bool os::create_stack_guard_pages(char* addr, size_t size) {
2775   uintptr_t stack_extent, stack_base;
2776   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2777   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2778       assert(os::Linux::is_initial_thread(),
2779            "growable stack in non-initial thread");
2780     if (stack_extent < (uintptr_t)addr)
2781       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2782   }
2783 
2784   return os::commit_memory(addr, size);
2785 }
2786 
2787 // If this is a growable mapping, remove the guard pages entirely by
2788 // munmap()ping them.  If not, just call uncommit_memory(). This only
2789 // affects the main/initial thread, but guard against future OS changes
2790 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2791   uintptr_t stack_extent, stack_base;
2792   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2793   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2794       assert(os::Linux::is_initial_thread(),
2795            "growable stack in non-initial thread");
2796 
2797     return ::munmap(addr, size) == 0;
2798   }
2799 
2800   return os::uncommit_memory(addr, size);
2801 }
2802 
2803 static address _highest_vm_reserved_address = NULL;
2804 
2805 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2806 // at 'requested_addr'. If there are existing memory mappings at the same
2807 // location, however, they will be overwritten. If 'fixed' is false,
2808 // 'requested_addr' is only treated as a hint, the return value may or
2809 // may not start from the requested address. Unlike Linux mmap(), this
2810 // function returns NULL to indicate failure.
2811 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2812   char * addr;
2813   int flags;
2814 
2815   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2816   if (fixed) {
2817     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2818     flags |= MAP_FIXED;
2819   }
2820 
2821   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2822   // to PROT_EXEC if executable when we commit the page.
2823   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2824                        flags, -1, 0);
2825 
2826   if (addr != MAP_FAILED) {
2827     // anon_mmap() should only get called during VM initialization,
2828     // don't need lock (actually we can skip locking even it can be called
2829     // from multiple threads, because _highest_vm_reserved_address is just a
2830     // hint about the upper limit of non-stack memory regions.)
2831     if ((address)addr + bytes > _highest_vm_reserved_address) {
2832       _highest_vm_reserved_address = (address)addr + bytes;
2833     }
2834   }
2835 
2836   return addr == MAP_FAILED ? NULL : addr;
2837 }
2838 
2839 // Don't update _highest_vm_reserved_address, because there might be memory
2840 // regions above addr + size. If so, releasing a memory region only creates
2841 // a hole in the address space, it doesn't help prevent heap-stack collision.
2842 //
2843 static int anon_munmap(char * addr, size_t size) {
2844   return ::munmap(addr, size) == 0;
2845 }
2846 
2847 char* os::reserve_memory(size_t bytes, char* requested_addr,
2848                          size_t alignment_hint) {
2849   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2850 }
2851 
2852 bool os::release_memory(char* addr, size_t size) {
2853   return anon_munmap(addr, size);
2854 }
2855 
2856 static address highest_vm_reserved_address() {
2857   return _highest_vm_reserved_address;
2858 }
2859 
2860 static bool linux_mprotect(char* addr, size_t size, int prot) {
2861   // Linux wants the mprotect address argument to be page aligned.
2862   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2863 
2864   // According to SUSv3, mprotect() should only be used with mappings
2865   // established by mmap(), and mmap() always maps whole pages. Unaligned
2866   // 'addr' likely indicates problem in the VM (e.g. trying to change
2867   // protection of malloc'ed or statically allocated memory). Check the
2868   // caller if you hit this assert.
2869   assert(addr == bottom, "sanity check");
2870 
2871   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2872   return ::mprotect(bottom, size, prot) == 0;
2873 }
2874 
2875 // Set protections specified
2876 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2877                         bool is_committed) {
2878   unsigned int p = 0;
2879   switch (prot) {
2880   case MEM_PROT_NONE: p = PROT_NONE; break;
2881   case MEM_PROT_READ: p = PROT_READ; break;
2882   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2883   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2884   default:
2885     ShouldNotReachHere();
2886   }
2887   // is_committed is unused.
2888   return linux_mprotect(addr, bytes, p);
2889 }
2890 
2891 bool os::guard_memory(char* addr, size_t size) {
2892   return linux_mprotect(addr, size, PROT_NONE);
2893 }
2894 
2895 bool os::unguard_memory(char* addr, size_t size) {
2896   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2897 }
2898 
2899 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2900   bool result = false;
2901   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2902                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2903                   -1, 0);
2904 
2905   if (p != (void *) -1) {
2906     // We don't know if this really is a huge page or not.
2907     FILE *fp = fopen("/proc/self/maps", "r");
2908     if (fp) {
2909       while (!feof(fp)) {
2910         char chars[257];
2911         long x = 0;
2912         if (fgets(chars, sizeof(chars), fp)) {
2913           if (sscanf(chars, "%lx-%*x", &x) == 1
2914               && x == (long)p) {
2915             if (strstr (chars, "hugepage")) {
2916               result = true;
2917               break;
2918             }
2919           }
2920         }
2921       }
2922       fclose(fp);
2923     }
2924     munmap (p, page_size);
2925     if (result)
2926       return true;
2927   }
2928 
2929   if (warn) {
2930     warning("HugeTLBFS is not supported by the operating system.");
2931   }
2932 
2933   return result;
2934 }
2935 
2936 /*
2937 * Set the coredump_filter bits to include largepages in core dump (bit 6)
2938 *
2939 * From the coredump_filter documentation:
2940 *
2941 * - (bit 0) anonymous private memory
2942 * - (bit 1) anonymous shared memory
2943 * - (bit 2) file-backed private memory
2944 * - (bit 3) file-backed shared memory
2945 * - (bit 4) ELF header pages in file-backed private memory areas (it is
2946 *           effective only if the bit 2 is cleared)
2947 * - (bit 5) hugetlb private memory
2948 * - (bit 6) hugetlb shared memory
2949 */
2950 static void set_coredump_filter(void) {
2951   FILE *f;
2952   long cdm;
2953 
2954   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2955     return;
2956   }
2957 
2958   if (fscanf(f, "%lx", &cdm) != 1) {
2959     fclose(f);
2960     return;
2961   }
2962 
2963   rewind(f);
2964 
2965   if ((cdm & LARGEPAGES_BIT) == 0) {
2966     cdm |= LARGEPAGES_BIT;
2967     fprintf(f, "%#lx", cdm);
2968   }
2969 
2970   fclose(f);
2971 }
2972 
2973 // Large page support
2974 
2975 static size_t _large_page_size = 0;
2976 
2977 void os::large_page_init() {
2978   if (!UseLargePages) {
2979     UseHugeTLBFS = false;
2980     UseSHM = false;
2981     return;
2982   }
2983 
2984   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
2985     // If UseLargePages is specified on the command line try both methods,
2986     // if it's default, then try only HugeTLBFS.
2987     if (FLAG_IS_DEFAULT(UseLargePages)) {
2988       UseHugeTLBFS = true;
2989     } else {
2990       UseHugeTLBFS = UseSHM = true;
2991     }
2992   }
2993 
2994   if (LargePageSizeInBytes) {
2995     _large_page_size = LargePageSizeInBytes;
2996   } else {
2997     // large_page_size on Linux is used to round up heap size. x86 uses either
2998     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2999     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3000     // page as large as 256M.
3001     //
3002     // Here we try to figure out page size by parsing /proc/meminfo and looking
3003     // for a line with the following format:
3004     //    Hugepagesize:     2048 kB
3005     //
3006     // If we can't determine the value (e.g. /proc is not mounted, or the text
3007     // format has been changed), we'll use the largest page size supported by
3008     // the processor.
3009 
3010 #ifndef ZERO
3011     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3012                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3013 #endif // ZERO
3014 
3015     FILE *fp = fopen("/proc/meminfo", "r");
3016     if (fp) {
3017       while (!feof(fp)) {
3018         int x = 0;
3019         char buf[16];
3020         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3021           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3022             _large_page_size = x * K;
3023             break;
3024           }
3025         } else {
3026           // skip to next line
3027           for (;;) {
3028             int ch = fgetc(fp);
3029             if (ch == EOF || ch == (int)'\n') break;
3030           }
3031         }
3032       }
3033       fclose(fp);
3034     }
3035   }
3036 
3037   // print a warning if any large page related flag is specified on command line
3038   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3039 
3040   const size_t default_page_size = (size_t)Linux::page_size();
3041   if (_large_page_size > default_page_size) {
3042     _page_sizes[0] = _large_page_size;
3043     _page_sizes[1] = default_page_size;
3044     _page_sizes[2] = 0;
3045   }
3046   UseHugeTLBFS = UseHugeTLBFS &&
3047                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3048 
3049   if (UseHugeTLBFS)
3050     UseSHM = false;
3051 
3052   UseLargePages = UseHugeTLBFS || UseSHM;
3053 
3054   set_coredump_filter();
3055 }
3056 
3057 #ifndef SHM_HUGETLB
3058 #define SHM_HUGETLB 04000
3059 #endif
3060 
3061 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3062   // "exec" is passed in but not used.  Creating the shared image for
3063   // the code cache doesn't have an SHM_X executable permission to check.
3064   assert(UseLargePages && UseSHM, "only for SHM large pages");
3065 
3066   key_t key = IPC_PRIVATE;
3067   char *addr;
3068 
3069   bool warn_on_failure = UseLargePages &&
3070                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3071                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3072                         );
3073   char msg[128];
3074 
3075   // Create a large shared memory region to attach to based on size.
3076   // Currently, size is the total size of the heap
3077   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3078   if (shmid == -1) {
3079      // Possible reasons for shmget failure:
3080      // 1. shmmax is too small for Java heap.
3081      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3082      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3083      // 2. not enough large page memory.
3084      //    > check available large pages: cat /proc/meminfo
3085      //    > increase amount of large pages:
3086      //          echo new_value > /proc/sys/vm/nr_hugepages
3087      //      Note 1: different Linux may use different name for this property,
3088      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3089      //      Note 2: it's possible there's enough physical memory available but
3090      //            they are so fragmented after a long run that they can't
3091      //            coalesce into large pages. Try to reserve large pages when
3092      //            the system is still "fresh".
3093      if (warn_on_failure) {
3094        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3095        warning(msg);
3096      }
3097      return NULL;
3098   }
3099 
3100   // attach to the region
3101   addr = (char*)shmat(shmid, req_addr, 0);
3102   int err = errno;
3103 
3104   // Remove shmid. If shmat() is successful, the actual shared memory segment
3105   // will be deleted when it's detached by shmdt() or when the process
3106   // terminates. If shmat() is not successful this will remove the shared
3107   // segment immediately.
