1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/oopFactory.hpp"
  42 #include "memory/universe.inline.hpp"
  43 #include "oops/fieldStreams.hpp"
  44 #include "oops/objArrayKlass.inline.hpp"
  45 #include "oops/objArrayOop.inline.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "oops/valueKlass.hpp"
  48 #include "prims/forte.hpp"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/jvmtiRedefineClassesTrace.hpp"
  51 #include "prims/methodHandles.hpp"
  52 #include "prims/nativeLookup.hpp"
  53 #include "runtime/arguments.hpp"
  54 #include "runtime/atomic.inline.hpp"
  55 #include "runtime/biasedLocking.hpp"
  56 #include "runtime/compilationPolicy.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/init.hpp"
  59 #include "runtime/interfaceSupport.hpp"
  60 #include "runtime/javaCalls.hpp"
  61 #include "runtime/sharedRuntime.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/vframe.hpp"
  64 #include "runtime/vframeArray.hpp"
  65 #include "trace/tracing.hpp"
  66 #include "utilities/copy.hpp"
  67 #include "utilities/dtrace.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/hashtable.inline.hpp"
  70 #include "utilities/macros.hpp"
  71 #include "utilities/xmlstream.hpp"
  72 #ifdef COMPILER1
  73 #include "c1/c1_Runtime1.hpp"
  74 #endif
  75 
  76 // Shared stub locations
  77 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  78 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  79 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  80 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  81 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  82 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  83 
  84 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  85 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  86 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  87 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  88 
  89 #ifdef COMPILER2
  90 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  91 #endif // COMPILER2
  92 
  93 
  94 //----------------------------generate_stubs-----------------------------------
  95 void SharedRuntime::generate_stubs() {
  96   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  97   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  98   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  99   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 100   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 101   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 102 
 103 #if defined(COMPILER2) || INCLUDE_JVMCI
 104   // Vectors are generated only by C2 and JVMCI.
 105   bool support_wide = is_wide_vector(MaxVectorSize);
 106   if (support_wide) {
 107     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 108   }
 109 #endif // COMPILER2 || INCLUDE_JVMCI
 110   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 111   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 112 
 113   generate_deopt_blob();
 114 
 115 #ifdef COMPILER2
 116   generate_uncommon_trap_blob();
 117 #endif // COMPILER2
 118 }
 119 
 120 #include <math.h>
 121 
 122 // Implementation of SharedRuntime
 123 
 124 #ifndef PRODUCT
 125 // For statistics
 126 int SharedRuntime::_ic_miss_ctr = 0;
 127 int SharedRuntime::_wrong_method_ctr = 0;
 128 int SharedRuntime::_resolve_static_ctr = 0;
 129 int SharedRuntime::_resolve_virtual_ctr = 0;
 130 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 131 int SharedRuntime::_implicit_null_throws = 0;
 132 int SharedRuntime::_implicit_div0_throws = 0;
 133 int SharedRuntime::_throw_null_ctr = 0;
 134 
 135 int SharedRuntime::_nof_normal_calls = 0;
 136 int SharedRuntime::_nof_optimized_calls = 0;
 137 int SharedRuntime::_nof_inlined_calls = 0;
 138 int SharedRuntime::_nof_megamorphic_calls = 0;
 139 int SharedRuntime::_nof_static_calls = 0;
 140 int SharedRuntime::_nof_inlined_static_calls = 0;
