1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciCallSite.hpp"
  27 #include "ci/ciMethodHandle.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "interpreter/linkResolver.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "prims/nativeLookup.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 
  44 void trace_type_profile(Compile* C, ciMethod *method, int depth, int bci, ciMethod *prof_method, ciKlass *prof_klass, int site_count, int receiver_count) {
  45   if (TraceTypeProfile || C->print_inlining()) {
  46     outputStream* out = tty;
  47     if (!C->print_inlining()) {
  48       if (!PrintOpto && !PrintCompilation) {
  49         method->print_short_name();
  50         tty->cr();
  51       }
  52       CompileTask::print_inlining_tty(prof_method, depth, bci);
  53     } else {
  54       out = C->print_inlining_stream();
  55     }
  56     CompileTask::print_inline_indent(depth, out);
  57     out->print(" \\-> TypeProfile (%d/%d counts) = ", receiver_count, site_count);
  58     stringStream ss;
  59     prof_klass->name()->print_symbol_on(&ss);
  60     out->print("%s", ss.as_string());
  61     out->cr();
  62   }
  63 }
  64 
  65 CallGenerator* Compile::call_generator(ciMethod* callee, int vtable_index, bool call_does_dispatch,
  66                                        JVMState* jvms, bool allow_inline,
  67                                        float prof_factor, ciKlass* speculative_receiver_type,
  68                                        bool allow_intrinsics, bool delayed_forbidden) {
  69   ciMethod*       caller   = jvms->method();
  70   int             bci      = jvms->bci();
  71   Bytecodes::Code bytecode = caller->java_code_at_bci(bci);
  72   guarantee(callee != NULL, "failed method resolution");
  73 
  74   // Dtrace currently doesn't work unless all calls are vanilla
  75   if (env()->dtrace_method_probes()) {
  76     allow_inline = false;
  77   }
  78 
  79   // Note: When we get profiling during stage-1 compiles, we want to pull
  80   // from more specific profile data which pertains to this inlining.
  81   // Right now, ignore the information in jvms->caller(), and do method[bci].
  82   ciCallProfile profile = caller->call_profile_at_bci(bci);
  83 
  84   // See how many times this site has been invoked.
  85   int site_count = profile.count();
  86   int receiver_count = -1;
  87   if (call_does_dispatch && UseTypeProfile && profile.has_receiver(0)) {
  88     // Receivers in the profile structure are ordered by call counts
  89     // so that the most called (major) receiver is profile.receiver(0).
  90     receiver_count = profile.receiver_count(0);
  91   }
  92 
  93   CompileLog* log = this->log();
  94   if (log != NULL) {
  95     int rid = (receiver_count >= 0)? log->identify(profile.receiver(0)): -1;
  96     int r2id = (rid != -1 && profile.has_receiver(1))? log->identify(profile.receiver(1)):-1;
  97     log->begin_elem("call method='%d' count='%d' prof_factor='%f'",
  98                     log->identify(callee), site_count, prof_factor);
  99     if (call_does_dispatch)  log->print(" virtual='1'");
 100     if (allow_inline)     log->print(" inline='1'");
 101     if (receiver_count >= 0) {
 102       log->print(" receiver='%d' receiver_count='%d'", rid, receiver_count);
 103       if (profile.has_receiver(1)) {
 104         log->print(" receiver2='%d' receiver2_count='%d'", r2id, profile.receiver_count(1));
 105       }
 106     }
 107     if (callee->is_method_handle_intrinsic()) {
 108       log->print(" method_handle_intrinsic='1'");
 109     }
 110     log->end_elem();
 111   }
 112 
 113   // Special case the handling of certain common, profitable library
 114   // methods.  If these methods are replaced with specialized code,
 115   // then we return it as the inlined version of the call.
 116   // We do this before the strict f.p. check below because the
 117   // intrinsics handle strict f.p. correctly.
 118   CallGenerator* cg_intrinsic = NULL;
 119   if (allow_inline && allow_intrinsics) {
 120     CallGenerator* cg = find_intrinsic(callee, call_does_dispatch);
 121     if (cg != NULL) {
 122       if (cg->is_predicated()) {
 123         // Code without intrinsic but, hopefully, inlined.
 124         CallGenerator* inline_cg = this->call_generator(callee,
 125               vtable_index, call_does_dispatch, jvms, allow_inline, prof_factor, speculative_receiver_type, false);
 126         if (inline_cg != NULL) {
 127           cg = CallGenerator::for_predicated_intrinsic(cg, inline_cg);
 128         }
 129       }
 130 
 131       // If intrinsic does the virtual dispatch, we try to use the type profile
 132       // first, and hopefully inline it as the regular virtual call below.
 133       // We will retry the intrinsic if nothing had claimed it afterwards.
 134       if (cg->does_virtual_dispatch()) {
 135         cg_intrinsic = cg;
 136         cg = NULL;
 137       } else {
 138         return cg;
 139       }
 140     }
 141   }
 142 
 143   // Do method handle calls.
 144   // NOTE: This must happen before normal inlining logic below since
 145   // MethodHandle.invoke* are native methods which obviously don't
 146   // have bytecodes and so normal inlining fails.
 147   if (callee->is_method_handle_intrinsic()) {
 148     CallGenerator* cg = CallGenerator::for_method_handle_call(jvms, caller, callee, delayed_forbidden);
 149     assert(cg == NULL || !delayed_forbidden || !cg->is_late_inline() || cg->is_mh_late_inline(), "unexpected CallGenerator");
 150     return cg;
 151   }
 152 
 153   // Do not inline strict fp into non-strict code, or the reverse
 154   if (caller->is_strict() ^ callee->is_strict()) {
 155     allow_inline = false;
 156   }
 157 
 158   // Attempt to inline...
 159   if (allow_inline) {
 160     // The profile data is only partly attributable to this caller,
 161     // scale back the call site information.
 162     float past_uses = jvms->method()->scale_count(site_count, prof_factor);
 163     // This is the number of times we expect the call code to be used.
 164     float expected_uses = past_uses;
 165 
 166     // Try inlining a bytecoded method:
 167     if (!call_does_dispatch) {
 168       InlineTree* ilt = InlineTree::find_subtree_from_root(this->ilt(), jvms->caller(), jvms->method());
 169       WarmCallInfo scratch_ci;
 170       bool should_delay = false;
 171       WarmCallInfo* ci = ilt->ok_to_inline(callee, jvms, profile, &scratch_ci, should_delay);
 172       assert(ci != &scratch_ci, "do not let this pointer escape");
 173       bool allow_inline   = (ci != NULL && !ci->is_cold());
 174       bool require_inline = (allow_inline && ci->is_hot());
 175 
 176       if (allow_inline) {
 177         CallGenerator* cg = CallGenerator::for_inline(callee, expected_uses);
 178 
 179         if (require_inline && cg != NULL) {
 180           // Delay the inlining of this method to give us the
 181           // opportunity to perform some high level optimizations
 182           // first.
