1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #ifndef _WINDOWS
  27 #include "alloca.h"
  28 #endif
  29 #include "asm/macroAssembler.hpp"
  30 #include "asm/macroAssembler.inline.hpp"
  31 #include "classfile/symbolTable.hpp"
  32 #include "code/debugInfoRec.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/nativeInst.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "gc/shared/gcLocker.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "oops/compiledICHolder.hpp"
  41 #include "runtime/safepointMechanism.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/vframeArray.hpp"
  44 #include "utilities/align.hpp"
  45 #include "utilities/formatBuffer.hpp"
  46 #include "vm_version_x86.hpp"
  47 #include "vmreg_x86.inline.hpp"
  48 #ifdef COMPILER1
  49 #include "c1/c1_Runtime1.hpp"
  50 #endif
  51 #ifdef COMPILER2
  52 #include "opto/runtime.hpp"
  53 #endif
  54 #if INCLUDE_JVMCI
  55 #include "jvmci/jvmciJavaClasses.hpp"
  56 #endif
  57 
  58 #define __ masm->
  59 
  60 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  61 
  62 class SimpleRuntimeFrame {
  63 
  64   public:
  65 
  66   // Most of the runtime stubs have this simple frame layout.
  67   // This class exists to make the layout shared in one place.
  68   // Offsets are for compiler stack slots, which are jints.
  69   enum layout {
  70     // The frame sender code expects that rbp will be in the "natural" place and
  71     // will override any oopMap setting for it. We must therefore force the layout
  72     // so that it agrees with the frame sender code.
  73     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  74     rbp_off2,
  75     return_off, return_off2,
  76     framesize
  77   };
  78 };
  79 
  80 class RegisterSaver {
  81   // Capture info about frame layout.  Layout offsets are in jint
  82   // units because compiler frame slots are jints.
  83 #define XSAVE_AREA_BEGIN 160
  84 #define XSAVE_AREA_YMM_BEGIN 576
  85 #define XSAVE_AREA_ZMM_BEGIN 1152
  86 #define XSAVE_AREA_UPPERBANK 1664
  87 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  88 #define DEF_YMM_OFFS(regnum) ymm ## regnum ## _off = ymm_off + (regnum)*16/BytesPerInt, ymm ## regnum ## H_off
  89 #define DEF_ZMM_OFFS(regnum) zmm ## regnum ## _off = zmm_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off
  90   enum layout {
  91     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  92     xmm_off       = fpu_state_off + XSAVE_AREA_BEGIN/BytesPerInt,            // offset in fxsave save area
  93     DEF_XMM_OFFS(0),
  94     DEF_XMM_OFFS(1),
  95     // 2..15 are implied in range usage
  96     ymm_off = xmm_off + (XSAVE_AREA_YMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
  97     DEF_YMM_OFFS(0),
  98     DEF_YMM_OFFS(1),
  99     // 2..15 are implied in range usage
 100     zmm_high = xmm_off + (XSAVE_AREA_ZMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
 101     zmm_off = xmm_off + (XSAVE_AREA_UPPERBANK - XSAVE_AREA_BEGIN)/BytesPerInt,
 102     DEF_ZMM_OFFS(16),
 103     DEF_ZMM_OFFS(17),
 104     // 18..31 are implied in range usage
 105     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
 106     fpu_stateH_end,
 107     r15_off, r15H_off,
 108     r14_off, r14H_off,
 109     r13_off, r13H_off,
 110     r12_off, r12H_off,
 111     r11_off, r11H_off,
 112     r10_off, r10H_off,
 113     r9_off,  r9H_off,
 114     r8_off,  r8H_off,
 115     rdi_off, rdiH_off,
 116     rsi_off, rsiH_off,
 117     ignore_off, ignoreH_off,  // extra copy of rbp
 118     rsp_off, rspH_off,
 119     rbx_off, rbxH_off,
 120     rdx_off, rdxH_off,
 121     rcx_off, rcxH_off,
 122     rax_off, raxH_off,
 123     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 124     align_off, alignH_off,
 125     flags_off, flagsH_off,
 126     // The frame sender code expects that rbp will be in the "natural" place and
 127     // will override any oopMap setting for it. We must therefore force the layout
 128     // so that it agrees with the frame sender code.
 129     rbp_off, rbpH_off,        // copy of rbp we will restore
 130     return_off, returnH_off,  // slot for return address
 131     reg_save_size             // size in compiler stack slots
 132   };
 133 
 134  public:
 135   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
 136   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 137 
 138   // Offsets into the register save area
 139   // Used by deoptimization when it is managing result register
 140   // values on its own
 141 
 142   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 143   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 144   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 145   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 146   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 147 
 148   // During deoptimization only the result registers need to be restored,
 149   // all the other values have already been extracted.
 150   static void restore_result_registers(MacroAssembler* masm);
 151 };
 152 
 153 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
 154   int off = 0;
 155   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 156   if (UseAVX < 3) {
 157     num_xmm_regs = num_xmm_regs/2;
 158   }
 159 #if COMPILER2_OR_JVMCI
 160   if (save_vectors) {
 161     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 162     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 163   }
 164 #else
 165   assert(!save_vectors, "vectors are generated only by C2 and JVMCI");
 166 #endif
 167 
 168   // Always make the frame size 16-byte aligned, both vector and non vector stacks are always allocated
 169   int frame_size_in_bytes = align_up(reg_save_size*BytesPerInt, num_xmm_regs);
 170   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 171   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 172   // CodeBlob frame size is in words.
 173   int frame_size_in_words = frame_size_in_bytes / wordSize;
 174   *total_frame_words = frame_size_in_words;
 175 
 176   // Save registers, fpu state, and flags.
 177   // We assume caller has already pushed the return address onto the
 178   // stack, so rsp is 8-byte aligned here.
 179   // We push rpb twice in this sequence because we want the real rbp
 180   // to be under the return like a normal enter.
 181 
 182   __ enter();          // rsp becomes 16-byte aligned here
 183   __ push_CPU_state(); // Push a multiple of 16 bytes
 184 
 185   // push cpu state handles this on EVEX enabled targets
 186   if (save_vectors) {
 187     // Save upper half of YMM registers(0..15)
 188     int base_addr = XSAVE_AREA_YMM_BEGIN;
 189     for (int n = 0; n < 16; n++) {
 190       __ vextractf128_high(Address(rsp, base_addr+n*16), as_XMMRegister(n));
 191     }
 192     if (VM_Version::supports_evex()) {
 193       // Save upper half of ZMM registers(0..15)
 194       base_addr = XSAVE_AREA_ZMM_BEGIN;
 195       for (int n = 0; n < 16; n++) {
 196         __ vextractf64x4_high(Address(rsp, base_addr+n*32), as_XMMRegister(n));
 197       }
 198       // Save full ZMM registers(16..num_xmm_regs)
 199       base_addr = XSAVE_AREA_UPPERBANK;
 200       off = 0;
 201       int vector_len = Assembler::AVX_512bit;
 202       for (int n = 16; n < num_xmm_regs; n++) {
 203         __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len);
 204       }
 205     }
 206   } else {
 207     if (VM_Version::supports_evex()) {
 208       // Save upper bank of ZMM registers(16..31) for double/float usage
 209       int base_addr = XSAVE_AREA_UPPERBANK;
 210       off = 0;
 211       for (int n = 16; n < num_xmm_regs; n++) {
 212         __ movsd(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n));
 213       }
 214     }
 215   }
 216   __ vzeroupper();
 217   if (frame::arg_reg_save_area_bytes != 0) {
 218     // Allocate argument register save area
 219     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 220   }
 221 
 222   // Set an oopmap for the call site.  This oopmap will map all
 223   // oop-registers and debug-info registers as callee-saved.  This
 224   // will allow deoptimization at this safepoint to find all possible
 225   // debug-info recordings, as well as let GC find all oops.
 226 
 227   OopMapSet *oop_maps = new OopMapSet();
 228   OopMap* map = new OopMap(frame_size_in_slots, 0);
 229 
 230 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x))
 231 
 232   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
 233   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
 234   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
 235   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
 236   // rbp location is known implicitly by the frame sender code, needs no oopmap
 237   // and the location where rbp was saved by is ignored
 238   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
 239   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
 240   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
 241   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
 242   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
 243   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
 244   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
 245   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
 246   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
 247   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
 248   // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 249   // on EVEX enabled targets, we get it included in the xsave area
 250   off = xmm0_off;
 251   int delta = xmm1_off - off;
 252   for (int n = 0; n < 16; n++) {
 253     XMMRegister xmm_name = as_XMMRegister(n);
 254     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 255     off += delta;
 256   }
 257   if(UseAVX > 2) {
 258     // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 259     off = zmm16_off;
 260     delta = zmm17_off - off;
 261     for (int n = 16; n < num_xmm_regs; n++) {
 262       XMMRegister zmm_name = as_XMMRegister(n);
 263       map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg());
 264       off += delta;
 265     }
 266   }
 267 
 268 #if COMPILER2_OR_JVMCI
 269   if (save_vectors) {
 270     off = ymm0_off;
 271     int delta = ymm1_off - off;
 272     for (int n = 0; n < 16; n++) {
 273       XMMRegister ymm_name = as_XMMRegister(n);
 274       map->set_callee_saved(STACK_OFFSET(off), ymm_name->as_VMReg()->next(4));
 275       off += delta;
 276     }
 277   }
 278 #endif // COMPILER2_OR_JVMCI
 279 
 280   // %%% These should all be a waste but we'll keep things as they were for now
 281   if (true) {
 282     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
 283     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
 284     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
 285     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
 286     // rbp location is known implicitly by the frame sender code, needs no oopmap
 287     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
 288     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
 289     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
 290     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
 291     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
 292     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
 293     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
 294     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
 295     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
 296     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
 297     // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 298     // on EVEX enabled targets, we get it included in the xsave area
 299     off = xmm0H_off;
 300     delta = xmm1H_off - off;
 301     for (int n = 0; n < 16; n++) {
 302       XMMRegister xmm_name = as_XMMRegister(n);
 303       map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
 304       off += delta;
 305     }
 306     if (UseAVX > 2) {
 307       // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 308       off = zmm16H_off;
 309       delta = zmm17H_off - off;
 310       for (int n = 16; n < num_xmm_regs; n++) {
 311         XMMRegister zmm_name = as_XMMRegister(n);
 312         map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next());
 313         off += delta;
 314       }
 315     }
 316   }
 317 
 318   return map;
 319 }
 320 
 321 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 322   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 323   if (UseAVX < 3) {
 324     num_xmm_regs = num_xmm_regs/2;
 325   }
 326   if (frame::arg_reg_save_area_bytes != 0) {
 327     // Pop arg register save area
 328     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 329   }
 330 
 331 #if COMPILER2_OR_JVMCI
 332   if (restore_vectors) {
 333     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 334     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 335   }
 336 #else
 337   assert(!restore_vectors, "vectors are generated only by C2");
 338 #endif
 339 
 340   __ vzeroupper();
 341 
 342   // On EVEX enabled targets everything is handled in pop fpu state
 343   if (restore_vectors) {
 344     // Restore upper half of YMM registers (0..15)
 345     int base_addr = XSAVE_AREA_YMM_BEGIN;
 346     for (int n = 0; n < 16; n++) {
 347       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, base_addr+n*16));
 348     }
 349     if (VM_Version::supports_evex()) {
 350       // Restore upper half of ZMM registers (0..15)
 351       base_addr = XSAVE_AREA_ZMM_BEGIN;
 352       for (int n = 0; n < 16; n++) {
 353         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, base_addr+n*32));
 354       }
 355       // Restore full ZMM registers(16..num_xmm_regs)
 356       base_addr = XSAVE_AREA_UPPERBANK;
 357       int vector_len = Assembler::AVX_512bit;
 358       int off = 0;
 359       for (int n = 16; n < num_xmm_regs; n++) {
 360         __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len);
 361       }
 362     }
 363   } else {
 364     if (VM_Version::supports_evex()) {
 365       // Restore upper bank of ZMM registers(16..31) for double/float usage
 366       int base_addr = XSAVE_AREA_UPPERBANK;
 367       int off = 0;
 368       for (int n = 16; n < num_xmm_regs; n++) {
 369         __ movsd(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)));
 370       }
 371     }
 372   }
 373 
 374   // Recover CPU state
 375   __ pop_CPU_state();
 376   // Get the rbp described implicitly by the calling convention (no oopMap)
 377   __ pop(rbp);
 378 }
 379 
 380 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 381 
 382   // Just restore result register. Only used by deoptimization. By
 383   // now any callee save register that needs to be restored to a c2
 384   // caller of the deoptee has been extracted into the vframeArray
 385   // and will be stuffed into the c2i adapter we create for later
 386   // restoration so only result registers need to be restored here.
 387 
 388   // Restore fp result register
 389   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 390   // Restore integer result register
 391   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 392   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 393 
 394   // Pop all of the register save are off the stack except the return address
 395   __ addptr(rsp, return_offset_in_bytes());
 396 }
 397 
 398 // Is vector's size (in bytes) bigger than a size saved by default?
 399 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
 400 bool SharedRuntime::is_wide_vector(int size) {
 401   return size > 16;
 402 }
 403 
 404 size_t SharedRuntime::trampoline_size() {
 405   return 16;
 406 }
 407 
 408 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
 409   __ jump(RuntimeAddress(destination));
 410 }
 411 
 412 // The java_calling_convention describes stack locations as ideal slots on
 413 // a frame with no abi restrictions. Since we must observe abi restrictions
 414 // (like the placement of the register window) the slots must be biased by
 415 // the following value.
 416 static int reg2offset_in(VMReg r) {
 417   // Account for saved rbp and return address
 418   // This should really be in_preserve_stack_slots
 419   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 420 }
 421 
 422 static int reg2offset_out(VMReg r) {
 423   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 424 }
 425 
 426 // ---------------------------------------------------------------------------
 427 // Read the array of BasicTypes from a signature, and compute where the
 428 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 429 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 430 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 431 // as framesizes are fixed.
 432 // VMRegImpl::stack0 refers to the first slot 0(sp).
 433 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 434 // up to RegisterImpl::number_of_registers) are the 64-bit
 435 // integer registers.
 436 
 437 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 438 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 439 // units regardless of build. Of course for i486 there is no 64 bit build
 440 
 441 // The Java calling convention is a "shifted" version of the C ABI.
 442 // By skipping the first C ABI register we can call non-static jni methods
 443 // with small numbers of arguments without having to shuffle the arguments
 444 // at all. Since we control the java ABI we ought to at least get some
 445 // advantage out of it.
 446 
 447 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 448                                            VMRegPair *regs,
 449                                            int total_args_passed,
 450                                            int is_outgoing) {
 451 
 452   // Create the mapping between argument positions and
 453   // registers.
 454   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 455     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 456   };
 457   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 458     j_farg0, j_farg1, j_farg2, j_farg3,
 459     j_farg4, j_farg5, j_farg6, j_farg7
 460   };
 461 
 462 
 463   uint int_args = 0;
 464   uint fp_args = 0;
 465   uint stk_args = 0; // inc by 2 each time
 466 
 467   for (int i = 0; i < total_args_passed; i++) {
 468     switch (sig_bt[i]) {
 469     case T_BOOLEAN:
 470     case T_CHAR:
 471     case T_BYTE:
 472     case T_SHORT:
 473     case T_INT:
 474       if (int_args < Argument::n_int_register_parameters_j) {
 475         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 476       } else {
 477         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 478         stk_args += 2;
 479       }
 480       break;
 481     case T_VOID:
 482       // halves of T_LONG or T_DOUBLE
 483       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 484       regs[i].set_bad();
 485       break;
 486     case T_LONG:
 487       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 488       // fall through
 489     case T_OBJECT:
 490     case T_ARRAY:
 491     case T_ADDRESS:
 492     case T_VALUETYPEPTR:
 493       if (int_args < Argument::n_int_register_parameters_j) {
 494         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 495       } else {
 496         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 497         stk_args += 2;
 498       }
 499       break;
 500     case T_FLOAT:
 501       if (fp_args < Argument::n_float_register_parameters_j) {
 502         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 503       } else {
 504         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 505         stk_args += 2;
 506       }
 507       break;
 508     case T_DOUBLE:
 509       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 510       if (fp_args < Argument::n_float_register_parameters_j) {
 511         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 512       } else {
 513         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 514         stk_args += 2;
 515       }
 516       break;
 517     default:
 518       ShouldNotReachHere();
 519       break;
 520     }
 521   }
 522 
 523   return align_up(stk_args, 2);
 524 }
 525 
 526 // Same as java_calling_convention() but for multiple return
 527 // values. There's no way to store them on the stack so if we don't
 528 // have enough registers, multiple values can't be returned.
 529 const uint SharedRuntime::java_return_convention_max_int = Argument::n_int_register_parameters_j+1;
 530 const uint SharedRuntime::java_return_convention_max_float = Argument::n_float_register_parameters_j;
 531 int SharedRuntime::java_return_convention(const BasicType *sig_bt,
 532                                           VMRegPair *regs,
 533                                           int total_args_passed) {
 534   // Create the mapping between argument positions and
 535   // registers.
 536   static const Register INT_ArgReg[java_return_convention_max_int] = {
 537     rax, j_rarg5, j_rarg4, j_rarg3, j_rarg2, j_rarg1, j_rarg0
 538   };
 539   static const XMMRegister FP_ArgReg[java_return_convention_max_float] = {
 540     j_farg0, j_farg1, j_farg2, j_farg3,
 541     j_farg4, j_farg5, j_farg6, j_farg7
 542   };
 543 
 544 
 545   uint int_args = 0;
 546   uint fp_args = 0;
 547 
 548   for (int i = 0; i < total_args_passed; i++) {
 549     switch (sig_bt[i]) {
 550     case T_BOOLEAN:
 551     case T_CHAR:
 552     case T_BYTE:
 553     case T_SHORT:
 554     case T_INT:
 555       if (int_args < Argument::n_int_register_parameters_j+1) {
 556         regs[i].set1(INT_ArgReg[int_args]->as_VMReg());
 557         int_args++;
 558       } else {
 559         return -1;
 560       }
 561       break;
 562     case T_VOID:
 563       // halves of T_LONG or T_DOUBLE
 564       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 565       regs[i].set_bad();
 566       break;
 567     case T_LONG:
 568       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 569       // fall through
 570     case T_OBJECT:
 571     case T_ARRAY:
 572     case T_ADDRESS:
 573     case T_METADATA:
 574     case T_VALUETYPEPTR:
 575       if (int_args < Argument::n_int_register_parameters_j+1) {
 576         regs[i].set2(INT_ArgReg[int_args]->as_VMReg());
 577         int_args++;
 578       } else {
 579         return -1;
 580       }
 581       break;
 582     case T_FLOAT:
 583       if (fp_args < Argument::n_float_register_parameters_j) {
 584         regs[i].set1(FP_ArgReg[fp_args]->as_VMReg());
 585         fp_args++;
 586       } else {
 587         return -1;
 588       }
 589       break;
 590     case T_DOUBLE:
 591       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 592       if (fp_args < Argument::n_float_register_parameters_j) {
 593         regs[i].set2(FP_ArgReg[fp_args]->as_VMReg());
 594         fp_args++;
 595       } else {
 596         return -1;
 597       }
 598       break;
 599     default:
 600       ShouldNotReachHere();
 601       break;
 602     }
 603   }
 604 
 605   return int_args + fp_args;
 606 }
 607 
 608 // Patch the callers callsite with entry to compiled code if it exists.
