/* * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "utilities/utf8.hpp" // Assume the utf8 string is in legal form and has been // checked in the class file parser/format checker. template char* UTF8::next(const char* str, T* value) { unsigned const char *ptr = (const unsigned char *)str; unsigned char ch, ch2, ch3; int length = -1; /* bad length */ jchar result; switch ((ch = ptr[0]) >> 4) { default: result = ch; length = 1; break; case 0x8: case 0x9: case 0xA: case 0xB: case 0xF: /* Shouldn't happen. */ break; case 0xC: case 0xD: /* 110xxxxx 10xxxxxx */ if (((ch2 = ptr[1]) & 0xC0) == 0x80) { unsigned char high_five = ch & 0x1F; unsigned char low_six = ch2 & 0x3F; result = (high_five << 6) + low_six; length = 2; break; } break; case 0xE: /* 1110xxxx 10xxxxxx 10xxxxxx */ if (((ch2 = ptr[1]) & 0xC0) == 0x80) { if (((ch3 = ptr[2]) & 0xC0) == 0x80) { unsigned char high_four = ch & 0x0f; unsigned char mid_six = ch2 & 0x3f; unsigned char low_six = ch3 & 0x3f; result = (((high_four << 6) + mid_six) << 6) + low_six; length = 3; } } break; } /* end of switch */ if (length <= 0) { *value = (T)ptr[0]; /* default bad result; */ return (char*)(ptr + 1); // make progress somehow } *value = (T)result; // The assert is correct but the .class file is wrong // assert(UNICODE::utf8_size(result) == length, "checking reverse computation"); return (char *)(ptr + length); } char* UTF8::next_character(const char* str, jint* value) { unsigned const char *ptr = (const unsigned char *)str; /* See if it's legal supplementary character: 11101101 1010xxxx 10xxxxxx 11101101 1011xxxx 10xxxxxx */ if (is_supplementary_character(ptr)) { *value = get_supplementary_character(ptr); return (char *)(ptr + 6); } jchar result; char* next_ch = next(str, &result); *value = result; return next_ch; } // Count bytes of the form 10xxxxxx and deduct this count // from the total byte count. The utf8 string must be in // legal form which has been verified in the format checker. int UTF8::unicode_length(const char* str, int len, bool& is_latin1, bool& has_multibyte) { int num_chars = len; has_multibyte = false; is_latin1 = true; unsigned char prev = 0; for (int i = 0; i < len; i++) { unsigned char c = str[i]; if ((c & 0xC0) == 0x80) { // Multibyte, check if valid latin1 character. has_multibyte = true; if (prev > 0xC3) { is_latin1 = false; } --num_chars; } prev = c; } return num_chars; } // Count bytes of the utf8 string except those in form // 10xxxxxx which only appear in multibyte characters. // The utf8 string must be in legal form and has been // verified in the format checker. int UTF8::unicode_length(const char* str, bool& is_latin1, bool& has_multibyte) { int num_chars = 0; has_multibyte = false; is_latin1 = true; unsigned char prev = 0; for (const char* p = str; *p; p++) { unsigned char c = (*p); if ((c & 0xC0) == 0x80) { // Multibyte, check if valid latin1 character. has_multibyte = true; if (prev > 0xC3) { is_latin1 = false; } } else { num_chars++; } prev = c; } return num_chars; } // Writes a jchar as utf8 and returns the end static u_char* utf8_write(u_char* base, jchar ch) { if ((ch != 0) && (ch <=0x7f)) { base[0] = (u_char) ch; return base + 1; } if (ch <= 0x7FF) { /* 11 bits or less. */ unsigned char high_five = ch >> 6; unsigned char low_six = ch & 0x3F; base[0] = high_five | 0xC0; /* 110xxxxx */ base[1] = low_six | 0x80; /* 10xxxxxx */ return base + 2; } /* possibly full 16 bits. */ char high_four = ch >> 12; char mid_six = (ch >> 6) & 0x3F; char low_six = ch & 0x3f; base[0] = high_four | 0xE0; /* 1110xxxx */ base[1] = mid_six | 0x80; /* 10xxxxxx */ base[2] = low_six | 0x80; /* 10xxxxxx */ return base + 3; } template void UTF8::convert_to_unicode(const char* utf8_str, T* unicode_str, int unicode_length) { unsigned char ch; const char *ptr = utf8_str; int index = 0; /* ASCII case loop optimization */ for (; index < unicode_length; index++) { if((ch = ptr[0]) > 0x7F) { break; } unicode_str[index] = (T)ch; ptr = (const char *)(ptr + 1); } for (; index < unicode_length; index++) { ptr = UTF8::next(ptr, &unicode_str[index]); } } // Explicit instantiation for all supported string types. template char* UTF8::next(const char* str, jchar* value); template char* UTF8::next(const char* str, jbyte* value); template