3108   shmctl(shmid, IPC_RMID, NULL);
3109 
3110   if ((intptr_t)addr == -1) {
3111      if (warn_on_failure) {
3112        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3113        warning(msg);
3114      }
3115      return NULL;
3116   }
3117 
3118   return addr;
3119 }
3120 
3121 bool os::release_memory_special(char* base, size_t bytes) {
3122   // detaching the SHM segment will also delete it, see reserve_memory_special()
3123   int rslt = shmdt(base);
3124   return rslt == 0;
3125 }
3126 
3127 size_t os::large_page_size() {
3128   return _large_page_size;
3129 }
3130 
3131 // HugeTLBFS allows application to commit large page memory on demand;
3132 // with SysV SHM the entire memory region must be allocated as shared
3133 // memory.
3134 bool os::can_commit_large_page_memory() {
3135   return UseHugeTLBFS;
3136 }
3137 
3138 bool os::can_execute_large_page_memory() {
3139   return UseHugeTLBFS;
3140 }
3141 
3142 // Reserve memory at an arbitrary address, only if that area is
3143 // available (and not reserved for something else).
3144 
3145 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3146   const int max_tries = 10;
3147   char* base[max_tries];
3148   size_t size[max_tries];
3149   const size_t gap = 0x000000;
3150 
3151   // Assert only that the size is a multiple of the page size, since
3152   // that's all that mmap requires, and since that's all we really know
3153   // about at this low abstraction level.  If we need higher alignment,
3154   // we can either pass an alignment to this method or verify alignment
3155   // in one of the methods further up the call chain.  See bug 5044738.
3156   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3157 
3158   // Repeatedly allocate blocks until the block is allocated at the
3159   // right spot. Give up after max_tries. Note that reserve_memory() will
3160   // automatically update _highest_vm_reserved_address if the call is
3161   // successful. The variable tracks the highest memory address every reserved
3162   // by JVM. It is used to detect heap-stack collision if running with
3163   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3164   // space than needed, it could confuse the collision detecting code. To
3165   // solve the problem, save current _highest_vm_reserved_address and
3166   // calculate the correct value before return.
3167   address old_highest = _highest_vm_reserved_address;
3168 
3169   // Linux mmap allows caller to pass an address as hint; give it a try first,
3170   // if kernel honors the hint then we can return immediately.
3171   char * addr = anon_mmap(requested_addr, bytes, false);
3172   if (addr == requested_addr) {
3173      return requested_addr;
3174   }
3175 
3176   if (addr != NULL) {
3177      // mmap() is successful but it fails to reserve at the requested address
3178      anon_munmap(addr, bytes);
3179   }
3180 
3181   int i;
3182   for (i = 0; i < max_tries; ++i) {
3183     base[i] = reserve_memory(bytes);
3184 
3185     if (base[i] != NULL) {
3186       // Is this the block we wanted?
3187       if (base[i] == requested_addr) {
3188         size[i] = bytes;
3189         break;
3190       }
3191 
3192       // Does this overlap the block we wanted? Give back the overlapped
3193       // parts and try again.
3194 
3195       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3196       if (top_overlap >= 0 && top_overlap < bytes) {
3197         unmap_memory(base[i], top_overlap);
3198         base[i] += top_overlap;
3199         size[i] = bytes - top_overlap;
3200       } else {
3201         size_t bottom_overlap = base[i] + bytes - requested_addr;
3202         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3203           unmap_memory(requested_addr, bottom_overlap);
3204           size[i] = bytes - bottom_overlap;
3205         } else {
3206           size[i] = bytes;
3207         }
3208       }
3209     }
3210   }
3211 
3212   // Give back the unused reserved pieces.
3213 
3214   for (int j = 0; j < i; ++j) {
3215     if (base[j] != NULL) {
3216       unmap_memory(base[j], size[j]);
3217     }
3218   }
3219 
3220   if (i < max_tries) {
3221     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3222     return requested_addr;
3223   } else {
3224     _highest_vm_reserved_address = old_highest;
3225     return NULL;
3226   }
3227 }
3228 
3229 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3230   return ::read(fd, buf, nBytes);
3231 }
3232 
3233 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3234 // Solaris uses poll(), linux uses park().
3235 // Poll() is likely a better choice, assuming that Thread.interrupt()
3236 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3237 // SIGSEGV, see 4355769.
3238 
3239 const int NANOSECS_PER_MILLISECS = 1000000;
3240 
3241 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3242   assert(thread == Thread::current(),  "thread consistency check");
3243 
3244   ParkEvent * const slp = thread->_SleepEvent ;
3245   slp->reset() ;
3246   OrderAccess::fence() ;
3247 
3248   if (interruptible) {
3249     jlong prevtime = javaTimeNanos();
3250 
3251     for (;;) {
3252       if (os::is_interrupted(thread, true)) {
3253         return OS_INTRPT;
3254       }
3255 
3256       jlong newtime = javaTimeNanos();
3257 
3258       if (newtime - prevtime < 0) {
3259         // time moving backwards, should only happen if no monotonic clock
3260         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3261         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3262       } else {
3263         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3264       }
3265 
3266       if(millis <= 0) {
3267         return OS_OK;
3268       }
3269 
3270       prevtime = newtime;
3271 
3272       {
3273         assert(thread->is_Java_thread(), "sanity check");
3274         JavaThread *jt = (JavaThread *) thread;
3275         ThreadBlockInVM tbivm(jt);
3276         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3277 
3278         jt->set_suspend_equivalent();
3279         // cleared by handle_special_suspend_equivalent_condition() or
3280         // java_suspend_self() via check_and_wait_while_suspended()
3281 
3282         slp->park(millis);
3283 
3284         // were we externally suspended while we were waiting?
3285         jt->check_and_wait_while_suspended();
3286       }
3287     }
3288   } else {
3289     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3290     jlong prevtime = javaTimeNanos();
3291 
3292     for (;;) {
3293       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3294       // the 1st iteration ...
3295       jlong newtime = javaTimeNanos();
3296 
3297       if (newtime - prevtime < 0) {
3298         // time moving backwards, should only happen if no monotonic clock
3299         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3300         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3301       } else {
3302         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3303       }
3304 
3305       if(millis <= 0) break ;
3306 
3307       prevtime = newtime;
3308       slp->park(millis);
3309     }
3310     return OS_OK ;
3311   }
3312 }
3313 
3314 int os::naked_sleep() {
3315   // %% make the sleep time an integer flag. for now use 1 millisec.
3316   return os::sleep(Thread::current(), 1, false);
3317 }
3318 
3319 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3320 void os::infinite_sleep() {
3321   while (true) {    // sleep forever ...
3322     ::sleep(100);   // ... 100 seconds at a time
3323   }
3324 }
3325 
3326 // Used to convert frequent JVM_Yield() to nops
3327 bool os::dont_yield() {
3328   return DontYieldALot;
3329 }
3330 
3331 void os::yield() {
3332   sched_yield();
3333 }
3334 
3335 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3336 
3337 void os::yield_all(int attempts) {
3338   // Yields to all threads, including threads with lower priorities
3339   // Threads on Linux are all with same priority. The Solaris style
3340   // os::yield_all() with nanosleep(1ms) is not necessary.
3341   sched_yield();
3342 }
3343 
3344 // Called from the tight loops to possibly influence time-sharing heuristics
3345 void os::loop_breaker(int attempts) {
3346   os::yield_all(attempts);
3347 }
3348 
3349 ////////////////////////////////////////////////////////////////////////////////
3350 // thread priority support
3351 
3352 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3353 // only supports dynamic priority, static priority must be zero. For real-time
3354 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3355 // However, for large multi-threaded applications, SCHED_RR is not only slower
3356 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3357 // of 5 runs - Sep 2005).
3358 //
3359 // The following code actually changes the niceness of kernel-thread/LWP. It
3360 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3361 // not the entire user process, and user level threads are 1:1 mapped to kernel
3362 // threads. It has always been the case, but could change in the future. For
3363 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3364 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3365 
3366 int os::java_to_os_priority[MaxPriority + 1] = {
3367   19,              // 0 Entry should never be used
3368 
3369    4,              // 1 MinPriority
3370    3,              // 2
3371    2,              // 3
3372 
3373    1,              // 4
3374    0,              // 5 NormPriority
3375   -1,              // 6
3376 
3377   -2,              // 7
3378   -3,              // 8
3379   -4,              // 9 NearMaxPriority
3380 
3381   -5               // 10 MaxPriority
3382 };
3383 
3384 static int prio_init() {
3385   if (ThreadPriorityPolicy == 1) {
3386     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3387     // if effective uid is not root. Perhaps, a more elegant way of doing
3388     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3389     if (geteuid() != 0) {
3390       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3391         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3392       }
3393       ThreadPriorityPolicy = 0;
3394     }
3395   }
3396   return 0;
3397 }
3398 
3399 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3400   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3401 
3402   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3403   return (ret == 0) ? OS_OK : OS_ERR;
3404 }
3405 
3406 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3407   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3408     *priority_ptr = java_to_os_priority[NormPriority];
3409     return OS_OK;
3410   }
3411 
3412   errno = 0;
3413   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3414   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3415 }
3416 
3417 // Hint to the underlying OS that a task switch would not be good.
3418 // Void return because it's a hint and can fail.
3419 void os::hint_no_preempt() {}
3420 
3421 ////////////////////////////////////////////////////////////////////////////////
3422 // suspend/resume support
3423 
3424 //  the low-level signal-based suspend/resume support is a remnant from the
3425 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3426 //  within hotspot. Now there is a single use-case for this:
3427 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3428 //      that runs in the watcher thread.
3429 //  The remaining code is greatly simplified from the more general suspension
3430 //  code that used to be used.
3431 //
3432 //  The protocol is quite simple:
3433 //  - suspend:
3434 //      - sends a signal to the target thread
3435 //      - polls the suspend state of the osthread using a yield loop
3436 //      - target thread signal handler (SR_handler) sets suspend state
3437 //        and blocks in sigsuspend until continued
3438 //  - resume:
3439 //      - sets target osthread state to continue
3440 //      - sends signal to end the sigsuspend loop in the SR_handler
3441 //
3442 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3443 //
3444 
3445 static void resume_clear_context(OSThread *osthread) {
3446   osthread->set_ucontext(NULL);
3447   osthread->set_siginfo(NULL);
3448 
3449   // notify the suspend action is completed, we have now resumed
3450   osthread->sr.clear_suspended();
3451 }
3452 
3453 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3454   osthread->set_ucontext(context);
3455   osthread->set_siginfo(siginfo);
3456 }
3457 
3458 //
3459 // Handler function invoked when a thread's execution is suspended or
3460 // resumed. We have to be careful that only async-safe functions are
3461 // called here (Note: most pthread functions are not async safe and
3462 // should be avoided.)
