1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/phaseX.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "opto/chaitin.hpp"
  38 #include "runtime/deoptimization.hpp"
  39 
  40 // Portions of code courtesy of Clifford Click
  41 
  42 // Optimization - Graph Style
  43 
  44 // To avoid float value underflow
  45 #define MIN_BLOCK_FREQUENCY 1.e-35f
  46 
  47 //----------------------------schedule_node_into_block-------------------------
  48 // Insert node n into block b. Look for projections of n and make sure they
  49 // are in b also.
  50 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
  51   // Set basic block of n, Add n to b,
  52   map_node_to_block(n, b);
  53   b->add_inst(n);
  54 
  55   // After Matching, nearly any old Node may have projections trailing it.
  56   // These are usually machine-dependent flags.  In any case, they might
  57   // float to another block below this one.  Move them up.
  58   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  59     Node*  use  = n->fast_out(i);
  60     if (use->is_Proj()) {
  61       Block* buse = get_block_for_node(use);
  62       if (buse != b) {              // In wrong block?
  63         if (buse != NULL) {
  64           buse->find_remove(use);   // Remove from wrong block
  65         }
  66         map_node_to_block(use, b);
  67         b->add_inst(use);
  68       }
  69     }
  70   }
  71 }
  72 
  73 //----------------------------replace_block_proj_ctrl-------------------------
  74 // Nodes that have is_block_proj() nodes as their control need to use
  75 // the appropriate Region for their actual block as their control since
  76 // the projection will be in a predecessor block.
  77 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
  78   const Node *in0 = n->in(0);
  79   assert(in0 != NULL, "Only control-dependent");
  80   const Node *p = in0->is_block_proj();
  81   if (p != NULL && p != n) {    // Control from a block projection?
  82     assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
  83     // Find trailing Region
  84     Block *pb = get_block_for_node(in0); // Block-projection already has basic block
  85     uint j = 0;
  86     if (pb->_num_succs != 1) {  // More then 1 successor?
  87       // Search for successor
  88       uint max = pb->number_of_nodes();
  89       assert( max > 1, "" );
  90       uint start = max - pb->_num_succs;
  91       // Find which output path belongs to projection
  92       for (j = start; j < max; j++) {
  93         if( pb->get_node(j) == in0 )
  94           break;
  95       }
  96       assert( j < max, "must find" );
  97       // Change control to match head of successor basic block
  98       j -= start;
  99     }
 100     n->set_req(0, pb->_succs[j]->head());
 101   }
 102 }
 103 
 104 static bool is_dominator(Block* d, Block* n) {
 105   return d->dom_lca(n) == d;
 106 }
 107 
 108 //------------------------------schedule_pinned_nodes--------------------------
 109 // Set the basic block for Nodes pinned into blocks
 110 void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) {
 111   // Allocate node stack of size C->live_nodes()+8 to avoid frequent realloc
 112   GrowableArray <Node *> spstack(C->live_nodes() + 8);
 113   spstack.push(_root);
 114   while (spstack.is_nonempty()) {
 115     Node* node = spstack.pop();
 116     if (!visited.test_set(node->_idx)) { // Test node and flag it as visited
 117       if (node->pinned() && !has_block(node)) {  // Pinned?  Nail it down!
 118         assert(node->in(0), "pinned Node must have Control");
 119         // Before setting block replace block_proj control edge
 120         replace_block_proj_ctrl(node);
 121         Node* input = node->in(0);
 122         while (!input->is_block_start()) {
 123           input = input->in(0);
 124         }
 125         Block* block = get_block_for_node(input); // Basic block of controlling input
 126         schedule_node_into_block(node, block);
 127       }
 128 
 129       // If the node has precedence edges (added when CastPP nodes are
 130       // removed in final_graph_reshaping), fix the control of the
 131       // node to cover the precedence edges and remove the
 132       // dependencies.
 133       Node* n = NULL;
 134       for (uint i = node->len()-1; i >= node->req(); i--) {
 135         Node* m = node->in(i);
 136         if (m == NULL) continue;
 137         // Skip the precedence edge if the test that guarded a CastPP:
 138         // - was optimized out during escape analysis
 139         // (OptimizePtrCompare): the CastPP's control isn't an end of
 140         // block.
 141         // - is moved in the branch of a dominating If: the control of
 142         // the CastPP is then a Region.
 143         if (m->is_block_proj() || m->is_block_start()) {
 144           node->rm_prec(i);
 145           if (n == NULL) {
 146             n = m;
 147           } else {
 148             Block* bn = get_block_for_node(n);
 149             Block* bm = get_block_for_node(m);
 150             assert(is_dominator(bn, bm) || is_dominator(bm, bn), "one must dominate the other");
 151             n = is_dominator(bn, bm) ? m : n;
 152           }
 153         }
 154       }
 155       if (n != NULL) {
 156         assert(node->in(0), "control should have been set");
 157         Block* bn = get_block_for_node(n);
 158         Block* bnode = get_block_for_node(node->in(0));
 159         assert(is_dominator(bn, bnode) || is_dominator(bnode, bn), "one must dominate the other");
 160         if (!is_dominator(bn, bnode)) {
 161           node->set_req(0, n);
 162         }
 163       }
 164 
 165       // process all inputs that are non NULL
 166       for (int i = node->req() - 1; i >= 0; --i) {
 167         if (node->in(i) != NULL) {
 168           spstack.push(node->in(i));
 169         }
 170       }
 171     }
 172   }
 173 }
 174 
 175 #ifdef ASSERT
 176 // Assert that new input b2 is dominated by all previous inputs.
 177 // Check this by by seeing that it is dominated by b1, the deepest
 178 // input observed until b2.
 179 static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) {
 180   if (b1 == NULL)  return;
 181   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
 182   Block* tmp = b2;
 183   while (tmp != b1 && tmp != NULL) {
 184     tmp = tmp->_idom;
 185   }
 186   if (tmp != b1) {
 187     // Detected an unschedulable graph.  Print some nice stuff and die.
 188     tty->print_cr("!!! Unschedulable graph !!!");
 189     for (uint j=0; j<n->len(); j++) { // For all inputs
 190       Node* inn = n->in(j); // Get input
 191       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
 192       Block* inb = cfg->get_block_for_node(inn);
 193       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
 194                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
 195       inn->dump();
 196     }
 197     tty->print("Failing node: ");
 198     n->dump();
 199     assert(false, "unscheduable graph");
 200   }
 201 }
 202 #endif
 203 
 204 static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
 205   // Find the last input dominated by all other inputs.
 206   Block* deepb           = NULL;        // Deepest block so far
 207   int    deepb_dom_depth = 0;
 208   for (uint k = 0; k < n->len(); k++) { // For all inputs
 209     Node* inn = n->in(k);               // Get input
 210     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
 211     Block* inb = cfg->get_block_for_node(inn);
 212     assert(inb != NULL, "must already have scheduled this input");
 213     if (deepb_dom_depth < (int) inb->_dom_depth) {
 214       // The new inb must be dominated by the previous deepb.
 215       // The various inputs must be linearly ordered in the dom
 216       // tree, or else there will not be a unique deepest block.
 217       DEBUG_ONLY(assert_dom(deepb, inb, n, cfg));
 218       deepb = inb;                      // Save deepest block
 219       deepb_dom_depth = deepb->_dom_depth;
 220     }
 221   }
 222   assert(deepb != NULL, "must be at least one input to n");
 223   return deepb;
 224 }
 225 
 226 
 227 //------------------------------schedule_early---------------------------------
 228 // Find the earliest Block any instruction can be placed in.  Some instructions
 229 // are pinned into Blocks.  Unpinned instructions can appear in last block in
 230 // which all their inputs occur.
 231 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
 232   // Allocate stack with enough space to avoid frequent realloc
 233   Node_Stack nstack(roots.Size() + 8);
 234   // _root will be processed among C->top() inputs
 235   roots.push(C->top());
 236   visited.set(C->top()->_idx);
 237 
 238   while (roots.size() != 0) {
 239     // Use local variables nstack_top_n & nstack_top_i to cache values
 240     // on stack's top.
 241     Node* parent_node = roots.pop();
 242     uint  input_index = 0;
 243 
 244     while (true) {
 245       if (input_index == 0) {
 246         // Fixup some control.  Constants without control get attached
 247         // to root and nodes that use is_block_proj() nodes should be attached
 248         // to the region that starts their block.
 249         const Node* control_input = parent_node->in(0);
 250         if (control_input != NULL) {
 251           replace_block_proj_ctrl(parent_node);
 252         } else {
 253           // Is a constant with NO inputs?
 254           if (parent_node->req() == 1) {
 255             parent_node->set_req(0, _root);
 256           }
 257         }
 258       }
 259 
 260       // First, visit all inputs and force them to get a block.  If an
 261       // input is already in a block we quit following inputs (to avoid
 262       // cycles). Instead we put that Node on a worklist to be handled
 263       // later (since IT'S inputs may not have a block yet).
 264 
 265       // Assume all n's inputs will be processed
 266       bool done = true;
 267 
 268       while (input_index < parent_node->len()) {
 269         Node* in = parent_node->in(input_index++);
 270         if (in == NULL) {
 271           continue;
 272         }
 273 
 274         int is_visited = visited.test_set(in->_idx);
 275         if (!has_block(in)) {
 276           if (is_visited) {
 277             return false;
 278           }
 279           // Save parent node and next input's index.
 280           nstack.push(parent_node, input_index);
 281           // Process current input now.
 282           parent_node = in;
 283           input_index = 0;
 284           // Not all n's inputs processed.