void UTF8::convert_to_unicode(const char* utf8_str, jchar* unicode_str, int unicode_length); template void UTF8::convert_to_unicode(const char* utf8_str, jbyte* unicode_str, int unicode_length); // returns the quoted ascii length of a 0-terminated utf8 string int UTF8::quoted_ascii_length(const char* utf8_str, int utf8_length) { const char *ptr = utf8_str; const char* end = ptr + utf8_length; int result = 0; while (ptr < end) { jchar c; ptr = UTF8::next(ptr, &c); if (c >= 32 && c < 127) { result++; } else { result += 6; } } return result; } // converts a utf8 string to quoted ascii void UTF8::as_quoted_ascii(const char* utf8_str, int utf8_length, char* buf, int buflen) { const char *ptr = utf8_str; const char *utf8_end = ptr + utf8_length; char* p = buf; char* end = buf + buflen; while (ptr < utf8_end) { jchar c; ptr = UTF8::next(ptr, &c); if (c >= 32 && c < 127) { if (p + 1 >= end) break; // string is truncated *p++ = (char)c; } else { if (p + 6 >= end) break; // string is truncated sprintf(p, "\\u%04x", c); p += 6; } } assert(p < end, "sanity"); *p = '\0'; } const char* UTF8::from_quoted_ascii(const char* quoted_ascii_str) { const char *ptr = quoted_ascii_str; char* result = NULL; while (*ptr != '\0') { char c = *ptr; if (c < 32 || c >= 127) break; } if (*ptr == '\0') { // nothing to do so return original string return quoted_ascii_str; } // everything up to this point was ok. int length = ptr - quoted_ascii_str; char* buffer = NULL; for (int round = 0; round < 2; round++) { while (*ptr != '\0') { if (*ptr != '\\') { if (buffer != NULL) { buffer[length] = *ptr; } length++; } else { switch (ptr[1]) { case 'u': { ptr += 2; jchar value=0; for (int i=0; i<4; i++) { char c = *ptr++; switch (c) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': value = (value << 4) + c - '0'; break; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': value = (value << 4) + 10 + c - 'a'; break; case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': value = (value << 4) + 10 + c - 'A'; break; default: ShouldNotReachHere(); } } if (buffer == NULL) { char utf8_buffer[4]; char* next = (char*)utf8_write((u_char*)utf8_buffer, value); length += next - utf8_buffer; } else { char* next = (char*)utf8_write((u_char*)&buffer[length], value); length += next - &buffer[length]; } break; } case 't': if (buffer != NULL) buffer[length] = '\t'; ptr += 2; length++; break; case 'n': if (buffer != NULL) buffer[length] = '\n'; ptr += 2; length++; break; case 'r': if (buffer != NULL) buffer[length] = '\r'; ptr += 2; length++; break; case 'f': if (buffer != NULL) buffer[length] = '\f'; ptr += 2; length++; break; default: ShouldNotReachHere(); } } } if (round == 0) { buffer = NEW_RESOURCE_ARRAY(char, length + 1); ptr = quoted_ascii_str; } else { buffer[length] = '\0'; } } return buffer; } // Returns NULL if 'c' it not found. This only works as long // as 'c' is an ASCII character const jbyte* UTF8::strrchr(const jbyte* base, int length, jbyte c) { assert(length >= 0, "sanity check"); assert(c >= 0, "does not work for non-ASCII characters"); // Skip backwards in string until 'c' is found or end is reached while(--length >= 0 && base[length] != c); return (length < 0) ? NULL : &base[length]; } bool UTF8::equal(const jbyte* base1, int length1, const jbyte* base2, int length2) { // Length must be the same if (length1 != length2) return false; for (int i = 0; i < length1; i++) { if (base1[i] != base2[i]) return false; } return true; } bool UTF8::is_supplementary_character(const unsigned char* str) { return ((str[0] & 0xFF) == 0xED) && ((str[1] & 0xF0) == 0xA0) && ((str[2] & 0xC0) == 0x80) && ((str[3] & 0xFF) == 0xED) && ((str[4] & 0xF0) == 0xB0) && ((str[5] & 0xC0) == 0x80); } jint UTF8::get_supplementary_character(const unsigned char* str) { return 0x10000 + ((str[1] & 0x0f) << 16) + ((str[2] & 0x3f) << 10) + ((str[4] & 0x0f) << 6) + (str[5] & 0x3f); } //------------------------------------------------------------------------------------- bool UNICODE::is_latin1(jchar c) { return (c <= 0x00FF); } bool UNICODE::is_latin1(jchar* base, int length) { for (int index = 0; index < length; index++) { if (base[index] > 0x00FF) { return false; } } return true; } int UNICODE::utf8_size(jchar c) { if ((0x0001 <= c) && (c <= 0x007F)) return 1; if (c <= 0x07FF) return 2; return 3; } int UNICODE::utf8_size(jbyte c) { if (c >= 0x0001) return 1; return 2; } int UNICODE::utf8_length(jchar* base, int length) { int result = 0; for (int index = 0; index < length; index++) { jchar c = base[index]; if ((0x0001 <= c) && (c <= 0x007F)) result += 1; else if (c <= 0x07FF) result += 2; else result += 3; } return result; } int UNICODE::utf8_length(jbyte* base, int length) { int result = 0; for (int index = 0; index < length; index++) { jbyte c = base[index]; result += utf8_size(c); } return result; } char* UNICODE::as_utf8(jchar* base, int length) { int utf8_len = utf8_length(base, length); u_char* buf = NEW_RESOURCE_ARRAY(u_char, utf8_len + 1); char* result = as_utf8(base, length, (char*) buf, utf8_len + 1); assert((int) strlen(result) == utf8_len, "length prediction must be correct"); return result; } char* UNICODE::as_utf8(jbyte* base, int length) { int utf8_len = utf8_length(base, length); u_char* result = NEW_RESOURCE_ARRAY(u_char, utf8_len + 1); u_char* p = result; if (utf8_len == length) { for (int index = 0; index < length; index++) { *p++ = base[index]; } } else { // Unicode string contains U+0000 which should // be encoded as 0xC080 in "modified" UTF8. for (int index = 0; index < length; index++) { p = utf8_write(p, ((jchar) base[index]) & 0xff); } } *p = '\0'; assert(p == &result[utf8_len], "length prediction must be correct"); return (char*) result; } char* UNICODE::as_utf8(jchar* base, int length, char* buf, int buflen) { u_char* p = (u_char*)buf; for (int index = 0; index < length; index++) { jchar c = base[index]; buflen -= utf8_size(c); if (buflen <= 0) break; // string is truncated p = utf8_write(p, c); } *p = '\0'; return buf; } char* UNICODE::as_utf8(jbyte* base, int length, char* buf, int buflen) { u_char* p = (u_char*)buf; u_char* end = (u_char*)buf + buflen; for (int index = 0; index < length; index++) { jbyte c = base[index]; int sz = utf8_size(c); buflen -= sz; if (buflen <= 0) break; // string is truncated if (sz == 1) { *p++ = c; } else { // Unicode string contains U+0000 which should // be encoded as 0xC080 in "modified" UTF8. p = utf8_write(p, ((jchar) c) & 0xff); } } *p = '\0'; return buf; } void UNICODE::convert_to_utf8(const jchar* base, int length, char* utf8_buffer) { for(int index = 0; index < length; index++) { utf8_buffer = (char*)utf8_write((u_char*)utf8_buffer, base[index]); } *utf8_buffer = '\0'; } // returns the quoted ascii length of a unicode string template int UNICODE::quoted_ascii_length(T* base, int length) { int result = 0; for (int i = 0; i < length; i++) { T c = base[i]; if (c >= 32 && c < 127) { result++; } else { result += 6; } } return result; } // converts a unicode string to quoted ascii template void UNICODE::as_quoted_ascii(const T* base, int length, char* buf, int buflen) { char* p = buf; char* end = buf + buflen; for (int index = 0; index < length; index++) { T c = base[index]; if (c >= 32 && c < 127) { if (p + 1 >= end) break; // string is truncated *p++ = (char)c; } else { if (p + 6 >= end) break; // string is truncated sprintf(p, "\\u%04x", c); p += 6; } } *p = '\0'; } // Explicit instantiation for all supported types. template int UNICODE::quoted_ascii_length(jbyte* base, int length); template int UNICODE::quoted_ascii_length(jchar* base, int length); template void UNICODE::as_quoted_ascii(const jbyte* base, int length, char* buf, int buflen); template void UNICODE::as_quoted_ascii(const jchar* base, int length, char* buf, int buflen); #ifndef PRODUCT void TestAsUtf8() { char res[60]; jchar str[20]; for (int i = 0; i < 20; i++) { str[i] = 0x0800; // char that is 2B in UTF-16 but 3B in UTF-8 } str[19] = (jchar)'\0'; // The resulting string in UTF-8 is 3*19 bytes long, but should be truncated UNICODE::as_utf8(str, 19, res, 10); assert(strlen(res) == 9, "string should be truncated here"); UNICODE::as_utf8(str, 19, res, 18); assert(strlen(res) == 15, "string should be truncated here"); UNICODE::as_utf8(str, 19, res, 20); assert(strlen(res) == 18, "string should be truncated here"); // Test with an "unbounded" buffer UNICODE::as_utf8(str, 19, res, INT_MAX); assert(strlen(res) == 3*19, "string should end here"); } #endif