3463 //
3464 // Note: sigwait() is a more natural fit than sigsuspend() from an
3465 // interface point of view, but sigwait() prevents the signal hander
3466 // from being run. libpthread would get very confused by not having
3467 // its signal handlers run and prevents sigwait()'s use with the
3468 // mutex granting granting signal.
3469 //
3470 // Currently only ever called on the VMThread
3471 //
3472 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3473   // Save and restore errno to avoid confusing native code with EINTR
3474   // after sigsuspend.
3475   int old_errno = errno;
3476 
3477   Thread* thread = Thread::current();
3478   OSThread* osthread = thread->osthread();
3479   assert(thread->is_VM_thread(), "Must be VMThread");
3480   // read current suspend action
3481   int action = osthread->sr.suspend_action();
3482   if (action == SR_SUSPEND) {
3483     suspend_save_context(osthread, siginfo, context);
3484 
3485     // Notify the suspend action is about to be completed. do_suspend()
3486     // waits until SR_SUSPENDED is set and then returns. We will wait
3487     // here for a resume signal and that completes the suspend-other
3488     // action. do_suspend/do_resume is always called as a pair from
3489     // the same thread - so there are no races
3490 
3491     // notify the caller
3492     osthread->sr.set_suspended();
3493 
3494     sigset_t suspend_set;  // signals for sigsuspend()
3495 
3496     // get current set of blocked signals and unblock resume signal
3497     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3498     sigdelset(&suspend_set, SR_signum);
3499 
3500     // wait here until we are resumed
3501     do {
3502       sigsuspend(&suspend_set);
3503       // ignore all returns until we get a resume signal
3504     } while (osthread->sr.suspend_action() != SR_CONTINUE);
3505 
3506     resume_clear_context(osthread);
3507 
3508   } else {
3509     assert(action == SR_CONTINUE, "unexpected sr action");
3510     // nothing special to do - just leave the handler
3511   }
3512 
3513   errno = old_errno;
3514 }
3515 
3516 
3517 static int SR_initialize() {
3518   struct sigaction act;
3519   char *s;
3520   /* Get signal number to use for suspend/resume */
3521   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3522     int sig = ::strtol(s, 0, 10);
3523     if (sig > 0 || sig < _NSIG) {
3524         SR_signum = sig;
3525     }
3526   }
3527 
3528   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3529         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3530 
3531   sigemptyset(&SR_sigset);
3532   sigaddset(&SR_sigset, SR_signum);
3533 
3534   /* Set up signal handler for suspend/resume */
3535   act.sa_flags = SA_RESTART|SA_SIGINFO;
3536   act.sa_handler = (void (*)(int)) SR_handler;
3537 
3538   // SR_signum is blocked by default.
3539   // 4528190 - We also need to block pthread restart signal (32 on all
3540   // supported Linux platforms). Note that LinuxThreads need to block
3541   // this signal for all threads to work properly. So we don't have
3542   // to use hard-coded signal number when setting up the mask.
3543   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3544 
3545   if (sigaction(SR_signum, &act, 0) == -1) {
3546     return -1;
3547   }
3548 
3549   // Save signal flag
3550   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3551   return 0;
3552 }
3553 
3554 static int SR_finalize() {
3555   return 0;
3556 }
3557 
3558 
3559 // returns true on success and false on error - really an error is fatal
3560 // but this seems the normal response to library errors
3561 static bool do_suspend(OSThread* osthread) {
3562   // mark as suspended and send signal
3563   osthread->sr.set_suspend_action(SR_SUSPEND);
3564   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3565   assert_status(status == 0, status, "pthread_kill");
3566 
3567   // check status and wait until notified of suspension
3568   if (status == 0) {
3569     for (int i = 0; !osthread->sr.is_suspended(); i++) {
3570       os::yield_all(i);
3571     }
3572     osthread->sr.set_suspend_action(SR_NONE);
3573     return true;
3574   }
3575   else {
3576     osthread->sr.set_suspend_action(SR_NONE);
3577     return false;
3578   }
3579 }
3580 
3581 static void do_resume(OSThread* osthread) {
3582   assert(osthread->sr.is_suspended(), "thread should be suspended");
3583   osthread->sr.set_suspend_action(SR_CONTINUE);
3584 
3585   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3586   assert_status(status == 0, status, "pthread_kill");
3587   // check status and wait unit notified of resumption
3588   if (status == 0) {
3589     for (int i = 0; osthread->sr.is_suspended(); i++) {
3590       os::yield_all(i);
3591     }
3592   }
3593   osthread->sr.set_suspend_action(SR_NONE);
3594 }
3595 
3596 ////////////////////////////////////////////////////////////////////////////////
3597 // interrupt support
3598 
3599 void os::interrupt(Thread* thread) {
3600   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3601     "possibility of dangling Thread pointer");
3602 
3603   OSThread* osthread = thread->osthread();
3604 
3605   if (!osthread->interrupted()) {
3606     osthread->set_interrupted(true);
3607     // More than one thread can get here with the same value of osthread,
3608     // resulting in multiple notifications.  We do, however, want the store
3609     // to interrupted() to be visible to other threads before we execute unpark().
3610     OrderAccess::fence();
3611     ParkEvent * const slp = thread->_SleepEvent ;
3612     if (slp != NULL) slp->unpark() ;
3613   }
3614 
3615   // For JSR166. Unpark even if interrupt status already was set
3616   if (thread->is_Java_thread())
3617     ((JavaThread*)thread)->parker()->unpark();
3618 
3619   ParkEvent * ev = thread->_ParkEvent ;
3620   if (ev != NULL) ev->unpark() ;
3621 
3622 }
3623 
3624 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3625   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3626     "possibility of dangling Thread pointer");
3627 
3628   OSThread* osthread = thread->osthread();
3629 
3630   bool interrupted = osthread->interrupted();
3631 
3632   if (interrupted && clear_interrupted) {
3633     osthread->set_interrupted(false);
3634     // consider thread->_SleepEvent->reset() ... optional optimization
3635   }
3636 
3637   return interrupted;
3638 }
3639 
3640 ///////////////////////////////////////////////////////////////////////////////////
3641 // signal handling (except suspend/resume)
3642 
3643 // This routine may be used by user applications as a "hook" to catch signals.
3644 // The user-defined signal handler must pass unrecognized signals to this
3645 // routine, and if it returns true (non-zero), then the signal handler must
3646 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3647 // routine will never retun false (zero), but instead will execute a VM panic
3648 // routine kill the process.
3649 //
3650 // If this routine returns false, it is OK to call it again.  This allows
3651 // the user-defined signal handler to perform checks either before or after
3652 // the VM performs its own checks.  Naturally, the user code would be making
3653 // a serious error if it tried to handle an exception (such as a null check
3654 // or breakpoint) that the VM was generating for its own correct operation.
3655 //
3656 // This routine may recognize any of the following kinds of signals:
3657 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3658 // It should be consulted by handlers for any of those signals.
3659 //
3660 // The caller of this routine must pass in the three arguments supplied
3661 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3662 // field of the structure passed to sigaction().  This routine assumes that
3663 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3664 //
3665 // Note that the VM will print warnings if it detects conflicting signal
3666 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3667 //
3668 extern "C" JNIEXPORT int
3669 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3670                         void* ucontext, int abort_if_unrecognized);
3671 
3672 void signalHandler(int sig, siginfo_t* info, void* uc) {
3673   assert(info != NULL && uc != NULL, "it must be old kernel");
3674   JVM_handle_linux_signal(sig, info, uc, true);
3675 }
3676 
3677 
3678 // This boolean allows users to forward their own non-matching signals
3679 // to JVM_handle_linux_signal, harmlessly.
3680 bool os::Linux::signal_handlers_are_installed = false;
3681 
3682 // For signal-chaining
3683 struct sigaction os::Linux::sigact[MAXSIGNUM];
3684 unsigned int os::Linux::sigs = 0;
3685 bool os::Linux::libjsig_is_loaded = false;
3686 typedef struct sigaction *(*get_signal_t)(int);
3687 get_signal_t os::Linux::get_signal_action = NULL;
3688 
3689 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3690   struct sigaction *actp = NULL;
3691 
3692   if (libjsig_is_loaded) {
3693     // Retrieve the old signal handler from libjsig
3694     actp = (*get_signal_action)(sig);
3695   }
3696   if (actp == NULL) {
3697     // Retrieve the preinstalled signal handler from jvm
3698     actp = get_preinstalled_handler(sig);
3699   }
3700 
3701   return actp;
3702 }
3703 
3704 static bool call_chained_handler(struct sigaction *actp, int sig,
3705                                  siginfo_t *siginfo, void *context) {
3706   // Call the old signal handler
3707   if (actp->sa_handler == SIG_DFL) {
3708     // It's more reasonable to let jvm treat it as an unexpected exception
3709     // instead of taking the default action.
3710     return false;
3711   } else if (actp->sa_handler != SIG_IGN) {
3712     if ((actp->sa_flags & SA_NODEFER) == 0) {
3713       // automaticlly block the signal
3714       sigaddset(&(actp->sa_mask), sig);
3715     }
3716 
3717     sa_handler_t hand;
3718     sa_sigaction_t sa;
3719     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3720     // retrieve the chained handler
3721     if (siginfo_flag_set) {
3722       sa = actp->sa_sigaction;
3723     } else {
3724       hand = actp->sa_handler;
3725     }
3726 
3727     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3728       actp->sa_handler = SIG_DFL;
3729     }
3730 
3731     // try to honor the signal mask
3732     sigset_t oset;
3733     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3734 
3735     // call into the chained handler
3736     if (siginfo_flag_set) {
3737       (*sa)(sig, siginfo, context);
3738     } else {
3739       (*hand)(sig);
3740     }
3741 
3742     // restore the signal mask
3743     pthread_sigmask(SIG_SETMASK, &oset, 0);
3744   }
3745   // Tell jvm's signal handler the signal is taken care of.
3746   return true;
3747 }
3748 
3749 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3750   bool chained = false;
3751   // signal-chaining
3752   if (UseSignalChaining) {
3753     struct sigaction *actp = get_chained_signal_action(sig);
3754     if (actp != NULL) {
3755       chained = call_chained_handler(actp, sig, siginfo, context);
3756     }
3757   }
3758   return chained;
3759 }
3760 
3761 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3762   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3763     return &sigact[sig];
3764   }
3765   return NULL;
3766 }
3767 
3768 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3769   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3770   sigact[sig] = oldAct;
3771   sigs |= (unsigned int)1 << sig;
3772 }
3773 
3774 // for diagnostic
3775 int os::Linux::sigflags[MAXSIGNUM];
3776 
3777 int os::Linux::get_our_sigflags(int sig) {
3778   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3779   return sigflags[sig];
3780 }
3781 
3782 void os::Linux::set_our_sigflags(int sig, int flags) {
3783   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3784   sigflags[sig] = flags;
3785 }
3786 
3787 void os::Linux::set_signal_handler(int sig, bool set_installed) {
3788   // Check for overwrite.