 285           done = false;
 286           break;
 287         } else if (!is_visited) {
 288           // Visit this guy later, using worklist
 289           roots.push(in);
 290         }
 291       }
 292 
 293       if (done) {
 294         // All of n's inputs have been processed, complete post-processing.
 295 
 296         // Some instructions are pinned into a block.  These include Region,
 297         // Phi, Start, Return, and other control-dependent instructions and
 298         // any projections which depend on them.
 299         if (!parent_node->pinned()) {
 300           // Set earliest legal block.
 301           Block* earliest_block = find_deepest_input(parent_node, this);
 302           map_node_to_block(parent_node, earliest_block);
 303         } else {
 304           assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge");
 305         }
 306 
 307         if (nstack.is_empty()) {
 308           // Finished all nodes on stack.
 309           // Process next node on the worklist 'roots'.
 310           break;
 311         }
 312         // Get saved parent node and next input's index.
 313         parent_node = nstack.node();
 314         input_index = nstack.index();
 315         nstack.pop();
 316       }
 317     }
 318   }
 319   return true;
 320 }
 321 
 322 //------------------------------dom_lca----------------------------------------
 323 // Find least common ancestor in dominator tree
 324 // LCA is a current notion of LCA, to be raised above 'this'.
 325 // As a convenient boundary condition, return 'this' if LCA is NULL.
 326 // Find the LCA of those two nodes.
 327 Block* Block::dom_lca(Block* LCA) {
 328   if (LCA == NULL || LCA == this)  return this;
 329 
 330   Block* anc = this;
 331   while (anc->_dom_depth > LCA->_dom_depth)
 332     anc = anc->_idom;           // Walk up till anc is as high as LCA
 333 
 334   while (LCA->_dom_depth > anc->_dom_depth)
 335     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
 336 
 337   while (LCA != anc) {          // Walk both up till they are the same
 338     LCA = LCA->_idom;
 339     anc = anc->_idom;
 340   }
 341 
 342   return LCA;
 343 }
 344 
 345 //--------------------------raise_LCA_above_use--------------------------------
 346 // We are placing a definition, and have been given a def->use edge.
 347 // The definition must dominate the use, so move the LCA upward in the
 348 // dominator tree to dominate the use.  If the use is a phi, adjust
 349 // the LCA only with the phi input paths which actually use this def.
 350 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) {
 351   Block* buse = cfg->get_block_for_node(use);
 352   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
 353   if (!use->is_Phi())  return buse->dom_lca(LCA);
 354   uint pmax = use->req();       // Number of Phi inputs
 355   // Why does not this loop just break after finding the matching input to
 356   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
 357   // chains.  Means I cannot distinguish, from the def-use direction, which
 358   // of many use-defs lead from the same use to the same def.  That is, this
 359   // Phi might have several uses of the same def.  Each use appears in a
 360   // different predecessor block.  But when I enter here, I cannot distinguish
 361   // which use-def edge I should find the predecessor block for.  So I find
 362   // them all.  Means I do a little extra work if a Phi uses the same value
 363   // more than once.
 364   for (uint j=1; j<pmax; j++) { // For all inputs
 365     if (use->in(j) == def) {    // Found matching input?
 366       Block* pred = cfg->get_block_for_node(buse->pred(j));
 367       LCA = pred->dom_lca(LCA);
 368     }
 369   }
 370   return LCA;
 371 }
 372 
 373 //----------------------------raise_LCA_above_marks----------------------------
 374 // Return a new LCA that dominates LCA and any of its marked predecessors.
 375 // Search all my parents up to 'early' (exclusive), looking for predecessors
 376 // which are marked with the given index.  Return the LCA (in the dom tree)
 377 // of all marked blocks.  If there are none marked, return the original
 378 // LCA.
 379 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) {
 380   Block_List worklist;
 381   worklist.push(LCA);
 382   while (worklist.size() > 0) {
 383     Block* mid = worklist.pop();
 384     if (mid == early)  continue;  // stop searching here
 385 
 386     // Test and set the visited bit.
 387     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
 388 
 389     // Don't process the current LCA, otherwise the search may terminate early
 390     if (mid != LCA && mid->raise_LCA_mark() == mark) {
 391       // Raise the LCA.
 392       LCA = mid->dom_lca(LCA);
 393       if (LCA == early)  break;   // stop searching everywhere
 394       assert(early->dominates(LCA), "early is high enough");
 395       // Resume searching at that point, skipping intermediate levels.
 396       worklist.push(LCA);
 397       if (LCA == mid)
 398         continue; // Don't mark as visited to avoid early termination.
 399     } else {
 400       // Keep searching through this block's predecessors.
 401       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
 402         Block* mid_parent = cfg->get_block_for_node(mid->pred(j));
 403         worklist.push(mid_parent);
 404       }
 405     }
 406     mid->set_raise_LCA_visited(mark);
 407   }
 408   return LCA;
 409 }
 410 
 411 //--------------------------memory_early_block--------------------------------
 412 // This is a variation of find_deepest_input, the heart of schedule_early.
 413 // Find the "early" block for a load, if we considered only memory and
 414 // address inputs, that is, if other data inputs were ignored.
 415 //
 416 // Because a subset of edges are considered, the resulting block will
 417 // be earlier (at a shallower dom_depth) than the true schedule_early
 418 // point of the node. We compute this earlier block as a more permissive
 419 // site for anti-dependency insertion, but only if subsume_loads is enabled.
 420 static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) {
 421   Node* base;
 422   Node* index;
 423   Node* store = load->in(MemNode::Memory);
 424   load->as_Mach()->memory_inputs(base, index);
 425 
 426   assert(base != NodeSentinel && index != NodeSentinel,
 427          "unexpected base/index inputs");
 428 
 429   Node* mem_inputs[4];
 430   int mem_inputs_length = 0;
 431   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
 432   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
 433   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
 434 
 435   // In the comparision below, add one to account for the control input,
 436   // which may be null, but always takes up a spot in the in array.
 437   if (mem_inputs_length + 1 < (int) load->req()) {
 438     // This "load" has more inputs than just the memory, base and index inputs.
 439     // For purposes of checking anti-dependences, we need to start
 440     // from the early block of only the address portion of the instruction,
 441     // and ignore other blocks that may have factored into the wider
 442     // schedule_early calculation.
 443     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
 444 
 445     Block* deepb           = NULL;        // Deepest block so far
 446     int    deepb_dom_depth = 0;
 447     for (int i = 0; i < mem_inputs_length; i++) {
 448       Block* inb = cfg->get_block_for_node(mem_inputs[i]);
 449       if (deepb_dom_depth < (int) inb->_dom_depth) {
 450         // The new inb must be dominated by the previous deepb.
 451         // The various inputs must be linearly ordered in the dom
 452         // tree, or else there will not be a unique deepest block.
 453         DEBUG_ONLY(assert_dom(deepb, inb, load, cfg));
 454         deepb = inb;                      // Save deepest block
 455         deepb_dom_depth = deepb->_dom_depth;
 456       }
 457     }
 458     early = deepb;
 459   }
 460 
 461   return early;
 462 }
 463 
 464 //--------------------------insert_anti_dependences---------------------------
 465 // A load may need to witness memory that nearby stores can overwrite.
 466 // For each nearby store, either insert an "anti-dependence" edge
 467 // from the load to the store, or else move LCA upward to force the
 468 // load to (eventually) be scheduled in a block above the store.
 469 //
 470 // Do not add edges to stores on distinct control-flow paths;
 471 // only add edges to stores which might interfere.
 472 //
 473 // Return the (updated) LCA.  There will not be any possibly interfering
 474 // store between the load's "early block" and the updated LCA.
 475 // Any stores in the updated LCA will have new precedence edges
 476 // back to the load.  The caller is expected to schedule the load
 477 // in the LCA, in which case the precedence edges will make LCM
 478 // preserve anti-dependences.  The caller may also hoist the load
 479 // above the LCA, if it is not the early block.
 480 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
 481   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
 482   assert(LCA != NULL, "");
 483   DEBUG_ONLY(Block* LCA_orig = LCA);
 484 
 485   // Compute the alias index.  Loads and stores with different alias indices
 486   // do not need anti-dependence edges.
 487   int load_alias_idx = C->get_alias_index(load->adr_type());
 488 #ifdef ASSERT
 489   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
 490       (PrintOpto || VerifyAliases ||
 491        PrintMiscellaneous && (WizardMode || Verbose))) {
 492     // Load nodes should not consume all of memory.
 493     // Reporting a bottom type indicates a bug in adlc.
 494     // If some particular type of node validly consumes all of memory,
 495     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
 496     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
 497     load->dump(2);
 498     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
 499   }
 500 #endif
 501   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
 502          "String compare is only known 'load' that does not conflict with any stores");
 503   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals),
 504          "String equals is a 'load' that does not conflict with any stores");
 505   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
 506          "String indexOf is a 'load' that does not conflict with any stores");
 507   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOfChar),
 508          "String indexOfChar is a 'load' that does not conflict with any stores");
 509   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
 510          "Arrays equals is a 'load' that does not conflict with any stores");
 511   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_HasNegatives),
 512          "HasNegatives is a 'load' that does not conflict with any stores");
 513 
 514   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
 515     // It is impossible to spoil this load by putting stores before it,
 516     // because we know that the stores will never update the value
 517     // which 'load' must witness.
 518     return LCA;
 519   }
 520 
 521   node_idx_t load_index = load->_idx;
 522 
 523   // Note the earliest legal placement of 'load', as determined by
 524   // by the unique point in the dom tree where all memory effects
 525   // and other inputs are first available.  (Computed by schedule_early.)
 526   // For normal loads, 'early' is the shallowest place (dom graph wise)
 527   // to look for anti-deps between this load and any store.
