/* * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "compiler/compileLog.hpp" #include "ci/bcEscapeAnalyzer.hpp" #include "compiler/oopMap.hpp" #include "opto/callGenerator.hpp" #include "opto/callnode.hpp" #include "opto/castnode.hpp" #include "opto/convertnode.hpp" #include "opto/escape.hpp" #include "opto/locknode.hpp" #include "opto/machnode.hpp" #include "opto/matcher.hpp" #include "opto/parse.hpp" #include "opto/regalloc.hpp" #include "opto/regmask.hpp" #include "opto/rootnode.hpp" #include "opto/runtime.hpp" #include "opto/valuetypenode.hpp" // Portions of code courtesy of Clifford Click // Optimization - Graph Style //============================================================================= uint StartNode::size_of() const { return sizeof(*this); } uint StartNode::cmp( const Node &n ) const { return _domain == ((StartNode&)n)._domain; } const Type *StartNode::bottom_type() const { return _domain; } const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; } #ifndef PRODUCT void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);} void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ } #endif //------------------------------Ideal------------------------------------------ Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){ return remove_dead_region(phase, can_reshape) ? this : NULL; } //------------------------------calling_convention----------------------------- void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { Matcher::calling_convention( sig_bt, parm_regs, argcnt, false ); } //------------------------------Registers-------------------------------------- const RegMask &StartNode::in_RegMask(uint) const { return RegMask::Empty; } //------------------------------match------------------------------------------ // Construct projections for incoming parameters, and their RegMask info Node *StartNode::match( const ProjNode *proj, const Matcher *match ) { switch (proj->_con) { case TypeFunc::Control: case TypeFunc::I_O: case TypeFunc::Memory: return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); case TypeFunc::FramePtr: return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP); case TypeFunc::ReturnAdr: return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP); case TypeFunc::Parms: default: { uint parm_num = proj->_con - TypeFunc::Parms; const Type *t = _domain->field_at(proj->_con); if (t->base() == Type::Half) // 2nd half of Longs and Doubles return new ConNode(Type::TOP); uint ideal_reg = t->ideal_reg(); RegMask &rm = match->_calling_convention_mask[parm_num]; return new MachProjNode(this,proj->_con,rm,ideal_reg); } } return NULL; } //------------------------------StartOSRNode---------------------------------- // The method start node for an on stack replacement adapter //------------------------------osr_domain----------------------------- const TypeTuple *StartOSRNode::osr_domain() { const Type **fields = TypeTuple::fields(2); fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer return TypeTuple::make(TypeFunc::Parms+1, fields); } //============================================================================= const char * const ParmNode::names[TypeFunc::Parms+1] = { "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms" }; #ifndef PRODUCT void ParmNode::dump_spec(outputStream *st) const { if( _con < TypeFunc::Parms ) { st->print("%s", names[_con]); } else { st->print("Parm%d: ",_con-TypeFunc::Parms); // Verbose and WizardMode dump bottom_type for all nodes if( !Verbose && !WizardMode ) bottom_type()->dump_on(st); } } void ParmNode::dump_compact_spec(outputStream *st) const { if (_con < TypeFunc::Parms) { st->print("%s", names[_con]); } else { st->print("%d:", _con-TypeFunc::Parms); // unconditionally dump bottom_type bottom_type()->dump_on(st); } } // For a ParmNode, all immediate inputs and outputs are considered relevant // both in compact and standard representation. void ParmNode::related(GrowableArray *in_rel, GrowableArray *out_rel, bool compact) const { this->collect_nodes(in_rel, 1, false, false); this->collect_nodes(out_rel, -1, false, false); } #endif uint ParmNode::ideal_reg() const { switch( _con ) { case TypeFunc::Control : // fall through case TypeFunc::I_O : // fall through case TypeFunc::Memory : return 0; case TypeFunc::FramePtr : // fall through case TypeFunc::ReturnAdr: return Op_RegP; default : assert( _con > TypeFunc::Parms, "" ); // fall through case TypeFunc::Parms : { // Type of argument being passed const Type *t = in(0)->as_Start()->_domain->field_at(_con); return t->ideal_reg(); } } ShouldNotReachHere(); return 0; } //============================================================================= ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) { init_req(TypeFunc::Control,cntrl); init_req(TypeFunc::I_O,i_o); init_req(TypeFunc::Memory,memory); init_req(TypeFunc::FramePtr,frameptr); init_req(TypeFunc::ReturnAdr,retadr); } Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){ return remove_dead_region(phase, can_reshape) ? this : NULL; } const Type* ReturnNode::Value(PhaseGVN* phase) const { return ( phase->type(in(TypeFunc::Control)) == Type::TOP) ? Type::TOP : Type::BOTTOM; } // Do we Match on this edge index or not? No edges on return nodes uint ReturnNode::match_edge(uint idx) const { return 0; } #ifndef PRODUCT void ReturnNode::dump_req(outputStream *st) const { // Dump the required inputs, enclosed in '(' and ')' uint i; // Exit value of loop for (i = 0; i < req(); i++) { // For all required inputs if (i == TypeFunc::Parms) st->print("returns"); if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); else st->print("_ "); } } #endif //============================================================================= RethrowNode::RethrowNode( Node* cntrl, Node* i_o, Node* memory, Node* frameptr, Node* ret_adr, Node* exception ) : Node(TypeFunc::Parms + 1) { init_req(TypeFunc::Control , cntrl ); init_req(TypeFunc::I_O , i_o ); init_req(TypeFunc::Memory , memory ); init_req(TypeFunc::FramePtr , frameptr ); init_req(TypeFunc::ReturnAdr, ret_adr); init_req(TypeFunc::Parms , exception); } Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){ return remove_dead_region(phase, can_reshape) ? this : NULL; } const Type* RethrowNode::Value(PhaseGVN* phase) const { return (phase->type(in(TypeFunc::Control)) == Type::TOP) ? Type::TOP : Type::BOTTOM; } uint RethrowNode::match_edge(uint idx) const { return 0; } #ifndef PRODUCT void RethrowNode::dump_req(outputStream *st) const { // Dump the required inputs, enclosed in '(' and ')' uint i; // Exit value of loop for (i = 0; i < req(); i++) { // For all required inputs if (i == TypeFunc::Parms) st->print("exception"); if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); else st->print("_ "); } } #endif //============================================================================= // Do we Match on this edge index or not? Match only target address & method uint TailCallNode::match_edge(uint idx) const { return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; } //============================================================================= // Do we Match on this edge index or not? Match only target address & oop uint TailJumpNode::match_edge(uint idx) const { return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; } //============================================================================= JVMState::JVMState(ciMethod* method, JVMState* caller) : _method(method) { assert(method != NULL, "must be valid call site"); _reexecute = Reexecute_Undefined; debug_only(_bci = -99); // random garbage value debug_only(_map = (SafePointNode*)-1); _caller = caller; _depth = 1 + (caller == NULL ? 