 609 static void patch_callers_callsite(MacroAssembler *masm) {
 610   Label L;
 611   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 612   __ jcc(Assembler::equal, L);
 613 
 614   // Save the current stack pointer
 615   __ mov(r13, rsp);
 616   // Schedule the branch target address early.
 617   // Call into the VM to patch the caller, then jump to compiled callee
 618   // rax isn't live so capture return address while we easily can
 619   __ movptr(rax, Address(rsp, 0));
 620 
 621   // align stack so push_CPU_state doesn't fault
 622   __ andptr(rsp, -(StackAlignmentInBytes));
 623   __ push_CPU_state();
 624   __ vzeroupper();
 625   // VM needs caller's callsite
 626   // VM needs target method
 627   // This needs to be a long call since we will relocate this adapter to
 628   // the codeBuffer and it may not reach
 629 
 630   // Allocate argument register save area
 631   if (frame::arg_reg_save_area_bytes != 0) {
 632     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 633   }
 634   __ mov(c_rarg0, rbx);
 635   __ mov(c_rarg1, rax);
 636   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 637 
 638   // De-allocate argument register save area
 639   if (frame::arg_reg_save_area_bytes != 0) {
 640     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 641   }
 642 
 643   __ vzeroupper();
 644   __ pop_CPU_state();
 645   // restore sp
 646   __ mov(rsp, r13);
 647   __ bind(L);
 648 }
 649 
 650 // For each value type argument, sig includes the list of fields of
 651 // the value type. This utility function computes the number of
 652 // arguments for the call if value types are passed by reference (the
 653 // calling convention the interpreter expects).
 654 static int compute_total_args_passed_int(const GrowableArray<SigEntry>& sig_extended) {
 655   int total_args_passed = 0;
 656   if (ValueTypePassFieldsAsArgs) {
 657     for (int i = 0; i < sig_extended.length(); i++) {
 658       BasicType bt = sig_extended.at(i)._bt;
 659       if (bt == T_VALUETYPE) {
 660         // In sig_extended, a value type argument starts with:
 661         // T_VALUETYPE, followed by the types of the fields of the
 662         // value type and T_VOID to mark the end of the value
 663         // type. Value types are flattened so, for instance, in the
 664         // case of a value type with an int field and a value type
 665         // field that itself has 2 fields, an int and a long:
 666         // T_VALUETYPE T_INT T_VALUETYPE T_INT T_LONG T_VOID (second
 667         // slot for the T_LONG) T_VOID (inner T_VALUETYPE) T_VOID
 668         // (outer T_VALUETYPE)
 669         total_args_passed++;
 670         int vt = 1;
 671         do {
 672           i++;
 673           BasicType bt = sig_extended.at(i)._bt;
 674           BasicType prev_bt = sig_extended.at(i-1)._bt;
 675           if (bt == T_VALUETYPE) {
 676             vt++;
 677           } else if (bt == T_VOID &&
 678                      prev_bt != T_LONG &&
 679                      prev_bt != T_DOUBLE) {
 680             vt--;
 681           }
 682         } while (vt != 0);
 683       } else {
 684         total_args_passed++;
 685       }
 686     }
 687   } else {
 688     total_args_passed = sig_extended.length();
 689   }
 690   return total_args_passed;
 691 }
 692 
 693 
 694 static void gen_c2i_adapter_helper(MacroAssembler* masm,
 695                                    BasicType bt,
 696                                    BasicType prev_bt,
 697                                    size_t size_in_bytes,
 698                                    const VMRegPair& reg_pair,
 699                                    const Address& to,
 700                                    int extraspace,
 701                                    bool is_oop) {
 702   assert(bt != T_VALUETYPE || !ValueTypePassFieldsAsArgs, "no value type here");
 703   if (bt == T_VOID) {
 704     assert(prev_bt == T_LONG || prev_bt == T_DOUBLE, "missing half");
 705     return;
 706   }
 707 
 708   // Say 4 args:
 709   // i   st_off
 710   // 0   32 T_LONG
 711   // 1   24 T_VOID
 712   // 2   16 T_OBJECT
 713   // 3    8 T_BOOL
 714   // -    0 return address
 715   //
 716   // However to make thing extra confusing. Because we can fit a long/double in
 717   // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 718   // leaves one slot empty and only stores to a single slot. In this case the
 719   // slot that is occupied is the T_VOID slot. See I said it was confusing.
 720 
 721   bool wide = (size_in_bytes == wordSize);
 722   VMReg r_1 = reg_pair.first();
 723   VMReg r_2 = reg_pair.second();
 724   assert(r_2->is_valid() == wide, "invalid size");
 725   if (!r_1->is_valid()) {
 726     assert(!r_2->is_valid(), "must be invalid");
 727     return;
 728   }
 729 
 730   if (!r_1->is_XMMRegister()) {
 731     Register val = rax;
 732     assert_different_registers(to.base(), val);
 733     if(r_1->is_stack()) {
 734       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 735       __ load_sized_value(val, Address(rsp, ld_off), size_in_bytes, /* is_signed */ false);
 736     } else {
 737       val = r_1->as_Register();
 738     }
 739     if (is_oop) {
 740       __ store_heap_oop(to, val);
 741     } else {
 742       __ store_sized_value(to, val, size_in_bytes);
 743     }
 744   } else {
 745     if (wide) {
 746       __ movdbl(to, r_1->as_XMMRegister());
 747     } else {
 748       __ movflt(to, r_1->as_XMMRegister());
 749     }
 750   }
 751 }
 752 
 753 static void gen_c2i_adapter(MacroAssembler *masm,
 754                             const GrowableArray<SigEntry>& sig_extended,
 755                             const VMRegPair *regs,
 756                             Label& skip_fixup,
 757                             address start,
 758                             OopMapSet*& oop_maps,
 759                             int& frame_complete,
 760                             int& frame_size_in_words) {
 761   // Before we get into the guts of the C2I adapter, see if we should be here
 762   // at all.  We've come from compiled code and are attempting to jump to the
 763   // interpreter, which means the caller made a static call to get here
 764   // (vcalls always get a compiled target if there is one).  Check for a
 765   // compiled target.  If there is one, we need to patch the caller's call.
 766   patch_callers_callsite(masm);
 767 
 768   __ bind(skip_fixup);
 769 
 770   bool has_value_argument = false;
 771   if (ValueTypePassFieldsAsArgs) {
 772     // Is there a value type argument?
 773     for (int i = 0; i < sig_extended.length() && !has_value_argument; i++) {
 774       has_value_argument = (sig_extended.at(i)._bt == T_VALUETYPE);
 775     }
 776     if (has_value_argument) {
 777       // There is at least a value type argument: we're coming from
 778       // compiled code so we have no buffers to back the value
 779       // types. Allocate the buffers here with a runtime call.
 780       oop_maps = new OopMapSet();
 781       OopMap* map = NULL;
 782 
 783       map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
 784 
 785       frame_complete = __ offset();
 786 
 787       __ set_last_Java_frame(noreg, noreg, NULL);
 788 
 789       __ mov(c_rarg0, r15_thread);
 790       __ mov(c_rarg1, rbx);
 791 
 792       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::allocate_value_types)));
 793 
 794       oop_maps->add_gc_map((int)(__ pc() - start), map);
 795       __ reset_last_Java_frame(false);
 796 
 797       RegisterSaver::restore_live_registers(masm);
 798 
 799       Label no_exception;
 800       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 801       __ jcc(Assembler::equal, no_exception);
 802 
 803       __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
 804       __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 805       __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 806 
 807       __ bind(no_exception);
 808 
 809       // We get an array of objects from the runtime call
 810       __ get_vm_result(r13, r15_thread); // Use r13 as temporary because r10 is trashed by movptr()
 811       __ get_vm_result_2(rbx, r15_thread); // TODO: required to keep the callee Method live?
 812       __ mov(r10, r13);
 813     }
 814   }
 815 
 816   // Since all args are passed on the stack, total_args_passed *
 817   // Interpreter::stackElementSize is the space we need. Plus 1 because
 818   // we also account for the return address location since
 819   // we store it first rather than hold it in rax across all the shuffling
 820   int total_args_passed = compute_total_args_passed_int(sig_extended);
 821   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 822 
 823   // stack is aligned, keep it that way
 824   extraspace = align_up(extraspace, 2*wordSize);
 825 
 826   // Get return address
 827   __ pop(rax);
 828 
 829   // set senderSP value
 830   __ mov(r13, rsp);
 831 
 832   __ subptr(rsp, extraspace);
 833 
 834   // Store the return address in the expected location
 835   __ movptr(Address(rsp, 0), rax);
 836 
 837   // Now write the args into the outgoing interpreter space
 838 
 839   // next_arg_comp is the next argument from the compiler point of
 840   // view (value type fields are passed in registers/on the stack). In
 841   // sig_extended, a value type argument starts with: T_VALUETYPE,
 842   // followed by the types of the fields of the value type and T_VOID
 843   // to mark the end of the value type. ignored counts the number of
 844   // T_VALUETYPE/T_VOID. next_vt_arg is the next value type argument:
 845   // used to get the buffer for that argument from the pool of buffers
 846   // we allocated above and want to pass to the
 847   // interpreter. next_arg_int is the next argument from the
 848   // interpreter point of view (value types are passed by reference).
 849   bool has_oop_field = false;
 850   for (int next_arg_comp = 0, ignored = 0, next_vt_arg = 0, next_arg_int = 0;
 851        next_arg_comp < sig_extended.length(); next_arg_comp++) {
 852     assert(ignored <= next_arg_comp, "shouldn't skip over more slot than there are arguments");
 853     assert(next_arg_int < total_args_passed, "more arguments for the interpreter than expected?");
 854     BasicType bt = sig_extended.at(next_arg_comp)._bt;
 855     int st_off = (total_args_passed - next_arg_int) * Interpreter::stackElementSize;
 856     if (!ValueTypePassFieldsAsArgs || bt != T_VALUETYPE) {
 857       int next_off = st_off - Interpreter::stackElementSize;
 858       const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : st_off;
 859       const VMRegPair reg_pair = regs[next_arg_comp-ignored];
 860       size_t size_in_bytes = reg_pair.second()->is_valid() ? 8 : 4;
 861       gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended.at(next_arg_comp-1)._bt : T_ILLEGAL,
 862                              size_in_bytes, reg_pair, Address(rsp, offset), extraspace, false);
 863       next_arg_int++;
 864 #ifdef ASSERT
 865       if (bt == T_LONG || bt == T_DOUBLE) {
 866         // Overwrite the unused slot with known junk
 867         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 868         __ movptr(Address(rsp, st_off), rax);
 869       }
 870 #endif /* ASSERT */
 871     } else {
 872       ignored++;
 873       // get the buffer from the just allocated pool of buffers
 874       int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + next_vt_arg * type2aelembytes(T_VALUETYPE);
 875       __ load_heap_oop(r11, Address(r10, index));
 876       next_vt_arg++; next_arg_int++;
 877       int vt = 1;
 878       // write fields we get from compiled code in registers/stack
 879       // slots to the buffer: we know we are done with that value type
 880       // argument when we hit the T_VOID that acts as an end of value
 881       // type delimiter for this value type. Value types are flattened
 882       // so we might encounter embedded value types. Each entry in
 883       // sig_extended contains a field offset in the buffer.
 884       do {
 885         next_arg_comp++;
 886         BasicType bt = sig_extended.at(next_arg_comp)._bt;
 887         BasicType prev_bt = sig_extended.at(next_arg_comp-1)._bt;
 888         if (bt == T_VALUETYPE) {
 889           vt++;
 890           ignored++;
 891         } else if (bt == T_VOID &&
 892                    prev_bt != T_LONG &&
 893                    prev_bt != T_DOUBLE) {
 894           vt--;
 895           ignored++;
 896         } else {
 897           int off = sig_extended.at(next_arg_comp)._offset;
 898           assert(off > 0, "offset in object should be positive");
 899           size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize;
 900           bool is_oop = (bt == T_OBJECT || bt == T_VALUETYPEPTR || bt == T_ARRAY);
 901           has_oop_field = has_oop_field || is_oop;
 902           gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended.at(next_arg_comp-1)._bt : T_ILLEGAL,
 903                                  size_in_bytes, regs[next_arg_comp-ignored], Address(r11, off), extraspace, is_oop);
 904         }
 905       } while (vt != 0);
 906       // pass the buffer to the interpreter
 907       __ movptr(Address(rsp, st_off), r11);
 908     }
 909   }
 910 
 911   // If a value type was allocated and initialized, apply post barrier to all oop fields
 912   if (has_value_argument && has_oop_field) {
 913     __ push(r13); // save senderSP
 914     __ push(rbx); // save callee
 915     // Allocate argument register save area
 916     if (frame::arg_reg_save_area_bytes != 0) {
 917       __ subptr(rsp, frame::arg_reg_save_area_bytes);
 918     }
 919     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::apply_post_barriers), r15_thread, r10);
 920     // De-allocate argument register save area
 921     if (frame::arg_reg_save_area_bytes != 0) {
 922       __ addptr(rsp, frame::arg_reg_save_area_bytes);
 923     }
 924     __ pop(rbx); // restore callee
 925     __ pop(r13); // restore sender SP
 926   }
 927 
 928   // Schedule the branch target address early.
 929   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 930   __ jmp(rcx);
 931 }
 932 
 933 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 934                         address code_start, address code_end,
 935                         Label& L_ok) {
 936   Label L_fail;
 937   __ lea(temp_reg, ExternalAddress(code_start));
 938   __ cmpptr(pc_reg, temp_reg);
 939   __ jcc(Assembler::belowEqual, L_fail);
 940   __ lea(temp_reg, ExternalAddress(code_end));
 941   __ cmpptr(pc_reg, temp_reg);
 942   __ jcc(Assembler::below, L_ok);
 943   __ bind(L_fail);
 944 }
 945 
 946 static void gen_i2c_adapter_helper(MacroAssembler* masm,
 947                                    BasicType bt,
 948                                    BasicType prev_bt,
 949                                    size_t size_in_bytes,
 950                                    const VMRegPair& reg_pair,
 951                                    const Address& from,
 952                                    bool is_oop) {
 953   assert(bt != T_VALUETYPE || !ValueTypePassFieldsAsArgs, "no value type here");
 954   if (bt == T_VOID) {
 955     // Longs and doubles are passed in native word order, but misaligned
 956     // in the 32-bit build.
 957     assert(prev_bt == T_LONG || prev_bt == T_DOUBLE, "missing half");
 958     return;
 959   }
 960   assert(!reg_pair.second()->is_valid() || reg_pair.first()->next() == reg_pair.second(),
 961          "scrambled load targets?");
 962 
 963   bool wide = (size_in_bytes == wordSize);
 964   VMReg r_1 = reg_pair.first();
 965   VMReg r_2 = reg_pair.second();
 966   assert(r_2->is_valid() == wide, "invalid size");
 967   if (!r_1->is_valid()) {
 968     assert(!r_2->is_valid(), "must be invalid");
 969     return;
 970   }
 971 
 972   bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN);
 973   if (!r_1->is_XMMRegister()) {
 974     // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 975     // and if we end up going thru a c2i because of a miss a reasonable value of r13
 976     // will be generated.
 977     Register dst = r_1->is_stack() ? r13 : r_1->as_Register();
 978     if (is_oop) {
 979       __ load_heap_oop(dst, from);
 980     } else {
 981       __ load_sized_value(dst, from, size_in_bytes, is_signed);
 982     }
 983     if (r_1->is_stack()) {
 984       // Convert stack slot to an SP offset (+ wordSize to account for return address)
 985       int st_off = reg_pair.first()->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 986       __ movq(Address(rsp, st_off), dst);
 987     }
 988   } else {
 989     if (wide) {
 990       __ movdbl(r_1->as_XMMRegister(), from);
 991     } else {
 992       __ movflt(r_1->as_XMMRegister(), from);
 993     }
 994   }
 995 }
 996 
 997 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 998                                     int comp_args_on_stack,
 999                                     const GrowableArray<SigEntry>& sig_extended,
1000                                     const VMRegPair *regs) {
1001 
1002   // Note: r13 contains the senderSP on entry. We must preserve it since
1003   // we may do a i2c -> c2i transition if we lose a race where compiled
1004   // code goes non-entrant while we get args ready.
1005   // In addition we use r13 to locate all the interpreter args as
1006   // we must align the stack to 16 bytes on an i2c entry else we
1007   // lose alignment we expect in all compiled code and register
1008   // save code can segv when fxsave instructions find improperly
1009   // aligned stack pointer.
1010 
1011   // Adapters can be frameless because they do not require the caller
1012   // to perform additional cleanup work, such as correcting the stack pointer.
1013   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
1014   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
1015   // even if a callee has modified the stack pointer.
1016   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
1017   // routinely repairs its caller's stack pointer (from sender_sp, which is set
1018   // up via the senderSP register).
1019   // In other words, if *either* the caller or callee is interpreted, we can
1020   // get the stack pointer repaired after a call.
1021   // This is why c2i and i2c adapters cannot be indefinitely composed.
1022   // In particular, if a c2i adapter were to somehow call an i2c adapter,
1023   // both caller and callee would be compiled methods, and neither would
1024   // clean up the stack pointer changes performed by the two adapters.
1025   // If this happens, control eventually transfers back to the compiled
1026   // caller, but with an uncorrected stack, causing delayed havoc.