 528   Block* early = get_block_for_node(load);
 529 
 530   // If we are subsuming loads, compute an "early" block that only considers
 531   // memory or address inputs. This block may be different than the
 532   // schedule_early block in that it could be at an even shallower depth in the
 533   // dominator tree, and allow for a broader discovery of anti-dependences.
 534   if (C->subsume_loads()) {
 535     early = memory_early_block(load, early, this);
 536   }
 537 
 538   ResourceArea *area = Thread::current()->resource_area();
 539   Node_List worklist_mem(area);     // prior memory state to store
 540   Node_List worklist_store(area);   // possible-def to explore
 541   Node_List worklist_visited(area); // visited mergemem nodes
 542   Node_List non_early_stores(area); // all relevant stores outside of early
 543   bool must_raise_LCA = false;
 544 
 545 #ifdef TRACK_PHI_INPUTS
 546   // %%% This extra checking fails because MergeMem nodes are not GVNed.
 547   // Provide "phi_inputs" to check if every input to a PhiNode is from the
 548   // original memory state.  This indicates a PhiNode for which should not
 549   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
 550   // may be overly conservative.
 551   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
 552   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
 553 #endif
 554 
 555   // 'load' uses some memory state; look for users of the same state.
 556   // Recurse through MergeMem nodes to the stores that use them.
 557 
 558   // Each of these stores is a possible definition of memory
 559   // that 'load' needs to use.  We need to force 'load'
 560   // to occur before each such store.  When the store is in
 561   // the same block as 'load', we insert an anti-dependence
 562   // edge load->store.
 563 
 564   // The relevant stores "nearby" the load consist of a tree rooted
 565   // at initial_mem, with internal nodes of type MergeMem.
 566   // Therefore, the branches visited by the worklist are of this form:
 567   //    initial_mem -> (MergeMem ->)* store
 568   // The anti-dependence constraints apply only to the fringe of this tree.
 569 
 570   Node* initial_mem = load->in(MemNode::Memory);
 571   worklist_store.push(initial_mem);
 572   worklist_visited.push(initial_mem);
 573   worklist_mem.push(NULL);
 574   while (worklist_store.size() > 0) {
 575     // Examine a nearby store to see if it might interfere with our load.
 576     Node* mem   = worklist_mem.pop();
 577     Node* store = worklist_store.pop();
 578     uint op = store->Opcode();
 579 
 580     // MergeMems do not directly have anti-deps.
 581     // Treat them as internal nodes in a forward tree of memory states,
 582     // the leaves of which are each a 'possible-def'.
 583     if (store == initial_mem    // root (exclusive) of tree we are searching
 584         || op == Op_MergeMem    // internal node of tree we are searching
 585         ) {
 586       mem = store;   // It's not a possibly interfering store.
 587       if (store == initial_mem)
 588         initial_mem = NULL;  // only process initial memory once
 589 
 590       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
 591         store = mem->fast_out(i);
 592         if (store->is_MergeMem()) {
 593           // Be sure we don't get into combinatorial problems.
 594           // (Allow phis to be repeated; they can merge two relevant states.)
 595           uint j = worklist_visited.size();
 596           for (; j > 0; j--) {
 597             if (worklist_visited.at(j-1) == store)  break;
 598           }
 599           if (j > 0)  continue; // already on work list; do not repeat
 600           worklist_visited.push(store);
 601         }
 602         worklist_mem.push(mem);
 603         worklist_store.push(store);
 604       }
 605       continue;
 606     }
 607 
 608     if (op == Op_MachProj || op == Op_Catch)   continue;
 609     if (store->needs_anti_dependence_check())  continue;  // not really a store
 610 
 611     // Compute the alias index.  Loads and stores with different alias
 612     // indices do not need anti-dependence edges.  Wide MemBar's are
 613     // anti-dependent on everything (except immutable memories).
 614     const TypePtr* adr_type = store->adr_type();
 615     if (!C->can_alias(adr_type, load_alias_idx))  continue;
 616 
 617     // Most slow-path runtime calls do NOT modify Java memory, but
 618     // they can block and so write Raw memory.
 619     if (store->is_Mach()) {
 620       MachNode* mstore = store->as_Mach();
 621       if (load_alias_idx != Compile::AliasIdxRaw) {
 622         // Check for call into the runtime using the Java calling
 623         // convention (and from there into a wrapper); it has no
 624         // _method.  Can't do this optimization for Native calls because
 625         // they CAN write to Java memory.
 626         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
 627           assert(mstore->is_MachSafePoint(), "");
 628           MachSafePointNode* ms = (MachSafePointNode*) mstore;
 629           assert(ms->is_MachCallJava(), "");
 630           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
 631           if (mcj->_method == NULL) {
 632             // These runtime calls do not write to Java visible memory
 633             // (other than Raw) and so do not require anti-dependence edges.
 634             continue;
 635           }
 636         }
 637         // Same for SafePoints: they read/write Raw but only read otherwise.
 638         // This is basically a workaround for SafePoints only defining control
 639         // instead of control + memory.
 640         if (mstore->ideal_Opcode() == Op_SafePoint)
 641           continue;
 642       } else {
 643         // Some raw memory, such as the load of "top" at an allocation,
 644         // can be control dependent on the previous safepoint. See
 645         // comments in GraphKit::allocate_heap() about control input.
 646         // Inserting an anti-dep between such a safepoint and a use
 647         // creates a cycle, and will cause a subsequent failure in
 648         // local scheduling.  (BugId 4919904)
 649         // (%%% How can a control input be a safepoint and not a projection??)
 650         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
 651           continue;
 652       }
 653     }
 654 
 655     // Identify a block that the current load must be above,
 656     // or else observe that 'store' is all the way up in the
 657     // earliest legal block for 'load'.  In the latter case,
 658     // immediately insert an anti-dependence edge.
 659     Block* store_block = get_block_for_node(store);
 660     assert(store_block != NULL, "unused killing projections skipped above");
 661 
 662     if (store->is_Phi()) {
 663       // 'load' uses memory which is one (or more) of the Phi's inputs.
 664       // It must be scheduled not before the Phi, but rather before
 665       // each of the relevant Phi inputs.
 666       //
 667       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
 668       // we mark each corresponding predecessor block and do a combined
 669       // hoisting operation later (raise_LCA_above_marks).
 670       //
 671       // Do not assert(store_block != early, "Phi merging memory after access")
 672       // PhiNode may be at start of block 'early' with backedge to 'early'
 673       DEBUG_ONLY(bool found_match = false);
 674       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
 675         if (store->in(j) == mem) {   // Found matching input?
 676           DEBUG_ONLY(found_match = true);
 677           Block* pred_block = get_block_for_node(store_block->pred(j));
 678           if (pred_block != early) {
 679             // If any predecessor of the Phi matches the load's "early block",
 680             // we do not need a precedence edge between the Phi and 'load'
 681             // since the load will be forced into a block preceding the Phi.
 682             pred_block->set_raise_LCA_mark(load_index);
 683             assert(!LCA_orig->dominates(pred_block) ||
 684                    early->dominates(pred_block), "early is high enough");
 685             must_raise_LCA = true;
 686           } else {
 687             // anti-dependent upon PHI pinned below 'early', no edge needed
 688             LCA = early;             // but can not schedule below 'early'
 689           }
 690         }
 691       }
 692       assert(found_match, "no worklist bug");
 693 #ifdef TRACK_PHI_INPUTS
 694 #ifdef ASSERT
 695       // This assert asks about correct handling of PhiNodes, which may not
 696       // have all input edges directly from 'mem'. See BugId 4621264
 697       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
 698       // Increment by exactly one even if there are multiple copies of 'mem'
 699       // coming into the phi, because we will run this block several times
 700       // if there are several copies of 'mem'.  (That's how DU iterators work.)
 701       phi_inputs.at_put(store->_idx, num_mem_inputs);
 702       assert(PhiNode::Input + num_mem_inputs < store->req(),
 703              "Expect at least one phi input will not be from original memory state");
 704 #endif //ASSERT
 705 #endif //TRACK_PHI_INPUTS
 706     } else if (store_block != early) {
 707       // 'store' is between the current LCA and earliest possible block.
 708       // Label its block, and decide later on how to raise the LCA
 709       // to include the effect on LCA of this store.
 710       // If this store's block gets chosen as the raised LCA, we
 711       // will find him on the non_early_stores list and stick him
 712       // with a precedence edge.
 713       // (But, don't bother if LCA is already raised all the way.)
 714       if (LCA != early) {
 715         store_block->set_raise_LCA_mark(load_index);
 716         must_raise_LCA = true;
 717         non_early_stores.push(store);
 718       }
 719     } else {
 720       // Found a possibly-interfering store in the load's 'early' block.
 721       // This means 'load' cannot sink at all in the dominator tree.
 722       // Add an anti-dep edge, and squeeze 'load' into the highest block.
 723       assert(store != load->in(0), "dependence cycle found");
 724       if (verify) {
 725         assert(store->find_edge(load) != -1, "missing precedence edge");
 726       } else {
 727         store->add_prec(load);
 728       }
 729       LCA = early;
 730       // This turns off the process of gathering non_early_stores.
 731     }
 732   }
 733   // (Worklist is now empty; all nearby stores have been visited.)
 734 
 735   // Finished if 'load' must be scheduled in its 'early' block.
 736   // If we found any stores there, they have already been given
 737   // precedence edges.
 738   if (LCA == early)  return LCA;
 739 
 740   // We get here only if there are no possibly-interfering stores
 741   // in the load's 'early' block.  Move LCA up above all predecessors
 742   // which contain stores we have noted.
 743   //
 744   // The raised LCA block can be a home to such interfering stores,
 745   // but its predecessors must not contain any such stores.