 183           if (should_delay_string_inlining(callee, jvms)) {
 184             assert(!delayed_forbidden, "strange");
 185             return CallGenerator::for_string_late_inline(callee, cg);
 186           } else if (should_delay_boxing_inlining(callee, jvms)) {
 187             assert(!delayed_forbidden, "strange");
 188             return CallGenerator::for_boxing_late_inline(callee, cg);
 189           } else if ((should_delay || AlwaysIncrementalInline) && !delayed_forbidden) {
 190             return CallGenerator::for_late_inline(callee, cg);
 191           }
 192         }
 193         if (cg == NULL || should_delay) {
 194           // Fall through.
 195         } else if (require_inline || !InlineWarmCalls) {
 196           return cg;
 197         } else {
 198           CallGenerator* cold_cg = call_generator(callee, vtable_index, call_does_dispatch, jvms, false, prof_factor);
 199           return CallGenerator::for_warm_call(ci, cold_cg, cg);
 200         }
 201       }
 202     }
 203 
 204     // Try using the type profile.
 205     if (call_does_dispatch && site_count > 0 && receiver_count > 0) {
 206       // The major receiver's count >= TypeProfileMajorReceiverPercent of site_count.
 207       bool have_major_receiver = (100.*profile.receiver_prob(0) >= (float)TypeProfileMajorReceiverPercent);
 208       ciMethod* receiver_method = NULL;
 209 
 210       int morphism = profile.morphism();
 211       if (speculative_receiver_type != NULL) {
 212         // We have a speculative type, we should be able to resolve
 213         // the call. We do that before looking at the profiling at
 214         // this invoke because it may lead to bimorphic inlining which
 215         // a speculative type should help us avoid.
 216         receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 217                                                  speculative_receiver_type);
 218         if (receiver_method == NULL) {
 219           speculative_receiver_type = NULL;
 220         } else {
 221           morphism = 1;
 222         }
 223       }
 224       if (receiver_method == NULL &&
 225           (have_major_receiver || morphism == 1 ||
 226            (morphism == 2 && UseBimorphicInlining))) {
 227         // receiver_method = profile.method();
 228         // Profiles do not suggest methods now.  Look it up in the major receiver.
 229         receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 230                                                       profile.receiver(0));
 231       }
 232       if (receiver_method != NULL) {
 233         // The single majority receiver sufficiently outweighs the minority.
 234         CallGenerator* hit_cg = this->call_generator(receiver_method,
 235               vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor);
 236         if (hit_cg != NULL) {
 237           // Look up second receiver.
 238           CallGenerator* next_hit_cg = NULL;
 239           ciMethod* next_receiver_method = NULL;
 240           if (morphism == 2 && UseBimorphicInlining) {
 241             next_receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 242                                                                profile.receiver(1));
 243             if (next_receiver_method != NULL) {
 244               next_hit_cg = this->call_generator(next_receiver_method,
 245                                   vtable_index, !call_does_dispatch, jvms,
 246                                   allow_inline, prof_factor);
 247               if (next_hit_cg != NULL && !next_hit_cg->is_inline() &&
 248                   have_major_receiver && UseOnlyInlinedBimorphic) {
 249                   // Skip if we can't inline second receiver's method
 250                   next_hit_cg = NULL;
 251               }
 252             }
 253           }
 254           CallGenerator* miss_cg;
 255           Deoptimization::DeoptReason reason = morphism == 2 ?
 256             Deoptimization::Reason_bimorphic : Deoptimization::reason_class_check(speculative_receiver_type != NULL);
 257           if ((morphism == 1 || (morphism == 2 && next_hit_cg != NULL)) &&
 258               !too_many_traps(jvms->method(), jvms->bci(), reason)
 259              ) {
 260             // Generate uncommon trap for class check failure path
 261             // in case of monomorphic or bimorphic virtual call site.
 262             miss_cg = CallGenerator::for_uncommon_trap(callee, reason,
 263                         Deoptimization::Action_maybe_recompile);
 264           } else {
 265             // Generate virtual call for class check failure path
 266             // in case of polymorphic virtual call site.
 267             miss_cg = CallGenerator::for_virtual_call(callee, vtable_index);
 268           }
 269           if (miss_cg != NULL) {
 270             if (next_hit_cg != NULL) {
 271               assert(speculative_receiver_type == NULL, "shouldn't end up here if we used speculation");
 272               trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), next_receiver_method, profile.receiver(1), site_count, profile.receiver_count(1));
 273               // We don't need to record dependency on a receiver here and below.
 274               // Whenever we inline, the dependency is added by Parse::Parse().
 275               miss_cg = CallGenerator::for_predicted_call(profile.receiver(1), miss_cg, next_hit_cg, PROB_MAX);
 276             }
 277             if (miss_cg != NULL) {
 278               trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), receiver_method, profile.receiver(0), site_count, receiver_count);
 279               ciKlass* k = speculative_receiver_type != NULL ? speculative_receiver_type : profile.receiver(0);
 280               float hit_prob = speculative_receiver_type != NULL ? 1.0 : profile.receiver_prob(0);
 281               CallGenerator* cg = CallGenerator::for_predicted_call(k, miss_cg, hit_cg, hit_prob);
 282               if (cg != NULL)  return cg;
 283             }
 284           }
 285         }
 286       }
 287     }
 288   }
 289 
 290   // Nothing claimed the intrinsic, we go with straight-forward inlining
 291   // for already discovered intrinsic.
 292   if (allow_inline && allow_intrinsics && cg_intrinsic != NULL) {
 293     assert(cg_intrinsic->does_virtual_dispatch(), "sanity");
 294     return cg_intrinsic;
 295   }
 296 
 297   // There was no special inlining tactic, or it bailed out.
 298   // Use a more generic tactic, like a simple call.
 299   if (call_does_dispatch) {
 300     const char* msg = "virtual call";
 301     if (PrintInlining) print_inlining(callee, jvms->depth() - 1, jvms->bci(), msg);
 302     C->log_inline_failure(msg);
 303     return CallGenerator::for_virtual_call(callee, vtable_index);
 304   } else {
 305     // Class Hierarchy Analysis or Type Profile reveals a unique target,
 306     // or it is a static or special call.
 307     return CallGenerator::for_direct_call(callee, should_delay_inlining(callee, jvms));
 308   }
 309 }
 310 
 311 // Return true for methods that shouldn't be inlined early so that
 312 // they are easier to analyze and optimize as intrinsics.