0 : caller->depth()); _locoff = TypeFunc::Parms; _stkoff = _locoff + _method->max_locals(); _monoff = _stkoff + _method->max_stack(); _scloff = _monoff; _endoff = _monoff; _sp = 0; } JVMState::JVMState(int stack_size) : _method(NULL) { _bci = InvocationEntryBci; _reexecute = Reexecute_Undefined; debug_only(_map = (SafePointNode*)-1); _caller = NULL; _depth = 1; _locoff = TypeFunc::Parms; _stkoff = _locoff; _monoff = _stkoff + stack_size; _scloff = _monoff; _endoff = _monoff; _sp = 0; } //--------------------------------of_depth------------------------------------- JVMState* JVMState::of_depth(int d) const { const JVMState* jvmp = this; assert(0 < d && (uint)d <= depth(), "oob"); for (int skip = depth() - d; skip > 0; skip--) { jvmp = jvmp->caller(); } assert(jvmp->depth() == (uint)d, "found the right one"); return (JVMState*)jvmp; } //-----------------------------same_calls_as----------------------------------- bool JVMState::same_calls_as(const JVMState* that) const { if (this == that) return true; if (this->depth() != that->depth()) return false; const JVMState* p = this; const JVMState* q = that; for (;;) { if (p->_method != q->_method) return false; if (p->_method == NULL) return true; // bci is irrelevant if (p->_bci != q->_bci) return false; if (p->_reexecute != q->_reexecute) return false; p = p->caller(); q = q->caller(); if (p == q) return true; assert(p != NULL && q != NULL, "depth check ensures we don't run off end"); } } //------------------------------debug_start------------------------------------ uint JVMState::debug_start() const { debug_only(JVMState* jvmroot = of_depth(1)); assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last"); return of_depth(1)->locoff(); } //-------------------------------debug_end------------------------------------- uint JVMState::debug_end() const { debug_only(JVMState* jvmroot = of_depth(1)); assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last"); return endoff(); } //------------------------------debug_depth------------------------------------ uint JVMState::debug_depth() const { uint total = 0; for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) { total += jvmp->debug_size(); } return total; } #ifndef PRODUCT //------------------------------format_helper---------------------------------- // Given an allocation (a Chaitin object) and a Node decide if the Node carries // any defined value or not. If it does, print out the register or constant. static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray *scobjs ) { if (n == NULL) { st->print(" NULL"); return; } if (n->is_SafePointScalarObject()) { // Scalar replacement. SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject(); scobjs->append_if_missing(spobj); int sco_n = scobjs->find(spobj); assert(sco_n >= 0, ""); st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n); return; } if (regalloc->node_regs_max_index() > 0 && OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined char buf[50]; regalloc->dump_register(n,buf); st->print(" %s%d]=%s",msg,i,buf); } else { // No register, but might be constant const Type *t = n->bottom_type(); switch (t->base()) { case Type::Int: st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con()); break; case Type::AnyPtr: assert( t == TypePtr::NULL_PTR || n->in_dump(), "" ); st->print(" %s%d]=#NULL",msg,i); break; case Type::AryPtr: case Type::ValueTypePtr: case Type::InstPtr: st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop())); break; case Type::KlassPtr: st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass())); break; case Type::MetadataPtr: st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata())); break; case Type::NarrowOop: st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop())); break; case Type::RawPtr: st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr())); break; case Type::DoubleCon: st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d); break; case Type::FloatCon: st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f); break; case Type::Long: st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con())); break; case Type::Half: case Type::Top: st->print(" %s%d]=_",msg,i); break; default: ShouldNotReachHere(); } } } //------------------------------format----------------------------------------- void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const { st->print(" #"); if (_method) { _method->print_short_name(st); st->print(" @ bci:%d ",_bci); } else { st->print_cr(" runtime stub "); return; } if (n->is_MachSafePoint()) { GrowableArray scobjs; MachSafePointNode *mcall = n->as_MachSafePoint(); uint i; // Print locals for (i = 0; i < (uint)loc_size(); i++) format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs); // Print stack for (i = 0; i < (uint)stk_size(); i++) { if ((uint)(_stkoff + i) >= mcall->len()) st->print(" oob "); else format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs); } for (i = 0; (int)i < nof_monitors(); i++) { Node *box = mcall->monitor_box(this, i); Node *obj = mcall->monitor_obj(this, i); if (regalloc->node_regs_max_index() > 0 && OptoReg::is_valid(regalloc->get_reg_first(box))) { box = BoxLockNode::box_node(box); format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs); } else { OptoReg::Name box_reg = BoxLockNode::reg(box); st->print(" MON-BOX%d=%s+%d", i, OptoReg::regname(OptoReg::c_frame_pointer), regalloc->reg2offset(box_reg)); } const char* obj_msg = "MON-OBJ["; if (EliminateLocks) { if (BoxLockNode::box_node(box)->is_eliminated()) obj_msg = "MON-OBJ(LOCK ELIMINATED)["; } format_helper(regalloc, st, obj, obj_msg, i, &scobjs); } for (i = 0; i < (uint)scobjs.length(); i++) { // Scalar replaced objects. st->cr(); st->print(" # ScObj" INT32_FORMAT " ", i); SafePointScalarObjectNode* spobj = scobjs.at(i); ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass(); assert(cik->is_instance_klass() || cik->is_array_klass(), "Not supported allocation."); ciInstanceKlass *iklass = NULL; if (cik->is_instance_klass()) { cik->print_name_on(st); iklass = cik->as_instance_klass(); } else if (cik->is_type_array_klass()) { cik->as_array_klass()->base_element_type()->print_name_on(st); st->print("[%d]", spobj->n_fields()); } else if (cik->is_obj_array_klass()) { ciKlass* cie = cik->as_obj_array_klass()->base_element_klass(); if (cie->is_instance_klass()) { cie->print_name_on(st); } else if (cie->is_type_array_klass()) { cie->as_array_klass()->base_element_type()->print_name_on(st); } else { ShouldNotReachHere(); } st->print("[%d]", spobj->n_fields()); int ndim = cik->as_array_klass()->dimension() - 1; while (ndim-- > 0) { st->print("[]"); } } st->print("={"); uint nf = spobj->n_fields(); if (nf > 0) { uint first_ind = spobj->first_index(mcall->jvms()); Node* fld_node = mcall->in(first_ind); ciField* cifield; if (iklass != NULL) { st->print(" ["); cifield = iklass->nonstatic_field_at(0); cifield->print_name_on(st); format_helper(regalloc, st, fld_node, ":", 0, &scobjs); } else { format_helper(regalloc, st, fld_node, "[", 0, &scobjs); } for (uint j = 1; j < nf; j++) { fld_node = mcall->in(first_ind+j); if (iklass != NULL) { st->print(", ["); cifield = iklass->nonstatic_field_at(j); cifield->print_name_on(st); format_helper(regalloc, st, fld_node, ":", j, &scobjs); } else { format_helper(regalloc, st, fld_node, ", [", j, &scobjs); } } } st->print(" }"); } } st->cr(); if (caller() != NULL) caller()->format(regalloc, n, st); } void JVMState::dump_spec(outputStream *st) const { if (_method != NULL) { bool printed = false; if (!Verbose) { // The JVMS dumps make really, really long lines. // Take out the most boring parts, which are the package prefixes. char buf[500]; stringStream namest(buf, sizeof(buf)); _method->print_short_name(&namest); if (namest.count() < sizeof(buf)) { const char* name = namest.base(); if (name[0] == ' ') ++name; const char* endcn = strchr(name, ':'); // end of class name if (endcn == NULL) endcn = strchr(name, '('); if (endcn == NULL) endcn = name + strlen(name); while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/') --endcn; st->print(" %s", endcn); printed = true; } } if (!printed) _method->print_short_name(st); st->print(" @ bci:%d",_bci); if(_reexecute == Reexecute_True) st->print(" reexecute"); } else { st->print(" runtime stub"); } if (caller() != NULL) caller()->dump_spec(st); } void JVMState::dump_on(outputStream* st) const { bool print_map = _map && !