 141 int SharedRuntime::_nof_interface_calls = 0;
 142 int SharedRuntime::_nof_optimized_interface_calls = 0;
 143 int SharedRuntime::_nof_inlined_interface_calls = 0;
 144 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 145 int SharedRuntime::_nof_removable_exceptions = 0;
 146 
 147 int SharedRuntime::_new_instance_ctr=0;
 148 int SharedRuntime::_new_array_ctr=0;
 149 int SharedRuntime::_multi1_ctr=0;
 150 int SharedRuntime::_multi2_ctr=0;
 151 int SharedRuntime::_multi3_ctr=0;
 152 int SharedRuntime::_multi4_ctr=0;
 153 int SharedRuntime::_multi5_ctr=0;
 154 int SharedRuntime::_mon_enter_stub_ctr=0;
 155 int SharedRuntime::_mon_exit_stub_ctr=0;
 156 int SharedRuntime::_mon_enter_ctr=0;
 157 int SharedRuntime::_mon_exit_ctr=0;
 158 int SharedRuntime::_partial_subtype_ctr=0;
 159 int SharedRuntime::_jbyte_array_copy_ctr=0;
 160 int SharedRuntime::_jshort_array_copy_ctr=0;
 161 int SharedRuntime::_jint_array_copy_ctr=0;
 162 int SharedRuntime::_jlong_array_copy_ctr=0;
 163 int SharedRuntime::_oop_array_copy_ctr=0;
 164 int SharedRuntime::_checkcast_array_copy_ctr=0;
 165 int SharedRuntime::_unsafe_array_copy_ctr=0;
 166 int SharedRuntime::_generic_array_copy_ctr=0;
 167 int SharedRuntime::_slow_array_copy_ctr=0;
 168 int SharedRuntime::_find_handler_ctr=0;
 169 int SharedRuntime::_rethrow_ctr=0;
 170 
 171 int     SharedRuntime::_ICmiss_index                    = 0;
 172 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 173 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 174 
 175 
 176 void SharedRuntime::trace_ic_miss(address at) {
 177   for (int i = 0; i < _ICmiss_index; i++) {
 178     if (_ICmiss_at[i] == at) {
 179       _ICmiss_count[i]++;
 180       return;
 181     }
 182   }
 183   int index = _ICmiss_index++;
 184   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 185   _ICmiss_at[index] = at;
 186   _ICmiss_count[index] = 1;
 187 }
 188 
 189 void SharedRuntime::print_ic_miss_histogram() {
 190   if (ICMissHistogram) {
 191     tty->print_cr("IC Miss Histogram:");
 192     int tot_misses = 0;
 193     for (int i = 0; i < _ICmiss_index; i++) {
 194       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 195       tot_misses += _ICmiss_count[i];
 196     }
 197     tty->print_cr("Total IC misses: %7d", tot_misses);
 198   }
 199 }
 200 #endif // PRODUCT
 201 
 202 #if INCLUDE_ALL_GCS
 203 
 204 // G1 write-barrier pre: executed before a pointer store.
 205 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 206   if (orig == NULL) {
 207     assert(false, "should be optimized out");
 208     return;
 209   }
 210   assert(orig->is_oop(true /* ignore mark word */), "Error");
 211   // store the original value that was in the field reference
 212   thread->satb_mark_queue().enqueue(orig);
 213 JRT_END
 214 
 215 // G1 write-barrier post: executed after a pointer store.
 216 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 217   thread->dirty_card_queue().enqueue(card_addr);
 218 JRT_END
 219 
 220 #endif // INCLUDE_ALL_GCS
 221 
 222 
 223 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 224   return x * y;
 225 JRT_END
 226 
 227 
 228 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 229   if (x == min_jlong && y == CONST64(-1)) {
 230     return x;
 231   } else {
 232     return x / y;
 233   }
 234 JRT_END
 235 
 236 
 237 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 238   if (x == min_jlong && y == CONST64(-1)) {
 239     return 0;
 240   } else {
 241     return x % y;
 242   }
 243 JRT_END
 244 
 245 
 246 const juint  float_sign_mask  = 0x7FFFFFFF;
 247 const juint  float_infinity   = 0x7F800000;
 248 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 249 const julong double_infinity  = CONST64(0x7FF0000000000000);
 250 
 251 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 252 #ifdef _WIN64
 253   // 64-bit Windows on amd64 returns the wrong values for
 254   // infinity operands.