1027 
1028   Label value_arg_is_null;
1029   bool has_null_check = false;
1030   if (EnableValhalla) {
1031     for (int i = 0; i < sig_extended.length(); i++) {
1032       BasicType bt = sig_extended.at(i)._bt;
1033       if (bt == T_VALUETYPEPTR) {
1034         // Add null check for value type argument
1035         int ld_off = (sig_extended.length() - i) * Interpreter::stackElementSize;
1036         __ cmpptr(Address(rsp, ld_off), 0);
1037         __ jcc(Assembler::equal, value_arg_is_null);
1038         has_null_check = true;
1039       }
1040     }
1041   }
1042 
1043   // Pick up the return address
1044   __ movptr(rax, Address(rsp, 0));
1045 
1046   if (VerifyAdapterCalls &&
1047       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
1048     // So, let's test for cascading c2i/i2c adapters right now.
1049     //  assert(Interpreter::contains($return_addr) ||
1050     //         StubRoutines::contains($return_addr),
1051     //         "i2c adapter must return to an interpreter frame");
1052     __ block_comment("verify_i2c { ");
1053     Label L_ok;
1054     if (Interpreter::code() != NULL)
1055       range_check(masm, rax, r11,
1056                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
1057                   L_ok);
1058     if (StubRoutines::code1() != NULL)
1059       range_check(masm, rax, r11,
1060                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
1061                   L_ok);
1062     if (StubRoutines::code2() != NULL)
1063       range_check(masm, rax, r11,
1064                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
1065                   L_ok);
1066     const char* msg = "i2c adapter must return to an interpreter frame";
1067     __ block_comment(msg);
1068     __ stop(msg);
1069     __ bind(L_ok);
1070     __ block_comment("} verify_i2ce ");
1071   }
1072 
1073   // Must preserve original SP for loading incoming arguments because
1074   // we need to align the outgoing SP for compiled code.
1075   __ movptr(r11, rsp);
1076 
1077   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
1078   // in registers, we will occasionally have no stack args.
1079   int comp_words_on_stack = 0;
1080   if (comp_args_on_stack) {
1081     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
1082     // registers are below.  By subtracting stack0, we either get a negative
1083     // number (all values in registers) or the maximum stack slot accessed.
1084 
1085     // Convert 4-byte c2 stack slots to words.
1086     comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
1087     // Round up to miminum stack alignment, in wordSize
1088     comp_words_on_stack = align_up(comp_words_on_stack, 2);
1089     __ subptr(rsp, comp_words_on_stack * wordSize);
1090   }
1091 
1092 
1093   // Ensure compiled code always sees stack at proper alignment
1094   __ andptr(rsp, -16);
1095 
1096   // push the return address and misalign the stack that youngest frame always sees
1097   // as far as the placement of the call instruction
1098   __ push(rax);
1099 
1100   // Put saved SP in another register
1101   const Register saved_sp = rax;
1102   __ movptr(saved_sp, r11);
1103 
1104   // Will jump to the compiled code just as if compiled code was doing it.
1105   // Pre-load the register-jump target early, to schedule it better.
1106   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
1107 
1108 #if INCLUDE_JVMCI
1109   if (EnableJVMCI || UseAOT) {
1110     // check if this call should be routed towards a specific entry point
1111     __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
1112     Label no_alternative_target;
1113     __ jcc(Assembler::equal, no_alternative_target);
1114     __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
1115     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
1116     __ bind(no_alternative_target);
1117   }
1118 #endif // INCLUDE_JVMCI
1119 
1120   int total_args_passed = compute_total_args_passed_int(sig_extended);
1121   // Now generate the shuffle code.  Pick up all register args and move the
1122   // rest through the floating point stack top.
1123 
1124   // next_arg_comp is the next argument from the compiler point of
1125   // view (value type fields are passed in registers/on the stack). In
1126   // sig_extended, a value type argument starts with: T_VALUETYPE,
1127   // followed by the types of the fields of the value type and T_VOID
1128   // to mark the end of the value type. ignored counts the number of
1129   // T_VALUETYPE/T_VOID. next_arg_int is the next argument from the
1130   // interpreter point of view (value types are passed by reference).
1131   for (int next_arg_comp = 0, ignored = 0, next_arg_int = 0; next_arg_comp < sig_extended.length(); next_arg_comp++) {
1132     assert(ignored <= next_arg_comp, "shouldn't skip over more slot than there are arguments");
1133     assert(next_arg_int < total_args_passed, "more arguments from the interpreter than expected?");
1134     BasicType bt = sig_extended.at(next_arg_comp)._bt;
1135     int ld_off = (total_args_passed - next_arg_int)*Interpreter::stackElementSize;
1136     if (!ValueTypePassFieldsAsArgs || bt != T_VALUETYPE) {
1137       // Load in argument order going down.
1138       // Point to interpreter value (vs. tag)
1139       int next_off = ld_off - Interpreter::stackElementSize;
1140       int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : ld_off;
1141       const VMRegPair reg_pair = regs[next_arg_comp-ignored];
1142       size_t size_in_bytes = reg_pair.second()->is_valid() ? 8 : 4;
1143       gen_i2c_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended.at(next_arg_comp-1)._bt : T_ILLEGAL,
1144                              size_in_bytes, reg_pair, Address(saved_sp, offset), false);
1145       next_arg_int++;
1146     } else {
1147       next_arg_int++;
1148       ignored++;
1149       // get the buffer for that value type
1150       __ movptr(r10, Address(saved_sp, ld_off));
1151       int vt = 1;
1152       // load fields to registers/stack slots from the buffer: we know
1153       // we are done with that value type argument when we hit the
1154       // T_VOID that acts as an end of value type delimiter for this
1155       // value type. Value types are flattened so we might encounter
1156       // embedded value types. Each entry in sig_extended contains a
1157       // field offset in the buffer.
1158       do {
1159         next_arg_comp++;
1160         BasicType bt = sig_extended.at(next_arg_comp)._bt;
1161         BasicType prev_bt = sig_extended.at(next_arg_comp-1)._bt;
1162         if (bt == T_VALUETYPE) {
1163           vt++;
1164           ignored++;
1165         } else if (bt == T_VOID &&
1166                    prev_bt != T_LONG &&
1167                    prev_bt != T_DOUBLE) {
1168           vt--;
1169           ignored++;
1170         } else {
1171           int off = sig_extended.at(next_arg_comp)._offset;
1172           assert(off > 0, "offset in object should be positive");
1173           size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize;
1174           bool is_oop = (bt == T_OBJECT || bt == T_VALUETYPEPTR || bt == T_ARRAY);
1175           gen_i2c_adapter_helper(masm, bt, prev_bt, size_in_bytes, regs[next_arg_comp - ignored], Address(r10, off), is_oop);
1176         }
1177       } while (vt != 0);
1178     }
1179   }
1180 
1181   // 6243940 We might end up in handle_wrong_method if
1182   // the callee is deoptimized as we race thru here. If that
1183   // happens we don't want to take a safepoint because the
1184   // caller frame will look interpreted and arguments are now
1185   // "compiled" so it is much better to make this transition
1186   // invisible to the stack walking code. Unfortunately if
1187   // we try and find the callee by normal means a safepoint
1188   // is possible. So we stash the desired callee in the thread
1189   // and the vm will find there should this case occur.
1190 
1191   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
1192 
1193   // put Method* where a c2i would expect should we end up there
1194   // only needed because of c2 resolve stubs return Method* as a result in
1195   // rax
1196   __ mov(rax, rbx);
1197   __ jmp(r11);
1198 
1199   if (has_null_check) {
1200     __ bind(value_arg_is_null);
1201     // TODO For now, we just call the interpreter if a value type argument is NULL
1202     __ movptr(r11, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
1203     __ jmp(r11);
1204   }
1205 }
1206 
1207 // ---------------------------------------------------------------
1208 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1209                                                             int comp_args_on_stack,
1210                                                             const GrowableArray<SigEntry>& sig_extended,
1211                                                             const VMRegPair *regs,
1212                                                             AdapterFingerPrint* fingerprint,
1213                                                             AdapterBlob*& new_adapter) {
1214   address i2c_entry = __ pc();
1215 
1216   gen_i2c_adapter(masm, comp_args_on_stack, sig_extended, regs);
1217 
1218   // -------------------------------------------------------------------------
1219   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
1220   // to the interpreter.  The args start out packed in the compiled layout.  They
1221   // need to be unpacked into the interpreter layout.  This will almost always
1222   // require some stack space.  We grow the current (compiled) stack, then repack
1223   // the args.  We  finally end in a jump to the generic interpreter entry point.
1224   // On exit from the interpreter, the interpreter will restore our SP (lest the
1225   // compiled code, which relys solely on SP and not RBP, get sick).
1226 
1227   address c2i_unverified_entry = __ pc();
1228   Label skip_fixup;
1229   Label ok;
1230 
1231   Register holder = rax;
1232   Register receiver = j_rarg0;
1233   Register temp = rbx;
1234 
1235   {
1236     __ load_klass(temp, receiver);
1237     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
1238     __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
1239     __ jcc(Assembler::equal, ok);
1240     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1241 
1242     __ bind(ok);
1243     // Method might have been compiled since the call site was patched to
1244     // interpreted if that is the case treat it as a miss so we can get
1245     // the call site corrected.
1246     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
1247     __ jcc(Assembler::equal, skip_fixup);
1248     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1249   }
1250 
1251   address c2i_entry = __ pc();
1252 
1253   OopMapSet* oop_maps = NULL;
1254   int frame_complete = CodeOffsets::frame_never_safe;
1255   int frame_size_in_words = 0;
1256   gen_c2i_adapter(masm, sig_extended, regs, skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words);
1257 
1258   __ flush();
1259   new_adapter = AdapterBlob::create(masm->code(), frame_complete, frame_size_in_words, oop_maps);
1260 
1261   // If value types are passed as fields, save the extended signature as symbol in
1262   // the AdapterHandlerEntry to be used by nmethod::preserve_callee_argument_oops().
1263   Symbol* extended_signature = NULL;
1264   if (ValueTypePassFieldsAsArgs) {
1265     bool has_value_argument = false;
1266     Thread* THREAD = Thread::current();
1267     ResourceMark rm(THREAD);
1268     int length = sig_extended.length();
1269     char* sig_str = NEW_RESOURCE_ARRAY(char, 2*length + 3);
1270     int idx = 0;
1271     sig_str[idx++] = '(';
1272     for (int index = 0; index < length; index++) {
1273       BasicType bt = sig_extended.at(index)._bt;
1274       if (bt == T_VALUETYPE) {
1275         has_value_argument = true;
1276       } else if (bt == T_VALUETYPEPTR) {
1277         // non-flattened value type field
1278         sig_str[idx++] = type2char(T_VALUETYPE);
1279         sig_str[idx++] = ';';
1280       } else if (bt == T_VOID) {
1281         // Ignore
1282       } else {
1283         if (bt == T_ARRAY) {
1284           bt = T_OBJECT; // We don't know the element type, treat as Object
1285         }
1286         sig_str[idx++] = type2char(bt);
1287         if (bt == T_OBJECT) {
1288           sig_str[idx++] = ';';
1289         }
1290       }
1291     }
1292     sig_str[idx++] = ')';
1293     sig_str[idx++] = '\0';
1294     if (has_value_argument) {
1295       // Extended signature is only required if a value type argument is passed
1296       extended_signature = SymbolTable::new_permanent_symbol(sig_str, THREAD);
1297     }
1298   }
1299 
1300   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, extended_signature);
1301 }
1302 
1303 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1304                                          VMRegPair *regs,
1305                                          VMRegPair *regs2,
1306                                          int total_args_passed) {
1307   assert(regs2 == NULL, "not needed on x86");
1308 // We return the amount of VMRegImpl stack slots we need to reserve for all
1309 // the arguments NOT counting out_preserve_stack_slots.
1310 
1311 // NOTE: These arrays will have to change when c1 is ported
1312 #ifdef _WIN64
1313     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1314       c_rarg0, c_rarg1, c_rarg2, c_rarg3
1315     };
1316     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1317       c_farg0, c_farg1, c_farg2, c_farg3
1318     };
1319 #else
1320     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1321       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
1322     };
1323     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1324       c_farg0, c_farg1, c_farg2, c_farg3,
1325       c_farg4, c_farg5, c_farg6, c_farg7
1326     };
1327 #endif // _WIN64
1328 
1329 
1330     uint int_args = 0;
1331     uint fp_args = 0;
1332     uint stk_args = 0; // inc by 2 each time
1333 
1334     for (int i = 0; i < total_args_passed; i++) {
1335       switch (sig_bt[i]) {
1336       case T_BOOLEAN:
1337       case T_CHAR:
1338       case T_BYTE:
1339       case T_SHORT:
1340       case T_INT:
1341         if (int_args < Argument::n_int_register_parameters_c) {
1342           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
1343 #ifdef _WIN64
1344           fp_args++;
1345           // Allocate slots for callee to stuff register args the stack.
1346           stk_args += 2;
1347 #endif
1348         } else {
1349           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1350           stk_args += 2;
1351         }
1352         break;
1353       case T_LONG:
1354         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1355         // fall through
1356       case T_OBJECT:
1357       case T_ARRAY:
1358       case T_ADDRESS:
1359       case T_METADATA:
1360         if (int_args < Argument::n_int_register_parameters_c) {
1361           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
1362 #ifdef _WIN64
1363           fp_args++;
1364           stk_args += 2;
1365 #endif
1366         } else {
1367           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1368           stk_args += 2;
1369         }
1370         break;
1371       case T_FLOAT:
1372         if (fp_args < Argument::n_float_register_parameters_c) {
1373           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
1374 #ifdef _WIN64
1375           int_args++;
1376           // Allocate slots for callee to stuff register args the stack.
1377           stk_args += 2;
1378 #endif
1379         } else {
1380           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1381           stk_args += 2;
1382         }
1383         break;
1384       case T_DOUBLE:
1385         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1386         if (fp_args < Argument::n_float_register_parameters_c) {
1387           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
1388 #ifdef _WIN64
1389           int_args++;
1390           // Allocate slots for callee to stuff register args the stack.
1391           stk_args += 2;
1392 #endif
1393         } else {
1394           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1395           stk_args += 2;
1396         }
1397         break;
1398       case T_VOID: // Halves of longs and doubles
1399         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
1400         regs[i].set_bad();
1401         break;
1402       default:
1403         ShouldNotReachHere();
1404         break;
1405       }
1406     }
1407 #ifdef _WIN64
1408   // windows abi requires that we always allocate enough stack space
1409   // for 4 64bit registers to be stored down.
1410   if (stk_args < 8) {
1411     stk_args = 8;
1412   }
1413 #endif // _WIN64
1414 
1415   return stk_args;
1416 }
1417 
1418 // On 64 bit we will store integer like items to the stack as
1419 // 64 bits items (sparc abi) even though java would only store
1420 // 32bits for a parameter. On 32bit it will simply be 32 bits
1421 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1422 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1423   if (src.first()->is_stack()) {
1424     if (dst.first()->is_stack()) {
1425       // stack to stack
1426       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
1427       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1428     } else {
1429       // stack to reg
1430       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1431     }
1432   } else if (dst.first()->is_stack()) {
1433     // reg to stack
1434     // Do we really have to sign extend???
1435     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1436     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1437   } else {
1438     // Do we really have to sign extend???
1439     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
1440     if (dst.first() != src.first()) {
1441       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1442     }
1443   }
1444 }
1445 
1446 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1447   if (src.first()->is_stack()) {
1448     if (dst.first()->is_stack()) {
1449       // stack to stack
1450       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1451       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1452     } else {
1453       // stack to reg
1454       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1455     }
1456   } else if (dst.first()->is_stack()) {
1457     // reg to stack
1458     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1459   } else {
1460     if (dst.first() != src.first()) {
1461       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1462     }
1463   }
1464 }
1465 
1466 // An oop arg. Must pass a handle not the oop itself
1467 static void object_move(MacroAssembler* masm,
1468                         OopMap* map,
1469                         int oop_handle_offset,
1470                         int framesize_in_slots,
1471                         VMRegPair src,
1472                         VMRegPair dst,
1473                         bool is_receiver,
1474                         int* receiver_offset) {
1475 
1476   // must pass a handle. First figure out the location we use as a handle
1477 
1478   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
1479 
1480   // See if oop is NULL if it is we need no handle
1481 
1482   if (src.first()->is_stack()) {
1483 
1484     // Oop is already on the stack as an argument
1485     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1486     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1487     if (is_receiver) {
1488       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1489     }
1490 
1491     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1492     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1493     // conditionally move a NULL
1494     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1495   } else {
1496 
1497     // Oop is in an a register we must store it to the space we reserve
1498     // on the stack for oop_handles and pass a handle if oop is non-NULL
1499 
1500     const Register rOop = src.first()->as_Register();
1501     int oop_slot;
1502     if (rOop == j_rarg0)
1503       oop_slot = 0;
1504     else if (rOop == j_rarg1)
1505       oop_slot = 1;
1506     else if (rOop == j_rarg2)
1507       oop_slot = 2;
1508     else if (rOop == j_rarg3)
1509       oop_slot = 3;
1510     else if (rOop == j_rarg4)
1511       oop_slot = 4;
1512     else {
1513       assert(rOop == j_rarg5, "wrong register");
1514       oop_slot = 5;
1515     }
1516 
1517     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1518     int offset = oop_slot*VMRegImpl::stack_slot_size;
1519 
1520     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1521     // Store oop in handle area, may be NULL
1522     __ movptr(Address(rsp, offset), rOop);
1523     if (is_receiver) {
1524       *receiver_offset = offset;
1525     }
1526 
1527     __ cmpptr(rOop, (int32_t)NULL_WORD);
1528     __ lea(rHandle, Address(rsp, offset));
1529     // conditionally move a NULL from the handle area where it was just stored
1530     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1531   }
1532 
1533   // If arg is on the stack then place it otherwise it is already in correct reg.
1534   if (dst.first()->is_stack()) {
1535     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1536   }
1537 }
1538 
1539 // A float arg may have to do float reg int reg conversion
1540 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1541   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1542 
1543   // The calling conventions assures us that each VMregpair is either
1544   // all really one physical register or adjacent stack slots.
1545   // This greatly simplifies the cases here compared to sparc.