 746   //
 747   // The raised LCA will be a lower bound for placing the load,
 748   // preventing the load from sinking past any block containing
 749   // a store that may invalidate the memory state required by 'load'.
 750   if (must_raise_LCA)
 751     LCA = raise_LCA_above_marks(LCA, load->_idx, early, this);
 752   if (LCA == early)  return LCA;
 753 
 754   // Insert anti-dependence edges from 'load' to each store
 755   // in the non-early LCA block.
 756   // Mine the non_early_stores list for such stores.
 757   if (LCA->raise_LCA_mark() == load_index) {
 758     while (non_early_stores.size() > 0) {
 759       Node* store = non_early_stores.pop();
 760       Block* store_block = get_block_for_node(store);
 761       if (store_block == LCA) {
 762         // add anti_dependence from store to load in its own block
 763         assert(store != load->in(0), "dependence cycle found");
 764         if (verify) {
 765           assert(store->find_edge(load) != -1, "missing precedence edge");
 766         } else {
 767           store->add_prec(load);
 768         }
 769       } else {
 770         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
 771         // Any other stores we found must be either inside the new LCA
 772         // or else outside the original LCA.  In the latter case, they
 773         // did not interfere with any use of 'load'.
 774         assert(LCA->dominates(store_block)
 775                || !LCA_orig->dominates(store_block), "no stray stores");
 776       }
 777     }
 778   }
 779 
 780   // Return the highest block containing stores; any stores
 781   // within that block have been given anti-dependence edges.
 782   return LCA;
 783 }
 784 
 785 // This class is used to iterate backwards over the nodes in the graph.
 786 
 787 class Node_Backward_Iterator {
 788 
 789 private:
 790   Node_Backward_Iterator();
 791 
 792 public:
 793   // Constructor for the iterator
 794   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg);
 795 
 796   // Postincrement operator to iterate over the nodes
 797   Node *next();
 798 
 799 private:
 800   VectorSet   &_visited;
 801   Node_List   &_stack;
 802   PhaseCFG &_cfg;
 803 };
 804 
 805 // Constructor for the Node_Backward_Iterator
 806 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg)
 807   : _visited(visited), _stack(stack), _cfg(cfg) {
 808   // The stack should contain exactly the root
 809   stack.clear();
 810   stack.push(root);
 811 
 812   // Clear the visited bits
 813   visited.Clear();
 814 }
 815 
 816 // Iterator for the Node_Backward_Iterator
 817 Node *Node_Backward_Iterator::next() {
 818 
 819   // If the _stack is empty, then just return NULL: finished.
 820   if ( !_stack.size() )
 821     return NULL;
 822 
 823   // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
 824   // made stateless, so I do not need to record the index 'i' on my _stack.
 825   // Instead I visit all users each time, scanning for unvisited users.
 826   // I visit unvisited not-anti-dependence users first, then anti-dependent
 827   // children next.
 828   Node *self = _stack.pop();
 829 
 830   // I cycle here when I am entering a deeper level of recursion.
 831   // The key variable 'self' was set prior to jumping here.
 832   while( 1 ) {
 833 
 834     _visited.set(self->_idx);
 835 
 836     // Now schedule all uses as late as possible.
 837     const Node* src = self->is_Proj() ? self->in(0) : self;
 838     uint src_rpo = _cfg.get_block_for_node(src)->_rpo;
 839 
 840     // Schedule all nodes in a post-order visit
 841     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
 842 
 843     // Scan for unvisited nodes
 844     for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
 845       // For all uses, schedule late
 846       Node* n = self->fast_out(i); // Use
 847 
 848       // Skip already visited children
 849       if ( _visited.test(n->_idx) )
 850         continue;
 851 
 852       // do not traverse backward control edges
 853       Node *use = n->is_Proj() ? n->in(0) : n;
 854       uint use_rpo = _cfg.get_block_for_node(use)->_rpo;
 855 
 856       if ( use_rpo < src_rpo )
 857         continue;
 858 
 859       // Phi nodes always precede uses in a basic block
 860       if ( use_rpo == src_rpo && use->is_Phi() )
 861         continue;
 862 
 863       unvisited = n;      // Found unvisited
 864 
 865       // Check for possible-anti-dependent
 866       if( !n->needs_anti_dependence_check() )
 867         break;            // Not visited, not anti-dep; schedule it NOW
 868     }
 869 
 870     // Did I find an unvisited not-anti-dependent Node?
 871     if ( !unvisited )
 872       break;                  // All done with children; post-visit 'self'
 873 
 874     // Visit the unvisited Node.  Contains the obvious push to
 875     // indicate I'm entering a deeper level of recursion.  I push the
 876     // old state onto the _stack and set a new state and loop (recurse).
 877     _stack.push(self);
 878     self = unvisited;
 879   } // End recursion loop
 880 
 881   return self;
 882 }
 883 
 884 //------------------------------ComputeLatenciesBackwards----------------------
 885 // Compute the latency of all the instructions.
 886 void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_List &stack) {
 887 #ifndef PRODUCT
 888   if (trace_opto_pipelining())
 889     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
 890 #endif
 891 
 892   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
 893   Node *n;
 894 
 895   // Walk over all the nodes from last to first
 896   while (n = iter.next()) {
 897     // Set the latency for the definitions of this instruction
 898     partial_latency_of_defs(n);
 899   }
 900 } // end ComputeLatenciesBackwards
 901 
 902 //------------------------------partial_latency_of_defs------------------------
 903 // Compute the latency impact of this node on all defs.  This computes
 904 // a number that increases as we approach the beginning of the routine.
 905 void PhaseCFG::partial_latency_of_defs(Node *n) {
 906   // Set the latency for this instruction
 907 #ifndef PRODUCT
 908   if (trace_opto_pipelining()) {
 909     tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
 910     dump();
 911   }
 912 #endif
 913 
 914   if (n->is_Proj()) {
 915     n = n->in(0);
 916   }
 917 
 918   if (n->is_Root()) {
 919     return;
 920   }
 921 
 922   uint nlen = n->len();
 923   uint use_latency = get_latency_for_node(n);
 924   uint use_pre_order = get_block_for_node(n)->_pre_order;
 925 
 926   for (uint j = 0; j < nlen; j++) {
 927     Node *def = n->in(j);
 928 
 929     if (!def || def == n) {
 930       continue;
 931     }
 932 
 933     // Walk backwards thru projections
 934     if (def->is_Proj()) {
 935       def = def->in(0);
 936     }
 937 
 938 #ifndef PRODUCT
 939     if (trace_opto_pipelining()) {
 940       tty->print("#    in(%2d): ", j);
 941       def->dump();
 942     }
 943 #endif
 944 
 945     // If the defining block is not known, assume it is ok
 946     Block *def_block = get_block_for_node(def);
 947     uint def_pre_order = def_block ? def_block->_pre_order : 0;
 948 
 949     if ((use_pre_order <  def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) {
 950       continue;
 951     }
 952 
 953     uint delta_latency = n->latency(j);
 954     uint current_latency = delta_latency + use_latency;
 955 
 956     if (get_latency_for_node(def) < current_latency) {
 957       set_latency_for_node(def, current_latency);
 958     }
 959 
 960 #ifndef PRODUCT
 961     if (trace_opto_pipelining()) {
 962       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def));
 963     }
 964 #endif
 965   }
 966 }
 967 
 968 //------------------------------latency_from_use-------------------------------
 969 // Compute the latency of a specific use
 970 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
 971   // If self-reference, return no latency
 972   if (use == n || use->is_Root()) {
 973     return 0;
 974   }
 975 
 976   uint def_pre_order = get_block_for_node(def)->_pre_order;
 977   uint latency = 0;
 978 
 979   // If the use is not a projection, then it is simple...
 980   if (!use->is_Proj()) {
 981 #ifndef PRODUCT
 982     if (trace_opto_pipelining()) {
 983       tty->print("#    out(): ");
 984       use->dump();
 985     }
 986 #endif
 987 
 988     uint use_pre_order = get_block_for_node(use)->_pre_order;
 989 
 990     if (use_pre_order < def_pre_order)
 991       return 0;
 992 
 993     if (use_pre_order == def_pre_order && use->is_Phi())
 994       return 0;
 995 
 996     uint nlen = use->len();
 997     uint nl = get_latency_for_node(use);
 998 
 999     for ( uint j=0; j<nlen; j++ ) {
1000       if (use->in(j) == n) {
1001         // Change this if we want local latencies
1002         uint ul = use->latency(j);
1003         uint  l = ul + nl;
1004         if (latency < l) latency = l;
1005 #ifndef PRODUCT
1006         if (trace_opto_pipelining()) {
1007           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
1008                         nl, j, ul, l, latency);
1009         }
1010 #endif
1011       }
1012     }
1013   } else {
1014     // This is a projection, just grab the latency of the use(s)
1015     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
1016       uint l = latency_from_use(use, def, use->fast_out(j));
1017       if (latency < l) latency = l;
1018     }
1019   }
1020 
1021   return latency;
1022 }
1023 
1024 //------------------------------latency_from_uses------------------------------
1025 // Compute the latency of this instruction relative to all of it's uses.
1026 // This computes a number that increases as we approach the beginning of the
1027 // routine.
1028 void PhaseCFG::latency_from_uses(Node *n) {
1029   // Set the latency for this instruction
1030 #ifndef PRODUCT
1031   if (trace_opto_pipelining()) {
1032     tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
1033     dump();
1034   }
1035 #endif
1036   uint latency=0;
1037   const Node *def = n->is_Proj() ? n->in(0): n;
1038 
1039   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1040     uint l = latency_from_use(n, def, n->fast_out(i));
1041 
1042     if (latency < l) latency = l;
1043   }
1044 
1045   set_latency_for_node(n, latency);
1046 }
1047 
1048 //------------------------------hoist_to_cheaper_block-------------------------
1049 // Pick a block for node self, between early and LCA, that is a cheaper
1050 // alternative to LCA.