 313 bool Compile::should_delay_string_inlining(ciMethod* call_method, JVMState* jvms) {
 314   if (has_stringbuilder()) {
 315 
 316     if ((call_method->holder() == C->env()->StringBuilder_klass() ||
 317          call_method->holder() == C->env()->StringBuffer_klass()) &&
 318         (jvms->method()->holder() == C->env()->StringBuilder_klass() ||
 319          jvms->method()->holder() == C->env()->StringBuffer_klass())) {
 320       // Delay SB calls only when called from non-SB code
 321       return false;
 322     }
 323 
 324     switch (call_method->intrinsic_id()) {
 325       case vmIntrinsics::_StringBuilder_void:
 326       case vmIntrinsics::_StringBuilder_int:
 327       case vmIntrinsics::_StringBuilder_String:
 328       case vmIntrinsics::_StringBuilder_append_char:
 329       case vmIntrinsics::_StringBuilder_append_int:
 330       case vmIntrinsics::_StringBuilder_append_String:
 331       case vmIntrinsics::_StringBuilder_toString:
 332       case vmIntrinsics::_StringBuffer_void:
 333       case vmIntrinsics::_StringBuffer_int:
 334       case vmIntrinsics::_StringBuffer_String:
 335       case vmIntrinsics::_StringBuffer_append_char:
 336       case vmIntrinsics::_StringBuffer_append_int:
 337       case vmIntrinsics::_StringBuffer_append_String:
 338       case vmIntrinsics::_StringBuffer_toString:
 339       case vmIntrinsics::_Integer_toString:
 340         return true;
 341 
 342       case vmIntrinsics::_String_String:
 343         {
 344           Node* receiver = jvms->map()->in(jvms->argoff() + 1);
 345           if (receiver->is_Proj() && receiver->in(0)->is_CallStaticJava()) {
 346             CallStaticJavaNode* csj = receiver->in(0)->as_CallStaticJava();
 347             ciMethod* m = csj->method();
 348             if (m != NULL &&
 349                 (m->intrinsic_id() == vmIntrinsics::_StringBuffer_toString ||
 350                  m->intrinsic_id() == vmIntrinsics::_StringBuilder_toString))
 351               // Delay String.<init>(new SB())
 352               return true;
 353           }
 354           return false;
 355         }
 356 
 357       default:
 358         return false;
 359     }
 360   }
 361   return false;
 362 }
 363 
 364 bool Compile::should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms) {
 365   if (eliminate_boxing() && call_method->is_boxing_method()) {
 366     set_has_boxed_value(true);
 367     return aggressive_unboxing();
 368   }
 369   return false;
 370 }
 371 
 372 // uncommon-trap call-sites where callee is unloaded, uninitialized or will not link
 373 bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) {
 374   // Additional inputs to consider...
 375   // bc      = bc()
 376   // caller  = method()
 377   // iter().get_method_holder_index()
 378   assert( dest_method->is_loaded(), "ciTypeFlow should not let us get here" );
 379   // Interface classes can be loaded & linked and never get around to
 380   // being initialized.  Uncommon-trap for not-initialized static or
 381   // v-calls.  Let interface calls happen.
 382   ciInstanceKlass* holder_klass = dest_method->holder();
 383   if (!holder_klass->is_being_initialized() &&
 384       !holder_klass->is_initialized() &&
 385       !holder_klass->is_interface()) {
 386     uncommon_trap(Deoptimization::Reason_uninitialized,
 387                   Deoptimization::Action_reinterpret,
 388                   holder_klass);
 389     return true;
 390   }
 391 
 392   assert(dest_method->is_loaded(), "dest_method: typeflow responsibility");
 393   return false;
 394 }
 395 
 396 #ifdef ASSERT
 397 static bool check_type(ciType* t1, ciType* t2) {
 398   // Either oop-oop or prim-prim pair.
 399   if (t1->is_primitive_type() && t2->is_primitive_type()) {
 400     return t1->size() == t2->size(); // argument sizes should match
 401   } else {
 402     return !t1->is_primitive_type() && !t2->is_primitive_type(); // oop-oop
 403   }
 404 }
 405 
 406 static bool check_inlined_mh_linker_info(ciMethod* symbolic_info, ciMethod* resolved_method) {
 407   assert(symbolic_info->is_method_handle_intrinsic(), "sanity");
 408   assert(!resolved_method->is_method_handle_intrinsic(), "sanity");
 409 
 410   if (!symbolic_info->is_loaded() || !resolved_method->is_loaded()) {
 411     return true; // Don't compare unloaded methods.
 412   }
 413   // Linkers have appendix argument which is not passed to callee.
 414   int has_appendix = MethodHandles::has_member_arg(symbolic_info->intrinsic_id()) ? 1 : 0;
 415   if (symbolic_info->arg_size() != (resolved_method->arg_size() + has_appendix)) {
 416     return false; // Total size of arguments on stack mismatch.
 417   }
 418   if (!check_type(symbolic_info->return_type(), resolved_method->return_type())) {
 419     return false; // Return value size or type mismatch encountered.
 420   }
 421 
 422   switch (symbolic_info->intrinsic_id()) {
 423     case vmIntrinsics::_linkToVirtual:
 424     case vmIntrinsics::_linkToInterface:
 425     case vmIntrinsics::_linkToSpecial: {
 426       if (resolved_method->is_static())  return false;
 427       break;
 428     }
 429     case vmIntrinsics::_linkToStatic: {
 430       if (!resolved_method->is_static())  return false;
 431       break;
 432     }
 433   }
 434 
 435   ciSignature* symbolic_sig = symbolic_info->signature();
 436   ciSignature* resolved_sig = resolved_method->signature();
 437 
 438   if (symbolic_sig->count() + (symbolic_info->is_static() ? 0 : 1) !=
 439       resolved_sig->count() + (resolved_method->is_static() ? 0 : 1) + has_appendix) {
 440     return false; // Argument count mismatch
 441   }
 442 
 443   int sbase = 0, rbase = 0;
 444   int arg_count = MIN2(symbolic_sig->count() - has_appendix, resolved_sig->count());
 445   ciType* recv_type = NULL;
 446   if (symbolic_info->is_static() && !resolved_method->is_static()) {
 447     recv_type = symbolic_sig->type_at(0);
 448     sbase = 1;
 449   } else if (!symbolic_info->is_static() && resolved_method->is_static()) {
 450     recv_type = resolved_sig->type_at(0);
 451     rbase = 1;
 452   }
 453   if (recv_type != NULL && recv_type->is_primitive_type()) {
 454     return false; // Receiver should be an oop.
 455   }
 456   for (int i = 0; i < arg_count; i++) {
 457     if (!check_type(symbolic_sig->type_at(sbase + i), resolved_sig->type_at(rbase + i))) {
 458       return false; // Argument size or type mismatch encountered.