((uintptr_t)_map & 1) && ((caller() == NULL) || (caller()->map() != _map)); if (print_map) { if (_map->len() > _map->req()) { // _map->has_exceptions() Node* ex = _map->in(_map->req()); // _map->next_exception() // skip the first one; it's already being printed while (ex != NULL && ex->len() > ex->req()) { ex = ex->in(ex->req()); // ex->next_exception() ex->dump(1); } } _map->dump(Verbose ? 2 : 1); } if (caller() != NULL) { caller()->dump_on(st); } st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=", depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false"); if (_method == NULL) { st->print_cr("(none)"); } else { _method->print_name(st); st->cr(); if (bci() >= 0 && bci() < _method->code_size()) { st->print(" bc: "); _method->print_codes_on(bci(), bci()+1, st); } } } // Extra way to dump a jvms from the debugger, // to avoid a bug with C++ member function calls. void dump_jvms(JVMState* jvms) { jvms->dump(); } #endif //--------------------------clone_shallow-------------------------------------- JVMState* JVMState::clone_shallow(Compile* C) const { JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0); n->set_bci(_bci); n->_reexecute = _reexecute; n->set_locoff(_locoff); n->set_stkoff(_stkoff); n->set_monoff(_monoff); n->set_scloff(_scloff); n->set_endoff(_endoff); n->set_sp(_sp); n->set_map(_map); return n; } //---------------------------clone_deep---------------------------------------- JVMState* JVMState::clone_deep(Compile* C) const { JVMState* n = clone_shallow(C); for (JVMState* p = n; p->_caller != NULL; p = p->_caller) { p->_caller = p->_caller->clone_shallow(C); } assert(n->depth() == depth(), "sanity"); assert(n->debug_depth() == debug_depth(), "sanity"); return n; } /** * Reset map for all callers */ void JVMState::set_map_deep(SafePointNode* map) { for (JVMState* p = this; p->_caller != NULL; p = p->_caller) { p->set_map(map); } } // Adapt offsets in in-array after adding or removing an edge. // Prerequisite is that the JVMState is used by only one node. void JVMState::adapt_position(int delta) { for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) { jvms->set_locoff(jvms->locoff() + delta); jvms->set_stkoff(jvms->stkoff() + delta); jvms->set_monoff(jvms->monoff() + delta); jvms->set_scloff(jvms->scloff() + delta); jvms->set_endoff(jvms->endoff() + delta); } } // Mirror the stack size calculation in the deopt code // How much stack space would we need at this point in the program in // case of deoptimization? int JVMState::interpreter_frame_size() const { const JVMState* jvms = this; int size = 0; int callee_parameters = 0; int callee_locals = 0; int extra_args = method()->max_stack() - stk_size(); while (jvms != NULL) { int locks = jvms->nof_monitors(); int temps = jvms->stk_size(); bool is_top_frame = (jvms == this); ciMethod* method = jvms->method(); int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(), temps + callee_parameters, extra_args, locks, callee_parameters, callee_locals, is_top_frame); size += frame_size; callee_parameters = method->size_of_parameters(); callee_locals = method->max_locals(); extra_args = 0; jvms = jvms->caller(); } return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord; } //============================================================================= uint CallNode::cmp( const Node &n ) const { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; } #ifndef PRODUCT void CallNode::dump_req(outputStream *st) const { // Dump the required inputs, enclosed in '(' and ')' uint i; // Exit value of loop for (i = 0; i < req(); i++) { // For all required inputs if (i == TypeFunc::Parms) st->print("("); if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); else st->print("_ "); } st->print(")"); } void CallNode::dump_spec(outputStream *st) const { st->print(" "); if (tf() != NULL) tf()->dump_on(st); if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt); if (jvms() != NULL) jvms()->dump_spec(st); } #endif const Type *CallNode::bottom_type() const { return tf()->range(); } const Type* CallNode::Value(PhaseGVN* phase) const { if (phase->type(in(0)) == Type::TOP) return Type::TOP; return tf()->range(); } //------------------------------calling_convention----------------------------- void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { // Use the standard compiler calling convention Matcher::calling_convention( sig_bt, parm_regs, argcnt, true ); } //------------------------------match------------------------------------------ // Construct projections for control, I/O, memory-fields, ..., and // return result(s) along with their RegMask info Node *CallNode::match( const ProjNode *proj, const Matcher *match ) { switch (proj->_con) { case TypeFunc::Control: case TypeFunc::I_O: case TypeFunc::Memory: return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); case TypeFunc::Parms+1: // For LONG & DOUBLE returns assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, ""); // 2nd half of doubles and longs return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad); case TypeFunc::Parms: { // Normal returns uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg(); OptoRegPair regs = is_CallRuntime() ? match->c_return_value(ideal_reg,true) // Calls into C runtime : match-> return_value(ideal_reg,true); // Calls into compiled Java code RegMask rm = RegMask(regs.first()); if( OptoReg::is_valid(regs.second()) ) rm.Insert( regs.second() ); return new MachProjNode(this,proj->_con,rm,ideal_reg); } case TypeFunc::ReturnAdr: case TypeFunc::FramePtr: default: ShouldNotReachHere(); } return NULL; } // Do we Match on this edge index or not? Match no edges uint CallNode::match_edge(uint idx) const { return 0; } // // Determine whether the call could modify the field of the specified // instance at the specified offset. // bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { assert((t_oop != NULL), "sanity"); if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) { const TypeTuple* args = _tf->domain_sig(); Node* dest = NULL; // Stubs that can be called once an ArrayCopyNode is expanded have // different signatures. Look for the second pointer argument, // that is the destination of the copy. for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) { if (args->field_at(i)->isa_ptr()) { j++; if (j == 2) { dest = in(i); break; } } } if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) { return true; } return false; } if (t_oop->is_known_instance()) { // The instance_id is set only for scalar-replaceable allocations which // are not passed as arguments according to Escape Analysis. return false; } if (t_oop->is_ptr_to_boxed_value()) { ciKlass* boxing_klass = t_oop->klass(); if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) { // Skip unrelated boxing methods. Node* proj = proj_out(TypeFunc::Parms); if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) { return