3789   struct sigaction oldAct;
3790   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3791 
3792   void* oldhand = oldAct.sa_sigaction
3793                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3794                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3795   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3796       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3797       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3798     if (AllowUserSignalHandlers || !set_installed) {
3799       // Do not overwrite; user takes responsibility to forward to us.
3800       return;
3801     } else if (UseSignalChaining) {
3802       // save the old handler in jvm
3803       save_preinstalled_handler(sig, oldAct);
3804       // libjsig also interposes the sigaction() call below and saves the
3805       // old sigaction on it own.
3806     } else {
3807       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3808                     "%#lx for signal %d.", (long)oldhand, sig));
3809     }
3810   }
3811 
3812   struct sigaction sigAct;
3813   sigfillset(&(sigAct.sa_mask));
3814   sigAct.sa_handler = SIG_DFL;
3815   if (!set_installed) {
3816     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3817   } else {
3818     sigAct.sa_sigaction = signalHandler;
3819     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3820   }
3821   // Save flags, which are set by ours
3822   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3823   sigflags[sig] = sigAct.sa_flags;
3824 
3825   int ret = sigaction(sig, &sigAct, &oldAct);
3826   assert(ret == 0, "check");
3827 
3828   void* oldhand2  = oldAct.sa_sigaction
3829                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3830                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3831   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3832 }
3833 
3834 // install signal handlers for signals that HotSpot needs to
3835 // handle in order to support Java-level exception handling.
3836 
3837 void os::Linux::install_signal_handlers() {
3838   if (!signal_handlers_are_installed) {
3839     signal_handlers_are_installed = true;
3840 
3841     // signal-chaining
3842     typedef void (*signal_setting_t)();
3843     signal_setting_t begin_signal_setting = NULL;
3844     signal_setting_t end_signal_setting = NULL;
3845     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3846                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3847     if (begin_signal_setting != NULL) {
3848       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3849                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3850       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3851                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3852       libjsig_is_loaded = true;
3853       assert(UseSignalChaining, "should enable signal-chaining");
3854     }
3855     if (libjsig_is_loaded) {
3856       // Tell libjsig jvm is setting signal handlers
3857       (*begin_signal_setting)();
3858     }
3859 
3860     set_signal_handler(SIGSEGV, true);
3861     set_signal_handler(SIGPIPE, true);
3862     set_signal_handler(SIGBUS, true);
3863     set_signal_handler(SIGILL, true);
3864     set_signal_handler(SIGFPE, true);
3865     set_signal_handler(SIGXFSZ, true);
3866 
3867     if (libjsig_is_loaded) {
3868       // Tell libjsig jvm finishes setting signal handlers
3869       (*end_signal_setting)();
3870     }
3871 
3872     // We don't activate signal checker if libjsig is in place, we trust ourselves
3873     // and if UserSignalHandler is installed all bets are off
3874     if (CheckJNICalls) {
3875       if (libjsig_is_loaded) {
3876         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3877         check_signals = false;
3878       }
3879       if (AllowUserSignalHandlers) {
3880         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3881         check_signals = false;
3882       }
3883     }
3884   }
3885 }
3886 
3887 // This is the fastest way to get thread cpu time on Linux.
3888 // Returns cpu time (user+sys) for any thread, not only for current.
3889 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
3890 // It might work on 2.6.10+ with a special kernel/glibc patch.
3891 // For reference, please, see IEEE Std 1003.1-2004:
3892 //   http://www.unix.org/single_unix_specification
3893 
3894 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3895   struct timespec tp;
3896   int rc = os::Linux::clock_gettime(clockid, &tp);
3897   assert(rc == 0, "clock_gettime is expected to return 0 code");
3898 
3899   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3900 }
3901 
3902 /////
3903 // glibc on Linux platform uses non-documented flag
3904 // to indicate, that some special sort of signal
3905 // trampoline is used.
3906 // We will never set this flag, and we should
3907 // ignore this flag in our diagnostic
3908 #ifdef SIGNIFICANT_SIGNAL_MASK
3909 #undef SIGNIFICANT_SIGNAL_MASK
3910 #endif
3911 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3912 
3913 static const char* get_signal_handler_name(address handler,
3914                                            char* buf, int buflen) {
3915   int offset;
3916   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3917   if (found) {
3918     // skip directory names
3919     const char *p1, *p2;
3920     p1 = buf;
3921     size_t len = strlen(os::file_separator());
3922     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3923     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3924   } else {
3925     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3926   }
3927   return buf;
3928 }
3929 
3930 static void print_signal_handler(outputStream* st, int sig,
3931                                  char* buf, size_t buflen) {
3932   struct sigaction sa;
3933 
3934   sigaction(sig, NULL, &sa);
3935 
3936   // See comment for SIGNIFICANT_SIGNAL_MASK define
3937   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3938 
3939   st->print("%s: ", os::exception_name(sig, buf, buflen));
3940 
3941   address handler = (sa.sa_flags & SA_SIGINFO)
3942     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3943     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3944 
3945   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3946     st->print("SIG_DFL");
3947   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3948     st->print("SIG_IGN");
3949   } else {
3950     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3951   }
3952 
3953   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3954 
3955   address rh = VMError::get_resetted_sighandler(sig);
3956   // May be, handler was resetted by VMError?
3957   if(rh != NULL) {
3958     handler = rh;
3959     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3960   }
3961 
3962   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3963 
3964   // Check: is it our handler?
3965   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3966      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3967     // It is our signal handler
3968     // check for flags, reset system-used one!
3969     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3970       st->print(
3971                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3972                 os::Linux::get_our_sigflags(sig));
3973     }
3974   }
3975   st->cr();
3976 }
3977 
3978 
3979 #define DO_SIGNAL_CHECK(sig) \
3980   if (!sigismember(&check_signal_done, sig)) \
3981     os::Linux::check_signal_handler(sig)
3982 
3983 // This method is a periodic task to check for misbehaving JNI applications
3984 // under CheckJNI, we can add any periodic checks here
3985 
3986 void os::run_periodic_checks() {
3987 
3988   if (check_signals == false) return;
3989 
3990   // SEGV and BUS if overridden could potentially prevent
3991   // generation of hs*.log in the event of a crash, debugging
3992   // such a case can be very challenging, so we absolutely
3993   // check the following for a good measure:
3994   DO_SIGNAL_CHECK(SIGSEGV);
3995   DO_SIGNAL_CHECK(SIGILL);
3996   DO_SIGNAL_CHECK(SIGFPE);
3997   DO_SIGNAL_CHECK(SIGBUS);
3998   DO_SIGNAL_CHECK(SIGPIPE);
3999   DO_SIGNAL_CHECK(SIGXFSZ);
4000 
4001 
4002   // ReduceSignalUsage allows the user to override these handlers
4003   // see comments at the very top and jvm_solaris.h
4004   if (!ReduceSignalUsage) {
4005     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4006     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4007     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4008     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4009   }
4010 
4011   DO_SIGNAL_CHECK(SR_signum);
4012   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4013 }
4014 
4015 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4016 
4017 static os_sigaction_t os_sigaction = NULL;
4018 
4019 void os::Linux::check_signal_handler(int sig) {
4020   char buf[O_BUFLEN];
4021   address jvmHandler = NULL;
4022 
4023 
4024   struct sigaction act;
4025   if (os_sigaction == NULL) {
4026     // only trust the default sigaction, in case it has been interposed
4027     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4028     if (os_sigaction == NULL) return;
4029   }
4030 
4031   os_sigaction(sig, (struct sigaction*)NULL, &act);
4032 
4033 
4034   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4035 
4036   address thisHandler = (act.sa_flags & SA_SIGINFO)
4037     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4038     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4039 
4040 
4041   switch(sig) {
4042   case SIGSEGV:
4043   case SIGBUS:
4044   case SIGFPE:
4045   case SIGPIPE:
4046   case SIGILL:
4047   case SIGXFSZ:
4048     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4049     break;
4050 
4051   case SHUTDOWN1_SIGNAL:
4052   case SHUTDOWN2_SIGNAL:
4053   case SHUTDOWN3_SIGNAL:
4054   case BREAK_SIGNAL:
4055     jvmHandler = (address)user_handler();
4056     break;
4057 
4058   case INTERRUPT_SIGNAL:
4059     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4060     break;
4061 
4062   default:
4063     if (sig == SR_signum) {
4064       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4065     } else {
4066       return;
4067     }
4068     break;
4069   }
4070 
4071   if (thisHandler != jvmHandler) {
4072     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4073     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4074     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4075     // No need to check this sig any longer
4076     sigaddset(&check_signal_done, sig);
4077   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4078     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4079     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4080     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4081     // No need to check this sig any longer
4082     sigaddset(&check_signal_done, sig);
4083   }
4084 
4085   // Dump all the signal
4086   if (sigismember(&check_signal_done, sig)) {
4087     print_signal_handlers(tty, buf, O_BUFLEN);
4088   }
4089 }
4090 
4091 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4092 
4093 extern bool signal_name(int signo, char* buf, size_t len);
4094 
4095 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4096   if (0 < exception_code && exception_code <= SIGRTMAX) {
4097     // signal
4098     if (!signal_name(exception_code, buf, size)) {
4099       jio_snprintf(buf, size, "SIG%d", exception_code);
4100     }
4101     return buf;
4102   } else {
4103     return NULL;
4104   }
4105 }
4106 
4107 // this is called _before_ the most of global arguments have been parsed
4108 void os::init(void) {
4109   char dummy;   /* used to get a guess on initial stack address */
4110 //  first_hrtime = gethrtime();
4111 
4112   // With LinuxThreads the JavaMain thread pid (primordial thread)
4113   // is different than the pid of the java launcher thread.
4114   // So, on Linux, the launcher thread pid is passed to the VM
4115   // via the sun.java.launcher.pid property.
4116   // Use this property instead of getpid() if it was correctly passed.
4117   // See bug 6351349.