 459     }
 460   }
 461   return true;
 462 }
 463 
 464 static bool is_call_consistent_with_jvms(JVMState* jvms, CallGenerator* cg) {
 465   ciMethod* symbolic_info = jvms->method()->get_method_at_bci(jvms->bci());
 466   ciMethod* resolved_method = cg->method();
 467 
 468   if (CallGenerator::is_inlined_mh_linker(jvms, resolved_method)) {
 469     return check_inlined_mh_linker_info(symbolic_info, resolved_method);
 470   } else {
 471     // Method name & descriptor should stay the same.
 472     return (symbolic_info->get_Method()->name() == resolved_method->get_Method()->name()) &&
 473            (symbolic_info->get_Method()->signature() == resolved_method->get_Method()->signature());
 474   }
 475 }
 476 
 477 static bool check_call_consistency(JVMState* jvms, CallGenerator* cg) {
 478   if (!is_call_consistent_with_jvms(jvms, cg)) {
 479     tty->print_cr("JVMS:");
 480     jvms->dump();
 481     tty->print_cr("Bytecode info:");
 482     jvms->method()->get_method_at_bci(jvms->bci())->print(); tty->cr();
 483     tty->print_cr("Resolved method:");
 484     cg->method()->print(); tty->cr();
 485     return false;
 486   }
 487   return true;
 488 }
 489 #endif // ASSERT
 490 
 491 //------------------------------do_call----------------------------------------
 492 // Handle your basic call.  Inline if we can & want to, else just setup call.
 493 void Parse::do_call() {
 494   // It's likely we are going to add debug info soon.
 495   // Also, if we inline a guy who eventually needs debug info for this JVMS,
 496   // our contribution to it is cleaned up right here.
 497   kill_dead_locals();
 498 
 499   C->print_inlining_assert_ready();
 500 
 501   // Set frequently used booleans
 502   const bool is_virtual = bc() == Bytecodes::_invokevirtual;
 503   const bool is_virtual_or_interface = is_virtual || bc() == Bytecodes::_invokeinterface;
 504   const bool has_receiver = Bytecodes::has_receiver(bc());
 505 
 506   // Find target being called
 507   bool             will_link;
 508   ciSignature*     declared_signature = NULL;
 509   ciMethod*        orig_callee  = iter().get_method(will_link, &declared_signature);  // callee in the bytecode
 510   ciInstanceKlass* holder_klass = orig_callee->holder();
 511   ciKlass*         holder       = iter().get_declared_method_holder();
 512   ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
 513   assert(declared_signature != NULL, "cannot be null");
 514 
 515   // Bump max node limit for JSR292 users
 516   if (bc() == Bytecodes::_invokedynamic || orig_callee->is_method_handle_intrinsic()) {
 517     C->set_max_node_limit(3*MaxNodeLimit);
 518   }
 519 
 520   // uncommon-trap when callee is unloaded, uninitialized or will not link
 521   // bailout when too many arguments for register representation
 522   if (!will_link || can_not_compile_call_site(orig_callee, klass)) {
 523     if (PrintOpto && (Verbose || WizardMode)) {
 524       method()->print_name(); tty->print_cr(" can not compile call at bci %d to:", bci());
 525       orig_callee->print_name(); tty->cr();
 526     }
 527     return;
 528   }
 529   assert(holder_klass->is_loaded(), "");
 530   //assert((bc_callee->is_static() || is_invokedynamic) == !has_receiver , "must match bc");  // XXX invokehandle (cur_bc_raw)
 531   // Note: this takes into account invokeinterface of methods declared in java/lang/Object,
 532   // which should be invokevirtuals but according to the VM spec may be invokeinterfaces
 533   assert(holder_klass->is_interface() || holder_klass->super() == NULL || (bc() != Bytecodes::_invokeinterface), "must match bc");
 534   // Note:  In the absence of miranda methods, an abstract class K can perform
 535   // an invokevirtual directly on an interface method I.m if K implements I.
 536 
 537   // orig_callee is the resolved callee which's signature includes the
 538   // appendix argument.
 539   const int nargs = orig_callee->arg_size();
 540   const bool is_signature_polymorphic = MethodHandles::is_signature_polymorphic(orig_callee->intrinsic_id());
 541 
 542   // Push appendix argument (MethodType, CallSite, etc.), if one.
 543   if (iter().has_appendix()) {
 544     ciObject* appendix_arg = iter().get_appendix();
 545     const TypeOopPtr* appendix_arg_type = TypeOopPtr::make_from_constant(appendix_arg);
 546     Node* appendix_arg_node = _gvn.makecon(appendix_arg_type);
 547     push(appendix_arg_node);
 548   }
 549 
 550   // ---------------------
 551   // Does Class Hierarchy Analysis reveal only a single target of a v-call?
 552   // Then we may inline or make a static call, but become dependent on there being only 1 target.
 553   // Does the call-site type profile reveal only one receiver?
 554   // Then we may introduce a run-time check and inline on the path where it succeeds.
 555   // The other path may uncommon_trap, check for another receiver, or do a v-call.
 556 
 557   // Try to get the most accurate receiver type
 558   ciMethod* callee             = orig_callee;
 559   int       vtable_index       = Method::invalid_vtable_index;
 560   bool      call_does_dispatch = false;
 561 
 562   // Speculative type of the receiver if any
 563   ciKlass* speculative_receiver_type = NULL;
 564   if (is_virtual_or_interface) {
 565     Node* receiver_node             = stack(sp() - nargs);
 566     const TypeOopPtr* receiver_type = _gvn.type(receiver_node)->isa_oopptr();
 567     // call_does_dispatch and vtable_index are out-parameters.  They might be changed.
 568     // For arrays, klass below is Object. When vtable calls are used,
 569     // resolving the call with Object would allow an illegal call to
 570     // finalize() on an array. We use holder instead: illegal calls to
 571     // finalize() won't be compiled as vtable calls (IC call
 572     // resolution will catch the illegal call) and the few legal calls
 573     // on array types won't be either.
 574     callee = C->optimize_virtual_call(method(), bci(), klass, holder, orig_callee,
 575                                       receiver_type, is_virtual,
 576                                       call_does_dispatch, vtable_index);  // out-parameters
 577     speculative_receiver_type = receiver_type != NULL ? receiver_type->speculative_type() : NULL;
 578   }
 579 
 580   // Note:  It's OK to try to inline a virtual call.
 581   // The call generator will not attempt to inline a polymorphic call
 582   // unless it knows how to optimize the receiver dispatch.
 583   bool try_inline = (C->do_inlining() || InlineAccessors);
 584 
 585   // ---------------------
 586   dec_sp(nargs);              // Temporarily pop args for JVM state of call
 587   JVMState* jvms = sync_jvms();
 588 
 589   // ---------------------
 590   // Decide call tactic.
 591   // This call checks with CHA, the interpreter profile, intrinsics table, etc.
 592   // It decides whether inlining is desirable or not.
 593   CallGenerator* cg = C->call_generator(callee, vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type);
 594 
 595   // NOTE:  Don't use orig_callee and callee after this point!  Use cg->method() instead.