 255   union { jfloat f; juint i; } xbits, ybits;
 256   xbits.f = x;
 257   ybits.f = y;
 258   // x Mod Infinity == x unless x is infinity
 259   if (((xbits.i & float_sign_mask) != float_infinity) &&
 260        ((ybits.i & float_sign_mask) == float_infinity) ) {
 261     return x;
 262   }
 263   return ((jfloat)fmod_winx64((double)x, (double)y));
 264 #else
 265   return ((jfloat)fmod((double)x,(double)y));
 266 #endif
 267 JRT_END
 268 
 269 
 270 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 271 #ifdef _WIN64
 272   union { jdouble d; julong l; } xbits, ybits;
 273   xbits.d = x;
 274   ybits.d = y;
 275   // x Mod Infinity == x unless x is infinity
 276   if (((xbits.l & double_sign_mask) != double_infinity) &&
 277        ((ybits.l & double_sign_mask) == double_infinity) ) {
 278     return x;
 279   }
 280   return ((jdouble)fmod_winx64((double)x, (double)y));
 281 #else
 282   return ((jdouble)fmod((double)x,(double)y));
 283 #endif
 284 JRT_END
 285 
 286 #ifdef __SOFTFP__
 287 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 288   return x + y;
 289 JRT_END
 290 
 291 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 292   return x - y;
 293 JRT_END
 294 
 295 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 296   return x * y;
 297 JRT_END
 298 
 299 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 300   return x / y;
 301 JRT_END
 302 
 303 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 304   return x + y;
 305 JRT_END
 306 
 307 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 308   return x - y;
 309 JRT_END
 310 
 311 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 312   return x * y;
 313 JRT_END
 314 
 315 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 316   return x / y;
 317 JRT_END
 318 
 319 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 320   return (jfloat)x;
 321 JRT_END
 322 
 323 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 324   return (jdouble)x;
 325 JRT_END
 326 
 327 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 328   return (jdouble)x;
 329 JRT_END
 330 
 331 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 332   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 333 JRT_END
 334 
 335 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 336   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 337 JRT_END
 338 
 339 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 340   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 341 JRT_END
 342 
 343 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 344   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 345 JRT_END
 346 
 347 // Functions to return the opposite of the aeabi functions for nan.
 348 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 349   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 350 JRT_END
 351 
 352 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 353   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 354 JRT_END
 355 
 356 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 357   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 358 JRT_END
 359 
 360 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 361   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 362 JRT_END
 363 
 364 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 365   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 366 JRT_END
 367 
 368 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 369   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 370 JRT_END
 371 
 372 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 373   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 374 JRT_END
 375 
 376 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 377   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 378 JRT_END
 379 
 380 // Intrinsics make gcc generate code for these.
 381 float  SharedRuntime::fneg(float f)   {
 382   return -f;
 383 }
 384 
 385 double SharedRuntime::dneg(double f)  {
 386   return -f;
 387 }
 388 
 389 #endif // __SOFTFP__
 390 
 391 #if defined(__SOFTFP__) || defined(E500V2)
 392 // Intrinsics make gcc generate code for these.
 393 double SharedRuntime::dabs(double f)  {
 394   return (f <= (double)0.0) ? (double)0.0 - f : f;
 395 }
 396 
 397 #endif
 398 
 399 #if defined(__SOFTFP__) || defined(PPC)
 400 double SharedRuntime::dsqrt(double f) {
 401   return sqrt(f);
 402 }
 403 #endif
 404 
 405 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 406   if (g_isnan(x))
 407     return 0;
 408   if (x >= (jfloat) max_jint)
 409     return max_jint;
 410   if (x <= (jfloat) min_jint)
 411     return min_jint;
 412   return (jint) x;
 413 JRT_END
 414 
 415 
 416 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 417   if (g_isnan(x))
 418     return 0;
 419   if (x >= (jfloat) max_jlong)
 420     return max_jlong;
 421   if (x <= (jfloat) min_jlong)
 422     return min_jlong;
 423   return (jlong) x;
 424 JRT_END
 425 
 426 
 427 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 428   if (g_isnan(x))
 429     return 0;
 430   if (x >= (jdouble) max_jint)
 431     return max_jint;
 432   if (x <= (jdouble) min_jint)
 433     return min_jint;
 434   return (jint) x;
 435 JRT_END
 436 
 437 
 438 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 439   if (g_isnan(x))
 440     return 0;
 441   if (x >= (jdouble) max_jlong)
 442     return max_jlong;
 443   if (x <= (jdouble) min_jlong)
 444     return min_jlong;
 445   return (jlong) x;
 446 JRT_END
 447 
 448 
 449 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 450   return (jfloat)x;
 451 JRT_END
 452 
 453 
 454 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 455   return (jfloat)x;
 456 JRT_END
 457 
 458 
 459 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 460   return (jdouble)x;
 461 JRT_END
 462 
 463 // Exception handling across interpreter/compiler boundaries
 464 //
 465 // exception_handler_for_return_address(...) returns the continuation address.
 466 // The continuation address is the entry point of the exception handler of the
 467 // previous frame depending on the return address.
 468 
 469 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 470   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 471   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 472 
 473   // Reset method handle flag.