1051 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
1052   const double delta = 1+PROB_UNLIKELY_MAG(4);
1053   Block* least       = LCA;
1054   double least_freq  = least->_freq;
1055   uint target        = get_latency_for_node(self);
1056   uint start_latency = get_latency_for_node(LCA->head());
1057   uint end_latency   = get_latency_for_node(LCA->get_node(LCA->end_idx()));
1058   bool in_latency    = (target <= start_latency);
1059   const Block* root_block = get_block_for_node(_root);
1060 
1061   // Turn off latency scheduling if scheduling is just plain off
1062   if (!C->do_scheduling())
1063     in_latency = true;
1064 
1065   // Do not hoist (to cover latency) instructions which target a
1066   // single register.  Hoisting stretches the live range of the
1067   // single register and may force spilling.
1068   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1069   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
1070     in_latency = true;
1071 
1072 #ifndef PRODUCT
1073   if (trace_opto_pipelining()) {
1074     tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self));
1075     self->dump();
1076     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1077       LCA->_pre_order,
1078       LCA->head()->_idx,
1079       start_latency,
1080       LCA->get_node(LCA->end_idx())->_idx,
1081       end_latency,
1082       least_freq);
1083   }
1084 #endif
1085 
1086   int cand_cnt = 0;  // number of candidates tried
1087 
1088   // Walk up the dominator tree from LCA (Lowest common ancestor) to
1089   // the earliest legal location.  Capture the least execution frequency.
1090   while (LCA != early) {
1091     LCA = LCA->_idom;         // Follow up the dominator tree
1092 
1093     if (LCA == NULL) {
1094       // Bailout without retry
1095       C->record_method_not_compilable("late schedule failed: LCA == NULL");
1096       return least;
1097     }
1098 
1099     // Don't hoist machine instructions to the root basic block
1100     if (mach && LCA == root_block)
1101       break;
1102 
1103     uint start_lat = get_latency_for_node(LCA->head());
1104     uint end_idx   = LCA->end_idx();
1105     uint end_lat   = get_latency_for_node(LCA->get_node(end_idx));
1106     double LCA_freq = LCA->_freq;
1107 #ifndef PRODUCT
1108     if (trace_opto_pipelining()) {
1109       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1110         LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq);
1111     }
1112 #endif
1113     cand_cnt++;
1114     if (LCA_freq < least_freq              || // Better Frequency
1115         (StressGCM && Compile::randomized_select(cand_cnt)) || // Should be randomly accepted in stress mode
1116          (!StressGCM                    &&    // Otherwise, choose with latency
1117           !in_latency                   &&    // No block containing latency
1118           LCA_freq < least_freq * delta &&    // No worse frequency
1119           target >= end_lat             &&    // within latency range
1120           !self->is_iteratively_computed() )  // But don't hoist IV increments
1121              // because they may end up above other uses of their phi forcing
1122              // their result register to be different from their input.
1123        ) {
1124       least = LCA;            // Found cheaper block
1125       least_freq = LCA_freq;
1126       start_latency = start_lat;
1127       end_latency = end_lat;
1128       if (target <= start_lat)
1129         in_latency = true;
1130     }
1131   }
1132 
1133 #ifndef PRODUCT
1134   if (trace_opto_pipelining()) {
1135     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
1136       least->_pre_order, start_latency, least_freq);
1137   }
1138 #endif
1139 
1140   // See if the latency needs to be updated
1141   if (target < end_latency) {
1142 #ifndef PRODUCT
1143     if (trace_opto_pipelining()) {
1144       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1145     }
1146 #endif
1147     set_latency_for_node(self, end_latency);
1148     partial_latency_of_defs(self);
1149   }
1150 
1151   return least;
1152 }
1153 
1154 
1155 //------------------------------schedule_late-----------------------------------
1156 // Now schedule all codes as LATE as possible.  This is the LCA in the
1157 // dominator tree of all USES of a value.  Pick the block with the least
1158 // loop nesting depth that is lowest in the dominator tree.
1159 extern const char must_clone[];
1160 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
1161 #ifndef PRODUCT
1162   if (trace_opto_pipelining())
1163     tty->print("\n#---- schedule_late ----\n");
1164 #endif
1165 
1166   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
1167   Node *self;
1168 
1169   // Walk over all the nodes from last to first
1170   while (self = iter.next()) {
1171     Block* early = get_block_for_node(self); // Earliest legal placement
1172 
1173     if (self->is_top()) {
1174       // Top node goes in bb #2 with other constants.
1175       // It must be special-cased, because it has no out edges.
1176       early->add_inst(self);
1177       continue;
1178     }
1179 
1180     // No uses, just terminate
1181     if (self->outcnt() == 0) {
1182       assert(self->is_MachProj(), "sanity");
1183       continue;                   // Must be a dead machine projection
1184     }
1185 
1186     // If node is pinned in the block, then no scheduling can be done.
1187     if( self->pinned() )          // Pinned in block?
1188       continue;
1189 
1190     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1191     if (mach) {
1192       switch (mach->ideal_Opcode()) {
1193       case Op_CreateEx:
1194         // Don't move exception creation
1195         early->add_inst(self);
1196         continue;
1197         break;
1198       case Op_CheckCastPP:
1199         // Don't move CheckCastPP nodes away from their input, if the input
1200         // is a rawptr (5071820).
1201         Node *def = self->in(1);
1202         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1203           early->add_inst(self);
1204 #ifdef ASSERT
1205           _raw_oops.push(def);
1206 #endif
1207           continue;
1208         }
1209         break;
1210       }
1211     }
1212 
1213     // Gather LCA of all uses
1214     Block *LCA = NULL;
1215     {
1216       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1217         // For all uses, find LCA
1218         Node* use = self->fast_out(i);
1219         LCA = raise_LCA_above_use(LCA, use, self, this);
1220       }
1221     }  // (Hide defs of imax, i from rest of block.)
1222 
1223     // Place temps in the block of their use.  This isn't a
1224     // requirement for correctness but it reduces useless
1225     // interference between temps and other nodes.
1226     if (mach != NULL && mach->is_MachTemp()) {
1227       map_node_to_block(self, LCA);
1228       LCA->add_inst(self);
1229       continue;
1230     }
1231 
1232     // Check if 'self' could be anti-dependent on memory
1233     if (self->needs_anti_dependence_check()) {
1234       // Hoist LCA above possible-defs and insert anti-dependences to
1235       // defs in new LCA block.
1236       LCA = insert_anti_dependences(LCA, self);
1237     }
1238 
1239     if (early->_dom_depth > LCA->_dom_depth) {
1240       // Somehow the LCA has moved above the earliest legal point.
1241       // (One way this can happen is via memory_early_block.)
1242       if (C->subsume_loads() == true && !C->failing()) {
1243         // Retry with subsume_loads == false
1244         // If this is the first failure, the sentinel string will "stick"
1245         // to the Compile object, and the C2Compiler will see it and retry.
1246         C->record_failure(C2Compiler::retry_no_subsuming_loads());
1247       } else {
1248         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1249         C->record_method_not_compilable("late schedule failed: incorrect graph");
1250       }
1251       return;
1252     }
1253 
1254     // If there is no opportunity to hoist, then we're done.
1255     // In stress mode, try to hoist even the single operations.
1256     bool try_to_hoist = StressGCM || (LCA != early);
1257 
1258     // Must clone guys stay next to use; no hoisting allowed.
1259     // Also cannot hoist guys that alter memory or are otherwise not
1260     // allocatable (hoisting can make a value live longer, leading to
1261     // anti and output dependency problems which are normally resolved
1262     // by the register allocator giving everyone a different register).
1263     if (mach != NULL && must_clone[mach->ideal_Opcode()])
1264       try_to_hoist = false;
1265 
1266     Block* late = NULL;
1267     if (try_to_hoist) {
1268       // Now find the block with the least execution frequency.
1269       // Start at the latest schedule and work up to the earliest schedule
1270       // in the dominator tree.  Thus the Node will dominate all its uses.
1271       late = hoist_to_cheaper_block(LCA, early, self);
1272     } else {
1273       // Just use the LCA of the uses.
1274       late = LCA;
1275     }
1276 
1277     // Put the node into target block
1278     schedule_node_into_block(self, late);
1279 
1280 #ifdef ASSERT
1281     if (self->needs_anti_dependence_check()) {
1282       // since precedence edges are only inserted when we're sure they
1283       // are needed make sure that after placement in a block we don't
1284       // need any new precedence edges.
1285       verify_anti_dependences(late, self);
1286     }
1287 #endif
1288   } // Loop until all nodes have been visited
1289 
1290 } // end ScheduleLate
1291 
1292 //------------------------------GlobalCodeMotion-------------------------------
1293 void PhaseCFG::global_code_motion() {
1294   ResourceMark rm;
1295 
1296 #ifndef PRODUCT
1297   if (trace_opto_pipelining()) {
1298     tty->print("\n---- Start GlobalCodeMotion ----\n");
1299   }
1300 #endif
1301 
1302   // Initialize the node to block mapping for things on the proj_list
1303   for (uint i = 0; i < _matcher.number_of_projections(); i++) {
1304     unmap_node_from_block(_matcher.get_projection(i));
1305   }
1306 
1307   // Set the basic block for Nodes pinned into blocks
1308   Arena* arena = Thread::current()->resource_area();
1309   VectorSet visited(arena);
1310   schedule_pinned_nodes(visited);
1311 
1312   // Find the earliest Block any instruction can be placed in.  Some
1313   // instructions are pinned into Blocks.  Unpinned instructions can
1314   // appear in last block in which all their inputs occur.