 596   orig_callee = callee = NULL;
 597 
 598   // ---------------------
 599   // Round double arguments before call
 600   round_double_arguments(cg->method());
 601 
 602   // Feed profiling data for arguments to the type system so it can
 603   // propagate it as speculative types
 604   record_profiled_arguments_for_speculation(cg->method(), bc());
 605 
 606 #ifndef PRODUCT
 607   // bump global counters for calls
 608   count_compiled_calls(/*at_method_entry*/ false, cg->is_inline());
 609 
 610   // Record first part of parsing work for this call
 611   parse_histogram()->record_change();
 612 #endif // not PRODUCT
 613 
 614   assert(jvms == this->jvms(), "still operating on the right JVMS");
 615   assert(jvms_in_sync(),       "jvms must carry full info into CG");
 616 
 617   // save across call, for a subsequent cast_not_null.
 618   Node* receiver = has_receiver ? argument(0) : NULL;
 619 
 620   // The extra CheckCastPP for speculative types mess with PhaseStringOpts
 621   if (receiver != NULL && !call_does_dispatch && !cg->is_string_late_inline()) {
 622     // Feed profiling data for a single receiver to the type system so
 623     // it can propagate it as a speculative type
 624     receiver = record_profiled_receiver_for_speculation(receiver);
 625   }
 626 
 627   // Bump method data counters (We profile *before* the call is made
 628   // because exceptions don't return to the call site.)
 629   profile_call(receiver);
 630 
 631   JVMState* new_jvms = cg->generate(jvms);
 632   if (new_jvms == NULL) {
 633     // When inlining attempt fails (e.g., too many arguments),
 634     // it may contaminate the current compile state, making it
 635     // impossible to pull back and try again.  Once we call
 636     // cg->generate(), we are committed.  If it fails, the whole
 637     // compilation task is compromised.
 638     if (failing())  return;
 639 
 640     // This can happen if a library intrinsic is available, but refuses
 641     // the call site, perhaps because it did not match a pattern the
 642     // intrinsic was expecting to optimize. Should always be possible to
 643     // get a normal java call that may inline in that case
 644     cg = C->call_generator(cg->method(), vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type, /* allow_intrinsics= */ false);
 645     new_jvms = cg->generate(jvms);
 646     if (new_jvms == NULL) {
 647       guarantee(failing(), "call failed to generate:  calls should work");
 648       return;
 649     }
 650   }
 651 
 652   if (cg->is_inline()) {
 653     // Accumulate has_loops estimate
 654     C->set_has_loops(C->has_loops() || cg->method()->has_loops());
 655     C->env()->notice_inlined_method(cg->method());
 656   }
 657 
 658   // Reset parser state from [new_]jvms, which now carries results of the call.
 659   // Return value (if any) is already pushed on the stack by the cg.
 660   add_exception_states_from(new_jvms);
 661   if (new_jvms->map()->control() == top()) {
 662     stop_and_kill_map();
 663   } else {
 664     assert(new_jvms->same_calls_as(jvms), "method/bci left unchanged");
 665     set_jvms(new_jvms);
 666   }
 667 
 668   assert(check_call_consistency(jvms, cg), "inconsistent info");
 669 
 670   if (!stopped()) {
 671     // This was some sort of virtual call, which did a null check for us.
 672     // Now we can assert receiver-not-null, on the normal return path.
 673     if (receiver != NULL && cg->is_virtual()) {
 674       Node* cast = cast_not_null(receiver);
 675       // %%% assert(receiver == cast, "should already have cast the receiver");
 676     }
 677 
 678     // Round double result after a call from strict to non-strict code
 679     round_double_result(cg->method());
 680 
 681     ciType* rtype = cg->method()->return_type();
 682     ciType* ctype = declared_signature->return_type();
 683 
 684     if (Bytecodes::has_optional_appendix(iter().cur_bc_raw()) || is_signature_polymorphic) {
 685       // Be careful here with return types.
 686       if (ctype != rtype) {
 687         BasicType rt = rtype->basic_type();
 688         BasicType ct = ctype->basic_type();
 689         if (ct == T_VOID) {
 690           // It's OK for a method  to return a value that is discarded.
 691           // The discarding does not require any special action from the caller.
 692           // The Java code knows this, at VerifyType.isNullConversion.
 693           pop_node(rt);  // whatever it was, pop it
 694         } else if (rt == T_INT || is_subword_type(rt)) {
 695           // Nothing.  These cases are handled in lambda form bytecode.
 696           assert(ct == T_INT || is_subword_type(ct), "must match: rt=%s, ct=%s", type2name(rt), type2name(ct));
 697         } else if (rt == T_OBJECT || rt == T_ARRAY) {
 698           assert(ct == T_OBJECT || ct == T_ARRAY, "rt=%s, ct=%s", type2name(rt), type2name(ct));
 699           if (ctype->is_loaded()) {
 700             const TypeOopPtr* arg_type = TypeOopPtr::make_from_klass(rtype->as_klass());
 701             const Type*       sig_type = TypeOopPtr::make_from_klass(ctype->as_klass());
 702             if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
 703               Node* retnode = pop();
 704               Node* cast_obj = _gvn.transform(new CheckCastPPNode(control(), retnode, sig_type));
 705               push(cast_obj);
 706             }
 707           }
 708         } else {
 709           assert(rt == ct, "unexpected mismatch: rt=%s, ct=%s", type2name(rt), type2name(ct));
 710           // push a zero; it's better than getting an oop/int mismatch
 711           pop_node(rt);
 712           Node* retnode = zerocon(ct);
 713           push_node(ct, retnode);
 714         }
 715         // Now that the value is well-behaved, continue with the call-site type.
 716         rtype = ctype;
 717       }
 718     } else {
 719       // Symbolic resolution enforces the types to be the same.
 720       // NOTE: We must relax the assert for unloaded types because two
 721       // different ciType instances of the same unloaded class type
 722       // can appear to be "loaded" by different loaders (depending on
 723       // the accessing class).
 724       assert(!rtype->is_loaded() || !ctype->is_loaded() || rtype == ctype,
 725              "mismatched return types: rtype=%s, ctype=%s", rtype->name(), ctype->name());
 726     }
 727 
 728     // If the return type of the method is not loaded, assert that the
 729     // value we got is a null.  Otherwise, we need to recompile.