4118   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4119 
4120   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4121 
4122   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4123 
4124   init_random(1234567);
4125 
4126   ThreadCritical::initialize();
4127 
4128   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4129   if (Linux::page_size() == -1) {
4130     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4131                   strerror(errno)));
4132   }
4133   init_page_sizes((size_t) Linux::page_size());
4134 
4135   Linux::initialize_system_info();
4136 
4137   // main_thread points to the aboriginal thread
4138   Linux::_main_thread = pthread_self();
4139 
4140   Linux::clock_init();
4141   initial_time_count = os::elapsed_counter();
4142   pthread_mutex_init(&dl_mutex, NULL);
4143 }
4144 
4145 // To install functions for atexit system call
4146 extern "C" {
4147   static void perfMemory_exit_helper() {
4148     perfMemory_exit();
4149   }
4150 }
4151 
4152 // this is called _after_ the global arguments have been parsed
4153 jint os::init_2(void)
4154 {
4155   Linux::fast_thread_clock_init();
4156 
4157   // Allocate a single page and mark it as readable for safepoint polling
4158   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4159   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4160 
4161   os::set_polling_page( polling_page );
4162 
4163 #ifndef PRODUCT
4164   if(Verbose && PrintMiscellaneous)
4165     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4166 #endif
4167 
4168   if (!UseMembar) {
4169     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4170     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4171     os::set_memory_serialize_page( mem_serialize_page );
4172 
4173 #ifndef PRODUCT
4174     if(Verbose && PrintMiscellaneous)
4175       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4176 #endif
4177   }
4178 
4179   os::large_page_init();
4180 
4181   // initialize suspend/resume support - must do this before signal_sets_init()
4182   if (SR_initialize() != 0) {
4183     perror("SR_initialize failed");
4184     return JNI_ERR;
4185   }
4186 
4187   Linux::signal_sets_init();
4188   Linux::install_signal_handlers();
4189 
4190   // Check minimum allowable stack size for thread creation and to initialize
4191   // the java system classes, including StackOverflowError - depends on page
4192   // size.  Add a page for compiler2 recursion in main thread.
4193   // Add in 2*BytesPerWord times page size to account for VM stack during
4194   // class initialization depending on 32 or 64 bit VM.
4195   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4196             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4197                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4198 
4199   size_t threadStackSizeInBytes = ThreadStackSize * K;
4200   if (threadStackSizeInBytes != 0 &&
4201       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4202         tty->print_cr("\nThe stack size specified is too small, "
4203                       "Specify at least %dk",
4204                       os::Linux::min_stack_allowed/ K);
4205         return JNI_ERR;
4206   }
4207 
4208   // Make the stack size a multiple of the page size so that
4209   // the yellow/red zones can be guarded.
4210   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4211         vm_page_size()));
4212 
4213   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4214 
4215   Linux::libpthread_init();
4216   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4217      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4218           Linux::glibc_version(), Linux::libpthread_version(),
4219           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4220   }
4221 
4222   if (UseNUMA) {
4223     if (!Linux::libnuma_init()) {
4224       UseNUMA = false;
4225     } else {
4226       if ((Linux::numa_max_node() < 1)) {
4227         // There's only one node(they start from 0), disable NUMA.
4228         UseNUMA = false;
4229       }
4230     }
4231     // With SHM large pages we cannot uncommit a page, so there's not way
4232     // we can make the adaptive lgrp chunk resizing work. If the user specified
4233     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4234     // disable adaptive resizing.
4235     if (UseNUMA && UseLargePages && UseSHM) {
4236       if (!FLAG_IS_DEFAULT(UseNUMA)) {
4237         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4238           UseLargePages = false;
4239         } else {
4240           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4241           UseAdaptiveSizePolicy = false;
4242           UseAdaptiveNUMAChunkSizing = false;
4243         }
4244       } else {
4245         UseNUMA = false;
4246       }
4247     }
4248     if (!UseNUMA && ForceNUMA) {
4249       UseNUMA = true;
4250     }
4251   }
4252 
4253   if (MaxFDLimit) {
4254     // set the number of file descriptors to max. print out error
4255     // if getrlimit/setrlimit fails but continue regardless.
4256     struct rlimit nbr_files;
4257     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4258     if (status != 0) {
4259       if (PrintMiscellaneous && (Verbose || WizardMode))
4260         perror("os::init_2 getrlimit failed");
4261     } else {
4262       nbr_files.rlim_cur = nbr_files.rlim_max;
4263       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4264       if (status != 0) {
4265         if (PrintMiscellaneous && (Verbose || WizardMode))
4266           perror("os::init_2 setrlimit failed");
4267       }
4268     }
4269   }
4270 
4271   // Initialize lock used to serialize thread creation (see os::create_thread)
4272   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4273 
4274   // at-exit methods are called in the reverse order of their registration.
4275   // atexit functions are called on return from main or as a result of a
4276   // call to exit(3C). There can be only 32 of these functions registered
4277   // and atexit() does not set errno.
4278 
4279   if (PerfAllowAtExitRegistration) {
4280     // only register atexit functions if PerfAllowAtExitRegistration is set.
4281     // atexit functions can be delayed until process exit time, which
4282     // can be problematic for embedded VM situations. Embedded VMs should
4283     // call DestroyJavaVM() to assure that VM resources are released.
4284 
4285     // note: perfMemory_exit_helper atexit function may be removed in
4286     // the future if the appropriate cleanup code can be added to the
4287     // VM_Exit VMOperation's doit method.
4288     if (atexit(perfMemory_exit_helper) != 0) {
4289       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4290     }
4291   }
4292 
4293   // initialize thread priority policy
4294   prio_init();
4295 
4296   return JNI_OK;
4297 }
4298 
4299 // this is called at the end of vm_initialization
4300 void os::init_3(void)
4301 {
4302 #ifdef JAVASE_EMBEDDED
4303   // Start the MemNotifyThread
4304   if (LowMemoryProtection) {
4305     MemNotifyThread::start();
4306   }
4307   return;
4308 #endif
4309 }
4310 
4311 // Mark the polling page as unreadable
4312 void os::make_polling_page_unreadable(void) {
4313   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4314     fatal("Could not disable polling page");
4315 };
4316 
4317 // Mark the polling page as readable
4318 void os::make_polling_page_readable(void) {
4319   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4320     fatal("Could not enable polling page");
4321   }
4322 };
4323 
4324 int os::active_processor_count() {
4325   // Linux doesn't yet have a (official) notion of processor sets,
4326   // so just return the number of online processors.
4327   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4328   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4329   return online_cpus;
4330 }
4331 
4332 bool os::distribute_processes(uint length, uint* distribution) {
4333   // Not yet implemented.
4334   return false;
4335 }
4336 
4337 bool os::bind_to_processor(uint processor_id) {
4338   // Not yet implemented.
4339   return false;
4340 }
4341 
4342 ///
4343 
4344 // Suspends the target using the signal mechanism and then grabs the PC before
4345 // resuming the target. Used by the flat-profiler only
4346 ExtendedPC os::get_thread_pc(Thread* thread) {
4347   // Make sure that it is called by the watcher for the VMThread
4348   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4349   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4350 
4351   ExtendedPC epc;
4352 
4353   OSThread* osthread = thread->osthread();
4354   if (do_suspend(osthread)) {
4355     if (osthread->ucontext() != NULL) {
4356       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4357     } else {
4358       // NULL context is unexpected, double-check this is the VMThread
4359       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4360     }
4361     do_resume(osthread);
4362   }
4363   // failure means pthread_kill failed for some reason - arguably this is
4364   // a fatal problem, but such problems are ignored elsewhere
4365 
4366   return epc;
4367 }
4368 
4369 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4370 {
4371    if (is_NPTL()) {
4372       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4373    } else {
4374 #ifndef IA64
4375       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4376       // word back to default 64bit precision if condvar is signaled. Java
4377       // wants 53bit precision.  Save and restore current value.
4378       int fpu = get_fpu_control_word();
4379 #endif // IA64
4380       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4381 #ifndef IA64
4382       set_fpu_control_word(fpu);
4383 #endif // IA64
4384       return status;
4385    }
4386 }
4387 
4388 ////////////////////////////////////////////////////////////////////////////////
4389 // debug support
4390 
4391 static address same_page(address x, address y) {
4392   int page_bits = -os::vm_page_size();
4393   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4394     return x;
4395   else if (x > y)
4396     return (address)(intptr_t(y) | ~page_bits) + 1;
4397   else
4398     return (address)(intptr_t(y) & page_bits);
4399 }
4400 
4401 bool os::find(address addr, outputStream* st) {
4402   Dl_info dlinfo;
4403   memset(&dlinfo, 0, sizeof(dlinfo));
4404   if (dladdr(addr, &dlinfo)) {
4405     st->print(PTR_FORMAT ": ", addr);
4406     if (dlinfo.dli_sname != NULL) {
4407       st->print("%s+%#x", dlinfo.dli_sname,
4408                  addr - (intptr_t)dlinfo.dli_saddr);
4409     } else if (dlinfo.dli_fname) {
4410       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4411     } else {
4412       st->print("<absolute address>");
4413     }
4414     if (dlinfo.dli_fname) {
4415       st->print(" in %s", dlinfo.dli_fname);
4416     }
4417     if (dlinfo.dli_fbase) {
4418       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4419     }
4420     st->cr();
4421 
4422     if (Verbose) {
4423       // decode some bytes around the PC
4424       address begin = same_page(addr-40, addr);
4425       address end   = same_page(addr+40, addr);
4426       address       lowest = (address) dlinfo.dli_sname;
4427       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4428       if (begin < lowest)  begin = lowest;
4429       Dl_info dlinfo2;
4430       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4431           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4432         end = (address) dlinfo2.dli_saddr;
4433       Disassembler::decode(begin, end, st);
4434     }
4435     return true;
4436   }
4437   return false;
4438 }
4439 
4440 ////////////////////////////////////////////////////////////////////////////////
4441 // misc
4442 
4443 // This does not do anything on Linux. This is basically a hook for being
4444 // able to use structured exception handling (thread-local exception filters)
4445 // on, e.g., Win32.
4446 void
4447 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4448                          JavaCallArguments* args, Thread* thread) {
4449   f(value, method, args, thread);
4450 }
4451 
4452 void os::print_statistics() {
4453 }
4454 
4455 int os::message_box(const char* title, const char* message) {
4456   int i;
4457   fdStream err(defaultStream::error_fd());
4458   for (i = 0; i < 78; i++) err.print_raw("=");
4459   err.cr();
4460   err.print_raw_cr(title);
4461   for (i = 0; i < 78; i++) err.print_raw("-");
4462   err.cr();
4463   err.print_raw_cr(message);
4464   for (i = 0; i < 78; i++) err.print_raw("=");
4465   err.cr();
4466 
4467   char buf[16];
4468   // Prevent process from exiting upon "read error" without consuming all CPU
4469   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4470 
4471   return buf[0] == 'y' || buf[0] == 'Y';
4472 }
4473 
4474 int os::stat(const char *path, struct stat *sbuf) {
4475   char pathbuf[MAX_PATH];
4476   if (strlen(path) > MAX_PATH - 1) {
4477     errno = ENAMETOOLONG;
4478     return -1;
4479   }
4480   os::native_path(strcpy(pathbuf, path));
4481   return ::stat(pathbuf, sbuf);
4482 }
4483 
4484 bool os::check_heap(bool force) {
4485   return true;
4486 }
4487 
4488 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4489   return ::vsnprintf(buf, count, format, args);
4490 }
4491 
4492 // Is a (classpath) directory empty?