1546 
1547   if (src.first()->is_stack()) {
1548     if (dst.first()->is_stack()) {
1549       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1550       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1551     } else {
1552       // stack to reg
1553       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1554       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1555     }
1556   } else if (dst.first()->is_stack()) {
1557     // reg to stack
1558     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1559     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1560   } else {
1561     // reg to reg
1562     // In theory these overlap but the ordering is such that this is likely a nop
1563     if ( src.first() != dst.first()) {
1564       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1565     }
1566   }
1567 }
1568 
1569 // A long move
1570 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1571 
1572   // The calling conventions assures us that each VMregpair is either
1573   // all really one physical register or adjacent stack slots.
1574   // This greatly simplifies the cases here compared to sparc.
1575 
1576   if (src.is_single_phys_reg() ) {
1577     if (dst.is_single_phys_reg()) {
1578       if (dst.first() != src.first()) {
1579         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1580       }
1581     } else {
1582       assert(dst.is_single_reg(), "not a stack pair");
1583       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1584     }
1585   } else if (dst.is_single_phys_reg()) {
1586     assert(src.is_single_reg(),  "not a stack pair");
1587     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1588   } else {
1589     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1590     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1591     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1592   }
1593 }
1594 
1595 // A double move
1596 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1597 
1598   // The calling conventions assures us that each VMregpair is either
1599   // all really one physical register or adjacent stack slots.
1600   // This greatly simplifies the cases here compared to sparc.
1601 
1602   if (src.is_single_phys_reg() ) {
1603     if (dst.is_single_phys_reg()) {
1604       // In theory these overlap but the ordering is such that this is likely a nop
1605       if ( src.first() != dst.first()) {
1606         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1607       }
1608     } else {
1609       assert(dst.is_single_reg(), "not a stack pair");
1610       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1611     }
1612   } else if (dst.is_single_phys_reg()) {
1613     assert(src.is_single_reg(),  "not a stack pair");
1614     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1615   } else {
1616     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1617     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1618     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1619   }
1620 }
1621 
1622 
1623 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1624   // We always ignore the frame_slots arg and just use the space just below frame pointer
1625   // which by this time is free to use
1626   switch (ret_type) {
1627   case T_FLOAT:
1628     __ movflt(Address(rbp, -wordSize), xmm0);
1629     break;
1630   case T_DOUBLE:
1631     __ movdbl(Address(rbp, -wordSize), xmm0);
1632     break;
1633   case T_VOID:  break;
1634   default: {
1635     __ movptr(Address(rbp, -wordSize), rax);
1636     }
1637   }
1638 }
1639 
1640 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1641   // We always ignore the frame_slots arg and just use the space just below frame pointer
1642   // which by this time is free to use
1643   switch (ret_type) {
1644   case T_FLOAT:
1645     __ movflt(xmm0, Address(rbp, -wordSize));
1646     break;
1647   case T_DOUBLE:
1648     __ movdbl(xmm0, Address(rbp, -wordSize));
1649     break;
1650   case T_VOID:  break;
1651   default: {
1652     __ movptr(rax, Address(rbp, -wordSize));
1653     }
1654   }
1655 }
1656 
1657 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1658     for ( int i = first_arg ; i < arg_count ; i++ ) {
1659       if (args[i].first()->is_Register()) {
1660         __ push(args[i].first()->as_Register());
1661       } else if (args[i].first()->is_XMMRegister()) {
1662         __ subptr(rsp, 2*wordSize);
1663         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1664       }
1665     }
1666 }
1667 
1668 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1669     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1670       if (args[i].first()->is_Register()) {
1671         __ pop(args[i].first()->as_Register());
1672       } else if (args[i].first()->is_XMMRegister()) {
1673         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1674         __ addptr(rsp, 2*wordSize);
1675       }
1676     }
1677 }
1678 
1679 
1680 static void save_or_restore_arguments(MacroAssembler* masm,
1681                                       const int stack_slots,
1682                                       const int total_in_args,
1683                                       const int arg_save_area,
1684                                       OopMap* map,
1685                                       VMRegPair* in_regs,
1686                                       BasicType* in_sig_bt) {
1687   // if map is non-NULL then the code should store the values,
1688   // otherwise it should load them.
1689   int slot = arg_save_area;
1690   // Save down double word first
1691   for ( int i = 0; i < total_in_args; i++) {
1692     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1693       int offset = slot * VMRegImpl::stack_slot_size;
1694       slot += VMRegImpl::slots_per_word;
1695       assert(slot <= stack_slots, "overflow");
1696       if (map != NULL) {
1697         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1698       } else {
1699         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1700       }
1701     }
1702     if (in_regs[i].first()->is_Register() &&
1703         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1704       int offset = slot * VMRegImpl::stack_slot_size;
1705       if (map != NULL) {
1706         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1707         if (in_sig_bt[i] == T_ARRAY) {
1708           map->set_oop(VMRegImpl::stack2reg(slot));;
1709         }
1710       } else {
1711         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1712       }
1713       slot += VMRegImpl::slots_per_word;
1714     }
1715   }
1716   // Save or restore single word registers
1717   for ( int i = 0; i < total_in_args; i++) {
1718     if (in_regs[i].first()->is_Register()) {
1719       int offset = slot * VMRegImpl::stack_slot_size;
1720       slot++;
1721       assert(slot <= stack_slots, "overflow");
1722 
1723       // Value is in an input register pass we must flush it to the stack
1724       const Register reg = in_regs[i].first()->as_Register();
1725       switch (in_sig_bt[i]) {
1726         case T_BOOLEAN:
1727         case T_CHAR:
1728         case T_BYTE:
1729         case T_SHORT:
1730         case T_INT:
1731           if (map != NULL) {
1732             __ movl(Address(rsp, offset), reg);
1733           } else {
1734             __ movl(reg, Address(rsp, offset));
1735           }
1736           break;
1737         case T_ARRAY:
1738         case T_LONG:
1739           // handled above
1740           break;
1741         case T_OBJECT:
1742         default: ShouldNotReachHere();
1743       }
1744     } else if (in_regs[i].first()->is_XMMRegister()) {
1745       if (in_sig_bt[i] == T_FLOAT) {
1746         int offset = slot * VMRegImpl::stack_slot_size;
1747         slot++;
1748         assert(slot <= stack_slots, "overflow");
1749         if (map != NULL) {
1750           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1751         } else {
1752           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1753         }
1754       }
1755     } else if (in_regs[i].first()->is_stack()) {
1756       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1757         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1758         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1759       }
1760     }
1761   }
1762 }
1763 
1764 
1765 // Check GCLocker::needs_gc and enter the runtime if it's true.  This
1766 // keeps a new JNI critical region from starting until a GC has been
1767 // forced.  Save down any oops in registers and describe them in an
1768 // OopMap.
1769 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1770                                                int stack_slots,
1771                                                int total_c_args,
1772                                                int total_in_args,
1773                                                int arg_save_area,
1774                                                OopMapSet* oop_maps,
1775                                                VMRegPair* in_regs,
1776                                                BasicType* in_sig_bt) {
1777   __ block_comment("check GCLocker::needs_gc");
1778   Label cont;
1779   __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
1780   __ jcc(Assembler::equal, cont);
1781 
1782   // Save down any incoming oops and call into the runtime to halt for a GC
1783 
1784   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1785   save_or_restore_arguments(masm, stack_slots, total_in_args,
1786                             arg_save_area, map, in_regs, in_sig_bt);
1787 
1788   address the_pc = __ pc();
1789   oop_maps->add_gc_map( __ offset(), map);
1790   __ set_last_Java_frame(rsp, noreg, the_pc);
1791 
1792   __ block_comment("block_for_jni_critical");
1793   __ movptr(c_rarg0, r15_thread);
1794   __ mov(r12, rsp); // remember sp
1795   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1796   __ andptr(rsp, -16); // align stack as required by ABI
1797   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1798   __ mov(rsp, r12); // restore sp
1799   __ reinit_heapbase();
1800 
1801   __ reset_last_Java_frame(false);
1802 
1803   save_or_restore_arguments(masm, stack_slots, total_in_args,
1804                             arg_save_area, NULL, in_regs, in_sig_bt);
1805   __ bind(cont);
1806 #ifdef ASSERT
1807   if (StressCriticalJNINatives) {
1808     // Stress register saving
1809     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1810     save_or_restore_arguments(masm, stack_slots, total_in_args,
1811                               arg_save_area, map, in_regs, in_sig_bt);
1812     // Destroy argument registers
1813     for (int i = 0; i < total_in_args - 1; i++) {
1814       if (in_regs[i].first()->is_Register()) {
1815         const Register reg = in_regs[i].first()->as_Register();
1816         __ xorptr(reg, reg);
1817       } else if (in_regs[i].first()->is_XMMRegister()) {
1818         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1819       } else if (in_regs[i].first()->is_FloatRegister()) {
1820         ShouldNotReachHere();
1821       } else if (in_regs[i].first()->is_stack()) {
1822         // Nothing to do
1823       } else {
1824         ShouldNotReachHere();
1825       }
1826       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1827         i++;
1828       }
1829     }
1830 
1831     save_or_restore_arguments(masm, stack_slots, total_in_args,
1832                               arg_save_area, NULL, in_regs, in_sig_bt);
1833   }
1834 #endif
1835 }
1836 
1837 // Unpack an array argument into a pointer to the body and the length
1838 // if the array is non-null, otherwise pass 0 for both.
1839 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1840   Register tmp_reg = rax;
1841   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1842          "possible collision");
1843   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1844          "possible collision");
1845 
1846   __ block_comment("unpack_array_argument {");
1847 
1848   // Pass the length, ptr pair
1849   Label is_null, done;
1850   VMRegPair tmp;
1851   tmp.set_ptr(tmp_reg->as_VMReg());
1852   if (reg.first()->is_stack()) {
1853     // Load the arg up from the stack
1854     move_ptr(masm, reg, tmp);
1855     reg = tmp;
1856   }
1857   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1858   __ jccb(Assembler::equal, is_null);
1859   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1860   move_ptr(masm, tmp, body_arg);
1861   // load the length relative to the body.
1862   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1863                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1864   move32_64(masm, tmp, length_arg);
1865   __ jmpb(done);
1866   __ bind(is_null);
1867   // Pass zeros
1868   __ xorptr(tmp_reg, tmp_reg);
1869   move_ptr(masm, tmp, body_arg);
1870   move32_64(masm, tmp, length_arg);
1871   __ bind(done);
1872 
1873   __ block_comment("} unpack_array_argument");
1874 }
1875 
1876 
1877 // Different signatures may require very different orders for the move
1878 // to avoid clobbering other arguments.  There's no simple way to
1879 // order them safely.  Compute a safe order for issuing stores and
1880 // break any cycles in those stores.  This code is fairly general but
1881 // it's not necessary on the other platforms so we keep it in the
1882 // platform dependent code instead of moving it into a shared file.
1883 // (See bugs 7013347 & 7145024.)
1884 // Note that this code is specific to LP64.
1885 class ComputeMoveOrder: public StackObj {
1886   class MoveOperation: public ResourceObj {
1887     friend class ComputeMoveOrder;
1888    private:
1889     VMRegPair        _src;
1890     VMRegPair        _dst;
1891     int              _src_index;
1892     int              _dst_index;
1893     bool             _processed;
1894     MoveOperation*  _next;
1895     MoveOperation*  _prev;
1896 
1897     static int get_id(VMRegPair r) {
1898       return r.first()->value();
1899     }
1900 
1901    public:
1902     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1903       _src(src)
1904     , _src_index(src_index)
1905     , _dst(dst)
1906     , _dst_index(dst_index)
1907     , _next(NULL)
1908     , _prev(NULL)
1909     , _processed(false) {
1910     }
1911 
1912     VMRegPair src() const              { return _src; }
1913     int src_id() const                 { return get_id(src()); }
1914     int src_index() const              { return _src_index; }
1915     VMRegPair dst() const              { return _dst; }
1916     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
1917     int dst_index() const              { return _dst_index; }
1918     int dst_id() const                 { return get_id(dst()); }
1919     MoveOperation* next() const       { return _next; }
1920     MoveOperation* prev() const       { return _prev; }
1921     void set_processed()               { _processed = true; }
1922     bool is_processed() const          { return _processed; }
1923 
1924     // insert
1925     void break_cycle(VMRegPair temp_register) {
1926       // create a new store following the last store
1927       // to move from the temp_register to the original
1928       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1929 
1930       // break the cycle of links and insert new_store at the end
1931       // break the reverse link.
1932       MoveOperation* p = prev();
1933       assert(p->next() == this, "must be");
1934       _prev = NULL;
1935       p->_next = new_store;
1936       new_store->_prev = p;
1937 
1938       // change the original store to save it's value in the temp.
1939       set_dst(-1, temp_register);
1940     }
1941 
1942     void link(GrowableArray<MoveOperation*>& killer) {
1943       // link this store in front the store that it depends on
1944       MoveOperation* n = killer.at_grow(src_id(), NULL);
1945       if (n != NULL) {
1946         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1947         _next = n;
1948         n->_prev = this;
1949       }
1950     }
1951   };
1952 
1953  private:
1954   GrowableArray<MoveOperation*> edges;
1955 
1956  public:
1957   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1958                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1959     // Move operations where the dest is the stack can all be
1960     // scheduled first since they can't interfere with the other moves.
1961     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1962       if (in_sig_bt[i] == T_ARRAY) {
1963         c_arg--;
1964         if (out_regs[c_arg].first()->is_stack() &&
1965             out_regs[c_arg + 1].first()->is_stack()) {
1966           arg_order.push(i);
1967           arg_order.push(c_arg);
1968         } else {
1969           if (out_regs[c_arg].first()->is_stack() ||
1970               in_regs[i].first() == out_regs[c_arg].first()) {
1971             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
1972           } else {
1973             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1974           }
1975         }
1976       } else if (in_sig_bt[i] == T_VOID) {
1977         arg_order.push(i);
1978         arg_order.push(c_arg);
1979       } else {
1980         if (out_regs[c_arg].first()->is_stack() ||
1981             in_regs[i].first() == out_regs[c_arg].first()) {
1982           arg_order.push(i);
1983           arg_order.push(c_arg);
1984         } else {
1985           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1986         }
1987       }
1988     }
1989     // Break any cycles in the register moves and emit the in the
1990     // proper order.
1991     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
1992     for (int i = 0; i < stores->length(); i++) {
1993       arg_order.push(stores->at(i)->src_index());
1994       arg_order.push(stores->at(i)->dst_index());
1995     }
1996  }
1997 
1998   // Collected all the move operations
1999   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
2000     if (src.first() == dst.first()) return;
2001     edges.append(new MoveOperation(src_index, src, dst_index, dst));
2002   }
2003 
2004   // Walk the edges breaking cycles between moves.  The result list
2005   // can be walked in order to produce the proper set of loads
2006   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
2007     // Record which moves kill which values
2008     GrowableArray<MoveOperation*> killer;
2009     for (int i = 0; i < edges.length(); i++) {
2010       MoveOperation* s = edges.at(i);
2011       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
2012       killer.at_put_grow(s->dst_id(), s, NULL);
2013     }
2014     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
2015            "make sure temp isn't in the registers that are killed");
2016 
2017     // create links between loads and stores
2018     for (int i = 0; i < edges.length(); i++) {
2019       edges.at(i)->link(killer);
2020     }
2021 
2022     // at this point, all the move operations are chained together
2023     // in a doubly linked list.  Processing it backwards finds
2024     // the beginning of the chain, forwards finds the end.  If there's
2025     // a cycle it can be broken at any point,  so pick an edge and walk
2026     // backward until the list ends or we end where we started.
2027     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
2028     for (int e = 0; e < edges.length(); e++) {
2029       MoveOperation* s = edges.at(e);
2030       if (!s->is_processed()) {
2031         MoveOperation* start = s;
2032         // search for the beginning of the chain or cycle
2033         while (start->prev() != NULL && start->prev() != s) {
2034           start = start->prev();
2035         }
2036         if (start->prev() == s) {
2037           start->break_cycle(temp_register);
2038         }
2039         // walk the chain forward inserting to store list
2040         while (start != NULL) {
2041           stores->append(start);
2042           start->set_processed();
2043           start = start->next();
2044         }
2045       }
2046     }
2047     return stores;
2048   }
2049 };
2050 
2051 static void verify_oop_args(MacroAssembler* masm,
2052                             const methodHandle& method,
2053                             const BasicType* sig_bt,
2054                             const VMRegPair* regs) {
2055   Register temp_reg = rbx;  // not part of any compiled calling seq
2056   if (VerifyOops) {
2057     for (int i = 0; i < method->size_of_parameters(); i++) {
2058       if (sig_bt[i] == T_OBJECT ||
2059           sig_bt[i] == T_ARRAY) {
2060         VMReg r = regs[i].first();
2061         assert(r->is_valid(), "bad oop arg");
2062         if (r->is_stack()) {
2063           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
2064           __ verify_oop(temp_reg);
2065         } else {
2066           __ verify_oop(r->as_Register());
2067         }
2068       }
2069     }
2070   }
2071 }
2072 
2073 static void gen_special_dispatch(MacroAssembler* masm,
2074                                  const methodHandle& method,
2075                                  const BasicType* sig_bt,
2076                                  const VMRegPair* regs) {
2077   verify_oop_args(masm, method, sig_bt, regs);
2078   vmIntrinsics::ID iid = method->intrinsic_id();
2079 
2080   // Now write the args into the outgoing interpreter space
2081   bool     has_receiver   = false;
2082   Register receiver_reg   = noreg;
2083   int      member_arg_pos = -1;
2084   Register member_reg     = noreg;
2085   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
2086   if (ref_kind != 0) {
2087     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
2088     member_reg = rbx;  // known to be free at this point
2089     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
2090   } else if (iid == vmIntrinsics::_invokeBasic) {
2091     has_receiver = true;
2092   } else {
2093     fatal("unexpected intrinsic id %d", iid);
2094   }
2095 
2096   if (member_reg != noreg) {
2097     // Load the member_arg into register, if necessary.
2098     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
2099     VMReg r = regs[member_arg_pos].first();
2100     if (r->is_stack()) {
2101       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
2102     } else {
2103       // no data motion is needed
2104       member_reg = r->as_Register();
2105     }
2106   }
2107 
2108   if (has_receiver) {
2109     // Make sure the receiver is loaded into a register.
2110     assert(method->size_of_parameters() > 0, "oob");
2111     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
2112     VMReg r = regs[0].first();
2113     assert(r->is_valid(), "bad receiver arg");
2114     if (r->is_stack()) {
2115       // Porting note:  This assumes that compiled calling conventions always
2116       // pass the receiver oop in a register.  If this is not true on some
2117       // platform, pick a temp and load the receiver from stack.