1315   visited.Clear();
1316   Node_List stack(arena);
1317   // Pre-grow the list
1318   stack.map((C->live_nodes() >> 1) + 16, NULL);
1319   if (!schedule_early(visited, stack)) {
1320     // Bailout without retry
1321     C->record_method_not_compilable("early schedule failed");
1322     return;
1323   }
1324 
1325   // Build Def-Use edges.
1326   // Compute the latency information (via backwards walk) for all the
1327   // instructions in the graph
1328   _node_latency = new GrowableArray<uint>(); // resource_area allocation
1329 
1330   if (C->do_scheduling()) {
1331     compute_latencies_backwards(visited, stack);
1332   }
1333 
1334   // Now schedule all codes as LATE as possible.  This is the LCA in the
1335   // dominator tree of all USES of a value.  Pick the block with the least
1336   // loop nesting depth that is lowest in the dominator tree.
1337   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
1338   schedule_late(visited, stack);
1339   if (C->failing()) {
1340     // schedule_late fails only when graph is incorrect.
1341     assert(!VerifyGraphEdges, "verification should have failed");
1342     return;
1343   }
1344 
1345 #ifndef PRODUCT
1346   if (trace_opto_pipelining()) {
1347     tty->print("\n---- Detect implicit null checks ----\n");
1348   }
1349 #endif
1350 
1351   // Detect implicit-null-check opportunities.  Basically, find NULL checks
1352   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1353   // I can generate a memory op if there is not one nearby.
1354   if (C->is_method_compilation()) {
1355     // By reversing the loop direction we get a very minor gain on mpegaudio.
1356     // Feel free to revert to a forward loop for clarity.
1357     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1358     for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) {
1359       Node* proj = _matcher._null_check_tests[i];
1360       Node* val  = _matcher._null_check_tests[i + 1];
1361       Block* block = get_block_for_node(proj);
1362       implicit_null_check(block, proj, val, C->allowed_deopt_reasons());
1363       // The implicit_null_check will only perform the transformation
1364       // if the null branch is truly uncommon, *and* it leads to an
1365       // uncommon trap.  Combined with the too_many_traps guards
1366       // above, this prevents SEGV storms reported in 6366351,
1367       // by recompiling offending methods without this optimization.
1368     }
1369   }
1370 
1371   bool block_size_threshold_ok = false;
1372   intptr_t *recalc_pressure_nodes = NULL;
1373   if (OptoRegScheduling) {
1374     for (uint i = 0; i < number_of_blocks(); i++) {
1375       Block* block = get_block(i);
1376       if (block->number_of_nodes() > 10) {
1377         block_size_threshold_ok = true;
1378         break;
1379       }
1380     }
1381   }
1382 
1383   // Enabling the scheduler for register pressure plus finding blocks of size to schedule for it
1384   // is key to enabling this feature.
1385   PhaseChaitin regalloc(C->unique(), *this, _matcher, true);
1386   ResourceArea live_arena;      // Arena for liveness
1387   ResourceMark rm_live(&live_arena);
1388   PhaseLive live(*this, regalloc._lrg_map.names(), &live_arena, true);
1389   PhaseIFG ifg(&live_arena);
1390   if (OptoRegScheduling && block_size_threshold_ok) {
1391     regalloc.mark_ssa();
1392     Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
1393     rm_live.reset_to_mark();           // Reclaim working storage
1394     IndexSet::reset_memory(C, &live_arena);
1395     uint node_size = regalloc._lrg_map.max_lrg_id();
1396     ifg.init(node_size); // Empty IFG
1397     regalloc.set_ifg(ifg);
1398     regalloc.set_live(live);
1399     regalloc.gather_lrg_masks(false);    // Collect LRG masks
1400     live.compute(node_size); // Compute liveness
1401 
1402     recalc_pressure_nodes = NEW_RESOURCE_ARRAY(intptr_t, node_size);
1403     for (uint i = 0; i < node_size; i++) {
1404       recalc_pressure_nodes[i] = 0;
1405     }
1406   }
1407   _regalloc = &regalloc;
1408 
1409 #ifndef PRODUCT
1410   if (trace_opto_pipelining()) {
1411     tty->print("\n---- Start Local Scheduling ----\n");
1412   }
1413 #endif
1414 
1415   // Schedule locally.  Right now a simple topological sort.
1416   // Later, do a real latency aware scheduler.
1417   GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1);
1418   visited.Clear();
1419   for (uint i = 0; i < number_of_blocks(); i++) {
1420     Block* block = get_block(i);
1421     if (!schedule_local(block, ready_cnt, visited, recalc_pressure_nodes)) {
1422       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1423         C->record_method_not_compilable("local schedule failed");
1424       }
1425       _regalloc = NULL;
1426       return;
1427     }
1428   }
1429   _regalloc = NULL;
1430 
1431   // If we inserted any instructions between a Call and his CatchNode,
1432   // clone the instructions on all paths below the Catch.
1433   for (uint i = 0; i < number_of_blocks(); i++) {
1434     Block* block = get_block(i);
1435     call_catch_cleanup(block);
1436   }
1437 
1438 #ifndef PRODUCT
1439   if (trace_opto_pipelining()) {
1440     tty->print("\n---- After GlobalCodeMotion ----\n");
1441     for (uint i = 0; i < number_of_blocks(); i++) {
1442       Block* block = get_block(i);
1443       block->dump();
1444     }
1445   }
1446 #endif
1447   // Dead.
1448   _node_latency = (GrowableArray<uint> *)0xdeadbeef;
1449 }
1450 
1451 bool PhaseCFG::do_global_code_motion() {
1452 
1453   build_dominator_tree();
1454   if (C->failing()) {
1455     return false;
1456   }
1457 
1458   NOT_PRODUCT( C->verify_graph_edges(); )
1459 
1460   estimate_block_frequency();
1461 
1462   global_code_motion();
1463 
1464   if (C->failing()) {
1465     return false;
1466   }
1467 
1468   return true;
1469 }
1470 
1471 //------------------------------Estimate_Block_Frequency-----------------------
1472 // Estimate block frequencies based on IfNode probabilities.
1473 void PhaseCFG::estimate_block_frequency() {
1474 
1475   // Force conditional branches leading to uncommon traps to be unlikely,
1476   // not because we get to the uncommon_trap with less relative frequency,
1477   // but because an uncommon_trap typically causes a deopt, so we only get
1478   // there once.
1479   if (C->do_freq_based_layout()) {
1480     Block_List worklist;
1481     Block* root_blk = get_block(0);
1482     for (uint i = 1; i < root_blk->num_preds(); i++) {
1483       Block *pb = get_block_for_node(root_blk->pred(i));
1484       if (pb->has_uncommon_code()) {
1485         worklist.push(pb);
1486       }
1487     }
1488     while (worklist.size() > 0) {
1489       Block* uct = worklist.pop();
1490       if (uct == get_root_block()) {
1491         continue;
1492       }
1493       for (uint i = 1; i < uct->num_preds(); i++) {
1494         Block *pb = get_block_for_node(uct->pred(i));
1495         if (pb->_num_succs == 1) {
1496           worklist.push(pb);
1497         } else if (pb->num_fall_throughs() == 2) {
1498           pb->update_uncommon_branch(uct);
1499         }
1500       }
1501     }
1502   }
1503 
1504   // Create the loop tree and calculate loop depth.
1505   _root_loop = create_loop_tree();
1506   _root_loop->compute_loop_depth(0);
1507 
1508   // Compute block frequency of each block, relative to a single loop entry.
1509   _root_loop->compute_freq();
1510 
1511   // Adjust all frequencies to be relative to a single method entry
1512   _root_loop->_freq = 1.0;
1513   _root_loop->scale_freq();
1514 
1515   // Save outmost loop frequency for LRG frequency threshold
1516   _outer_loop_frequency = _root_loop->outer_loop_freq();
1517 
1518   // force paths ending at uncommon traps to be infrequent
1519   if (!C->do_freq_based_layout()) {
1520     Block_List worklist;
1521     Block* root_blk = get_block(0);
1522     for (uint i = 1; i < root_blk->num_preds(); i++) {
1523       Block *pb = get_block_for_node(root_blk->pred(i));
1524       if (pb->has_uncommon_code()) {
1525         worklist.push(pb);
1526       }
1527     }
1528     while (worklist.size() > 0) {
1529       Block* uct = worklist.pop();
1530       uct->_freq = PROB_MIN;
1531       for (uint i = 1; i < uct->num_preds(); i++) {
1532         Block *pb = get_block_for_node(uct->pred(i));
1533         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1534           worklist.push(pb);
1535         }
1536       }
1537     }
1538   }
1539 
1540 #ifdef ASSERT
1541   for (uint i = 0; i < number_of_blocks(); i++) {
1542     Block* b = get_block(i);
1543     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
1544   }
1545 #endif
1546 
1547 #ifndef PRODUCT
1548   if (PrintCFGBlockFreq) {
1549     tty->print_cr("CFG Block Frequencies");
1550     _root_loop->dump_tree();
1551     if (Verbose) {
1552       tty->print_cr("PhaseCFG dump");
1553       dump();
1554       tty->print_cr("Node dump");
1555       _root->dump(99999);
1556     }
1557   }
1558 #endif
1559 }
1560 
1561 //----------------------------create_loop_tree--------------------------------
1562 // Create a loop tree from the CFG
1563 CFGLoop* PhaseCFG::create_loop_tree() {
1564 
1565 #ifdef ASSERT
1566   assert(get_block(0) == get_root_block(), "first block should be root block");
1567   for (uint i = 0; i < number_of_blocks(); i++) {
1568     Block* block = get_block(i);
1569     // Check that _loop field are clear...we could clear them if not.