4493 bool os::dir_is_empty(const char* path) {
4494   DIR *dir = NULL;
4495   struct dirent *ptr;
4496 
4497   dir = opendir(path);
4498   if (dir == NULL) return true;
4499 
4500   /* Scan the directory */
4501   bool result = true;
4502   char buf[sizeof(struct dirent) + MAX_PATH];
4503   while (result && (ptr = ::readdir(dir)) != NULL) {
4504     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4505       result = false;
4506     }
4507   }
4508   closedir(dir);
4509   return result;
4510 }
4511 
4512 // This code originates from JDK's sysOpen and open64_w
4513 // from src/solaris/hpi/src/system_md.c
4514 
4515 #ifndef O_DELETE
4516 #define O_DELETE 0x10000
4517 #endif
4518 
4519 // Open a file. Unlink the file immediately after open returns
4520 // if the specified oflag has the O_DELETE flag set.
4521 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4522 
4523 int os::open(const char *path, int oflag, int mode) {
4524 
4525   if (strlen(path) > MAX_PATH - 1) {
4526     errno = ENAMETOOLONG;
4527     return -1;
4528   }
4529   int fd;
4530   int o_delete = (oflag & O_DELETE);
4531   oflag = oflag & ~O_DELETE;
4532 
4533   fd = ::open64(path, oflag, mode);
4534   if (fd == -1) return -1;
4535 
4536   //If the open succeeded, the file might still be a directory
4537   {
4538     struct stat64 buf64;
4539     int ret = ::fstat64(fd, &buf64);
4540     int st_mode = buf64.st_mode;
4541 
4542     if (ret != -1) {
4543       if ((st_mode & S_IFMT) == S_IFDIR) {
4544         errno = EISDIR;
4545         ::close(fd);
4546         return -1;
4547       }
4548     } else {
4549       ::close(fd);
4550       return -1;
4551     }
4552   }
4553 
4554     /*
4555      * All file descriptors that are opened in the JVM and not
4556      * specifically destined for a subprocess should have the
4557      * close-on-exec flag set.  If we don't set it, then careless 3rd
4558      * party native code might fork and exec without closing all
4559      * appropriate file descriptors (e.g. as we do in closeDescriptors in
4560      * UNIXProcess.c), and this in turn might:
4561      *
4562      * - cause end-of-file to fail to be detected on some file
4563      *   descriptors, resulting in mysterious hangs, or
4564      *
4565      * - might cause an fopen in the subprocess to fail on a system
4566      *   suffering from bug 1085341.
4567      *
4568      * (Yes, the default setting of the close-on-exec flag is a Unix
4569      * design flaw)
4570      *
4571      * See:
4572      * 1085341: 32-bit stdio routines should support file descriptors >255
4573      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4574      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4575      */
4576 #ifdef FD_CLOEXEC
4577     {
4578         int flags = ::fcntl(fd, F_GETFD);
4579         if (flags != -1)
4580             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4581     }
4582 #endif
4583 
4584   if (o_delete != 0) {
4585     ::unlink(path);
4586   }
4587   return fd;
4588 }
4589 
4590 
4591 // create binary file, rewriting existing file if required
4592 int os::create_binary_file(const char* path, bool rewrite_existing) {
4593   int oflags = O_WRONLY | O_CREAT;
4594   if (!rewrite_existing) {
4595     oflags |= O_EXCL;
4596   }
4597   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4598 }
4599 
4600 // return current position of file pointer
4601 jlong os::current_file_offset(int fd) {
4602   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4603 }
4604 
4605 // move file pointer to the specified offset
4606 jlong os::seek_to_file_offset(int fd, jlong offset) {
4607   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4608 }
4609 
4610 // This code originates from JDK's sysAvailable
4611 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4612 
4613 int os::available(int fd, jlong *bytes) {
4614   jlong cur, end;
4615   int mode;
4616   struct stat64 buf64;
4617 
4618   if (::fstat64(fd, &buf64) >= 0) {
4619     mode = buf64.st_mode;
4620     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4621       /*
4622       * XXX: is the following call interruptible? If so, this might
4623       * need to go through the INTERRUPT_IO() wrapper as for other
4624       * blocking, interruptible calls in this file.
4625       */
4626       int n;
4627       if (::ioctl(fd, FIONREAD, &n) >= 0) {
4628         *bytes = n;
4629         return 1;
4630       }
4631     }
4632   }
4633   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4634     return 0;
4635   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4636     return 0;
4637   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4638     return 0;
4639   }
4640   *bytes = end - cur;
4641   return 1;
4642 }
4643 
4644 int os::socket_available(int fd, jint *pbytes) {
4645   // Linux doc says EINTR not returned, unlike Solaris
4646   int ret = ::ioctl(fd, FIONREAD, pbytes);
4647 
4648   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4649   // is expected to return 0 on failure and 1 on success to the jdk.
4650   return (ret < 0) ? 0 : 1;
4651 }
4652 
4653 // Map a block of memory.
4654 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4655                      char *addr, size_t bytes, bool read_only,
4656                      bool allow_exec) {
4657   int prot;
4658   int flags;
4659 
4660   if (read_only) {
4661     prot = PROT_READ;
4662     flags = MAP_SHARED;
4663   } else {
4664     prot = PROT_READ | PROT_WRITE;
4665     flags = MAP_PRIVATE;
4666   }
4667 
4668   if (allow_exec) {
4669     prot |= PROT_EXEC;
4670   }
4671 
4672   if (addr != NULL) {
4673     flags |= MAP_FIXED;
4674   }
4675 
4676   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4677                                      fd, file_offset);
4678   if (mapped_address == MAP_FAILED) {
4679     return NULL;
4680   }
4681   return mapped_address;
4682 }
4683 
4684 
4685 // Remap a block of memory.
4686 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4687                        char *addr, size_t bytes, bool read_only,
4688                        bool allow_exec) {
4689   // same as map_memory() on this OS
4690   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4691                         allow_exec);
4692 }
4693 
4694 
4695 // Unmap a block of memory.
4696 bool os::unmap_memory(char* addr, size_t bytes) {
4697   return munmap(addr, bytes) == 0;
4698 }
4699 
4700 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4701 
4702 static clockid_t thread_cpu_clockid(Thread* thread) {
4703   pthread_t tid = thread->osthread()->pthread_id();
4704   clockid_t clockid;
4705 
4706   // Get thread clockid
4707   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4708   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4709   return clockid;
4710 }
4711 
4712 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4713 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4714 // of a thread.
4715 //
4716 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4717 // the fast estimate available on the platform.
4718 
4719 jlong os::current_thread_cpu_time() {
4720   if (os::Linux::supports_fast_thread_cpu_time()) {
4721     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4722   } else {
4723     // return user + sys since the cost is the same
4724     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4725   }
4726 }
4727 
4728 jlong os::thread_cpu_time(Thread* thread) {
4729   // consistent with what current_thread_cpu_time() returns
4730   if (os::Linux::supports_fast_thread_cpu_time()) {
4731     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4732   } else {
4733     return slow_thread_cpu_time(thread, true /* user + sys */);
4734   }
4735 }
4736 
4737 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4738   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4739     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4740   } else {
4741     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4742   }
4743 }
4744 
4745 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4746   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4747     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4748   } else {
4749     return slow_thread_cpu_time(thread, user_sys_cpu_time);
4750   }
4751 }
4752 
4753 //
4754 //  -1 on error.
4755 //
4756 
4757 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4758   static bool proc_pid_cpu_avail = true;
4759   static bool proc_task_unchecked = true;
4760   static const char *proc_stat_path = "/proc/%d/stat";
4761   pid_t  tid = thread->osthread()->thread_id();
4762   int i;
4763   char *s;
4764   char stat[2048];
4765   int statlen;
4766   char proc_name[64];
4767   int count;
4768   long sys_time, user_time;
4769   char string[64];
4770   char cdummy;
4771   int idummy;
4772   long ldummy;
4773   FILE *fp;
4774 
4775   // We first try accessing /proc/<pid>/cpu since this is faster to
4776   // process.  If this file is not present (linux kernels 2.5 and above)
4777   // then we open /proc/<pid>/stat.
4778   if ( proc_pid_cpu_avail ) {
4779     sprintf(proc_name, "/proc/%d/cpu", tid);
4780     fp =  fopen(proc_name, "r");
4781     if ( fp != NULL ) {
4782       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4783       fclose(fp);
4784       if ( count != 3 ) return -1;
4785 
4786       if (user_sys_cpu_time) {
4787         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4788       } else {
4789         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4790       }
4791     }
4792     else proc_pid_cpu_avail = false;
4793   }
4794 
4795   // The /proc/<tid>/stat aggregates per-process usage on
4796   // new Linux kernels 2.6+ where NPTL is supported.
4797   // The /proc/self/task/<tid>/stat still has the per-thread usage.
4798   // See bug 6328462.
4799   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4800   // and possibly in some other cases, so we check its availability.
4801   if (proc_task_unchecked && os::Linux::is_NPTL()) {
4802     // This is executed only once
4803     proc_task_unchecked = false;
4804     fp = fopen("/proc/self/task", "r");
4805     if (fp != NULL) {
4806       proc_stat_path = "/proc/self/task/%d/stat";
4807       fclose(fp);
4808     }
4809   }
4810 
4811   sprintf(proc_name, proc_stat_path, tid);
4812   fp = fopen(proc_name, "r");
4813   if ( fp == NULL ) return -1;
4814   statlen = fread(stat, 1, 2047, fp);
4815   stat[statlen] = '\0';
4816   fclose(fp);
4817 
4818   // Skip pid and the command string. Note that we could be dealing with
4819   // weird command names, e.g. user could decide to rename java launcher
4820   // to "java 1.4.2 :)", then the stat file would look like
4821   //                1234 (java 1.4.2 :)) R ... ...
4822   // We don't really need to know the command string, just find the last
4823   // occurrence of ")" and then start parsing from there. See bug 4726580.