2118       fatal("receiver always in a register");
2119       receiver_reg = j_rarg0;  // known to be free at this point
2120       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
2121     } else {
2122       // no data motion is needed
2123       receiver_reg = r->as_Register();
2124     }
2125   }
2126 
2127   // Figure out which address we are really jumping to:
2128   MethodHandles::generate_method_handle_dispatch(masm, iid,
2129                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
2130 }
2131 
2132 // ---------------------------------------------------------------------------
2133 // Generate a native wrapper for a given method.  The method takes arguments
2134 // in the Java compiled code convention, marshals them to the native
2135 // convention (handlizes oops, etc), transitions to native, makes the call,
2136 // returns to java state (possibly blocking), unhandlizes any result and
2137 // returns.
2138 //
2139 // Critical native functions are a shorthand for the use of
2140 // GetPrimtiveArrayCritical and disallow the use of any other JNI
2141 // functions.  The wrapper is expected to unpack the arguments before
2142 // passing them to the callee and perform checks before and after the
2143 // native call to ensure that they GCLocker
2144 // lock_critical/unlock_critical semantics are followed.  Some other
2145 // parts of JNI setup are skipped like the tear down of the JNI handle
2146 // block and the check for pending exceptions it's impossible for them
2147 // to be thrown.
2148 //
2149 // They are roughly structured like this:
2150 //    if (GCLocker::needs_gc())
2151 //      SharedRuntime::block_for_jni_critical();
2152 //    tranistion to thread_in_native
2153 //    unpack arrray arguments and call native entry point
2154 //    check for safepoint in progress
2155 //    check if any thread suspend flags are set
2156 //      call into JVM and possible unlock the JNI critical
2157 //      if a GC was suppressed while in the critical native.
2158 //    transition back to thread_in_Java
2159 //    return to caller
2160 //
2161 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
2162                                                 const methodHandle& method,
2163                                                 int compile_id,
2164                                                 BasicType* in_sig_bt,
2165                                                 VMRegPair* in_regs,
2166                                                 BasicType ret_type) {
2167   if (method->is_method_handle_intrinsic()) {
2168     vmIntrinsics::ID iid = method->intrinsic_id();
2169     intptr_t start = (intptr_t)__ pc();
2170     int vep_offset = ((intptr_t)__ pc()) - start;
2171     gen_special_dispatch(masm,
2172                          method,
2173                          in_sig_bt,
2174                          in_regs);
2175     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
2176     __ flush();
2177     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
2178     return nmethod::new_native_nmethod(method,
2179                                        compile_id,
2180                                        masm->code(),
2181                                        vep_offset,
2182                                        frame_complete,
2183                                        stack_slots / VMRegImpl::slots_per_word,
2184                                        in_ByteSize(-1),
2185                                        in_ByteSize(-1),
2186                                        (OopMapSet*)NULL);
2187   }
2188   bool is_critical_native = true;
2189   address native_func = method->critical_native_function();
2190   if (native_func == NULL) {
2191     native_func = method->native_function();
2192     is_critical_native = false;
2193   }
2194   assert(native_func != NULL, "must have function");
2195 
2196   // An OopMap for lock (and class if static)
2197   OopMapSet *oop_maps = new OopMapSet();
2198   intptr_t start = (intptr_t)__ pc();
2199 
2200   // We have received a description of where all the java arg are located
2201   // on entry to the wrapper. We need to convert these args to where
2202   // the jni function will expect them. To figure out where they go
2203   // we convert the java signature to a C signature by inserting
2204   // the hidden arguments as arg[0] and possibly arg[1] (static method)
2205 
2206   const int total_in_args = method->size_of_parameters();
2207   int total_c_args = total_in_args;
2208   if (!is_critical_native) {
2209     total_c_args += 1;
2210     if (method->is_static()) {
2211       total_c_args++;
2212     }
2213   } else {
2214     for (int i = 0; i < total_in_args; i++) {
2215       if (in_sig_bt[i] == T_ARRAY) {
2216         total_c_args++;
2217       }
2218     }
2219   }
2220 
2221   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
2222   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
2223   BasicType* in_elem_bt = NULL;
2224 
2225   int argc = 0;
2226   if (!is_critical_native) {
2227     out_sig_bt[argc++] = T_ADDRESS;
2228     if (method->is_static()) {
2229       out_sig_bt[argc++] = T_OBJECT;
2230     }
2231 
2232     for (int i = 0; i < total_in_args ; i++ ) {
2233       out_sig_bt[argc++] = in_sig_bt[i];
2234     }
2235   } else {
2236     Thread* THREAD = Thread::current();
2237     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
2238     SignatureStream ss(method->signature());
2239     for (int i = 0; i < total_in_args ; i++ ) {
2240       if (in_sig_bt[i] == T_ARRAY) {
2241         // Arrays are passed as int, elem* pair
2242         out_sig_bt[argc++] = T_INT;
2243         out_sig_bt[argc++] = T_ADDRESS;
2244         Symbol* atype = ss.as_symbol(CHECK_NULL);
2245         const char* at = atype->as_C_string();
2246         if (strlen(at) == 2) {
2247           assert(at[0] == '[', "must be");
2248           switch (at[1]) {
2249             case 'B': in_elem_bt[i]  = T_BYTE; break;
2250             case 'C': in_elem_bt[i]  = T_CHAR; break;
2251             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
2252             case 'F': in_elem_bt[i]  = T_FLOAT; break;
2253             case 'I': in_elem_bt[i]  = T_INT; break;
2254             case 'J': in_elem_bt[i]  = T_LONG; break;
2255             case 'S': in_elem_bt[i]  = T_SHORT; break;
2256             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
2257             default: ShouldNotReachHere();
2258           }
2259         }
2260       } else {
2261         out_sig_bt[argc++] = in_sig_bt[i];
2262         in_elem_bt[i] = T_VOID;
2263       }
2264       if (in_sig_bt[i] != T_VOID) {
2265         assert(in_sig_bt[i] == ss.type(), "must match");
2266         ss.next();
2267       }
2268     }
2269   }
2270 
2271   // Now figure out where the args must be stored and how much stack space
2272   // they require.
2273   int out_arg_slots;
2274   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
2275 
2276   // Compute framesize for the wrapper.  We need to handlize all oops in
2277   // incoming registers
2278 
2279   // Calculate the total number of stack slots we will need.
2280 
2281   // First count the abi requirement plus all of the outgoing args
2282   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2283 
2284   // Now the space for the inbound oop handle area
2285   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
2286   if (is_critical_native) {
2287     // Critical natives may have to call out so they need a save area
2288     // for register arguments.
2289     int double_slots = 0;
2290     int single_slots = 0;
2291     for ( int i = 0; i < total_in_args; i++) {
2292       if (in_regs[i].first()->is_Register()) {
2293         const Register reg = in_regs[i].first()->as_Register();
2294         switch (in_sig_bt[i]) {
2295           case T_BOOLEAN:
2296           case T_BYTE:
2297           case T_SHORT:
2298           case T_CHAR:
2299           case T_INT:  single_slots++; break;
2300           case T_ARRAY:  // specific to LP64 (7145024)
2301           case T_LONG: double_slots++; break;
2302           default:  ShouldNotReachHere();
2303         }
2304       } else if (in_regs[i].first()->is_XMMRegister()) {
2305         switch (in_sig_bt[i]) {
2306           case T_FLOAT:  single_slots++; break;
2307           case T_DOUBLE: double_slots++; break;
2308           default:  ShouldNotReachHere();
2309         }
2310       } else if (in_regs[i].first()->is_FloatRegister()) {
2311         ShouldNotReachHere();
2312       }
2313     }
2314     total_save_slots = double_slots * 2 + single_slots;
2315     // align the save area
2316     if (double_slots != 0) {
2317       stack_slots = align_up(stack_slots, 2);
2318     }
2319   }
2320 
2321   int oop_handle_offset = stack_slots;
2322   stack_slots += total_save_slots;
2323 
2324   // Now any space we need for handlizing a klass if static method
2325 
2326   int klass_slot_offset = 0;
2327   int klass_offset = -1;
2328   int lock_slot_offset = 0;
2329   bool is_static = false;
2330 
2331   if (method->is_static()) {
2332     klass_slot_offset = stack_slots;
2333     stack_slots += VMRegImpl::slots_per_word;
2334     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
2335     is_static = true;
2336   }
2337 
2338   // Plus a lock if needed
2339 
2340   if (method->is_synchronized()) {
2341     lock_slot_offset = stack_slots;
2342     stack_slots += VMRegImpl::slots_per_word;
2343   }
2344 
2345   // Now a place (+2) to save return values or temp during shuffling
2346   // + 4 for return address (which we own) and saved rbp
2347   stack_slots += 6;
2348 
2349   // Ok The space we have allocated will look like:
2350   //
2351   //
2352   // FP-> |                     |
2353   //      |---------------------|
2354   //      | 2 slots for moves   |
2355   //      |---------------------|
2356   //      | lock box (if sync)  |
2357   //      |---------------------| <- lock_slot_offset
2358   //      | klass (if static)   |
2359   //      |---------------------| <- klass_slot_offset
2360   //      | oopHandle area      |
2361   //      |---------------------| <- oop_handle_offset (6 java arg registers)
2362   //      | outbound memory     |
2363   //      | based arguments     |
2364   //      |                     |
2365   //      |---------------------|
2366   //      |                     |
2367   // SP-> | out_preserved_slots |
2368   //
2369   //
2370 
2371 
2372   // Now compute actual number of stack words we need rounding to make
2373   // stack properly aligned.
2374   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
2375 
2376   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2377 
2378   // First thing make an ic check to see if we should even be here
2379 
2380   // We are free to use all registers as temps without saving them and
2381   // restoring them except rbp. rbp is the only callee save register
2382   // as far as the interpreter and the compiler(s) are concerned.
2383 
2384 
2385   const Register ic_reg = rax;
2386   const Register receiver = j_rarg0;
2387 
2388   Label hit;
2389   Label exception_pending;
2390 
2391   assert_different_registers(ic_reg, receiver, rscratch1);
2392   __ verify_oop(receiver);
2393   __ load_klass(rscratch1, receiver);
2394   __ cmpq(ic_reg, rscratch1);
2395   __ jcc(Assembler::equal, hit);
2396 
2397   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2398 
2399   // Verified entry point must be aligned
2400   __ align(8);
2401 
2402   __ bind(hit);
2403 
2404   int vep_offset = ((intptr_t)__ pc()) - start;
2405 
2406 #ifdef COMPILER1
2407   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
2408   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
2409     inline_check_hashcode_from_object_header(masm, method, j_rarg0 /*obj_reg*/, rax /*result*/);
2410   }
2411 #endif // COMPILER1
2412 
2413   // The instruction at the verified entry point must be 5 bytes or longer
2414   // because it can be patched on the fly by make_non_entrant. The stack bang
2415   // instruction fits that requirement.
2416 
2417   // Generate stack overflow check
2418 
2419   if (UseStackBanging) {
2420     __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
2421   } else {
2422     // need a 5 byte instruction to allow MT safe patching to non-entrant
2423     __ fat_nop();
2424   }
2425 
2426   // Generate a new frame for the wrapper.
2427   __ enter();
2428   // -2 because return address is already present and so is saved rbp
2429   __ subptr(rsp, stack_size - 2*wordSize);
2430 
2431   // Frame is now completed as far as size and linkage.
2432   int frame_complete = ((intptr_t)__ pc()) - start;
2433 
2434     if (UseRTMLocking) {
2435       // Abort RTM transaction before calling JNI
2436       // because critical section will be large and will be
2437       // aborted anyway. Also nmethod could be deoptimized.
2438       __ xabort(0);
2439     }
2440 
2441 #ifdef ASSERT
2442     {
2443       Label L;
2444       __ mov(rax, rsp);
2445       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
2446       __ cmpptr(rax, rsp);
2447       __ jcc(Assembler::equal, L);
2448       __ stop("improperly aligned stack");
2449       __ bind(L);
2450     }
2451 #endif /* ASSERT */
2452 
2453 
2454   // We use r14 as the oop handle for the receiver/klass
2455   // It is callee save so it survives the call to native
2456 
2457   const Register oop_handle_reg = r14;
2458 
2459   if (is_critical_native) {
2460     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
2461                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2462   }
2463 
2464   //
2465   // We immediately shuffle the arguments so that any vm call we have to
2466   // make from here on out (sync slow path, jvmti, etc.) we will have
2467   // captured the oops from our caller and have a valid oopMap for
2468   // them.
2469 
2470   // -----------------
2471   // The Grand Shuffle
2472 
2473   // The Java calling convention is either equal (linux) or denser (win64) than the
2474   // c calling convention. However the because of the jni_env argument the c calling
2475   // convention always has at least one more (and two for static) arguments than Java.
2476   // Therefore if we move the args from java -> c backwards then we will never have
2477   // a register->register conflict and we don't have to build a dependency graph
2478   // and figure out how to break any cycles.
2479   //
2480 
2481   // Record esp-based slot for receiver on stack for non-static methods
2482   int receiver_offset = -1;
2483 
2484   // This is a trick. We double the stack slots so we can claim
2485   // the oops in the caller's frame. Since we are sure to have
2486   // more args than the caller doubling is enough to make
2487   // sure we can capture all the incoming oop args from the
2488   // caller.
2489   //
2490   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2491 
2492   // Mark location of rbp (someday)
2493   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2494 
2495   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2496   // All inbound args are referenced based on rbp and all outbound args via rsp.
2497 
2498 
2499 #ifdef ASSERT
2500   bool reg_destroyed[RegisterImpl::number_of_registers];
2501   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
2502   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2503     reg_destroyed[r] = false;
2504   }
2505   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
2506     freg_destroyed[f] = false;
2507   }
2508 
2509 #endif /* ASSERT */
2510 
2511   // This may iterate in two different directions depending on the
2512   // kind of native it is.  The reason is that for regular JNI natives
2513   // the incoming and outgoing registers are offset upwards and for
2514   // critical natives they are offset down.
2515   GrowableArray<int> arg_order(2 * total_in_args);
2516   VMRegPair tmp_vmreg;
2517   tmp_vmreg.set2(rbx->as_VMReg());
2518 
2519   if (!is_critical_native) {
2520     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2521       arg_order.push(i);
2522       arg_order.push(c_arg);
2523     }
2524   } else {
2525     // Compute a valid move order, using tmp_vmreg to break any cycles
2526     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
2527   }
2528 
2529   int temploc = -1;
2530   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2531     int i = arg_order.at(ai);
2532     int c_arg = arg_order.at(ai + 1);
2533     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2534     if (c_arg == -1) {
2535       assert(is_critical_native, "should only be required for critical natives");
2536       // This arg needs to be moved to a temporary
2537       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
2538       in_regs[i] = tmp_vmreg;
2539       temploc = i;
2540       continue;
2541     } else if (i == -1) {
2542       assert(is_critical_native, "should only be required for critical natives");
2543       // Read from the temporary location
2544       assert(temploc != -1, "must be valid");
2545       i = temploc;
2546       temploc = -1;
2547     }
2548 #ifdef ASSERT
2549     if (in_regs[i].first()->is_Register()) {
2550       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2551     } else if (in_regs[i].first()->is_XMMRegister()) {
2552       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2553     }
2554     if (out_regs[c_arg].first()->is_Register()) {
2555       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2556     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2557       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2558     }
2559 #endif /* ASSERT */
2560     switch (in_sig_bt[i]) {
2561       case T_ARRAY:
2562         if (is_critical_native) {
2563           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2564           c_arg++;
2565 #ifdef ASSERT
2566           if (out_regs[c_arg].first()->is_Register()) {
2567             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2568           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2569             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2570           }
2571 #endif
2572           break;
2573         }
2574       case T_OBJECT:
2575         assert(!is_critical_native, "no oop arguments");
2576         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2577                     ((i == 0) && (!is_static)),
2578                     &receiver_offset);
2579         break;
2580       case T_VOID:
2581         break;
2582 
2583       case T_FLOAT:
2584         float_move(masm, in_regs[i], out_regs[c_arg]);
2585           break;
2586 
2587       case T_DOUBLE:
2588         assert( i + 1 < total_in_args &&
2589                 in_sig_bt[i + 1] == T_VOID &&
2590                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2591         double_move(masm, in_regs[i], out_regs[c_arg]);
2592         break;
2593 
2594       case T_LONG :
2595         long_move(masm, in_regs[i], out_regs[c_arg]);
2596         break;
2597 
2598       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2599 
2600       default:
2601         move32_64(masm, in_regs[i], out_regs[c_arg]);
2602     }
2603   }
2604 
2605   int c_arg;
2606 
2607   // Pre-load a static method's oop into r14.  Used both by locking code and
2608   // the normal JNI call code.
2609   if (!is_critical_native) {
2610     // point c_arg at the first arg that is already loaded in case we
2611     // need to spill before we call out
2612     c_arg = total_c_args - total_in_args;
2613 
2614     if (method->is_static()) {
2615 
2616       //  load oop into a register
2617       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2618 
2619       // Now handlize the static class mirror it's known not-null.
2620       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2621       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2622 
2623       // Now get the handle
2624       __ lea(oop_handle_reg, Address(rsp, klass_offset));
2625       // store the klass handle as second argument
2626       __ movptr(c_rarg1, oop_handle_reg);
2627       // and protect the arg if we must spill
2628       c_arg--;
2629     }
2630   } else {
2631     // For JNI critical methods we need to save all registers in save_args.
2632     c_arg = 0;
2633   }
2634 
2635   // Change state to native (we save the return address in the thread, since it might not
2636   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2637   // points into the right code segment. It does not have to be the correct return pc.
2638   // We use the same pc/oopMap repeatedly when we call out
2639 
2640   intptr_t the_pc = (intptr_t) __ pc();
2641   oop_maps->add_gc_map(the_pc - start, map);
2642 
2643   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
2644 
2645 
2646   // We have all of the arguments setup at this point. We must not touch any register
2647   // argument registers at this point (what if we save/restore them there are no oop?