 730     if (!rtype->is_loaded()) {
 731       if (PrintOpto && (Verbose || WizardMode)) {
 732         method()->print_name(); tty->print_cr(" asserting nullness of result at bci: %d", bci());
 733         cg->method()->print_name(); tty->cr();
 734       }
 735       if (C->log() != NULL) {
 736         C->log()->elem("assert_null reason='return' klass='%d'",
 737                        C->log()->identify(rtype));
 738       }
 739       // If there is going to be a trap, put it at the next bytecode:
 740       set_bci(iter().next_bci());
 741       null_assert(peek());
 742       set_bci(iter().cur_bci()); // put it back
 743     }
 744     BasicType ct = ctype->basic_type();
 745     if (ct == T_OBJECT || ct == T_ARRAY) {
 746       record_profiled_return_for_speculation();
 747     }
 748   }
 749 
 750   // Restart record of parsing work after possible inlining of call
 751 #ifndef PRODUCT
 752   parse_histogram()->set_initial_state(bc());
 753 #endif
 754 }
 755 
 756 //---------------------------catch_call_exceptions-----------------------------
 757 // Put a Catch and CatchProj nodes behind a just-created call.
 758 // Send their caught exceptions to the proper handler.
 759 // This may be used after a call to the rethrow VM stub,
 760 // when it is needed to process unloaded exception classes.
 761 void Parse::catch_call_exceptions(ciExceptionHandlerStream& handlers) {
 762   // Exceptions are delivered through this channel:
 763   Node* i_o = this->i_o();
 764 
 765   // Add a CatchNode.
 766   GrowableArray<int>* bcis = new (C->node_arena()) GrowableArray<int>(C->node_arena(), 8, 0, -1);
 767   GrowableArray<const Type*>* extypes = new (C->node_arena()) GrowableArray<const Type*>(C->node_arena(), 8, 0, NULL);
 768   GrowableArray<int>* saw_unloaded = new (C->node_arena()) GrowableArray<int>(C->node_arena(), 8, 0, 0);
 769 
 770   for (; !handlers.is_done(); handlers.next()) {
 771     ciExceptionHandler* h        = handlers.handler();
 772     int                 h_bci    = h->handler_bci();
 773     ciInstanceKlass*    h_klass  = h->is_catch_all() ? env()->Throwable_klass() : h->catch_klass();
 774     // Do not introduce unloaded exception types into the graph:
 775     if (!h_klass->is_loaded()) {
 776       if (saw_unloaded->contains(h_bci)) {
 777         /* We've already seen an unloaded exception with h_bci,
 778            so don't duplicate. Duplication will cause the CatchNode to be
 779            unnecessarily large. See 4713716. */
 780         continue;
 781       } else {
 782         saw_unloaded->append(h_bci);
 783       }
 784     }
 785     const Type*         h_extype = TypeOopPtr::make_from_klass(h_klass);
 786     // (We use make_from_klass because it respects UseUniqueSubclasses.)
 787     h_extype = h_extype->join(TypeInstPtr::NOTNULL);
 788     assert(!h_extype->empty(), "sanity");
 789     // Note:  It's OK if the BCIs repeat themselves.
 790     bcis->append(h_bci);
 791     extypes->append(h_extype);
 792   }
 793 
 794   int len = bcis->length();
 795   CatchNode *cn = new CatchNode(control(), i_o, len+1);
 796   Node *catch_ = _gvn.transform(cn);
 797 
 798   // now branch with the exception state to each of the (potential)
 799   // handlers
 800   for(int i=0; i < len; i++) {
 801     // Setup JVM state to enter the handler.
 802     PreserveJVMState pjvms(this);
 803     // Locals are just copied from before the call.
 804     // Get control from the CatchNode.
 805     int handler_bci = bcis->at(i);
 806     Node* ctrl = _gvn.transform( new CatchProjNode(catch_, i+1,handler_bci));
 807     // This handler cannot happen?
 808     if (ctrl == top())  continue;
 809     set_control(ctrl);
 810 
 811     // Create exception oop
 812     const TypeInstPtr* extype = extypes->at(i)->is_instptr();
 813     Node *ex_oop = _gvn.transform(new CreateExNode(extypes->at(i), ctrl, i_o));
 814 
 815     // Handle unloaded exception classes.
 816     if (saw_unloaded->contains(handler_bci)) {
 817       // An unloaded exception type is coming here.  Do an uncommon trap.
 818 #ifndef PRODUCT
 819       // We do not expect the same handler bci to take both cold unloaded
 820       // and hot loaded exceptions.  But, watch for it.
 821       if ((Verbose || WizardMode) && extype->is_loaded()) {
 822         tty->print("Warning: Handler @%d takes mixed loaded/unloaded exceptions in ", bci());
 823         method()->print_name(); tty->cr();
 824       } else if (PrintOpto && (Verbose || WizardMode)) {
 825         tty->print("Bailing out on unloaded exception type ");
 826         extype->klass()->print_name();
 827         tty->print(" at bci:%d in ", bci());
 828         method()->print_name(); tty->cr();
 829       }
 830 #endif
 831       // Emit an uncommon trap instead of processing the block.
 832       set_bci(handler_bci);
 833       push_ex_oop(ex_oop);
 834       uncommon_trap(Deoptimization::Reason_unloaded,
 835                     Deoptimization::Action_reinterpret,
 836                     extype->klass(), "!loaded exception");
 837       set_bci(iter().cur_bci()); // put it back
 838       continue;
 839     }
 840 
 841     // go to the exception handler
 842     if (handler_bci < 0) {     // merge with corresponding rethrow node
 843       throw_to_exit(make_exception_state(ex_oop));
 844     } else {                      // Else jump to corresponding handle
 845       push_ex_oop(ex_oop);        // Clear stack and push just the oop.
 846       merge_exception(handler_bci);
 847     }
 848   }
 849 
 850   // The first CatchProj is for the normal return.
 851   // (Note:  If this is a call to rethrow_Java, this node goes dead.)
 852   set_control(_gvn.transform( new CatchProjNode(catch_, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci)));
 853 }
 854 
 855 
 856 //----------------------------catch_inline_exceptions--------------------------
 857 // Handle all exceptions thrown by an inlined method or individual bytecode.
 858 // Common case 1: we have no handler, so all exceptions merge right into
 859 // the rethrow case.
 860 // Case 2: we have some handlers, with loaded exception klasses that have
 861 // no subklasses.  We do a Deutsch-Shiffman style type-check on the incoming
 862 // exception oop and branch to the handler directly.
 863 // Case 3: We have some handlers with subklasses or are not loaded at
 864 // compile-time.  We have to call the runtime to resolve the exception.
 865 // So we insert a RethrowCall and all the logic that goes with it.
 866 void Parse::catch_inline_exceptions(SafePointNode* ex_map) {
 867   // Caller is responsible for saving away the map for normal control flow!
 868   assert(stopped(), "call set_map(NULL) first");
 869   assert(method()->has_exception_handlers(), "don't come here w/o work to do");
 870 
 871   Node* ex_node = saved_ex_oop(ex_map);
 872   if (ex_node == top()) {
 873     // No action needed.