false; } } if (is_CallJava() && as_CallJava()->method() != NULL) { ciMethod* meth = as_CallJava()->method(); if (meth->is_getter()) { return false; } // May modify (by reflection) if an boxing object is passed // as argument or returned. if (returns_pointer() && (proj_out(TypeFunc::Parms) != NULL)) { Node* proj = proj_out(TypeFunc::Parms); const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr(); if ((inst_t != NULL) && (!inst_t->klass_is_exact() || (inst_t->klass() == boxing_klass))) { return true; } } const TypeTuple* d = tf()->domain_cc(); for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr(); if ((inst_t != NULL) && (!inst_t->klass_is_exact() || (inst_t->klass() == boxing_klass))) { return true; } } return false; } } return true; } // Does this call have a direct reference to n other than debug information? bool CallNode::has_non_debug_use(Node *n) { const TypeTuple * d = tf()->domain_cc(); for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { Node *arg = in(i); if (arg == n) { return true; } } return false; } bool CallNode::has_debug_use(Node *n) { for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) { Node *arg = in(i); if (arg == n) { return true; } } return false; } // Returns the unique CheckCastPP of a call // or 'this' if there are several CheckCastPP or unexpected uses // or returns NULL if there is no one. Node *CallNode::result_cast() { Node *cast = NULL; Node *p = proj_out(TypeFunc::Parms); if (p == NULL) return NULL; for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) { Node *use = p->fast_out(i); if (use->is_CheckCastPP()) { if (cast != NULL) { return this; // more than 1 CheckCastPP } cast = use; } else if (!use->is_Initialize() && !use->is_AddP() && use->Opcode() != Op_MemBarStoreStore) { // Expected uses are restricted to a CheckCastPP, an Initialize // node, a MemBarStoreStore (clone) and AddP nodes. If we // encounter any other use (a Phi node can be seen in rare // cases) return this to prevent incorrect optimizations. return this; } } return cast; } void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) { projs->fallthrough_proj = NULL; projs->fallthrough_catchproj = NULL; projs->fallthrough_ioproj = NULL; projs->catchall_ioproj = NULL; projs->catchall_catchproj = NULL; projs->fallthrough_memproj = NULL; projs->catchall_memproj = NULL; projs->resproj = NULL; projs->exobj = NULL; for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { ProjNode *pn = fast_out(i)->as_Proj(); if (pn->outcnt() == 0) continue; switch (pn->_con) { case TypeFunc::Control: { // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj projs->fallthrough_proj = pn; DUIterator_Fast jmax, j = pn->fast_outs(jmax); const Node *cn = pn->fast_out(j); if (cn->is_Catch()) { ProjNode *cpn = NULL; for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) { cpn = cn->fast_out(k)->as_Proj(); assert(cpn->is_CatchProj(), "must be a CatchProjNode"); if (cpn->_con == CatchProjNode::fall_through_index) projs->fallthrough_catchproj = cpn; else { assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index."); projs->catchall_catchproj = cpn; } } } break; } case TypeFunc::I_O: if (pn->_is_io_use) projs->catchall_ioproj = pn; else projs->fallthrough_ioproj = pn; for (DUIterator j = pn->outs(); pn->has_out(j); j++) { Node* e = pn->out(j); if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) { assert(projs->exobj == NULL, "only one"); projs->exobj = e; } } break; case TypeFunc::Memory: if (pn->_is_io_use) projs->catchall_memproj = pn; else projs->fallthrough_memproj = pn; break; case TypeFunc::Parms: projs->resproj = pn; break; default: assert(false, "unexpected projection from allocation node."); } } // The resproj may not exist because the result could be ignored // and the exception object may not exist if an exception handler // swallows the exception but all the other must exist and be found. assert(projs->fallthrough_proj != NULL, "must be found"); do_asserts = do_asserts && !Compile::current()->inlining_incrementally(); assert(!do_asserts || projs->fallthrough_catchproj != NULL, "must be found"); assert(!do_asserts || projs->fallthrough_memproj != NULL, "must be found"); assert(!do_asserts || projs->fallthrough_ioproj != NULL, "must be found"); assert(!do_asserts || projs->catchall_catchproj != NULL, "must be found"); if (separate_io_proj) { assert(!do_asserts || projs->catchall_memproj != NULL, "must be found"); assert(!do_asserts || projs->catchall_ioproj != NULL, "must be found"); } } Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) { CallGenerator* cg = generator(); if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) { // Check whether this MH handle call becomes a candidate for inlining ciMethod* callee = cg->method(); vmIntrinsics::ID iid = callee->intrinsic_id(); if (iid == vmIntrinsics::_invokeBasic) { if (in(TypeFunc::Parms)->Opcode() == Op_ConP) { phase->C->prepend_late_inline(cg); set_generator(NULL); } } else { assert(callee->has_member_arg(), "wrong type of call?"); if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) { phase->C->prepend_late_inline(cg); set_generator(NULL); } } } return SafePointNode::Ideal(phase, can_reshape); } bool CallNode::is_call_to_arraycopystub() const { if (_name != NULL && strstr(_name, "arraycopy") != 0) { return true; } return false; } //============================================================================= uint CallJavaNode::size_of() const { return sizeof(*this); } uint CallJavaNode::cmp( const Node &n ) const { CallJavaNode &call = (CallJavaNode&)n; return CallNode::cmp(call) && _method == call._method && _override_symbolic_info == call._override_symbolic_info; } #ifndef PRODUCT void CallJavaNode::dump_spec(outputStream *st) const { if( _method ) _method->print_short_name(st); CallNode::dump_spec(st); } void CallJavaNode::dump_compact_spec(outputStream* st) const { if (_method) { _method->print_short_name(st); } else { st->print(""); } } #endif //============================================================================= uint CallStaticJavaNode::size_of() const { return sizeof(*this); } uint CallStaticJavaNode::cmp( const Node &n ) const { CallStaticJavaNode &call = (CallStaticJavaNode&)n; return CallJavaNode::cmp(call); } //----------------------------uncommon_trap_request---------------------------- // If this is an uncommon trap, return the request code, else zero. int CallStaticJavaNode::uncommon_trap_request() const { if (_name != NULL && !strcmp(_name, "uncommon_trap")) { return extract_uncommon_trap_request(this); } return 0; } int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) { #ifndef PRODUCT if (!