1570     assert(block->_loop == NULL, "clear _loop expected");
1571     // Sanity check that the RPO numbering is reflected in the _blocks array.
1572     // It doesn't have to be for the loop tree to be built, but if it is not,
1573     // then the blocks have been reordered since dom graph building...which
1574     // may question the RPO numbering
1575     assert(block->_rpo == i, "unexpected reverse post order number");
1576   }
1577 #endif
1578 
1579   int idct = 0;
1580   CFGLoop* root_loop = new CFGLoop(idct++);
1581 
1582   Block_List worklist;
1583 
1584   // Assign blocks to loops
1585   for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block
1586     Block* block = get_block(i);
1587 
1588     if (block->head()->is_Loop()) {
1589       Block* loop_head = block;
1590       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1591       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1592       Block* tail = get_block_for_node(tail_n);
1593 
1594       // Defensively filter out Loop nodes for non-single-entry loops.
1595       // For all reasonable loops, the head occurs before the tail in RPO.
1596       if (i <= tail->_rpo) {
1597 
1598         // The tail and (recursive) predecessors of the tail
1599         // are made members of a new loop.
1600 
1601         assert(worklist.size() == 0, "nonempty worklist");
1602         CFGLoop* nloop = new CFGLoop(idct++);
1603         assert(loop_head->_loop == NULL, "just checking");
1604         loop_head->_loop = nloop;
1605         // Add to nloop so push_pred() will skip over inner loops
1606         nloop->add_member(loop_head);
1607         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this);
1608 
1609         while (worklist.size() > 0) {
1610           Block* member = worklist.pop();
1611           if (member != loop_head) {
1612             for (uint j = 1; j < member->num_preds(); j++) {
1613               nloop->push_pred(member, j, worklist, this);
1614             }
1615           }
1616         }
1617       }
1618     }
1619   }
1620 
1621   // Create a member list for each loop consisting
1622   // of both blocks and (immediate child) loops.
1623   for (uint i = 0; i < number_of_blocks(); i++) {
1624     Block* block = get_block(i);
1625     CFGLoop* lp = block->_loop;
1626     if (lp == NULL) {
1627       // Not assigned to a loop. Add it to the method's pseudo loop.
1628       block->_loop = root_loop;
1629       lp = root_loop;
1630     }
1631     if (lp == root_loop || block != lp->head()) { // loop heads are already members
1632       lp->add_member(block);
1633     }
1634     if (lp != root_loop) {
1635       if (lp->parent() == NULL) {
1636         // Not a nested loop. Make it a child of the method's pseudo loop.
1637         root_loop->add_nested_loop(lp);
1638       }
1639       if (block == lp->head()) {
1640         // Add nested loop to member list of parent loop.
1641         lp->parent()->add_member(lp);
1642       }
1643     }
1644   }
1645 
1646   return root_loop;
1647 }
1648 
1649 //------------------------------push_pred--------------------------------------
1650 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) {
1651   Node* pred_n = blk->pred(i);
1652   Block* pred = cfg->get_block_for_node(pred_n);
1653   CFGLoop *pred_loop = pred->_loop;
1654   if (pred_loop == NULL) {
1655     // Filter out blocks for non-single-entry loops.
1656     // For all reasonable loops, the head occurs before the tail in RPO.
1657     if (pred->_rpo > head()->_rpo) {
1658       pred->_loop = this;
1659       worklist.push(pred);
1660     }
1661   } else if (pred_loop != this) {
1662     // Nested loop.
1663     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1664       pred_loop = pred_loop->_parent;
1665     }
1666     // Make pred's loop be a child
1667     if (pred_loop->_parent == NULL) {
1668       add_nested_loop(pred_loop);
1669       // Continue with loop entry predecessor.
1670       Block* pred_head = pred_loop->head();
1671       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1672       assert(pred_head != head(), "loop head in only one loop");
1673       push_pred(pred_head, LoopNode::EntryControl, worklist, cfg);
1674     } else {
1675       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1676     }
1677   }
1678 }
1679 
1680 //------------------------------add_nested_loop--------------------------------
1681 // Make cl a child of the current loop in the loop tree.
1682 void CFGLoop::add_nested_loop(CFGLoop* cl) {
1683   assert(_parent == NULL, "no parent yet");
1684   assert(cl != this, "not my own parent");
1685   cl->_parent = this;
1686   CFGLoop* ch = _child;
1687   if (ch == NULL) {
1688     _child = cl;
1689   } else {
1690     while (ch->_sibling != NULL) { ch = ch->_sibling; }
1691     ch->_sibling = cl;
1692   }
1693 }
1694 
1695 //------------------------------compute_loop_depth-----------------------------
1696 // Store the loop depth in each CFGLoop object.
1697 // Recursively walk the children to do the same for them.
1698 void CFGLoop::compute_loop_depth(int depth) {
1699   _depth = depth;
1700   CFGLoop* ch = _child;
1701   while (ch != NULL) {
1702     ch->compute_loop_depth(depth + 1);
1703     ch = ch->_sibling;
1704   }
1705 }
1706 
1707 //------------------------------compute_freq-----------------------------------
1708 // Compute the frequency of each block and loop, relative to a single entry
1709 // into the dominating loop head.
1710 void CFGLoop::compute_freq() {
1711   // Bottom up traversal of loop tree (visit inner loops first.)
1712   // Set loop head frequency to 1.0, then transitively
1713   // compute frequency for all successors in the loop,
1714   // as well as for each exit edge.  Inner loops are
1715   // treated as single blocks with loop exit targets
1716   // as the successor blocks.
1717 
1718   // Nested loops first
1719   CFGLoop* ch = _child;
1720   while (ch != NULL) {
1721     ch->compute_freq();
1722     ch = ch->_sibling;
1723   }
1724   assert (_members.length() > 0, "no empty loops");
1725   Block* hd = head();
1726   hd->_freq = 1.0;
1727   for (int i = 0; i < _members.length(); i++) {
1728     CFGElement* s = _members.at(i);
1729     double freq = s->_freq;
1730     if (s->is_block()) {
1731       Block* b = s->as_Block();
1732       for (uint j = 0; j < b->_num_succs; j++) {
1733         Block* sb = b->_succs[j];
1734         update_succ_freq(sb, freq * b->succ_prob(j));
1735       }
1736     } else {
1737       CFGLoop* lp = s->as_CFGLoop();
1738       assert(lp->_parent == this, "immediate child");
1739       for (int k = 0; k < lp->_exits.length(); k++) {
1740         Block* eb = lp->_exits.at(k).get_target();
1741         double prob = lp->_exits.at(k).get_prob();
1742         update_succ_freq(eb, freq * prob);
1743       }
1744     }
1745   }
1746 
1747   // For all loops other than the outer, "method" loop,
1748   // sum and normalize the exit probability. The "method" loop
1749   // should keep the initial exit probability of 1, so that
1750   // inner blocks do not get erroneously scaled.
1751   if (_depth != 0) {
1752     // Total the exit probabilities for this loop.
1753     double exits_sum = 0.0f;
1754     for (int i = 0; i < _exits.length(); i++) {
1755       exits_sum += _exits.at(i).get_prob();
1756     }
1757 
1758     // Normalize the exit probabilities. Until now, the
1759     // probabilities estimate the possibility of exit per
1760     // a single loop iteration; afterward, they estimate
1761     // the probability of exit per loop entry.
1762     for (int i = 0; i < _exits.length(); i++) {
1763       Block* et = _exits.at(i).get_target();
1764       float new_prob = 0.0f;
1765       if (_exits.at(i).get_prob() > 0.0f) {
1766         new_prob = _exits.at(i).get_prob() / exits_sum;
1767       }
1768       BlockProbPair bpp(et, new_prob);
1769       _exits.at_put(i, bpp);
1770     }
1771 
1772     // Save the total, but guard against unreasonable probability,
1773     // as the value is used to estimate the loop trip count.
1774     // An infinite trip count would blur relative block
1775     // frequencies.
1776     if (exits_sum > 1.0f) exits_sum = 1.0;
1777     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1778     _exit_prob = exits_sum;
1779   }
1780 }
1781 
1782 //------------------------------succ_prob-------------------------------------
1783 // Determine the probability of reaching successor 'i' from the receiver block.
1784 float Block::succ_prob(uint i) {
1785   int eidx = end_idx();
1786   Node *n = get_node(eidx);  // Get ending Node
1787 
1788   int op = n->Opcode();
1789   if (n->is_Mach()) {
1790     if (n->is_MachNullCheck()) {
1791       // Can only reach here if called after lcm. The original Op_If is gone,
1792       // so we attempt to infer the probability from one or both of the
1793       // successor blocks.
1794       assert(_num_succs == 2, "expecting 2 successors of a null check");
1795       // If either successor has only one predecessor, then the
1796       // probability estimate can be derived using the
1797       // relative frequency of the successor and this block.