 874     return;
 875   }
 876   const TypeInstPtr* ex_type = _gvn.type(ex_node)->isa_instptr();
 877   NOT_PRODUCT(if (ex_type==NULL) tty->print_cr("*** Exception not InstPtr"));
 878   if (ex_type == NULL)
 879     ex_type = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr();
 880 
 881   // determine potential exception handlers
 882   ciExceptionHandlerStream handlers(method(), bci(),
 883                                     ex_type->klass()->as_instance_klass(),
 884                                     ex_type->klass_is_exact());
 885 
 886   // Start executing from the given throw state.  (Keep its stack, for now.)
 887   // Get the exception oop as known at compile time.
 888   ex_node = use_exception_state(ex_map);
 889 
 890   // Get the exception oop klass from its header
 891   Node* ex_klass_node = NULL;
 892   if (has_ex_handler() && !ex_type->klass_is_exact()) {
 893     Node* p = basic_plus_adr( ex_node, ex_node, oopDesc::klass_offset_in_bytes());
 894     ex_klass_node = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT));
 895 
 896     // Compute the exception klass a little more cleverly.
 897     // Obvious solution is to simple do a LoadKlass from the 'ex_node'.
 898     // However, if the ex_node is a PhiNode, I'm going to do a LoadKlass for
 899     // each arm of the Phi.  If I know something clever about the exceptions
 900     // I'm loading the class from, I can replace the LoadKlass with the
 901     // klass constant for the exception oop.
 902     if (ex_node->is_Phi()) {
 903       ex_klass_node = new PhiNode(ex_node->in(0), TypeKlassPtr::OBJECT);
 904       for (uint i = 1; i < ex_node->req(); i++) {
 905         Node* ex_in = ex_node->in(i);
 906         if (ex_in == top() || ex_in == NULL) {
 907           // This path was not taken.
 908           ex_klass_node->init_req(i, top());
 909           continue;
 910         }
 911         Node* p = basic_plus_adr(ex_in, ex_in, oopDesc::klass_offset_in_bytes());
 912         Node* k = _gvn.transform( LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT));
 913         ex_klass_node->init_req( i, k );
 914       }
 915       _gvn.set_type(ex_klass_node, TypeKlassPtr::OBJECT);
 916 
 917     }
 918   }
 919 
 920   // Scan the exception table for applicable handlers.
 921   // If none, we can call rethrow() and be done!
 922   // If precise (loaded with no subklasses), insert a D.S. style
 923   // pointer compare to the correct handler and loop back.
 924   // If imprecise, switch to the Rethrow VM-call style handling.
 925 
 926   int remaining = handlers.count_remaining();
 927 
 928   // iterate through all entries sequentially
 929   for (;!handlers.is_done(); handlers.next()) {
 930     ciExceptionHandler* handler = handlers.handler();
 931 
 932     if (handler->is_rethrow()) {
 933       // If we fell off the end of the table without finding an imprecise
 934       // exception klass (and without finding a generic handler) then we
 935       // know this exception is not handled in this method.  We just rethrow
 936       // the exception into the caller.
 937       throw_to_exit(make_exception_state(ex_node));
 938       return;
 939     }
 940 
 941     // exception handler bci range covers throw_bci => investigate further
 942     int handler_bci = handler->handler_bci();
 943 
 944     if (remaining == 1) {
 945       push_ex_oop(ex_node);        // Push exception oop for handler
 946       if (PrintOpto && WizardMode) {
 947         tty->print_cr("  Catching every inline exception bci:%d -> handler_bci:%d", bci(), handler_bci);
 948       }
 949       merge_exception(handler_bci); // jump to handler
 950       return;                   // No more handling to be done here!
 951     }
 952 
 953     // Get the handler's klass
 954     ciInstanceKlass* klass = handler->catch_klass();
 955 
 956     if (!klass->is_loaded()) {  // klass is not loaded?
 957       // fall through into catch_call_exceptions which will emit a
 958       // handler with an uncommon trap.
 959       break;
 960     }
 961 
 962     if (klass->is_interface())  // should not happen, but...
 963       break;                    // bail out
 964 
 965     // Check the type of the exception against the catch type
 966     const TypeKlassPtr *tk = TypeKlassPtr::make(klass);
 967     Node* con = _gvn.makecon(tk);
 968     Node* not_subtype_ctrl = gen_subtype_check(ex_klass_node, con);
 969     if (!stopped()) {
 970       PreserveJVMState pjvms(this);
 971       const TypeInstPtr* tinst = TypeOopPtr::make_from_klass_unique(klass)->cast_to_ptr_type(TypePtr::NotNull)->is_instptr();
 972       assert(klass->has_subklass() || tinst->klass_is_exact(), "lost exactness");
 973       Node* ex_oop = _gvn.transform(new CheckCastPPNode(control(), ex_node, tinst));
 974       push_ex_oop(ex_oop);      // Push exception oop for handler
 975       if (PrintOpto && WizardMode) {
 976         tty->print("  Catching inline exception bci:%d -> handler_bci:%d -- ", bci(), handler_bci);
 977         klass->print_name();
 978         tty->cr();
 979       }
 980       merge_exception(handler_bci);
 981     }
 982     set_control(not_subtype_ctrl);
 983 
 984     // Come here if exception does not match handler.
 985     // Carry on with more handler checks.
 986     --remaining;
 987   }
 988 
 989   assert(!stopped(), "you should return if you finish the chain");
 990 
 991   // Oops, need to call into the VM to resolve the klasses at runtime.
 992   // Note:  This call must not deoptimize, since it is not a real at this bci!
 993   kill_dead_locals();
 994 
 995   make_runtime_call(RC_NO_LEAF | RC_MUST_THROW,
 996                     OptoRuntime::rethrow_Type(),
 997                     OptoRuntime::rethrow_stub(),
 998                     NULL, NULL,
 999                     ex_node);
1000 
1001   // Rethrow is a pure call, no side effects, only a result.
1002   // The result cannot be allocated, so we use I_O
1003 
1004   // Catch exceptions from the rethrow
1005   catch_call_exceptions(handlers);
1006 }
1007 
1008 
1009 // (Note:  Moved add_debug_info into GraphKit::add_safepoint_edges.)