(call->req() > TypeFunc::Parms && call->in(TypeFunc::Parms) != NULL && call->in(TypeFunc::Parms)->is_Con() && call->in(TypeFunc::Parms)->bottom_type()->isa_int())) { assert(in_dump() != 0, "OK if dumping"); tty->print("[bad uncommon trap]"); return 0; } #endif return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con(); } #ifndef PRODUCT void CallStaticJavaNode::dump_spec(outputStream *st) const { st->print("# Static "); if (_name != NULL) { st->print("%s", _name); int trap_req = uncommon_trap_request(); if (trap_req != 0) { char buf[100]; st->print("(%s)", Deoptimization::format_trap_request(buf, sizeof(buf), trap_req)); } st->print(" "); } CallJavaNode::dump_spec(st); } void CallStaticJavaNode::dump_compact_spec(outputStream* st) const { if (_method) { _method->print_short_name(st); } else if (_name) { st->print("%s", _name); } else { st->print(""); } } #endif //============================================================================= uint CallDynamicJavaNode::size_of() const { return sizeof(*this); } uint CallDynamicJavaNode::cmp( const Node &n ) const { CallDynamicJavaNode &call = (CallDynamicJavaNode&)n; return CallJavaNode::cmp(call); } #ifndef PRODUCT void CallDynamicJavaNode::dump_spec(outputStream *st) const { st->print("# Dynamic "); CallJavaNode::dump_spec(st); } #endif //============================================================================= uint CallRuntimeNode::size_of() const { return sizeof(*this); } uint CallRuntimeNode::cmp( const Node &n ) const { CallRuntimeNode &call = (CallRuntimeNode&)n; return CallNode::cmp(call) && !strcmp(_name,call._name); } #ifndef PRODUCT void CallRuntimeNode::dump_spec(outputStream *st) const { st->print("# "); st->print("%s", _name); CallNode::dump_spec(st); } #endif //------------------------------calling_convention----------------------------- void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { Matcher::c_calling_convention( sig_bt, parm_regs, argcnt ); } //============================================================================= //------------------------------calling_convention----------------------------- //============================================================================= #ifndef PRODUCT void CallLeafNode::dump_spec(outputStream *st) const { st->print("# "); st->print("%s", _name); CallNode::dump_spec(st); } #endif //============================================================================= void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) { assert(verify_jvms(jvms), "jvms must match"); int loc = jvms->locoff() + idx; if (in(loc)->is_top() && idx > 0 && !c->is_top() ) { // If current local idx is top then local idx - 1 could // be a long/double that needs to be killed since top could // represent the 2nd half ofthe long/double. uint ideal = in(loc -1)->ideal_reg(); if (ideal == Op_RegD || ideal == Op_RegL) { // set other (low index) half to top set_req(loc - 1, in(loc)); } } set_req(loc, c); } uint SafePointNode::size_of() const { return sizeof(*this); } uint SafePointNode::cmp( const Node &n ) const { return (&n == this); // Always fail except on self } //-------------------------set_next_exception---------------------------------- void SafePointNode::set_next_exception(SafePointNode* n) { assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception"); if (len() == req()) { if (n != NULL) add_prec(n); } else { set_prec(req(), n); } } //----------------------------next_exception----------------------------------- SafePointNode* SafePointNode::next_exception() const { if (len() == req()) { return NULL; } else { Node* n = in(req()); assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges"); return (SafePointNode*) n; } } //------------------------------Ideal------------------------------------------ // Skip over any collapsed Regions Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) { if (remove_dead_region(phase, can_reshape)) { return this; } if (jvms() != NULL) { bool progress = false; // A ValueTypeNode that was already heap allocated in the debug // info? Reference the object directly. Helps removal of useless // value type allocations with incremental inlining. for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) { Node *arg = in(i); if (arg->is_ValueType()) { ValueTypeNode* vt = arg->as_ValueType(); Node* in_oop = vt->get_oop(); const Type* oop_type = phase->type(in_oop); if (!TypePtr::NULL_PTR->higher_equal(oop_type)) { set_req(i, in_oop); progress = true; } } } if (progress) { return this; } } return NULL; } //------------------------------Identity--------------------------------------- // Remove obviously duplicate safepoints Node* SafePointNode::Identity(PhaseGVN* phase) { // If you have back to back safepoints, remove one if( in(TypeFunc::Control)->is_SafePoint() ) return in(TypeFunc::Control); if( in(0)->is_Proj() ) { Node *n0 = in(0)->in(0); // Check if he is a call projection (except Leaf Call) if( n0->is_Catch() ) { n0 = n0->in(0)->in(0); assert( n0->is_Call(), "expect a call here" ); } if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) { // Useless Safepoint, so remove it return in(TypeFunc::Control); } } return this; } //------------------------------Value------------------------------------------ const Type* SafePointNode::Value(PhaseGVN* phase) const { if( phase->type(in(0)) == Type::TOP ) return Type::TOP; if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop return Type::CONTROL; } #ifndef PRODUCT void SafePointNode::dump_spec(outputStream *st) const { st->print(" SafePoint "); _replaced_nodes.dump(st); } // The related nodes of a SafepointNode are all data inputs, excluding the // control boundary, as well as all outputs till level 2 (to include projection // nodes and targets). In compact mode, just include inputs till level 1 and // outputs as before. void SafePointNode::related(GrowableArray *in_rel, GrowableArray *out_rel, bool compact) const { if (compact) { this->collect_nodes(in_rel, 1, false, false); } else { this->collect_nodes_in_all_data(in_rel, false); } this->collect_nodes(out_rel, -2, false, false); } #endif const RegMask &SafePointNode::in_RegMask(uint idx) const { if( idx < TypeFunc::Parms ) return RegMask::Empty; // Values outside the domain represent debug info return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); } const RegMask &SafePointNode::out_RegMask() const { return RegMask::Empty; } void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) { assert((int)grow_by > 0, "sanity"); int monoff = jvms->monoff(); int scloff = jvms->scloff(); int endoff = jvms->endoff(); assert(endoff == (int)req(), "no other states or debug info after me"); Node* top = Compile::current()->top(); for (uint i = 0; i < grow_by; i++) { ins_req(monoff, top); } jvms->set_monoff(monoff + grow_by); jvms->set_scloff(scloff + grow_by); jvms->set_endoff(endoff + grow_by); } void SafePointNode::push_monitor(const FastLockNode *lock) { // Add a LockNode, which points to both the original BoxLockNode (the // stack space for the monitor) and the Object being locked. const int MonitorEdges = 2; assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges"); assert(req() == jvms()->endoff(), "correct sizing"); int nextmon = jvms()->scloff(); if (GenerateSynchronizationCode) { ins_req(nextmon, lock->box_node()); ins_req(nextmon+1, lock->obj_node()); } else { Node* top = Compile::current()->top(); ins_req(nextmon, top); ins_req(nextmon, top); } jvms()->set_scloff(nextmon + MonitorEdges); jvms()->set_endoff(req()); } void SafePointNode::pop_monitor() { // Delete last monitor from debug info debug_only(int num_before_pop = jvms()->nof_monitors()); const int MonitorEdges = 2; assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges"); int scloff = jvms()->scloff(); int endoff = jvms()->endoff(); int new_scloff = scloff - MonitorEdges; int new_endoff = endoff - MonitorEdges; jvms()->set_scloff(new_scloff); jvms()->set_endoff(new_endoff); while (scloff > new_scloff) del_req_ordered(--scloff); assert(jvms()->nof_monitors() == num_before_pop-1, ""); } Node *SafePointNode::peek_monitor_box() const { int mon = jvms()->nof_monitors() - 1; assert(mon >= 0, "most have a monitor"); return monitor_box(jvms(), mon); } Node *SafePointNode::peek_monitor_obj() const { int mon = jvms()->nof_monitors() - 1; assert(mon >= 0, "most have a monitor"); return monitor_obj(jvms(), mon); } // Do we Match on this edge index or not? Match no edges uint SafePointNode::match_edge(uint idx) const { if( !needs_polling_address_input() ) return 0; return (TypeFunc::Parms == idx); } //============== SafePointScalarObjectNode ============== SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, #ifdef ASSERT AllocateNode* alloc, #endif uint first_index, uint n_fields) : TypeNode(tp, 1), // 1 control input -- seems required. Get from root. #ifdef ASSERT _alloc(alloc), #endif _first_index(first_index), _n_fields(n_fields) { init_class_id(Class_SafePointScalarObject); } // Do not allow value-numbering for SafePointScalarObject node. uint SafePointScalarObjectNode::hash() const { return NO_HASH; } uint SafePointScalarObjectNode::cmp( const Node &n ) const { return (&n == this); // Always fail except on self } uint SafePointScalarObjectNode::ideal_reg() const { return 0; // No matching to machine instruction } const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const { return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); } const RegMask &SafePointScalarObjectNode::out_RegMask() const { return RegMask::Empty; } uint SafePointScalarObjectNode::match_edge(uint idx) const { return 0; } SafePointScalarObjectNode* SafePointScalarObjectNode::clone(Dict* sosn_map) const { void* cached = (*sosn_map)[(void*)this]; if (cached != NULL) { return (SafePointScalarObjectNode*)cached; } SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone(); sosn_map->Insert((void*)this, (void*)res); return res; } #ifndef PRODUCT void SafePointScalarObjectNode::dump_spec(outputStream *st) const { st->print(" # fields@[%d..%d]", first_index(), first_index() + n_fields() - 1); } #endif //============================================================================= uint AllocateNode::size_of() const { return sizeof(*this); } AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio, Node *size, Node *klass_node, Node *initial_test) : CallNode(atype, NULL, TypeRawPtr::BOTTOM) { init_class_id(Class_Allocate); init_flags(Flag_is_macro); _is_scalar_replaceable = false; _is_non_escaping = false; _is_allocation_MemBar_redundant = false; Node *topnode = C->top(); init_req( TypeFunc::Control , ctrl ); init_req( TypeFunc::I_O , abio ); init_req( TypeFunc::Memory , mem ); init_req( TypeFunc::ReturnAdr, topnode ); init_req( TypeFunc::FramePtr , topnode ); init_req( AllocSize , size); init_req( KlassNode , klass_node); init_req( InitialTest , initial_test); init_req( ALength , topnode); C->add_macro_node(this); } void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer) { assert(initializer != NULL && initializer->is_initializer() && !initializer->is_static(), "unexpected initializer method"); BCEscapeAnalyzer* analyzer = initializer->get_bcea(); if (analyzer == NULL) { return; } // Allocation node is first parameter in its initializer if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) { _is_allocation_MemBar_redundant = true; } } //============================================================================= Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) { Node* res = SafePointNode::Ideal(phase, can_reshape); if (res != NULL) { return res; } // Don't bother trying to transform a dead node if (in(0) && in(0)->is_top()) return NULL; const Type* type = phase->type(Ideal_length()); if (type->isa_int() && type->is_int()->_hi < 0) { if (can_reshape) { PhaseIterGVN *igvn = phase->is_IterGVN(); // Unreachable fall through path (negative array length), // the allocation can only throw so disconnect it. Node* proj = proj_out(TypeFunc::Control); Node* catchproj = NULL; if (proj != NULL) { for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) { Node *cn = proj->fast_out(i); if (cn->is_Catch()) { catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index); break; } } } if (catchproj != NULL && catchproj->outcnt() > 0 && (catchproj->outcnt() > 1 || catchproj->unique_out()->Opcode() != Op_Halt)) { assert(catchproj->is_CatchProj(), "must be a CatchProjNode"); Node* nproj = catchproj->clone(); igvn->register_new_node_with_optimizer(nproj); Node *frame = new ParmNode( phase->C->start(), TypeFunc::FramePtr ); frame = phase->transform(frame); // Halt & Catch Fire Node *halt = new HaltNode( nproj, frame ); phase->C->root()->add_req(halt); phase->transform(halt); igvn->replace_node(catchproj, phase->C->top()); return this; } } else { // Can't correct it during regular GVN so register for IGVN phase->C->record_for_igvn(this); } } return NULL; } // Retrieve the length from the AllocateArrayNode. Narrow the type with a // CastII, if appropriate. If we are not allowed to create new nodes, and // a CastII is appropriate, return NULL. Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) { Node *length = in(AllocateNode::ALength); assert(length != NULL, "length is not null"); const TypeInt* length_type = phase->find_int_type(length); const TypeAryPtr* ary_type = oop_type->isa_aryptr(); if (ary_type != NULL && length_type != NULL) { const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type); if (narrow_length_type != length_type) { // Assert one of: // - the narrow_length is 0 // - the narrow_length is not wider than length assert(narrow_length_type == TypeInt::ZERO || length_type->is_con() && narrow_length_type->is_con() && (narrow_length_type->_hi <= length_type->_lo) || (narrow_length_type->_hi <= length_type->_hi && narrow_length_type->_lo >= length_type->_lo), "narrow type must be narrower than length type"); // Return NULL if new nodes are not allowed if (!allow_new_nodes) return NULL; // Create a cast which is control dependent on the initialization to // propagate the fact that the array length must be positive. length = new CastIINode(length, narrow_length_type); length->set_req(0, initialization()->proj_out(0)); } } return length; } //============================================================================= uint LockNode::size_of() const { return sizeof(*this); } // Redundant lock elimination // // There are various patterns of locking where we release and // immediately reacquire a lock in a piece of code where no operations // occur in between that would be observable. In those cases we can // skip releasing and reacquiring the lock without violating any // fairness requirements. Doing this around a loop could cause a lock // to be held for a very long time so we concentrate on non-looping // control flow. We also require that the operations are fully // redundant meaning that we don't introduce new lock operations on // some paths so to be able to eliminate it on others ala PRE. This // would probably require some more extensive graph manipulation to // guarantee that the memory edges were all handled correctly. // // Assuming p is a simple predicate which can't trap in any way and s // is a synchronized method consider this code: // // s(); // if (p) // s(); // else // s(); // s(); // // 1. The unlocks of the first call to s can be eliminated if the // locks inside the then and else branches are eliminated. // // 2. The unlocks of the then and else branches can be eliminated if // the lock of the final call to s is eliminated. // // Either of these cases subsumes the simple case of sequential control flow // // Addtionally we can eliminate versions without the else case: // // s(); // if (p) // s(); // s(); // // 3. In this case we eliminate the unlock of the first s, the lock // and unlock in the then case and the lock in the final s. // // Note also that in all these cases the then/else pieces don't have // to be trivial as long as they begin and end with synchronization // operations. // // s(); // if (p) // s(); // f(); // s(); // s(); // // The code will work properly for this case, leaving in the unlock // before the call to f and the relock after it. // // A potentially interesting case which isn't handled here is when the // locking