2648 
2649   {
2650     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2651     // protect the args we've loaded
2652     save_args(masm, total_c_args, c_arg, out_regs);
2653     __ mov_metadata(c_rarg1, method());
2654     __ call_VM_leaf(
2655       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2656       r15_thread, c_rarg1);
2657     restore_args(masm, total_c_args, c_arg, out_regs);
2658   }
2659 
2660   // RedefineClasses() tracing support for obsolete method entry
2661   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2662     // protect the args we've loaded
2663     save_args(masm, total_c_args, c_arg, out_regs);
2664     __ mov_metadata(c_rarg1, method());
2665     __ call_VM_leaf(
2666       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2667       r15_thread, c_rarg1);
2668     restore_args(masm, total_c_args, c_arg, out_regs);
2669   }
2670 
2671   // Lock a synchronized method
2672 
2673   // Register definitions used by locking and unlocking
2674 
2675   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2676   const Register obj_reg  = rbx;  // Will contain the oop
2677   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2678   const Register old_hdr  = r13;  // value of old header at unlock time
2679 
2680   Label slow_path_lock;
2681   Label lock_done;
2682 
2683   if (method->is_synchronized()) {
2684     assert(!is_critical_native, "unhandled");
2685 
2686 
2687     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2688 
2689     // Get the handle (the 2nd argument)
2690     __ mov(oop_handle_reg, c_rarg1);
2691 
2692     // Get address of the box
2693 
2694     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2695 
2696     // Load the oop from the handle
2697     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2698 
2699     if (UseBiasedLocking) {
2700       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
2701     }
2702 
2703     // Load immediate 1 into swap_reg %rax
2704     __ movl(swap_reg, 1);
2705 
2706     // Load (object->mark() | 1) into swap_reg %rax
2707     __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2708     if (EnableValhalla && !UseBiasedLocking) {
2709       // For slow path is_always_locked, using biased, which is never natural for !UseBiasLocking
2710       __ andptr(swap_reg, ~markOopDesc::biased_lock_bit_in_place);
2711     }
2712 
2713     // Save (object->mark() | 1) into BasicLock's displaced header
2714     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2715 
2716     if (os::is_MP()) {
2717       __ lock();
2718     }
2719 
2720     // src -> dest iff dest == rax else rax <- dest
2721     __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2722     __ jcc(Assembler::equal, lock_done);
2723 
2724     // Hmm should this move to the slow path code area???
2725 
2726     // Test if the oopMark is an obvious stack pointer, i.e.,
2727     //  1) (mark & 3) == 0, and
2728     //  2) rsp <= mark < mark + os::pagesize()
2729     // These 3 tests can be done by evaluating the following
2730     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2731     // assuming both stack pointer and pagesize have their
2732     // least significant 2 bits clear.
2733     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2734 
2735     __ subptr(swap_reg, rsp);
2736     __ andptr(swap_reg, 3 - os::vm_page_size());
2737 
2738     // Save the test result, for recursive case, the result is zero
2739     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2740     __ jcc(Assembler::notEqual, slow_path_lock);
2741 
2742     // Slow path will re-enter here
2743 
2744     __ bind(lock_done);
2745   }
2746 
2747 
2748   // Finally just about ready to make the JNI call
2749 
2750 
2751   // get JNIEnv* which is first argument to native
2752   if (!is_critical_native) {
2753     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2754   }
2755 
2756   // Now set thread in native
2757   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2758 
2759   __ call(RuntimeAddress(native_func));
2760 
2761   // Verify or restore cpu control state after JNI call
2762   __ restore_cpu_control_state_after_jni();
2763 
2764   // Unpack native results.
2765   switch (ret_type) {
2766   case T_BOOLEAN: __ c2bool(rax);            break;
2767   case T_CHAR   : __ movzwl(rax, rax);      break;
2768   case T_BYTE   : __ sign_extend_byte (rax); break;
2769   case T_SHORT  : __ sign_extend_short(rax); break;
2770   case T_INT    : /* nothing to do */        break;
2771   case T_DOUBLE :
2772   case T_FLOAT  :
2773     // Result is in xmm0 we'll save as needed
2774     break;
2775   case T_ARRAY:                 // Really a handle
2776   case T_OBJECT:                // Really a handle
2777       break; // can't de-handlize until after safepoint check
2778   case T_VOID: break;
2779   case T_LONG: break;
2780   default       : ShouldNotReachHere();
2781   }
2782 
2783   // Switch thread to "native transition" state before reading the synchronization state.
2784   // This additional state is necessary because reading and testing the synchronization
2785   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2786   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2787   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2788   //     Thread A is resumed to finish this native method, but doesn't block here since it
2789   //     didn't see any synchronization is progress, and escapes.
2790   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2791 
2792   if(os::is_MP()) {
2793     if (UseMembar) {
2794       // Force this write out before the read below
2795       __ membar(Assembler::Membar_mask_bits(
2796            Assembler::LoadLoad | Assembler::LoadStore |
2797            Assembler::StoreLoad | Assembler::StoreStore));
2798     } else {
2799       // Write serialization page so VM thread can do a pseudo remote membar.
2800       // We use the current thread pointer to calculate a thread specific
2801       // offset to write to within the page. This minimizes bus traffic
2802       // due to cache line collision.
2803       __ serialize_memory(r15_thread, rcx);
2804     }
2805   }
2806 
2807   Label after_transition;
2808 
2809   // check for safepoint operation in progress and/or pending suspend requests
2810   {
2811     Label Continue;
2812     Label slow_path;
2813 
2814     __ safepoint_poll(slow_path, r15_thread, rscratch1);
2815 
2816     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2817     __ jcc(Assembler::equal, Continue);
2818     __ bind(slow_path);
2819 
2820     // Don't use call_VM as it will see a possible pending exception and forward it
2821     // and never return here preventing us from clearing _last_native_pc down below.
2822     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2823     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2824     // by hand.
2825     //
2826     __ vzeroupper();
2827     save_native_result(masm, ret_type, stack_slots);
2828     __ mov(c_rarg0, r15_thread);
2829     __ mov(r12, rsp); // remember sp
2830     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2831     __ andptr(rsp, -16); // align stack as required by ABI
2832     if (!is_critical_native) {
2833       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2834     } else {
2835       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2836     }
2837     __ mov(rsp, r12); // restore sp
2838     __ reinit_heapbase();
2839     // Restore any method result value
2840     restore_native_result(masm, ret_type, stack_slots);
2841 
2842     if (is_critical_native) {
2843       // The call above performed the transition to thread_in_Java so
2844       // skip the transition logic below.
2845       __ jmpb(after_transition);
2846     }
2847 
2848     __ bind(Continue);
2849   }
2850 
2851   // change thread state
2852   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2853   __ bind(after_transition);
2854 
2855   Label reguard;
2856   Label reguard_done;
2857   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
2858   __ jcc(Assembler::equal, reguard);
2859   __ bind(reguard_done);
2860 
2861   // native result if any is live
2862 
2863   // Unlock
2864   Label unlock_done;
2865   Label slow_path_unlock;
2866   if (method->is_synchronized()) {
2867 
2868     // Get locked oop from the handle we passed to jni
2869     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2870 
2871     Label done;
2872 
2873     if (UseBiasedLocking) {
2874       __ biased_locking_exit(obj_reg, old_hdr, done);
2875     }
2876 
2877     // Simple recursive lock?
2878 
2879     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2880     __ jcc(Assembler::equal, done);
2881 
2882     // Must save rax if if it is live now because cmpxchg must use it
2883     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2884       save_native_result(masm, ret_type, stack_slots);
2885     }
2886 
2887 
2888     // get address of the stack lock
2889     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2890     //  get old displaced header
2891     __ movptr(old_hdr, Address(rax, 0));
2892 
2893     // Atomic swap old header if oop still contains the stack lock
2894     if (os::is_MP()) {
2895       __ lock();
2896     }
2897     __ cmpxchgptr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2898     __ jcc(Assembler::notEqual, slow_path_unlock);
2899 
2900     // slow path re-enters here
2901     __ bind(unlock_done);
2902     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2903       restore_native_result(masm, ret_type, stack_slots);
2904     }
2905 
2906     __ bind(done);
2907 
2908   }
2909   {
2910     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2911     save_native_result(masm, ret_type, stack_slots);
2912     __ mov_metadata(c_rarg1, method());
2913     __ call_VM_leaf(
2914          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2915          r15_thread, c_rarg1);
2916     restore_native_result(masm, ret_type, stack_slots);
2917   }
2918 
2919   __ reset_last_Java_frame(false);
2920 
2921   // Unbox oop result, e.g. JNIHandles::resolve value.
2922   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2923     __ resolve_jobject(rax /* value */,
2924                        r15_thread /* thread */,
2925                        rcx /* tmp */);
2926   }
2927 
2928   if (CheckJNICalls) {
2929     // clear_pending_jni_exception_check
2930     __ movptr(Address(r15_thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
2931   }
2932 
2933   if (!is_critical_native) {
2934     // reset handle block
2935     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2936     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2937   }
2938 
2939   // pop our frame
2940 
2941   __ leave();
2942 
2943   if (!is_critical_native) {
2944     // Any exception pending?
2945     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2946     __ jcc(Assembler::notEqual, exception_pending);
2947   }
2948 
2949   // Return
2950 
2951   __ ret(0);
2952 
2953   // Unexpected paths are out of line and go here
2954 
2955   if (!is_critical_native) {
2956     // forward the exception
2957     __ bind(exception_pending);
2958 
2959     // and forward the exception
2960     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2961   }
2962 
2963   // Slow path locking & unlocking
2964   if (method->is_synchronized()) {
2965 
2966     // BEGIN Slow path lock
2967     __ bind(slow_path_lock);
2968 
2969     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2970     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2971 
2972     // protect the args we've loaded
2973     save_args(masm, total_c_args, c_arg, out_regs);
2974 
2975     __ mov(c_rarg0, obj_reg);
2976     __ mov(c_rarg1, lock_reg);
2977     __ mov(c_rarg2, r15_thread);
2978 
2979     // Not a leaf but we have last_Java_frame setup as we want
2980     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2981     restore_args(masm, total_c_args, c_arg, out_regs);
2982 
2983 #ifdef ASSERT
2984     { Label L;
2985     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2986     __ jcc(Assembler::equal, L);
2987     __ stop("no pending exception allowed on exit from monitorenter");
2988     __ bind(L);
2989     }
2990 #endif
2991     __ jmp(lock_done);
2992 
2993     // END Slow path lock
2994 
2995     // BEGIN Slow path unlock
2996     __ bind(slow_path_unlock);
2997 
2998     // If we haven't already saved the native result we must save it now as xmm registers
2999     // are still exposed.
3000     __ vzeroupper();
3001     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
3002       save_native_result(masm, ret_type, stack_slots);
3003     }
3004 
3005     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
3006 
3007     __ mov(c_rarg0, obj_reg);
3008     __ mov(c_rarg2, r15_thread);
3009     __ mov(r12, rsp); // remember sp
3010     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
3011     __ andptr(rsp, -16); // align stack as required by ABI
3012 
3013     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
3014     // NOTE that obj_reg == rbx currently
3015     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
3016     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
3017 
3018     // args are (oop obj, BasicLock* lock, JavaThread* thread)
3019     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
3020     __ mov(rsp, r12); // restore sp
3021     __ reinit_heapbase();
3022 #ifdef ASSERT
3023     {
3024       Label L;
3025       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
3026       __ jcc(Assembler::equal, L);
3027       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
3028       __ bind(L);
3029     }
3030 #endif /* ASSERT */
3031 
3032     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
3033 
3034     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
3035       restore_native_result(masm, ret_type, stack_slots);
3036     }
3037     __ jmp(unlock_done);
3038 
3039     // END Slow path unlock
3040 
3041   } // synchronized
3042 
3043   // SLOW PATH Reguard the stack if needed
3044 
3045   __ bind(reguard);
3046   __ vzeroupper();
3047   save_native_result(masm, ret_type, stack_slots);
3048   __ mov(r12, rsp); // remember sp
3049   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
3050   __ andptr(rsp, -16); // align stack as required by ABI
3051   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
3052   __ mov(rsp, r12); // restore sp
3053   __ reinit_heapbase();
3054   restore_native_result(masm, ret_type, stack_slots);
3055   // and continue
3056   __ jmp(reguard_done);
3057 
3058 
3059 
3060   __ flush();
3061 
3062   nmethod *nm = nmethod::new_native_nmethod(method,
3063                                             compile_id,
3064                                             masm->code(),
3065                                             vep_offset,
3066                                             frame_complete,
3067                                             stack_slots / VMRegImpl::slots_per_word,
3068                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
3069                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
3070                                             oop_maps);
3071 
3072   if (is_critical_native) {
3073     nm->set_lazy_critical_native(true);
3074   }
3075 
3076   return nm;
3077 
3078 }
3079 
3080 // this function returns the adjust size (in number of words) to a c2i adapter
3081 // activation for use during deoptimization
3082 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
3083   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3084 }
3085 
3086 
3087 uint SharedRuntime::out_preserve_stack_slots() {
3088   return 0;
3089 }
3090 
3091 //------------------------------generate_deopt_blob----------------------------
3092 void SharedRuntime::generate_deopt_blob() {
3093   // Allocate space for the code
3094   ResourceMark rm;
3095   // Setup code generation tools
3096   int pad = 0;
3097 #if INCLUDE_JVMCI
3098   if (EnableJVMCI || UseAOT) {
3099     pad += 512; // Increase the buffer size when compiling for JVMCI
3100   }
3101 #endif
3102   CodeBuffer buffer("deopt_blob", 2048+pad, 1024);
3103   MacroAssembler* masm = new MacroAssembler(&buffer);
3104   int frame_size_in_words;
3105   OopMap* map = NULL;
3106   OopMapSet *oop_maps = new OopMapSet();
3107 
3108   // -------------
3109   // This code enters when returning to a de-optimized nmethod.  A return
3110   // address has been pushed on the the stack, and return values are in
3111   // registers.
3112   // If we are doing a normal deopt then we were called from the patched
3113   // nmethod from the point we returned to the nmethod. So the return
3114   // address on the stack is wrong by NativeCall::instruction_size
3115   // We will adjust the value so it looks like we have the original return
3116   // address on the stack (like when we eagerly deoptimized).
3117   // In the case of an exception pending when deoptimizing, we enter
3118   // with a return address on the stack that points after the call we patched
3119   // into the exception handler. We have the following register state from,
3120   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
3121   //    rax: exception oop
3122   //    rbx: exception handler
3123   //    rdx: throwing pc
3124   // So in this case we simply jam rdx into the useless return address and
3125   // the stack looks just like we want.
3126   //
3127   // At this point we need to de-opt.  We save the argument return
3128   // registers.  We call the first C routine, fetch_unroll_info().  This
3129   // routine captures the return values and returns a structure which
3130   // describes the current frame size and the sizes of all replacement frames.
3131   // The current frame is compiled code and may contain many inlined
3132   // functions, each with their own JVM state.  We pop the current frame, then
3133   // push all the new frames.  Then we call the C routine unpack_frames() to
3134   // populate these frames.  Finally unpack_frames() returns us the new target
3135   // address.  Notice that callee-save registers are BLOWN here; they have
3136   // already been captured in the vframeArray at the time the return PC was
3137   // patched.
3138   address start = __ pc();
3139   Label cont;
3140 
3141   // Prolog for non exception case!
3142 
3143   // Save everything in sight.
3144   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3145 
3146   // Normal deoptimization.  Save exec mode for unpack_frames.
3147   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
3148   __ jmp(cont);
3149 
3150   int reexecute_offset = __ pc() - start;
3151 #if INCLUDE_JVMCI && !defined(COMPILER1)
3152   if (EnableJVMCI && UseJVMCICompiler) {
3153     // JVMCI does not use this kind of deoptimization
3154     __ should_not_reach_here();
3155   }
3156 #endif
3157 
3158   // Reexecute case
3159   // return address is the pc describes what bci to do re-execute at
3160 
3161   // No need to update map as each call to save_live_registers will produce identical oopmap
3162   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3163 
3164   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
3165   __ jmp(cont);
3166 
3167 #if INCLUDE_JVMCI
3168   Label after_fetch_unroll_info_call;
3169   int implicit_exception_uncommon_trap_offset = 0;
3170   int uncommon_trap_offset = 0;
3171 
3172   if (EnableJVMCI || UseAOT) {
3173     implicit_exception_uncommon_trap_offset = __ pc() - start;
3174 
3175     __ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
3176     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), (int32_t)NULL_WORD);
3177 
3178     uncommon_trap_offset = __ pc() - start;
3179 
3180     // Save everything in sight.
3181     RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3182     // fetch_unroll_info needs to call last_java_frame()
3183     __ set_last_Java_frame(noreg, noreg, NULL);
3184 
3185     __ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())));
3186     __ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1);
3187 
3188     __ movl(r14, (int32_t)Deoptimization::Unpack_reexecute);
3189     __ mov(c_rarg0, r15_thread);
3190     __ movl(c_rarg2, r14); // exec mode
3191     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3192     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
3193 
3194     __ reset_last_Java_frame(false);
3195 
3196     __ jmp(after_fetch_unroll_info_call);
3197   } // EnableJVMCI
3198 #endif // INCLUDE_JVMCI
3199 
3200   int exception_offset = __ pc() - start;
3201 
3202   // Prolog for exception case
3203 
3204   // all registers are dead at this entry point, except for rax, and
3205   // rdx which contain the exception oop and exception pc
3206   // respectively.  Set them in TLS and fall thru to the
3207   // unpack_with_exception_in_tls entry point.
3208 
3209   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3210   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
3211 
3212   int exception_in_tls_offset = __ pc() - start;
3213 
3214   // new implementation because exception oop is now passed in JavaThread
3215 
3216   // Prolog for exception case
3217   // All registers must be preserved because they might be used by LinearScan
3218   // Exceptiop oop and throwing PC are passed in JavaThread
3219   // tos: stack at point of call to method that threw the exception (i.e. only
3220   // args are on the stack, no return address)
3221 
3222   // make room on stack for the return address
3223   // It will be patched later with the throwing pc. The correct value is not
3224   // available now because loading it from memory would destroy registers.
3225   __ push(0);
3226 
3227   // Save everything in sight.
3228   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3229 
3230   // Now it is safe to overwrite any register
3231 
3232   // Deopt during an exception.  Save exec mode for unpack_frames.
3233   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
3234 
3235   // load throwing pc from JavaThread and patch it as the return address
3236   // of the current frame. Then clear the field in JavaThread
3237 
3238   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3239   __ movptr(Address(rbp, wordSize), rdx);
3240   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3241 
3242 #ifdef ASSERT
3243   // verify that there is really an exception oop in JavaThread
3244   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3245   __ verify_oop(rax);
3246 
3247   // verify that there is no pending exception
3248   Label no_pending_exception;
3249   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3250   __ testptr(rax, rax);
3251   __ jcc(Assembler::zero, no_pending_exception);
3252   __ stop("must not have pending exception here");
3253   __ bind(no_pending_exception);
3254 #endif
3255 
3256   __ bind(cont);
3257 
3258   // Call C code.  Need thread and this frame, but NOT official VM entry
3259   // crud.  We cannot block on this call, no GC can happen.