1798       if (_succs[i]->num_preds() == 2) {
1799         return _succs[i]->_freq / _freq;
1800       } else if (_succs[1-i]->num_preds() == 2) {
1801         return 1 - (_succs[1-i]->_freq / _freq);
1802       } else {
1803         // Estimate using both successor frequencies
1804         float freq = _succs[i]->_freq;
1805         return freq / (freq + _succs[1-i]->_freq);
1806       }
1807     }
1808     op = n->as_Mach()->ideal_Opcode();
1809   }
1810 
1811 
1812   // Switch on branch type
1813   switch( op ) {
1814   case Op_CountedLoopEnd:
1815   case Op_If: {
1816     assert (i < 2, "just checking");
1817     // Conditionals pass on only part of their frequency
1818     float prob  = n->as_MachIf()->_prob;
1819     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1820     // If succ[i] is the FALSE branch, invert path info
1821     if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) {
1822       return 1.0f - prob; // not taken
1823     } else {
1824       return prob; // taken
1825     }
1826   }
1827 
1828   case Op_Jump:
1829     // Divide the frequency between all successors evenly
1830     return 1.0f/_num_succs;
1831 
1832   case Op_Catch: {
1833     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1834     if (ci->_con == CatchProjNode::fall_through_index) {
1835       // Fall-thru path gets the lion's share.
1836       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1837     } else {
1838       // Presume exceptional paths are equally unlikely
1839       return PROB_UNLIKELY_MAG(5);
1840     }
1841   }
1842 
1843   case Op_Root:
1844   case Op_Goto:
1845     // Pass frequency straight thru to target
1846     return 1.0f;
1847 
1848   case Op_NeverBranch:
1849     return 0.0f;
1850 
1851   case Op_TailCall:
1852   case Op_TailJump:
1853   case Op_Return:
1854   case Op_Halt:
1855   case Op_Rethrow:
1856     // Do not push out freq to root block
1857     return 0.0f;
1858 
1859   default:
1860     ShouldNotReachHere();
1861   }
1862 
1863   return 0.0f;
1864 }
1865 
1866 //------------------------------num_fall_throughs-----------------------------
1867 // Return the number of fall-through candidates for a block
1868 int Block::num_fall_throughs() {
1869   int eidx = end_idx();
1870   Node *n = get_node(eidx);  // Get ending Node
1871 
1872   int op = n->Opcode();
1873   if (n->is_Mach()) {
1874     if (n->is_MachNullCheck()) {
1875       // In theory, either side can fall-thru, for simplicity sake,
1876       // let's say only the false branch can now.
1877       return 1;
1878     }
1879     op = n->as_Mach()->ideal_Opcode();
1880   }
1881 
1882   // Switch on branch type
1883   switch( op ) {
1884   case Op_CountedLoopEnd:
1885   case Op_If:
1886     return 2;
1887 
1888   case Op_Root:
1889   case Op_Goto:
1890     return 1;
1891 
1892   case Op_Catch: {
1893     for (uint i = 0; i < _num_succs; i++) {
1894       const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1895       if (ci->_con == CatchProjNode::fall_through_index) {
1896         return 1;
1897       }
1898     }
1899     return 0;
1900   }
1901 
1902   case Op_Jump:
1903   case Op_NeverBranch:
1904   case Op_TailCall:
1905   case Op_TailJump:
1906   case Op_Return:
1907   case Op_Halt:
1908   case Op_Rethrow:
1909     return 0;
1910 
1911   default:
1912     ShouldNotReachHere();
1913   }
1914 
1915   return 0;
1916 }
1917 
1918 //------------------------------succ_fall_through-----------------------------
1919 // Return true if a specific successor could be fall-through target.
1920 bool Block::succ_fall_through(uint i) {
1921   int eidx = end_idx();
1922   Node *n = get_node(eidx);  // Get ending Node
1923 
1924   int op = n->Opcode();
1925   if (n->is_Mach()) {
1926     if (n->is_MachNullCheck()) {
1927       // In theory, either side can fall-thru, for simplicity sake,
1928       // let's say only the false branch can now.
1929       return get_node(i + eidx + 1)->Opcode() == Op_IfFalse;
1930     }
1931     op = n->as_Mach()->ideal_Opcode();
1932   }
1933 
1934   // Switch on branch type
1935   switch( op ) {
1936   case Op_CountedLoopEnd:
1937   case Op_If:
1938   case Op_Root:
1939   case Op_Goto:
1940     return true;
1941 
1942   case Op_Catch: {
1943     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1944     return ci->_con == CatchProjNode::fall_through_index;
1945   }
1946 
1947   case Op_Jump:
1948   case Op_NeverBranch:
1949   case Op_TailCall:
1950   case Op_TailJump:
1951   case Op_Return:
1952   case Op_Halt:
1953   case Op_Rethrow:
1954     return false;
1955 
1956   default:
1957     ShouldNotReachHere();
1958   }
1959 
1960   return false;
1961 }
1962 
1963 //------------------------------update_uncommon_branch------------------------
1964 // Update the probability of a two-branch to be uncommon
1965 void Block::update_uncommon_branch(Block* ub) {
1966   int eidx = end_idx();
1967   Node *n = get_node(eidx);  // Get ending Node
1968 
1969   int op = n->as_Mach()->ideal_Opcode();
1970 
1971   assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
1972   assert(num_fall_throughs() == 2, "must be a two way branch block");
1973 
1974   // Which successor is ub?
1975   uint s;
1976   for (s = 0; s <_num_succs; s++) {
1977     if (_succs[s] == ub) break;
1978   }
1979   assert(s < 2, "uncommon successor must be found");
1980 
1981   // If ub is the true path, make the proability small, else
1982   // ub is the false path, and make the probability large
1983   bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse);
1984 
1985   // Get existing probability
1986   float p = n->as_MachIf()->_prob;
1987 
1988   if (invert) p = 1.0 - p;
1989   if (p > PROB_MIN) {
1990     p = PROB_MIN;
1991   }
1992   if (invert) p = 1.0 - p;
1993 
1994   n->as_MachIf()->_prob = p;
1995 }
1996 
1997 //------------------------------update_succ_freq-------------------------------
1998 // Update the appropriate frequency associated with block 'b', a successor of
1999 // a block in this loop.
2000 void CFGLoop::update_succ_freq(Block* b, double freq) {
2001   if (b->_loop == this) {
2002     if (b == head()) {
2003       // back branch within the loop
2004       // Do nothing now, the loop carried frequency will be
2005       // adjust later in scale_freq().
2006     } else {
2007       // simple branch within the loop
2008       b->_freq += freq;
2009     }
2010   } else if (!in_loop_nest(b)) {
2011     // branch is exit from this loop
2012     BlockProbPair bpp(b, freq);
2013     _exits.append(bpp);
2014   } else {
2015     // branch into nested loop
2016     CFGLoop* ch = b->_loop;
2017     ch->_freq += freq;
2018   }
2019 }
2020 
2021 //------------------------------in_loop_nest-----------------------------------
2022 // Determine if block b is in the receiver's loop nest.
2023 bool CFGLoop::in_loop_nest(Block* b) {
2024   int depth = _depth;
2025   CFGLoop* b_loop = b->_loop;
2026   int b_depth = b_loop->_depth;
2027   if (depth == b_depth) {
2028     return true;
2029   }
2030   while (b_depth > depth) {
2031     b_loop = b_loop->_parent;
2032     b_depth = b_loop->_depth;
2033   }
2034   return b_loop == this;
2035 }
2036 
2037 //------------------------------scale_freq-------------------------------------
2038 // Scale frequency of loops and blocks by trip counts from outer loops
2039 // Do a top down traversal of loop tree (visit outer loops first.)
2040 void CFGLoop::scale_freq() {
2041   double loop_freq = _freq * trip_count();
2042   _freq = loop_freq;
2043   for (int i = 0; i < _members.length(); i++) {
2044     CFGElement* s = _members.at(i);
2045     double block_freq = s->_freq * loop_freq;
2046     if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
2047       block_freq = MIN_BLOCK_FREQUENCY;
2048     s->_freq = block_freq;
2049   }
2050   CFGLoop* ch = _child;
2051   while (ch != NULL) {
2052     ch->scale_freq();
2053     ch = ch->_sibling;
2054   }
2055 }
2056 
2057 // Frequency of outer loop
2058 double CFGLoop::outer_loop_freq() const {
2059   if (_child != NULL) {
2060     return _child->_freq;
2061   }
2062   return _freq;
2063 }
2064 
2065 #ifndef PRODUCT
2066 //------------------------------dump_tree--------------------------------------
2067 void CFGLoop::dump_tree() const {
2068   dump();
2069   if (_child != NULL)   _child->dump_tree();
2070   if (_sibling != NULL) _sibling->dump_tree();
2071 }
2072 
2073 //------------------------------dump-------------------------------------------
2074 void CFGLoop::dump() const {
2075   for (int i = 0; i < _depth; i++) tty->print("   ");
2076   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
2077              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
2078   for (int i = 0; i < _depth; i++) tty->print("   ");
2079   tty->print("         members:");
2080   int k = 0;
2081   for (int i = 0; i < _members.length(); i++) {
2082     if (k++ >= 6) {
2083       tty->print("\n              ");
2084       for (int j = 0; j < _depth+1; j++) tty->print("   ");
2085       k = 0;
2086     }
2087     CFGElement *s = _members.at(i);
2088     if (s->is_block()) {
2089       Block *b = s->as_Block();
2090       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
2091     } else {
2092       CFGLoop* lp = s->as_CFGLoop();
2093       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
2094     }
2095   }
2096   tty->print("\n");
2097   for (int i = 0; i < _depth; i++) tty->print("   ");
2098   tty->print("         exits:  ");
2099   k = 0;
2100   for (int i = 0; i < _exits.length(); i++) {
2101     if (k++ >= 7) {
2102       tty->print("\n              ");
2103       for (int j = 0; j < _depth+1; j++) tty->print("   ");
2104       k = 0;
2105     }
2106     Block *blk = _exits.at(i).get_target();
2107     double prob = _exits.at(i).get_prob();
2108     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
2109   }
2110   tty->print("\n");
2111 }
2112 #endif