is partially redundant. // // s(); // if (p) // s(); // // This could be eliminated putting unlocking on the else case and // eliminating the first unlock and the lock in the then side. // Alternatively the unlock could be moved out of the then side so it // was after the merge and the first unlock and second lock // eliminated. This might require less manipulation of the memory // state to get correct. // // Additionally we might allow work between a unlock and lock before // giving up eliminating the locks. The current code disallows any // conditional control flow between these operations. A formulation // similar to partial redundancy elimination computing the // availability of unlocking and the anticipatability of locking at a // program point would allow detection of fully redundant locking with // some amount of work in between. I'm not sure how often I really // think that would occur though. Most of the cases I've seen // indicate it's likely non-trivial work would occur in between. // There may be other more complicated constructs where we could // eliminate locking but I haven't seen any others appear as hot or // interesting. // // Locking and unlocking have a canonical form in ideal that looks // roughly like this: // // // | \\------+ // | \ \ // | BoxLock \ // | | | \ // | | \ \ // | | FastLock // | | / // | | / // | | | // // Lock // | // Proj #0 // | // MembarAcquire // | // Proj #0 // // MembarRelease // | // Proj #0 // | // Unlock // | // Proj #0 // // // This code proceeds by processing Lock nodes during PhaseIterGVN // and searching back through its control for the proper code // patterns. Once it finds a set of lock and unlock operations to // eliminate they are marked as eliminatable which causes the // expansion of the Lock and Unlock macro nodes to make the operation a NOP // //============================================================================= // // Utility function to skip over uninteresting control nodes. Nodes skipped are: // - copy regions. (These may not have been optimized away yet.) // - eliminated locking nodes // static Node *next_control(Node *ctrl) { if (ctrl == NULL) return NULL; while (1) { if (ctrl->is_Region()) { RegionNode *r = ctrl->as_Region(); Node *n = r->is_copy(); if (n == NULL) break; // hit a region, return it else ctrl = n; } else if (ctrl->is_Proj()) { Node *in0 = ctrl->in(0); if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) { ctrl = in0->in(0); } else { break; } } else { break; // found an interesting control } } return ctrl; } // // Given a control, see if it's the control projection of an Unlock which // operating on the same object as lock. // bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock, GrowableArray &lock_ops) { ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL; if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) { Node *n = ctrl_proj->in(0); if (n != NULL && n->is_Unlock()) { UnlockNode *unlock = n->as_Unlock(); if (lock->obj_node()->eqv_uncast(unlock->obj_node()) && BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) && !unlock->is_eliminated()) { lock_ops.append(unlock); return true; } } } return false; } // // Find the lock matching an unlock. Returns null if a safepoint // or complicated control is encountered first. LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) { LockNode *lock_result = NULL; // find the matching lock, or an intervening safepoint Node *ctrl = next_control(unlock->in(0)); while (1) { assert(ctrl != NULL, "invalid control graph"); assert(!ctrl->is_Start(), "missing lock for unlock"); if (ctrl->is_top()) break; // dead control path if (ctrl->is_Proj()) ctrl = ctrl->in(0); if (ctrl->is_SafePoint()) { break; // found a safepoint (may be the lock we are searching for) } else if (ctrl->is_Region()) { // Check for a simple diamond pattern. Punt on anything more complicated if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) { Node *in1 = next_control(ctrl->in(1)); Node *in2 = next_control(ctrl->in(2)); if (((in1->is_IfTrue() && in2->is_IfFalse()) || (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) { ctrl = next_control(in1->in(0)->in(0)); } else { break; } } else { break; } } else { ctrl = next_control(ctrl->in(0)); // keep searching } } if (ctrl->is_Lock()) { LockNode *lock = ctrl->as_Lock(); if (lock->obj_node()->eqv_uncast(unlock->obj_node()) && BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) { lock_result = lock; } } return lock_result; } // This code corresponds to case 3 above. bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock, GrowableArray &lock_ops) { Node* if_node = node->in(0); bool if_true = node->is_IfTrue(); if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) { Node *lock_ctrl = next_control(if_node->in(0)); if (find_matching_unlock(lock_ctrl, lock, lock_ops)) { Node* lock1_node = NULL; ProjNode* proj = if_node->as_If()->proj_out(!if_true); if (if_true) { if (proj->is_IfFalse() && proj->outcnt() == 1) { lock1_node = proj->unique_out(); } } else { if (proj->is_IfTrue() && proj->outcnt() == 1) { lock1_node = proj->unique_out(); } } if (lock1_node != NULL && lock1_node->is_Lock()) { LockNode *lock1 = lock1_node->as_Lock(); if (lock->obj_node()->eqv_uncast(lock1->obj_node()) && BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) && !lock1->is_eliminated()) { lock_ops.append(lock1); return true; } } } } lock_ops.trunc_to(0); return false; } bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock, GrowableArray &lock_ops) { // check each control merging at this point for a matching unlock. // in(0) should be self edge so skip it. for (int i = 1; i < (int)region->req(); i++) { Node *in_node = next_control(region->in(i)); if (in_node != NULL) { if (find_matching_unlock(in_node, lock, lock_ops)) { // found a match so keep on checking. continue; } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) { continue; } // If we fall through to here then it was some kind of node we // don't understand or there wasn't a matching unlock, so give // up trying to merge locks. lock_ops.trunc_to(0); return false; } } return true; } #ifndef PRODUCT // // Create a counter which counts the number of times this lock is acquired // void AbstractLockNode::create_lock_counter(JVMState* state) { _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter); } void AbstractLockNode::set_eliminated_lock_counter() { if (_counter) { // Update the counter to indicate that this lock was eliminated. // The counter update code will stay around even though the // optimizer will eliminate the lock operation itself. _counter->set_tag(NamedCounter::EliminatedLockCounter); } } const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"}; void AbstractLockNode::dump_spec(outputStream* st) const { st->print("%s ", _kind_names[_kind]); CallNode::dump_spec(st); } void AbstractLockNode::dump_compact_spec(outputStream* st) const { st->print("%s", _kind_names[_kind]); } // The related set of lock nodes includes the control boundary. void AbstractLockNode::related(GrowableArray *in_rel, GrowableArray *out_rel, bool compact) const { if (compact) { this->collect_nodes(in_rel, 1, false, false); } else { this->collect_nodes_in_all_data(in_rel, true); } this->collect_nodes(out_rel, -2, false, false); } #endif //============================================================================= Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) { // perform any generic optimizations first (returns 'this' or NULL) Node *result = SafePointNode::Ideal(phase, can_reshape); if (result != NULL) return result; // Don't bother trying to transform a dead node if (in(0) && in(0)->is_top()) return