3260   //
3261   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
3262 
3263   // fetch_unroll_info needs to call last_java_frame().
3264 
3265   __ set_last_Java_frame(noreg, noreg, NULL);
3266 #ifdef ASSERT
3267   { Label L;
3268     __ cmpptr(Address(r15_thread,
3269                     JavaThread::last_Java_fp_offset()),
3270             (int32_t)0);
3271     __ jcc(Assembler::equal, L);
3272     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
3273     __ bind(L);
3274   }
3275 #endif // ASSERT
3276   __ mov(c_rarg0, r15_thread);
3277   __ movl(c_rarg1, r14); // exec_mode
3278   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
3279 
3280   // Need to have an oopmap that tells fetch_unroll_info where to
3281   // find any register it might need.
3282   oop_maps->add_gc_map(__ pc() - start, map);
3283 
3284   __ reset_last_Java_frame(false);
3285 
3286 #if INCLUDE_JVMCI
3287   if (EnableJVMCI || UseAOT) {
3288     __ bind(after_fetch_unroll_info_call);
3289   }
3290 #endif
3291 
3292   // Load UnrollBlock* into rdi
3293   __ mov(rdi, rax);
3294 
3295   __ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
3296    Label noException;
3297   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
3298   __ jcc(Assembler::notEqual, noException);
3299   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3300   // QQQ this is useless it was NULL above
3301   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3302   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
3303   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3304 
3305   __ verify_oop(rax);
3306 
3307   // Overwrite the result registers with the exception results.
3308   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3309   // I think this is useless
3310   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
3311 
3312   __ bind(noException);
3313 
3314   // Only register save data is on the stack.
3315   // Now restore the result registers.  Everything else is either dead
3316   // or captured in the vframeArray.
3317   RegisterSaver::restore_result_registers(masm);
3318 
3319   // All of the register save area has been popped of the stack. Only the
3320   // return address remains.
3321 
3322   // Pop all the frames we must move/replace.
3323   //
3324   // Frame picture (youngest to oldest)
3325   // 1: self-frame (no frame link)
3326   // 2: deopting frame  (no frame link)
3327   // 3: caller of deopting frame (could be compiled/interpreted).
3328   //
3329   // Note: by leaving the return address of self-frame on the stack
3330   // and using the size of frame 2 to adjust the stack
3331   // when we are done the return to frame 3 will still be on the stack.
3332 
3333   // Pop deoptimized frame
3334   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3335   __ addptr(rsp, rcx);
3336 
3337   // rsp should be pointing at the return address to the caller (3)
3338 
3339   // Pick up the initial fp we should save
3340   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3341   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3342 
3343 #ifdef ASSERT
3344   // Compilers generate code that bang the stack by as much as the
3345   // interpreter would need. So this stack banging should never
3346   // trigger a fault. Verify that it does not on non product builds.
3347   if (UseStackBanging) {
3348     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3349     __ bang_stack_size(rbx, rcx);
3350   }
3351 #endif
3352 
3353   // Load address of array of frame pcs into rcx
3354   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3355 
3356   // Trash the old pc
3357   __ addptr(rsp, wordSize);
3358 
3359   // Load address of array of frame sizes into rsi
3360   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3361 
3362   // Load counter into rdx
3363   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3364 
3365   // Now adjust the caller's stack to make up for the extra locals
3366   // but record the original sp so that we can save it in the skeletal interpreter
3367   // frame and the stack walking of interpreter_sender will get the unextended sp
3368   // value and not the "real" sp value.
3369 
3370   const Register sender_sp = r8;
3371 
3372   __ mov(sender_sp, rsp);
3373   __ movl(rbx, Address(rdi,
3374                        Deoptimization::UnrollBlock::
3375                        caller_adjustment_offset_in_bytes()));
3376   __ subptr(rsp, rbx);
3377 
3378   // Push interpreter frames in a loop
3379   Label loop;
3380   __ bind(loop);
3381   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3382   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
3383   __ pushptr(Address(rcx, 0));          // Save return address
3384   __ enter();                           // Save old & set new ebp
3385   __ subptr(rsp, rbx);                  // Prolog
3386   // This value is corrected by layout_activation_impl
3387   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3388   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
3389   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
3390   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3391   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3392   __ decrementl(rdx);                   // Decrement counter
3393   __ jcc(Assembler::notZero, loop);
3394   __ pushptr(Address(rcx, 0));          // Save final return address
3395 
3396   // Re-push self-frame
3397   __ enter();                           // Save old & set new ebp
3398 
3399   // Allocate a full sized register save area.
3400   // Return address and rbp are in place, so we allocate two less words.
3401   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
3402 
3403   // Restore frame locals after moving the frame
3404   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
3405   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3406 
3407   // Call C code.  Need thread but NOT official VM entry
3408   // crud.  We cannot block on this call, no GC can happen.  Call should
3409   // restore return values to their stack-slots with the new SP.
3410   //
3411   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
3412 
3413   // Use rbp because the frames look interpreted now
3414   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3415   // Don't need the precise return PC here, just precise enough to point into this code blob.
3416   address the_pc = __ pc();
3417   __ set_last_Java_frame(noreg, rbp, the_pc);
3418 
3419   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
3420   __ mov(c_rarg0, r15_thread);
3421   __ movl(c_rarg1, r14); // second arg: exec_mode
3422   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3423   // Revert SP alignment after call since we're going to do some SP relative addressing below
3424   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
3425 
3426   // Set an oopmap for the call site
3427   // Use the same PC we used for the last java frame
3428   oop_maps->add_gc_map(the_pc - start,
3429                        new OopMap( frame_size_in_words, 0 ));
3430 
3431   // Clear fp AND pc
3432   __ reset_last_Java_frame(true);
3433 
3434   // Collect return values
3435   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
3436   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
3437   // I think this is useless (throwing pc?)
3438   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
3439 
3440   // Pop self-frame.
3441   __ leave();                           // Epilog
3442 
3443   // Jump to interpreter
3444   __ ret(0);
3445 
3446   // Make sure all code is generated
3447   masm->flush();
3448 
3449   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3450   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3451 #if INCLUDE_JVMCI
3452   if (EnableJVMCI || UseAOT) {
3453     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
3454     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
3455   }
3456 #endif
3457 }
3458 
3459 #ifdef COMPILER2
3460 //------------------------------generate_uncommon_trap_blob--------------------
3461 void SharedRuntime::generate_uncommon_trap_blob() {
3462   // Allocate space for the code
3463   ResourceMark rm;
3464   // Setup code generation tools
3465   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3466   MacroAssembler* masm = new MacroAssembler(&buffer);
3467 
3468   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3469 
3470   address start = __ pc();
3471 
3472   if (UseRTMLocking) {
3473     // Abort RTM transaction before possible nmethod deoptimization.
3474     __ xabort(0);
3475   }
3476 
3477   // Push self-frame.  We get here with a return address on the
3478   // stack, so rsp is 8-byte aligned until we allocate our frame.
3479   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3480 
3481   // No callee saved registers. rbp is assumed implicitly saved
3482   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3483 
3484   // compiler left unloaded_class_index in j_rarg0 move to where the
3485   // runtime expects it.
3486   __ movl(c_rarg1, j_rarg0);
3487 
3488   __ set_last_Java_frame(noreg, noreg, NULL);
3489 
3490   // Call C code.  Need thread but NOT official VM entry
3491   // crud.  We cannot block on this call, no GC can happen.  Call should
3492   // capture callee-saved registers as well as return values.
3493   // Thread is in rdi already.
3494   //
3495   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3496 
3497   __ mov(c_rarg0, r15_thread);
3498   __ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap);
3499   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3500 
3501   // Set an oopmap for the call site
3502   OopMapSet* oop_maps = new OopMapSet();
3503   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3504 
3505   // location of rbp is known implicitly by the frame sender code
3506 
3507   oop_maps->add_gc_map(__ pc() - start, map);
3508 
3509   __ reset_last_Java_frame(false);
3510 
3511   // Load UnrollBlock* into rdi
3512   __ mov(rdi, rax);
3513 
3514 #ifdef ASSERT
3515   { Label L;
3516     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
3517             (int32_t)Deoptimization::Unpack_uncommon_trap);
3518     __ jcc(Assembler::equal, L);
3519     __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
3520     __ bind(L);
3521   }
3522 #endif
3523 
3524   // Pop all the frames we must move/replace.
3525   //
3526   // Frame picture (youngest to oldest)
3527   // 1: self-frame (no frame link)
3528   // 2: deopting frame  (no frame link)
3529   // 3: caller of deopting frame (could be compiled/interpreted).
3530 
3531   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3532   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3533 
3534   // Pop deoptimized frame (int)
3535   __ movl(rcx, Address(rdi,
3536                        Deoptimization::UnrollBlock::
3537                        size_of_deoptimized_frame_offset_in_bytes()));
3538   __ addptr(rsp, rcx);
3539 
3540   // rsp should be pointing at the return address to the caller (3)
3541 
3542   // Pick up the initial fp we should save
3543   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3544   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3545 
3546 #ifdef ASSERT
3547   // Compilers generate code that bang the stack by as much as the
3548   // interpreter would need. So this stack banging should never
3549   // trigger a fault. Verify that it does not on non product builds.
3550   if (UseStackBanging) {
3551     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3552     __ bang_stack_size(rbx, rcx);
3553   }
3554 #endif
3555 
3556   // Load address of array of frame pcs into rcx (address*)
3557   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3558 
3559   // Trash the return pc
3560   __ addptr(rsp, wordSize);
3561 
3562   // Load address of array of frame sizes into rsi (intptr_t*)
3563   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
3564 
3565   // Counter
3566   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
3567 
3568   // Now adjust the caller's stack to make up for the extra locals but
3569   // record the original sp so that we can save it in the skeletal
3570   // interpreter frame and the stack walking of interpreter_sender
3571   // will get the unextended sp value and not the "real" sp value.
3572 
3573   const Register sender_sp = r8;
3574 
3575   __ mov(sender_sp, rsp);
3576   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
3577   __ subptr(rsp, rbx);
3578 
3579   // Push interpreter frames in a loop
3580   Label loop;
3581   __ bind(loop);
3582   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3583   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3584   __ pushptr(Address(rcx, 0));     // Save return address
3585   __ enter();                      // Save old & set new rbp
3586   __ subptr(rsp, rbx);             // Prolog
3587   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3588             sender_sp);            // Make it walkable
3589   // This value is corrected by layout_activation_impl
3590   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3591   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3592   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3593   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3594   __ decrementl(rdx);              // Decrement counter
3595   __ jcc(Assembler::notZero, loop);
3596   __ pushptr(Address(rcx, 0));     // Save final return address
3597 
3598   // Re-push self-frame
3599   __ enter();                 // Save old & set new rbp
3600   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3601                               // Prolog
3602 
3603   // Use rbp because the frames look interpreted now
3604   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3605   // Don't need the precise return PC here, just precise enough to point into this code blob.
3606   address the_pc = __ pc();
3607   __ set_last_Java_frame(noreg, rbp, the_pc);
3608 
3609   // Call C code.  Need thread but NOT official VM entry
3610   // crud.  We cannot block on this call, no GC can happen.  Call should
3611   // restore return values to their stack-slots with the new SP.
3612   // Thread is in rdi already.
3613   //
3614   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3615 
3616   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3617   __ mov(c_rarg0, r15_thread);
3618   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3619   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3620 
3621   // Set an oopmap for the call site
3622   // Use the same PC we used for the last java frame
3623   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3624 
3625   // Clear fp AND pc
3626   __ reset_last_Java_frame(true);
3627 
3628   // Pop self-frame.
3629   __ leave();                 // Epilog
3630 
3631   // Jump to interpreter
3632   __ ret(0);
3633 
3634   // Make sure all code is generated
3635   masm->flush();
3636 
3637   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3638                                                  SimpleRuntimeFrame::framesize >> 1);
3639 }
3640 #endif // COMPILER2
3641 
3642 
3643 //------------------------------generate_handler_blob------
3644 //
3645 // Generate a special Compile2Runtime blob that saves all registers,
3646 // and setup oopmap.
3647 //
3648 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3649   assert(StubRoutines::forward_exception_entry() != NULL,
3650          "must be generated before");
3651 
3652   ResourceMark rm;
3653   OopMapSet *oop_maps = new OopMapSet();
3654   OopMap* map;
3655 
3656   // Allocate space for the code.  Setup code generation tools.
3657   CodeBuffer buffer("handler_blob", 2048, 1024);
3658   MacroAssembler* masm = new MacroAssembler(&buffer);
3659 
3660   address start   = __ pc();
3661   address call_pc = NULL;
3662   int frame_size_in_words;
3663   bool cause_return = (poll_type == POLL_AT_RETURN);
3664   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3665 
3666   if (UseRTMLocking) {
3667     // Abort RTM transaction before calling runtime
3668     // because critical section will be large and will be
3669     // aborted anyway. Also nmethod could be deoptimized.
3670     __ xabort(0);
3671   }
3672 
3673   // Make room for return address (or push it again)
3674   if (!cause_return) {
3675     __ push(rbx);
3676   }
3677 
3678   // Save registers, fpu state, and flags
3679   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
3680 
3681   // The following is basically a call_VM.  However, we need the precise
3682   // address of the call in order to generate an oopmap. Hence, we do all the
3683   // work outselves.
3684 
3685   __ set_last_Java_frame(noreg, noreg, NULL);
3686 
3687   // The return address must always be correct so that frame constructor never
3688   // sees an invalid pc.
3689 
3690   if (!cause_return) {
3691     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
3692     // Additionally, rbx is a callee saved register and we can look at it later to determine
3693     // if someone changed the return address for us!
3694     __ movptr(rbx, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3695     __ movptr(Address(rbp, wordSize), rbx);
3696   }
3697 
3698   // Do the call
3699   __ mov(c_rarg0, r15_thread);
3700   __ call(RuntimeAddress(call_ptr));
3701 
3702   // Set an oopmap for the call site.  This oopmap will map all
3703   // oop-registers and debug-info registers as callee-saved.  This
3704   // will allow deoptimization at this safepoint to find all possible
3705   // debug-info recordings, as well as let GC find all oops.
3706 
3707   oop_maps->add_gc_map( __ pc() - start, map);
3708 
3709   Label noException;
3710 
3711   __ reset_last_Java_frame(false);
3712 
3713   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3714   __ jcc(Assembler::equal, noException);
3715 
3716   // Exception pending
3717 
3718   RegisterSaver::restore_live_registers(masm, save_vectors);
3719 
3720   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3721 
3722   // No exception case
3723   __ bind(noException);
3724 
3725   Label no_adjust, bail, no_prefix, not_special;
3726   if (SafepointMechanism::uses_thread_local_poll() && !cause_return) {
3727     // If our stashed return pc was modified by the runtime we avoid touching it
3728     __ cmpptr(rbx, Address(rbp, wordSize));
3729     __ jccb(Assembler::notEqual, no_adjust);
3730 
3731     // Skip over the poll instruction.
3732     // See NativeInstruction::is_safepoint_poll()
3733     // Possible encodings:
3734     //      85 00       test   %eax,(%rax)
3735     //      85 01       test   %eax,(%rcx)
3736     //      85 02       test   %eax,(%rdx)
3737     //      85 03       test   %eax,(%rbx)
3738     //      85 06       test   %eax,(%rsi)
3739     //      85 07       test   %eax,(%rdi)
3740     //
3741     //   41 85 00       test   %eax,(%r8)
3742     //   41 85 01       test   %eax,(%r9)
3743     //   41 85 02       test   %eax,(%r10)
3744     //   41 85 03       test   %eax,(%r11)
3745     //   41 85 06       test   %eax,(%r14)
3746     //   41 85 07       test   %eax,(%r15)
3747     //
3748     //      85 04 24    test   %eax,(%rsp)
3749     //   41 85 04 24    test   %eax,(%r12)
3750     //      85 45 00    test   %eax,0x0(%rbp)
3751     //   41 85 45 00    test   %eax,0x0(%r13)
3752 
3753     __ cmpb(Address(rbx, 0), NativeTstRegMem::instruction_rex_b_prefix);
3754     __ jcc(Assembler::notEqual, no_prefix);
3755     __ addptr(rbx, 1);
3756     __ bind(no_prefix);
3757 #ifdef ASSERT
3758     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
3759 #endif
3760     // r12/r13/rsp/rbp base encoding takes 3 bytes with the following register values:
3761     // r12/rsp 0x04
3762     // r13/rbp 0x05
3763     __ movzbq(rcx, Address(rbx, 1));
3764     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
3765     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
3766     __ cmpptr(rcx, 1);
3767     __ jcc(Assembler::above, not_special);
3768     __ addptr(rbx, 1);
3769     __ bind(not_special);
3770 #ifdef ASSERT
3771     // Verify the correct encoding of the poll we're about to skip.
3772     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
3773     __ jcc(Assembler::notEqual, bail);
3774     // Mask out the modrm bits
3775     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
3776     // rax encodes to 0, so if the bits are nonzero it's incorrect
3777     __ jcc(Assembler::notZero, bail);
3778 #endif
3779     // Adjust return pc forward to step over the safepoint poll instruction
3780     __ addptr(rbx, 2);
3781     __ movptr(Address(rbp, wordSize), rbx);
3782   }
3783 
3784   __ bind(no_adjust);
3785   // Normal exit, restore registers and exit.
3786   RegisterSaver::restore_live_registers(masm, save_vectors);
3787   __ ret(0);
3788 
3789 #ifdef ASSERT
3790   __ bind(bail);
3791   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
3792 #endif
3793 
3794   // Make sure all code is generated
3795   masm->flush();
3796 
3797   // Fill-out other meta info
3798   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3799 }
3800 
3801 //
3802 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3803 //
3804 // Generate a stub that calls into vm to find out the proper destination
3805 // of a java call. All the argument registers are live at this point
3806 // but since this is generic code we don't know what they are and the caller
3807 // must do any gc of the args.