1010 
1011 
1012 #ifndef PRODUCT
1013 void Parse::count_compiled_calls(bool at_method_entry, bool is_inline) {
1014   if( CountCompiledCalls ) {
1015     if( at_method_entry ) {
1016       // bump invocation counter if top method (for statistics)
1017       if (CountCompiledCalls && depth() == 1) {
1018         const TypePtr* addr_type = TypeMetadataPtr::make(method());
1019         Node* adr1 = makecon(addr_type);
1020         Node* adr2 = basic_plus_adr(adr1, adr1, in_bytes(Method::compiled_invocation_counter_offset()));
1021         increment_counter(adr2);
1022       }
1023     } else if (is_inline) {
1024       switch (bc()) {
1025       case Bytecodes::_invokevirtual:   increment_counter(SharedRuntime::nof_inlined_calls_addr()); break;
1026       case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_inlined_interface_calls_addr()); break;
1027       case Bytecodes::_invokedirect:
1028       case Bytecodes::_invokestatic:
1029       case Bytecodes::_invokedynamic:
1030       case Bytecodes::_invokespecial:   increment_counter(SharedRuntime::nof_inlined_static_calls_addr()); break;
1031       default: fatal("unexpected call bytecode");
1032       }
1033     } else {
1034       switch (bc()) {
1035       case Bytecodes::_invokevirtual:   increment_counter(SharedRuntime::nof_normal_calls_addr()); break;
1036       case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_interface_calls_addr()); break;
1037       case Bytecodes::_invokedirect:
1038       case Bytecodes::_invokestatic:
1039       case Bytecodes::_invokedynamic:
1040       case Bytecodes::_invokespecial:   increment_counter(SharedRuntime::nof_static_calls_addr()); break;
1041       default: fatal("unexpected call bytecode");
1042       }
1043     }
1044   }
1045 }
1046 #endif //PRODUCT
1047 
1048 
1049 ciMethod* Compile::optimize_virtual_call(ciMethod* caller, int bci, ciInstanceKlass* klass,
1050                                          ciKlass* holder, ciMethod* callee,
1051                                          const TypeOopPtr* receiver_type, bool is_virtual,
1052                                          bool& call_does_dispatch, int& vtable_index,
1053                                          bool check_access) {
1054   // Set default values for out-parameters.
1055   call_does_dispatch = true;
1056   vtable_index       = Method::invalid_vtable_index;
1057 
1058   // Choose call strategy.
1059   ciMethod* optimized_virtual_method = optimize_inlining(caller, bci, klass, callee,
1060                                                          receiver_type, check_access);
1061 
1062   // Have the call been sufficiently improved such that it is no longer a virtual?
1063   if (optimized_virtual_method != NULL) {
1064     callee             = optimized_virtual_method;
1065     call_does_dispatch = false;
1066   } else if (!UseInlineCaches && is_virtual && callee->is_loaded()) {
1067     // We can make a vtable call at this site
1068     vtable_index = callee->resolve_vtable_index(caller->holder(), holder);
1069   }
1070   return callee;
1071 }
1072 
1073 // Identify possible target method and inlining style
1074 ciMethod* Compile::optimize_inlining(ciMethod* caller, int bci, ciInstanceKlass* klass,
1075                                      ciMethod* callee, const TypeOopPtr* receiver_type,
1076                                      bool check_access) {
1077   // only use for virtual or interface calls
1078 
1079   // If it is obviously final, do not bother to call find_monomorphic_target,
1080   // because the class hierarchy checks are not needed, and may fail due to
1081   // incompletely loaded classes.  Since we do our own class loading checks
1082   // in this module, we may confidently bind to any method.
1083   if (callee->can_be_statically_bound()) {
1084     return callee;
1085   }
1086 
1087   // Attempt to improve the receiver
1088   bool actual_receiver_is_exact = false;
1089   ciInstanceKlass* actual_receiver = klass;
1090   if (receiver_type != NULL) {
1091     // Array methods are all inherited from Object, and are monomorphic.
1092     // finalize() call on array is not allowed.
1093     if (receiver_type->isa_aryptr() &&
1094         callee->holder() == env()->Object_klass() &&
1095         callee->name() != ciSymbol::finalize_method_name()) {
1096       return callee;
1097     }
1098 
1099     // All other interesting cases are instance klasses.
1100     if (!receiver_type->isa_instptr()) {
1101       return NULL;
1102     }
1103 
1104     ciInstanceKlass *ikl = receiver_type->klass()->as_instance_klass();
1105     if (ikl->is_loaded() && ikl->is_initialized() && !ikl->is_interface() &&
1106         (ikl == actual_receiver || ikl->is_subtype_of(actual_receiver))) {
1107       // ikl is a same or better type than the original actual_receiver,
1108       // e.g. static receiver from bytecodes.
1109       actual_receiver = ikl;
1110       // Is the actual_receiver exact?
1111       actual_receiver_is_exact = receiver_type->klass_is_exact();
1112     }
1113   }
1114 
1115   ciInstanceKlass*   calling_klass = caller->holder();
1116   ciMethod* cha_monomorphic_target = callee->find_monomorphic_target(calling_klass, klass, actual_receiver, check_access);
1117   if (cha_monomorphic_target != NULL) {
1118     assert(!cha_monomorphic_target->is_abstract(), "");
1119     // Look at the method-receiver type.  Does it add "too much information"?
1120     ciKlass*    mr_klass = cha_monomorphic_target->holder();
1121     const Type* mr_type  = TypeInstPtr::make(TypePtr::BotPTR, mr_klass);
1122     if (receiver_type == NULL || !receiver_type->higher_equal(mr_type)) {
1123       // Calling this method would include an implicit cast to its holder.
1124       // %%% Not yet implemented.  Would throw minor asserts at present.
1125       // %%% The most common wins are already gained by +UseUniqueSubclasses.
1126       // To fix, put the higher_equal check at the call of this routine,
1127       // and add a CheckCastPP to the receiver.
1128       if (TraceDependencies) {
1129         tty->print_cr("found unique CHA method, but could not cast up");
1130         tty->print("  method  = ");
1131         cha_monomorphic_target->print();
1132         tty->cr();
1133       }
1134       if (log() != NULL) {
1135         log()->elem("missed_CHA_opportunity klass='%d' method='%d'",
1136                        log()->identify(klass),
1137                        log()->identify(cha_monomorphic_target));
1138       }
1139       cha_monomorphic_target = NULL;
1140     }
1141   }
1142   if (cha_monomorphic_target != NULL) {
1143     // Hardwiring a virtual.
1144     // If we inlined because CHA revealed only a single target method,
1145     // then we are dependent on that target method not getting overridden
1146     // by dynamic class loading.  Be sure to test the "static" receiver
1147     // dest_method here, as opposed to the actual receiver, which may
1148     // falsely lead us to believe that the receiver is final or private.
1149     dependencies()->assert_unique_concrete_method(actual_receiver, cha_monomorphic_target);
1150     return cha_monomorphic_target;
1151   }
1152 
1153   // If the type is exact, we can still bind the method w/o a vcall.
1154   // (This case comes after CHA so we can see how much extra work it does.)
1155   if (actual_receiver_is_exact) {
1156     // In case of evolution, there is a dependence on every inlined method, since each
1157     // such method can be changed when its class is redefined.
1158     ciMethod* exact_method = callee->resolve_invoke(calling_klass, actual_receiver);
1159     if (exact_method != NULL) {
1160       if (PrintOpto) {
1161         tty->print("  Calling method via exact type @%d --- ", bci);
1162         exact_method->print_name();
1163         tty->cr();
1164       }
1165       return exact_method;
1166     }
1167   }
1168 
1169   return NULL;
1170 }