 474   thread->set_is_method_handle_return(false);
 475 
 476 #if INCLUDE_JVMCI
 477   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 478   // and other exception handler continuations do not read it
 479   thread->set_exception_pc(NULL);
 480 #endif
 481 
 482   // The fastest case first
 483   CodeBlob* blob = CodeCache::find_blob(return_address);
 484   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 485   if (nm != NULL) {
 486     // Set flag if return address is a method handle call site.
 487     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 488     // native nmethods don't have exception handlers
 489     assert(!nm->is_native_method(), "no exception handler");
 490     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 491     if (nm->is_deopt_pc(return_address)) {
 492       // If we come here because of a stack overflow, the stack may be
 493       // unguarded. Reguard the stack otherwise if we return to the
 494       // deopt blob and the stack bang causes a stack overflow we
 495       // crash.
 496       bool guard_pages_enabled = thread->stack_guards_enabled();
 497       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 498       if (thread->reserved_stack_activation() != thread->stack_base()) {
 499         thread->set_reserved_stack_activation(thread->stack_base());
 500       }
 501       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 502       return SharedRuntime::deopt_blob()->unpack_with_exception();
 503     } else {
 504       return nm->exception_begin();
 505     }
 506   }
 507 
 508   // Entry code
 509   if (StubRoutines::returns_to_call_stub(return_address)) {
 510     return StubRoutines::catch_exception_entry();
 511   }
 512   // Interpreted code
 513   if (Interpreter::contains(return_address)) {
 514     return Interpreter::rethrow_exception_entry();
 515   }
 516 
 517   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 518   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 519 
 520 #ifndef PRODUCT
 521   { ResourceMark rm;
 522     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 523     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 524     tty->print_cr("b) other problem");
 525   }
 526 #endif // PRODUCT
 527 
 528   ShouldNotReachHere();
 529   return NULL;
 530 }
 531 
 532 
 533 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 534   return raw_exception_handler_for_return_address(thread, return_address);
 535 JRT_END
 536 
 537 
 538 address SharedRuntime::get_poll_stub(address pc) {
 539   address stub;
 540   // Look up the code blob
 541   CodeBlob *cb = CodeCache::find_blob(pc);
 542 
 543   // Should be an nmethod
 544   assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 545 
 546   // Look up the relocation information
 547   assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 548     "safepoint polling: type must be poll");
 549 
 550 #ifdef ASSERT
 551   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 552     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 553     Disassembler::decode(cb);
 554     fatal("Only polling locations are used for safepoint");
 555   }
 556 #endif
 557 
 558   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 559   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 560   if (at_poll_return) {
 561     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 562            "polling page return stub not created yet");
 563     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 564   } else if (has_wide_vectors) {
 565     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 566            "polling page vectors safepoint stub not created yet");
 567     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 568   } else {
 569     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 570            "polling page safepoint stub not created yet");
 571     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 572   }
 573   log_debug(safepoint)("... found polling page %s exception at pc = "
 574                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 575                        at_poll_return ? "return" : "loop",
 576                        (intptr_t)pc, (intptr_t)stub);
 577   return stub;
 578 }
 579 
 580 
 581 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 582   assert(caller.is_interpreted_frame(), "");
 583   int args_size = ArgumentSizeComputer(sig).size() + 1;
 584   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 585   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 586   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 587   return result;
 588 }
 589 
 590 
 591 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 592   if (JvmtiExport::can_post_on_exceptions()) {
 593     vframeStream vfst(thread, true);
 594     methodHandle method = methodHandle(thread, vfst.method());
 595     address bcp = method()->bcp_from(vfst.bci());
 596     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 597   }
 598   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 599 }
 600 
 601 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 602   Handle h_exception = Exceptions::new_exception(thread, name, message);
 603   throw_and_post_jvmti_exception(thread, h_exception);
 604 }
 605 
 606 // The interpreter code to call this tracing function is only
 607 // called/generated when TraceRedefineClasses has the right bits
 608 // set. Since obsolete methods are never compiled, we don't have
 609 // to modify the compilers to generate calls to this function.
 610 //
 611 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 612     JavaThread* thread, Method* method))
 613   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 614 
 615   if (method->is_obsolete()) {
 616     // We are calling an obsolete method, but this is not necessarily
 617     // an error. Our method could have been redefined just after we
 618     // fetched the Method* from the constant pool.