4824   s = strrchr(stat, ')');
4825   i = 0;
4826   if (s == NULL ) return -1;
4827 
4828   // Skip blank chars
4829   do s++; while (isspace(*s));
4830 
4831   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4832                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4833                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4834                  &user_time, &sys_time);
4835   if ( count != 13 ) return -1;
4836   if (user_sys_cpu_time) {
4837     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4838   } else {
4839     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4840   }
4841 }
4842 
4843 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4844   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4845   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4846   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4847   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4848 }
4849 
4850 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4851   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4852   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4853   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4854   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4855 }
4856 
4857 bool os::is_thread_cpu_time_supported() {
4858   return true;
4859 }
4860 
4861 // System loadavg support.  Returns -1 if load average cannot be obtained.
4862 // Linux doesn't yet have a (official) notion of processor sets,
4863 // so just return the system wide load average.
4864 int os::loadavg(double loadavg[], int nelem) {
4865   return ::getloadavg(loadavg, nelem);
4866 }
4867 
4868 void os::pause() {
4869   char filename[MAX_PATH];
4870   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4871     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4872   } else {
4873     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4874   }
4875 
4876   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4877   if (fd != -1) {
4878     struct stat buf;
4879     ::close(fd);
4880     while (::stat(filename, &buf) == 0) {
4881       (void)::poll(NULL, 0, 100);
4882     }
4883   } else {
4884     jio_fprintf(stderr,
4885       "Could not open pause file '%s', continuing immediately.\n", filename);
4886   }
4887 }
4888 
4889 
4890 // Refer to the comments in os_solaris.cpp park-unpark.
4891 //
4892 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4893 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4894 // For specifics regarding the bug see GLIBC BUGID 261237 :
4895 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4896 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4897 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4898 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4899 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4900 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4901 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4902 // of libpthread avoids the problem, but isn't practical.
4903 //
4904 // Possible remedies:
4905 //
4906 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4907 //      This is palliative and probabilistic, however.  If the thread is preempted
4908 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4909 //      than the minimum period may have passed, and the abstime may be stale (in the
4910 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4911 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4912 //
4913 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4914 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4915 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4916 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4917 //      thread.
4918 //
4919 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4920 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4921 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4922 //      This also works well.  In fact it avoids kernel-level scalability impediments
4923 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4924 //      timers in a graceful fashion.
4925 //
4926 // 4.   When the abstime value is in the past it appears that control returns
4927 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4928 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4929 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4930 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4931 //      It may be possible to avoid reinitialization by checking the return
4932 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4933 //      condvar we must establish the invariant that cond_signal() is only called
4934 //      within critical sections protected by the adjunct mutex.  This prevents
4935 //      cond_signal() from "seeing" a condvar that's in the midst of being
4936 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4937 //      desirable signal-after-unlock optimization that avoids futile context switching.
4938 //
4939 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4940 //      structure when a condvar is used or initialized.  cond_destroy()  would
4941 //      release the helper structure.  Our reinitialize-after-timedwait fix
4942 //      put excessive stress on malloc/free and locks protecting the c-heap.
4943 //
4944 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4945 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4946 // and only enabling the work-around for vulnerable environments.
4947 
4948 // utility to compute the abstime argument to timedwait:
4949 // millis is the relative timeout time
4950 // abstime will be the absolute timeout time
4951 // TODO: replace compute_abstime() with unpackTime()
4952 
4953 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4954   if (millis < 0)  millis = 0;
4955   struct timeval now;
4956   int status = gettimeofday(&now, NULL);
4957   assert(status == 0, "gettimeofday");
4958   jlong seconds = millis / 1000;
4959   millis %= 1000;
4960   if (seconds > 50000000) { // see man cond_timedwait(3T)
4961     seconds = 50000000;
4962   }
4963   abstime->tv_sec = now.tv_sec  + seconds;
4964   long       usec = now.tv_usec + millis * 1000;
4965   if (usec >= 1000000) {
4966     abstime->tv_sec += 1;
4967     usec -= 1000000;
4968   }
4969   abstime->tv_nsec = usec * 1000;
4970   return abstime;
4971 }
4972 
4973 
4974 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4975 // Conceptually TryPark() should be equivalent to park(0).
4976 
4977 int os::PlatformEvent::TryPark() {
4978   for (;;) {
4979     const int v = _Event ;
4980     guarantee ((v == 0) || (v == 1), "invariant") ;
4981     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4982   }
4983 }
4984 
4985 void os::PlatformEvent::park() {       // AKA "down()"
4986   // Invariant: Only the thread associated with the Event/PlatformEvent
4987   // may call park().
4988   // TODO: assert that _Assoc != NULL or _Assoc == Self
4989   int v ;
4990   for (;;) {
4991       v = _Event ;
4992       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4993   }
4994   guarantee (v >= 0, "invariant") ;
4995   if (v == 0) {
4996      // Do this the hard way by blocking ...
4997      int status = pthread_mutex_lock(_mutex);
4998      assert_status(status == 0, status, "mutex_lock");
4999      guarantee (_nParked == 0, "invariant") ;
5000      ++ _nParked ;
5001      while (_Event < 0) {
5002         status = pthread_cond_wait(_cond, _mutex);
5003         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5004         // Treat this the same as if the wait was interrupted
5005         if (status == ETIME) { status = EINTR; }
5006         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5007      }
5008      -- _nParked ;
5009 
5010     // In theory we could move the ST of 0 into _Event past the unlock(),
5011     // but then we'd need a MEMBAR after the ST.
5012     _Event = 0 ;
5013      status = pthread_mutex_unlock(_mutex);
5014      assert_status(status == 0, status, "mutex_unlock");
5015   }
5016   guarantee (_Event >= 0, "invariant") ;
5017 }
5018 
5019 int os::PlatformEvent::park(jlong millis) {
5020   guarantee (_nParked == 0, "invariant") ;
5021 
5022   int v ;
5023   for (;;) {
5024       v = _Event ;
5025       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5026   }
5027   guarantee (v >= 0, "invariant") ;
5028   if (v != 0) return OS_OK ;
5029 
5030   // We do this the hard way, by blocking the thread.
5031   // Consider enforcing a minimum timeout value.
5032   struct timespec abst;
5033   compute_abstime(&abst, millis);
5034 
5035   int ret = OS_TIMEOUT;
5036   int status = pthread_mutex_lock(_mutex);
5037   assert_status(status == 0, status, "mutex_lock");
5038   guarantee (_nParked == 0, "invariant") ;
5039   ++_nParked ;
5040 
5041   // Object.wait(timo) will return because of
5042   // (a) notification
5043   // (b) timeout
5044   // (c) thread.interrupt
5045   //
5046   // Thread.interrupt and object.notify{All} both call Event::set.
5047   // That is, we treat thread.interrupt as a special case of notification.
5048   // The underlying Solaris implementation, cond_timedwait, admits
5049   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5050   // JVM from making those visible to Java code.  As such, we must
5051   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5052   //
5053   // TODO: properly differentiate simultaneous notify+interrupt.
5054   // In that case, we should propagate the notify to another waiter.
5055 
5056   while (_Event < 0) {
5057     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5058     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5059       pthread_cond_destroy (_cond);
5060       pthread_cond_init (_cond, NULL) ;
5061     }
5062     assert_status(status == 0 || status == EINTR ||
5063                   status == ETIME || status == ETIMEDOUT,
5064                   status, "cond_timedwait");
5065     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5066     if (status == ETIME || status == ETIMEDOUT) break ;
5067     // We consume and ignore EINTR and spurious wakeups.
5068   }
5069   --_nParked ;
5070   if (_Event >= 0) {
5071      ret = OS_OK;
5072   }
5073   _Event = 0 ;
5074   status = pthread_mutex_unlock(_mutex);
5075   assert_status(status == 0, status, "mutex_unlock");
5076   assert (_nParked == 0, "invariant") ;
5077   return ret;
5078 }
5079 
5080 void os::PlatformEvent::unpark() {
5081   int v, AnyWaiters ;
5082   for (;;) {
5083       v = _Event ;
5084       if (v > 0) {
5085          // The LD of _Event could have reordered or be satisfied
5086          // by a read-aside from this processor's write buffer.
5087          // To avoid problems execute a barrier and then
5088          // ratify the value.
5089          OrderAccess::fence() ;
5090          if (_Event == v) return ;
5091          continue ;
5092       }
5093       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5094   }
5095   if (v < 0) {
5096      // Wait for the thread associated with the event to vacate
5097      int status = pthread_mutex_lock(_mutex);
5098      assert_status(status == 0, status, "mutex_lock");
5099      AnyWaiters = _nParked ;
5100      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5101      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5102         AnyWaiters = 0 ;
5103         pthread_cond_signal (_cond);
5104      }
5105      status = pthread_mutex_unlock(_mutex);
5106      assert_status(status == 0, status, "mutex_unlock");
5107      if (AnyWaiters != 0) {
5108         status = pthread_cond_signal(_cond);
5109         assert_status(status == 0, status, "cond_signal");
5110      }
5111   }
5112 
5113   // Note that we signal() _after dropping the lock for "immortal" Events.
5114   // This is safe and avoids a common class of  futile wakeups.  In rare
5115   // circumstances this can cause a thread to return prematurely from
5116   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5117   // simply re-test the condition and re-park itself.
5118 }
5119 
5120 
5121 // JSR166
5122 // -------------------------------------------------------
5123 
5124 /*
5125  * The solaris and linux implementations of park/unpark are fairly
5126  * conservative for now, but can be improved. They currently use a
5127  * mutex/condvar pair, plus a a count.
5128  * Park decrements count if > 0, else does a condvar wait.  Unpark
5129  * sets count to 1 and signals condvar.  Only one thread ever waits
5130  * on the condvar. Contention seen when trying to park implies that someone
5131  * is unparking you, so don't wait. And spurious returns are fine, so there
5132  * is no need to track notifications.
5133  */
5134 
5135 
5136 #define NANOSECS_PER_SEC 1000000000
5137 #define NANOSECS_PER_MILLISEC 1000000
5138 #define MAX_SECS 100000000
5139 /*
5140  * This code is common to linux and solaris and will be moved to a
5141  * common place in dolphin.
5142  *
5143  * The passed in time value is either a relative time in nanoseconds
5144  * or an absolute time in milliseconds. Either way it has to be unpacked
5145  * into suitable seconds and nanoseconds components and stored in the
5146  * given timespec structure.
5147  * Given time is a 64-bit value and the time_t used in the timespec is only
5148  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5149  * overflow if times way in the future are given. Further on Solaris versions
5150  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5151  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5152  * As it will be 28 years before "now + 100000000" will overflow we can
5153  * ignore overflow and just impose a hard-limit on seconds using the value
5154  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5155  * years from "now".