3808 //
3809 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3810   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3811 
3812   // allocate space for the code
3813   ResourceMark rm;
3814 
3815   CodeBuffer buffer(name, 1000, 512);
3816   MacroAssembler* masm                = new MacroAssembler(&buffer);
3817 
3818   int frame_size_in_words;
3819 
3820   OopMapSet *oop_maps = new OopMapSet();
3821   OopMap* map = NULL;
3822 
3823   int start = __ offset();
3824 
3825   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3826 
3827   int frame_complete = __ offset();
3828 
3829   __ set_last_Java_frame(noreg, noreg, NULL);
3830 
3831   __ mov(c_rarg0, r15_thread);
3832 
3833   __ call(RuntimeAddress(destination));
3834 
3835 
3836   // Set an oopmap for the call site.
3837   // We need this not only for callee-saved registers, but also for volatile
3838   // registers that the compiler might be keeping live across a safepoint.
3839 
3840   oop_maps->add_gc_map( __ offset() - start, map);
3841 
3842   // rax contains the address we are going to jump to assuming no exception got installed
3843 
3844   // clear last_Java_sp
3845   __ reset_last_Java_frame(false);
3846   // check for pending exceptions
3847   Label pending;
3848   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3849   __ jcc(Assembler::notEqual, pending);
3850 
3851   // get the returned Method*
3852   __ get_vm_result_2(rbx, r15_thread);
3853   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3854 
3855   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3856 
3857   RegisterSaver::restore_live_registers(masm);
3858 
3859   // We are back the the original state on entry and ready to go.
3860 
3861   __ jmp(rax);
3862 
3863   // Pending exception after the safepoint
3864 
3865   __ bind(pending);
3866 
3867   RegisterSaver::restore_live_registers(masm);
3868 
3869   // exception pending => remove activation and forward to exception handler
3870 
3871   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3872 
3873   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3874   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3875 
3876   // -------------
3877   // make sure all code is generated
3878   masm->flush();
3879 
3880   // return the  blob
3881   // frame_size_words or bytes??
3882   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3883 }
3884 
3885 
3886 //------------------------------Montgomery multiplication------------------------
3887 //
3888 
3889 #ifndef _WINDOWS
3890 
3891 #define ASM_SUBTRACT
3892 
3893 #ifdef ASM_SUBTRACT
3894 // Subtract 0:b from carry:a.  Return carry.
3895 static unsigned long
3896 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
3897   long i = 0, cnt = len;
3898   unsigned long tmp;
3899   asm volatile("clc; "
3900                "0: ; "
3901                "mov (%[b], %[i], 8), %[tmp]; "
3902                "sbb %[tmp], (%[a], %[i], 8); "
3903                "inc %[i]; dec %[cnt]; "
3904                "jne 0b; "
3905                "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
3906                : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
3907                : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
3908                : "memory");
3909   return tmp;
3910 }
3911 #else // ASM_SUBTRACT
3912 typedef int __attribute__((mode(TI))) int128;
3913 
3914 // Subtract 0:b from carry:a.  Return carry.
3915 static unsigned long
3916 sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) {
3917   int128 tmp = 0;
3918   int i;
3919   for (i = 0; i < len; i++) {
3920     tmp += a[i];
3921     tmp -= b[i];
3922     a[i] = tmp;
3923     tmp >>= 64;
3924     assert(-1 <= tmp && tmp <= 0, "invariant");
3925   }
3926   return tmp + carry;
3927 }
3928 #endif // ! ASM_SUBTRACT
3929 
3930 // Multiply (unsigned) Long A by Long B, accumulating the double-
3931 // length result into the accumulator formed of T0, T1, and T2.
3932 #define MACC(A, B, T0, T1, T2)                                  \
3933 do {                                                            \
3934   unsigned long hi, lo;                                         \
3935   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4"   \
3936            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3937            : "r"(A), "a"(B) : "cc");                            \
3938  } while(0)
3939 
3940 // As above, but add twice the double-length result into the
3941 // accumulator.
3942 #define MACC2(A, B, T0, T1, T2)                                 \
3943 do {                                                            \
3944   unsigned long hi, lo;                                         \
3945   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \
3946            "add %%rax, %2; adc %%rdx, %3; adc $0, %4"           \
3947            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3948            : "r"(A), "a"(B) : "cc");                            \
3949  } while(0)
3950 
3951 // Fast Montgomery multiplication.  The derivation of the algorithm is
3952 // in  A Cryptographic Library for the Motorola DSP56000,
3953 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
3954 
3955 static void __attribute__((noinline))
3956 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
3957                     unsigned long m[], unsigned long inv, int len) {
3958   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3959   int i;
3960 
3961   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3962 
3963   for (i = 0; i < len; i++) {
3964     int j;
3965     for (j = 0; j < i; j++) {
3966       MACC(a[j], b[i-j], t0, t1, t2);
3967       MACC(m[j], n[i-j], t0, t1, t2);
3968     }
3969     MACC(a[i], b[0], t0, t1, t2);
3970     m[i] = t0 * inv;
3971     MACC(m[i], n[0], t0, t1, t2);
3972 
3973     assert(t0 == 0, "broken Montgomery multiply");
3974 
3975     t0 = t1; t1 = t2; t2 = 0;
3976   }
3977 
3978   for (i = len; i < 2*len; i++) {
3979     int j;
3980     for (j = i-len+1; j < len; j++) {
3981       MACC(a[j], b[i-j], t0, t1, t2);
3982       MACC(m[j], n[i-j], t0, t1, t2);
3983     }
3984     m[i-len] = t0;
3985     t0 = t1; t1 = t2; t2 = 0;
3986   }
3987 
3988   while (t0)
3989     t0 = sub(m, n, t0, len);
3990 }
3991 
3992 // Fast Montgomery squaring.  This uses asymptotically 25% fewer
3993 // multiplies so it should be up to 25% faster than Montgomery
3994 // multiplication.  However, its loop control is more complex and it
3995 // may actually run slower on some machines.
3996 
3997 static void __attribute__((noinline))
3998 montgomery_square(unsigned long a[], unsigned long n[],
3999                   unsigned long m[], unsigned long inv, int len) {
4000   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
4001   int i;
4002 
4003   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
4004 
4005   for (i = 0; i < len; i++) {
4006     int j;
4007     int end = (i+1)/2;
4008     for (j = 0; j < end; j++) {
4009       MACC2(a[j], a[i-j], t0, t1, t2);
4010       MACC(m[j], n[i-j], t0, t1, t2);
4011     }
4012     if ((i & 1) == 0) {
4013       MACC(a[j], a[j], t0, t1, t2);
4014     }
4015     for (; j < i; j++) {
4016       MACC(m[j], n[i-j], t0, t1, t2);
4017     }
4018     m[i] = t0 * inv;
4019     MACC(m[i], n[0], t0, t1, t2);
4020 
4021     assert(t0 == 0, "broken Montgomery square");
4022 
4023     t0 = t1; t1 = t2; t2 = 0;
4024   }
4025 
4026   for (i = len; i < 2*len; i++) {
4027     int start = i-len+1;
4028     int end = start + (len - start)/2;
4029     int j;
4030     for (j = start; j < end; j++) {
4031       MACC2(a[j], a[i-j], t0, t1, t2);
4032       MACC(m[j], n[i-j], t0, t1, t2);
4033     }
4034     if ((i & 1) == 0) {
4035       MACC(a[j], a[j], t0, t1, t2);
4036     }
4037     for (; j < len; j++) {
4038       MACC(m[j], n[i-j], t0, t1, t2);
4039     }
4040     m[i-len] = t0;
4041     t0 = t1; t1 = t2; t2 = 0;
4042   }
4043 
4044   while (t0)
4045     t0 = sub(m, n, t0, len);
4046 }
4047 
4048 // Swap words in a longword.
4049 static unsigned long swap(unsigned long x) {
4050   return (x << 32) | (x >> 32);
4051 }
4052 
4053 // Copy len longwords from s to d, word-swapping as we go.  The
4054 // destination array is reversed.
4055 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
4056   d += len;
4057   while(len-- > 0) {
4058     d--;
4059     *d = swap(*s);
4060     s++;
4061   }
4062 }
4063 
4064 // The threshold at which squaring is advantageous was determined
4065 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
4066 #define MONTGOMERY_SQUARING_THRESHOLD 64
4067 
4068 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
4069                                         jint len, jlong inv,
4070                                         jint *m_ints) {
4071   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
4072   int longwords = len/2;
4073 
4074   // Make very sure we don't use so much space that the stack might
4075   // overflow.  512 jints corresponds to an 16384-bit integer and
4076   // will use here a total of 8k bytes of stack space.
4077   int total_allocation = longwords * sizeof (unsigned long) * 4;
4078   guarantee(total_allocation <= 8192, "must be");
4079   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
4080 
4081   // Local scratch arrays
4082   unsigned long
4083     *a = scratch + 0 * longwords,
4084     *b = scratch + 1 * longwords,
4085     *n = scratch + 2 * longwords,
4086     *m = scratch + 3 * longwords;
4087 
4088   reverse_words((unsigned long *)a_ints, a, longwords);
4089   reverse_words((unsigned long *)b_ints, b, longwords);
4090   reverse_words((unsigned long *)n_ints, n, longwords);
4091 
4092   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
4093 
4094   reverse_words(m, (unsigned long *)m_ints, longwords);
4095 }
4096 
4097 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
4098                                       jint len, jlong inv,
4099                                       jint *m_ints) {
4100   assert(len % 2 == 0, "array length in montgomery_square must be even");
4101   int longwords = len/2;
4102 
4103   // Make very sure we don't use so much space that the stack might
4104   // overflow.  512 jints corresponds to an 16384-bit integer and
4105   // will use here a total of 6k bytes of stack space.
4106   int total_allocation = longwords * sizeof (unsigned long) * 3;
4107   guarantee(total_allocation <= 8192, "must be");
4108   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
4109 
4110   // Local scratch arrays
4111   unsigned long
4112     *a = scratch + 0 * longwords,
4113     *n = scratch + 1 * longwords,
4114     *m = scratch + 2 * longwords;
4115 
4116   reverse_words((unsigned long *)a_ints, a, longwords);
4117   reverse_words((unsigned long *)n_ints, n, longwords);
4118 
4119   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
4120     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
4121   } else {
4122     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
4123   }
4124 
4125   reverse_words(m, (unsigned long *)m_ints, longwords);
4126 }
4127 
4128 #endif // WINDOWS
4129 
4130 #ifdef COMPILER2
4131 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
4132 //
4133 //------------------------------generate_exception_blob---------------------------
4134 // creates exception blob at the end
4135 // Using exception blob, this code is jumped from a compiled method.
4136 // (see emit_exception_handler in x86_64.ad file)
4137 //
4138 // Given an exception pc at a call we call into the runtime for the
4139 // handler in this method. This handler might merely restore state
4140 // (i.e. callee save registers) unwind the frame and jump to the
4141 // exception handler for the nmethod if there is no Java level handler
4142 // for the nmethod.
4143 //
4144 // This code is entered with a jmp.
4145 //
4146 // Arguments:
4147 //   rax: exception oop
4148 //   rdx: exception pc
4149 //
4150 // Results:
4151 //   rax: exception oop
4152 //   rdx: exception pc in caller or ???
4153 //   destination: exception handler of caller
4154 //
4155 // Note: the exception pc MUST be at a call (precise debug information)
4156 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
4157 //
4158 
4159 void OptoRuntime::generate_exception_blob() {
4160   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
4161   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
4162   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
4163 
4164   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
4165 
4166   // Allocate space for the code
4167   ResourceMark rm;
4168   // Setup code generation tools
4169   CodeBuffer buffer("exception_blob", 2048, 1024);
4170   MacroAssembler* masm = new MacroAssembler(&buffer);
4171 
4172 
4173   address start = __ pc();
4174 
4175   // Exception pc is 'return address' for stack walker
4176   __ push(rdx);
4177   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
4178 
4179   // Save callee-saved registers.  See x86_64.ad.
4180 
4181   // rbp is an implicitly saved callee saved register (i.e., the calling
4182   // convention will save/restore it in the prolog/epilog). Other than that
4183   // there are no callee save registers now that adapter frames are gone.
4184 
4185   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
4186 
4187   // Store exception in Thread object. We cannot pass any arguments to the
4188   // handle_exception call, since we do not want to make any assumption
4189   // about the size of the frame where the exception happened in.
4190   // c_rarg0 is either rdi (Linux) or rcx (Windows).
4191   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
4192   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
4193 
4194   // This call does all the hard work.  It checks if an exception handler
4195   // exists in the method.
4196   // If so, it returns the handler address.
4197   // If not, it prepares for stack-unwinding, restoring the callee-save
4198   // registers of the frame being removed.
4199   //
4200   // address OptoRuntime::handle_exception_C(JavaThread* thread)
4201 
4202   // At a method handle call, the stack may not be properly aligned
4203   // when returning with an exception.
4204   address the_pc = __ pc();
4205   __ set_last_Java_frame(noreg, noreg, the_pc);
4206   __ mov(c_rarg0, r15_thread);
4207   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
4208   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
4209 
4210   // Set an oopmap for the call site.  This oopmap will only be used if we
4211   // are unwinding the stack.  Hence, all locations will be dead.
4212   // Callee-saved registers will be the same as the frame above (i.e.,
4213   // handle_exception_stub), since they were restored when we got the
4214   // exception.
4215 
4216   OopMapSet* oop_maps = new OopMapSet();
4217 
4218   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
4219 
4220   __ reset_last_Java_frame(false);
4221 
4222   // Restore callee-saved registers
4223 
4224   // rbp is an implicitly saved callee-saved register (i.e., the calling
4225   // convention will save restore it in prolog/epilog) Other than that
4226   // there are no callee save registers now that adapter frames are gone.
4227 
4228   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
4229 
4230   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
4231   __ pop(rdx);                  // No need for exception pc anymore
4232 
4233   // rax: exception handler
4234 
4235   // We have a handler in rax (could be deopt blob).
4236   __ mov(r8, rax);
4237 
4238   // Get the exception oop
4239   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
4240   // Get the exception pc in case we are deoptimized
4241   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
4242 #ifdef ASSERT
4243   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
4244   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
4245 #endif
4246   // Clear the exception oop so GC no longer processes it as a root.
4247   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
4248 
4249   // rax: exception oop
4250   // r8:  exception handler
4251   // rdx: exception pc
4252   // Jump to handler
4253 
4254   __ jmp(r8);
4255 
4256   // Make sure all code is generated
4257   masm->flush();
4258 
4259   // Set exception blob
4260   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
4261 }
4262 #endif // COMPILER2
4263 
4264 BufferedValueTypeBlob* SharedRuntime::generate_buffered_value_type_adapter(const ValueKlass* vk) {
4265   BufferBlob* buf = BufferBlob::create("value types pack/unpack", 16 * K);
4266   CodeBuffer buffer(buf);
4267   short buffer_locs[20];
4268   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
4269                                          sizeof(buffer_locs)/sizeof(relocInfo));
4270 
4271   MacroAssembler _masm(&buffer);
4272   MacroAssembler* masm = &_masm;
4273 
4274   const Array<SigEntry>* sig_vk = vk->extended_sig();
4275   const Array<VMRegPair>* regs = vk->return_regs();
4276 
4277   int pack_fields_off = __ offset();
4278 
4279   int j = 1;
4280   for (int i = 0; i < sig_vk->length(); i++) {
4281     BasicType bt = sig_vk->at(i)._bt;
4282     if (bt == T_VALUETYPE) {
4283       continue;
4284     }
4285     if (bt == T_VOID) {
4286       if (sig_vk->at(i-1)._bt == T_LONG ||
4287           sig_vk->at(i-1)._bt == T_DOUBLE) {
4288         j++;
4289       }
4290       continue;
4291     }
4292     int off = sig_vk->at(i)._offset;
4293     VMRegPair pair = regs->at(j);
4294     VMReg r_1 = pair.first();
4295     VMReg r_2 = pair.second();
4296     Address to(rax, off);
4297     if (bt == T_FLOAT) {
4298       __ movflt(to, r_1->as_XMMRegister());
4299     } else if (bt == T_DOUBLE) {
4300       __ movdbl(to, r_1->as_XMMRegister());
4301     } else if (bt == T_OBJECT || bt == T_VALUETYPEPTR || bt == T_ARRAY) {
4302       __ store_heap_oop(to, r_1->as_Register());
4303     } else {
4304       assert(is_java_primitive(bt), "unexpected basic type");
4305       size_t size_in_bytes = type2aelembytes(bt);
4306       __ store_sized_value(to, r_1->as_Register(), size_in_bytes);
4307     }
4308     j++;
4309   }
4310   assert(j == regs->length(), "missed a field?");
4311 
4312   __ ret(0);
4313 
4314   int unpack_fields_off = __ offset();
4315 
4316   j = 1;
4317   for (int i = 0; i < sig_vk->length(); i++) {
4318     BasicType bt = sig_vk->at(i)._bt;
4319     if (bt == T_VALUETYPE) {
4320       continue;
4321     }
4322     if (bt == T_VOID) {
4323       if (sig_vk->at(i-1)._bt == T_LONG ||
4324           sig_vk->at(i-1)._bt == T_DOUBLE) {
4325         j++;
4326       }
4327       continue;
4328     }
4329     int off = sig_vk->at(i)._offset;
4330     VMRegPair pair = regs->at(j);
4331     VMReg r_1 = pair.first();
4332     VMReg r_2 = pair.second();
4333     Address from(rax, off);
4334     if (bt == T_FLOAT) {
4335       __ movflt(r_1->as_XMMRegister(), from);
4336     } else if (bt == T_DOUBLE) {
4337       __ movdbl(r_1->as_XMMRegister(), from);
4338     } else if (bt == T_OBJECT || bt == T_VALUETYPEPTR || bt == T_ARRAY) {
4339       __ load_heap_oop(r_1->as_Register(), from);
4340     } else {
4341       assert(is_java_primitive(bt), "unexpected basic type");
4342       size_t size_in_bytes = type2aelembytes(bt);
4343       __ load_sized_value(r_1->as_Register(), from, size_in_bytes, bt != T_CHAR && bt != T_BOOLEAN);
4344     }
4345     j++;
4346   }
4347   assert(j == regs->length(), "missed a field?");
4348 
4349   if (StressValueTypeReturnedAsFields) {
4350     __ load_klass(rax, rax);
4351     __ orptr(rax, 1);
4352   }
4353 
4354   __ ret(0);
4355 
4356   __ flush();
4357 
4358   return BufferedValueTypeBlob::create(&buffer, pack_fields_off, unpack_fields_off);
4359 }