NULL; // Now see if we can optimize away this lock. We don't actually // remove the locking here, we simply set the _eliminate flag which // prevents macro expansion from expanding the lock. Since we don't // modify the graph, the value returned from this function is the // one computed above. if (can_reshape && EliminateLocks && !is_non_esc_obj()) { // // If we are locking an unescaped object, the lock/unlock is unnecessary // ConnectionGraph *cgr = phase->C->congraph(); if (cgr != NULL && cgr->not_global_escape(obj_node())) { assert(!is_eliminated() || is_coarsened(), "sanity"); // The lock could be marked eliminated by lock coarsening // code during first IGVN before EA. Replace coarsened flag // to eliminate all associated locks/unlocks. #ifdef ASSERT this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1"); #endif this->set_non_esc_obj(); return result; } // // Try lock coarsening // PhaseIterGVN* iter = phase->is_IterGVN(); if (iter != NULL && !is_eliminated()) { GrowableArray lock_ops; Node *ctrl = next_control(in(0)); // now search back for a matching Unlock if (find_matching_unlock(ctrl, this, lock_ops)) { // found an unlock directly preceding this lock. This is the // case of single unlock directly control dependent on a // single lock which is the trivial version of case 1 or 2. } else if (ctrl->is_Region() ) { if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) { // found lock preceded by multiple unlocks along all paths // joining at this point which is case 3 in description above. } } else { // see if this lock comes from either half of an if and the // predecessors merges unlocks and the other half of the if // performs a lock. if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) { // found unlock splitting to an if with locks on both branches. } } if (lock_ops.length() > 0) { // add ourselves to the list of locks to be eliminated. lock_ops.append(this); #ifndef PRODUCT if (PrintEliminateLocks) { int locks = 0; int unlocks = 0; for (int i = 0; i < lock_ops.length(); i++) { AbstractLockNode* lock = lock_ops.at(i); if (lock->Opcode() == Op_Lock) locks++; else unlocks++; if (Verbose) { lock->dump(1); } } tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks); } #endif // for each of the identified locks, mark them // as eliminatable for (int i = 0; i < lock_ops.length(); i++) { AbstractLockNode* lock = lock_ops.at(i); // Mark it eliminated by coarsening and update any counters #ifdef ASSERT lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened"); #endif lock->set_coarsened(); } } else if (ctrl->is_Region() && iter->_worklist.member(ctrl)) { // We weren't able to find any opportunities but the region this // lock is control dependent on hasn't been processed yet so put // this lock back on the worklist so we can check again once any // region simplification has occurred. iter->_worklist.push(this); } } } return result; } //============================================================================= bool LockNode::is_nested_lock_region() { return is_nested_lock_region(NULL); } // p is used for access to compilation log; no logging if NULL bool LockNode::is_nested_lock_region(Compile * c) { BoxLockNode* box = box_node()->as_BoxLock(); int stk_slot = box->stack_slot(); if (stk_slot <= 0) { #ifdef ASSERT this->log_lock_optimization(c, "eliminate_lock_INLR_1"); #endif return false; // External lock or it is not Box (Phi node). } // Ignore complex cases: merged locks or multiple locks. Node* obj = obj_node(); LockNode* unique_lock = NULL; if (!box->is_simple_lock_region(&unique_lock, obj)) { #ifdef ASSERT this->log_lock_optimization(c, "eliminate_lock_INLR_2a"); #endif return false; } if (unique_lock != this) { #ifdef ASSERT this->log_lock_optimization(c, "eliminate_lock_INLR_2b"); #endif return false; } // Look for external lock for the same object. SafePointNode* sfn = this->as_SafePoint(); JVMState* youngest_jvms = sfn->jvms(); int max_depth = youngest_jvms->depth(); for (int depth = 1; depth <= max_depth; depth++) { JVMState* jvms = youngest_jvms->of_depth(depth); int num_mon = jvms->nof_monitors(); // Loop over monitors for (int idx = 0; idx < num_mon; idx++) { Node* obj_node = sfn->monitor_obj(jvms, idx); BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock(); if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) { return true; } } } #ifdef ASSERT this->log_lock_optimization(c, "eliminate_lock_INLR_3"); #endif return false; } //============================================================================= uint UnlockNode::size_of() const { return sizeof(*this); } //============================================================================= Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) { // perform any generic optimizations first (returns 'this' or NULL) Node *result = SafePointNode::Ideal(phase, can_reshape); if (result != NULL) return result; // Don't bother trying to transform a dead node if (in(0) && in(0)->is_top()) return NULL; // Now see if we can optimize away this unlock. We don't actually // remove the unlocking here, we simply set the _eliminate flag which // prevents macro expansion from expanding the unlock. Since we don't // modify the graph, the value returned from this function is the // one computed above. // Escape state is defined after Parse phase. if (can_reshape && EliminateLocks && !is_non_esc_obj()) { // // If we are unlocking an unescaped object, the lock/unlock is unnecessary. // ConnectionGraph *cgr = phase->C->congraph(); if (cgr != NULL && cgr->not_global_escape(obj_node())) { assert(!is_eliminated() || is_coarsened(), "sanity"); // The lock could be marked eliminated by lock coarsening // code during first IGVN before EA. Replace coarsened flag // to eliminate all associated locks/unlocks. #ifdef ASSERT this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2"); #endif this->set_non_esc_obj(); } } return result; } const char * AbstractLockNode::kind_as_string() const { return is_coarsened() ? "coarsened" : is_nested() ? "nested" : is_non_esc_obj() ? "non_escaping" : "?"; } void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag) const { if (C == NULL) { return; } CompileLog* log = C->log(); if (log != NULL) { log->begin_head("%s lock='%d' compile_id='%d' class_id='%s' kind='%s'", tag, is_Lock(), C->compile_id(), is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?", kind_as_string()); log->stamp(); log->end_head(); JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms(); while (p != NULL) { log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); p = p->caller(); } log->tail(tag); } } bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase) { if (dest_t->is_known_instance() && t_oop->is_known_instance()) { return dest_t->instance_id() == t_oop->instance_id(); } if (dest_t->isa_instptr() && !dest_t->klass()->equals(phase->C->env()->Object_klass())) { // clone if (t_oop->isa_aryptr()) { return false; } if (!t_oop->isa_instptr()) { return true; } if (dest_t->klass()->is_subtype_of(t_oop->klass()) || t_oop->klass()->is_subtype_of(dest_t->klass())) { return true; } // unrelated return false; } if (dest_t->isa_aryptr()) { // arraycopy or array clone if (t_oop->isa_instptr()) { return false; } if (!t_oop->isa_aryptr()) { return true; } const Type* elem = dest_t->is_aryptr()->elem(); if (elem == Type::BOTTOM) { // An array but we don't know what elements are return true; } dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr(); uint dest_alias = phase->C->get_alias_index(dest_t); uint t_oop_alias = phase->C->get_alias_index(t_oop); return dest_alias == t_oop_alias; } return true; }