5156  */
5157 
5158 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5159   assert (time > 0, "convertTime");
5160 
5161   struct timeval now;
5162   int status = gettimeofday(&now, NULL);
5163   assert(status == 0, "gettimeofday");
5164 
5165   time_t max_secs = now.tv_sec + MAX_SECS;
5166 
5167   if (isAbsolute) {
5168     jlong secs = time / 1000;
5169     if (secs > max_secs) {
5170       absTime->tv_sec = max_secs;
5171     }
5172     else {
5173       absTime->tv_sec = secs;
5174     }
5175     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5176   }
5177   else {
5178     jlong secs = time / NANOSECS_PER_SEC;
5179     if (secs >= MAX_SECS) {
5180       absTime->tv_sec = max_secs;
5181       absTime->tv_nsec = 0;
5182     }
5183     else {
5184       absTime->tv_sec = now.tv_sec + secs;
5185       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5186       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5187         absTime->tv_nsec -= NANOSECS_PER_SEC;
5188         ++absTime->tv_sec; // note: this must be <= max_secs
5189       }
5190     }
5191   }
5192   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5193   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5194   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5195   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5196 }
5197 
5198 void Parker::park(bool isAbsolute, jlong time) {
5199   // Optional fast-path check:
5200   // Return immediately if a permit is available.
5201   if (_counter > 0) {
5202       _counter = 0 ;
5203       OrderAccess::fence();
5204       return ;
5205   }
5206 
5207   Thread* thread = Thread::current();
5208   assert(thread->is_Java_thread(), "Must be JavaThread");
5209   JavaThread *jt = (JavaThread *)thread;
5210 
5211   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5212   // Check interrupt before trying to wait
5213   if (Thread::is_interrupted(thread, false)) {
5214     return;
5215   }
5216 
5217   // Next, demultiplex/decode time arguments
5218   timespec absTime;
5219   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5220     return;
5221   }
5222   if (time > 0) {
5223     unpackTime(&absTime, isAbsolute, time);
5224   }
5225 
5226 
5227   // Enter safepoint region
5228   // Beware of deadlocks such as 6317397.
5229   // The per-thread Parker:: mutex is a classic leaf-lock.
5230   // In particular a thread must never block on the Threads_lock while
5231   // holding the Parker:: mutex.  If safepoints are pending both the
5232   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5233   ThreadBlockInVM tbivm(jt);
5234 
5235   // Don't wait if cannot get lock since interference arises from
5236   // unblocking.  Also. check interrupt before trying wait
5237   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5238     return;
5239   }
5240 
5241   int status ;
5242   if (_counter > 0)  { // no wait needed
5243     _counter = 0;
5244     status = pthread_mutex_unlock(_mutex);
5245     assert (status == 0, "invariant") ;
5246     OrderAccess::fence();
5247     return;
5248   }
5249 
5250 #ifdef ASSERT
5251   // Don't catch signals while blocked; let the running threads have the signals.
5252   // (This allows a debugger to break into the running thread.)
5253   sigset_t oldsigs;
5254   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5255   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5256 #endif
5257 
5258   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5259   jt->set_suspend_equivalent();
5260   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5261 
5262   if (time == 0) {
5263     status = pthread_cond_wait (_cond, _mutex) ;
5264   } else {
5265     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5266     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5267       pthread_cond_destroy (_cond) ;
5268       pthread_cond_init    (_cond, NULL);
5269     }
5270   }
5271   assert_status(status == 0 || status == EINTR ||
5272                 status == ETIME || status == ETIMEDOUT,
5273                 status, "cond_timedwait");
5274 
5275 #ifdef ASSERT
5276   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5277 #endif
5278 
5279   _counter = 0 ;
5280   status = pthread_mutex_unlock(_mutex) ;
5281   assert_status(status == 0, status, "invariant") ;
5282   // If externally suspended while waiting, re-suspend
5283   if (jt->handle_special_suspend_equivalent_condition()) {
5284     jt->java_suspend_self();
5285   }
5286 
5287   OrderAccess::fence();
5288 }
5289 
5290 void Parker::unpark() {
5291   int s, status ;
5292   status = pthread_mutex_lock(_mutex);
5293   assert (status == 0, "invariant") ;
5294   s = _counter;
5295   _counter = 1;
5296   if (s < 1) {
5297      if (WorkAroundNPTLTimedWaitHang) {
5298         status = pthread_cond_signal (_cond) ;
5299         assert (status == 0, "invariant") ;
5300         status = pthread_mutex_unlock(_mutex);
5301         assert (status == 0, "invariant") ;
5302      } else {
5303         status = pthread_mutex_unlock(_mutex);
5304         assert (status == 0, "invariant") ;
5305         status = pthread_cond_signal (_cond) ;
5306         assert (status == 0, "invariant") ;
5307      }
5308   } else {
5309     pthread_mutex_unlock(_mutex);
5310     assert (status == 0, "invariant") ;
5311   }
5312 }
5313 
5314 
5315 extern char** environ;
5316 
5317 #ifndef __NR_fork
5318 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5319 #endif
5320 
5321 #ifndef __NR_execve
5322 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5323 #endif
5324 
5325 // Run the specified command in a separate process. Return its exit value,
5326 // or -1 on failure (e.g. can't fork a new process).
5327 // Unlike system(), this function can be called from signal handler. It
5328 // doesn't block SIGINT et al.
5329 int os::fork_and_exec(char* cmd) {
5330   const char * argv[4] = {"sh", "-c", cmd, NULL};
5331 
5332   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5333   // pthread_atfork handlers and reset pthread library. All we need is a
5334   // separate process to execve. Make a direct syscall to fork process.
5335   // On IA64 there's no fork syscall, we have to use fork() and hope for
5336   // the best...
5337   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5338               IA64_ONLY(fork();)
5339 
5340   if (pid < 0) {
5341     // fork failed
5342     return -1;
5343 
5344   } else if (pid == 0) {
5345     // child process
5346 
5347     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5348     // first to kill every thread on the thread list. Because this list is
5349     // not reset by fork() (see notes above), execve() will instead kill
5350     // every thread in the parent process. We know this is the only thread
5351     // in the new process, so make a system call directly.
5352     // IA64 should use normal execve() from glibc to match the glibc fork()
5353     // above.
5354     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5355     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5356 
5357     // execve failed
5358     _exit(-1);
5359 
5360   } else  {
5361     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5362     // care about the actual exit code, for now.
5363 
5364     int status;
5365 
5366     // Wait for the child process to exit.  This returns immediately if
5367     // the child has already exited. */
5368     while (waitpid(pid, &status, 0) < 0) {
5369         switch (errno) {
5370         case ECHILD: return 0;
5371         case EINTR: break;
5372         default: return -1;
5373         }
5374     }
5375 
5376     if (WIFEXITED(status)) {
5377        // The child exited normally; get its exit code.
5378        return WEXITSTATUS(status);
5379     } else if (WIFSIGNALED(status)) {
5380        // The child exited because of a signal
5381        // The best value to return is 0x80 + signal number,
5382        // because that is what all Unix shells do, and because
5383        // it allows callers to distinguish between process exit and
5384        // process death by signal.
5385        return 0x80 + WTERMSIG(status);
5386     } else {
5387        // Unknown exit code; pass it through
5388        return status;
5389     }
5390   }
5391 }
5392 
5393 // is_headless_jre()
5394 //
5395 // Test for the existence of libmawt in motif21 or xawt directories
5396 // in order to report if we are running in a headless jre
5397 //
5398 bool os::is_headless_jre() {
5399     struct stat statbuf;
5400     char buf[MAXPATHLEN];
5401     char libmawtpath[MAXPATHLEN];
5402     const char *xawtstr  = "/xawt/libmawt.so";
5403     const char *motifstr = "/motif21/libmawt.so";
5404     char *p;
5405 
5406     // Get path to libjvm.so
5407     os::jvm_path(buf, sizeof(buf));
5408 
5409     // Get rid of libjvm.so
5410     p = strrchr(buf, '/');
5411     if (p == NULL) return false;
5412     else *p = '\0';
5413 
5414     // Get rid of client or server
5415     p = strrchr(buf, '/');
5416     if (p == NULL) return false;
5417     else *p = '\0';
5418 
5419     // check xawt/libmawt.so
5420     strcpy(libmawtpath, buf);
5421     strcat(libmawtpath, xawtstr);
5422     if (::stat(libmawtpath, &statbuf) == 0) return false;
5423 
5424     // check motif21/libmawt.so
5425     strcpy(libmawtpath, buf);
5426     strcat(libmawtpath, motifstr);
5427     if (::stat(libmawtpath, &statbuf) == 0) return false;
5428 
5429     return true;
5430 }
5431 
5432 
5433 #ifdef JAVASE_EMBEDDED
5434 //
5435 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5436 //
5437 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5438 
5439 // ctor
5440 //
5441 MemNotifyThread::MemNotifyThread(int fd): Thread() {
5442   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5443   _fd = fd;
5444 
5445   if (os::create_thread(this, os::os_thread)) {
5446     _memnotify_thread = this;
5447     os::set_priority(this, NearMaxPriority);
5448     os::start_thread(this);
5449   }
5450 }
5451 
5452 // Where all the work gets done
5453 //
5454 void MemNotifyThread::run() {
5455   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5456 
5457   // Set up the select arguments
5458   fd_set rfds;
5459   if (_fd != -1) {
5460     FD_ZERO(&rfds);
5461     FD_SET(_fd, &rfds);
5462   }
5463 
5464   // Now wait for the mem_notify device to wake up
5465   while (1) {
5466     // Wait for the mem_notify device to signal us..
5467     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5468     if (rc == -1) {
5469       perror("select!\n");
5470       break;
5471     } else if (rc) {
5472       //ssize_t free_before = os::available_memory();
5473       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5474 
5475       // The kernel is telling us there is not much memory left...
5476       // try to do something about that
5477 
5478       // If we are not already in a GC, try one.
5479       if (!Universe::heap()->is_gc_active()) {
5480         Universe::heap()->collect(GCCause::_allocation_failure);
5481 
5482         //ssize_t free_after = os::available_memory();
5483         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5484         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5485       }
5486       // We might want to do something like the following if we find the GC's are not helping...
5487       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5488     }
5489   }
5490 }
5491 
5492 //
5493 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5494 //
5495 void MemNotifyThread::start() {
5496   int    fd;
5497   fd = open ("/dev/mem_notify", O_RDONLY, 0);
5498   if (fd < 0) {
5499       return;
5500   }
5501 
5502   if (memnotify_thread() == NULL) {
5503     new MemNotifyThread(fd);
5504   }
5505 }
5506 #endif // JAVASE_EMBEDDED