 619 
 620     // RC_TRACE macro has an embedded ResourceMark
 621     RC_TRACE_WITH_THREAD(0x00001000, thread,
 622                          ("calling obsolete method '%s'",
 623                           method->name_and_sig_as_C_string()));
 624     if (RC_TRACE_ENABLED(0x00002000)) {
 625       // this option is provided to debug calls to obsolete methods
 626       guarantee(false, "faulting at call to an obsolete method.");
 627     }
 628   }
 629   return 0;
 630 JRT_END
 631 
 632 // ret_pc points into caller; we are returning caller's exception handler
 633 // for given exception
 634 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 635                                                     bool force_unwind, bool top_frame_only) {
 636   assert(nm != NULL, "must exist");
 637   ResourceMark rm;
 638 
 639 #if INCLUDE_JVMCI
 640   if (nm->is_compiled_by_jvmci()) {
 641     // lookup exception handler for this pc
 642     int catch_pco = ret_pc - nm->code_begin();
 643     ExceptionHandlerTable table(nm);
 644     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 645     if (t != NULL) {
 646       return nm->code_begin() + t->pco();
 647     } else {
 648       // there is no exception handler for this pc => deoptimize
 649       nm->make_not_entrant();
 650 
 651       // Use Deoptimization::deoptimize for all of its side-effects:
 652       // revoking biases of monitors, gathering traps statistics, logging...
 653       // it also patches the return pc but we do not care about that
 654       // since we return a continuation to the deopt_blob below.
 655       JavaThread* thread = JavaThread::current();
 656       RegisterMap reg_map(thread, UseBiasedLocking);
 657       frame runtime_frame = thread->last_frame();
 658       frame caller_frame = runtime_frame.sender(&reg_map);
 659       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 660 
 661       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 662     }
 663   }
 664 #endif // INCLUDE_JVMCI
 665 
 666   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 667   // determine handler bci, if any
 668   EXCEPTION_MARK;
 669 
 670   int handler_bci = -1;
 671   int scope_depth = 0;
 672   if (!force_unwind) {
 673     int bci = sd->bci();
 674     bool recursive_exception = false;
 675     do {
 676       bool skip_scope_increment = false;
 677       // exception handler lookup
 678       KlassHandle ek (THREAD, exception->klass());
 679       methodHandle mh(THREAD, sd->method());
 680       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 681       if (HAS_PENDING_EXCEPTION) {
 682         recursive_exception = true;
 683         // We threw an exception while trying to find the exception handler.
 684         // Transfer the new exception to the exception handle which will
 685         // be set into thread local storage, and do another lookup for an
 686         // exception handler for this exception, this time starting at the
 687         // BCI of the exception handler which caused the exception to be
 688         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 689         // argument to ensure that the correct exception is thrown (4870175).
 690         exception = Handle(THREAD, PENDING_EXCEPTION);
 691         CLEAR_PENDING_EXCEPTION;
 692         if (handler_bci >= 0) {
 693           bci = handler_bci;
 694           handler_bci = -1;
 695           skip_scope_increment = true;
 696         }
 697       }
 698       else {
 699         recursive_exception = false;
 700       }
 701       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 702         sd = sd->sender();
 703         if (sd != NULL) {
 704           bci = sd->bci();
 705         }
 706         ++scope_depth;
 707       }
 708     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 709   }
 710 
 711   // found handling method => lookup exception handler
 712   int catch_pco = ret_pc - nm->code_begin();
 713 
 714   ExceptionHandlerTable table(nm);
 715   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 716   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 717     // Allow abbreviated catch tables.  The idea is to allow a method
 718     // to materialize its exceptions without committing to the exact
 719     // routing of exceptions.  In particular this is needed for adding
 720     // a synthetic handler to unlock monitors when inlining
 721     // synchronized methods since the unlock path isn't represented in
 722     // the bytecodes.
 723     t = table.entry_for(catch_pco, -1, 0);
 724   }
 725 
 726 #ifdef COMPILER1
 727   if (t == NULL && nm->is_compiled_by_c1()) {
 728     assert(nm->unwind_handler_begin() != NULL, "");
 729     return nm->unwind_handler_begin();
 730   }
 731 #endif
 732 
 733   if (t == NULL) {
 734     ttyLocker ttyl;
 735     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 736     tty->print_cr("   Exception:");
 737     exception->print();
 738     tty->cr();
 739     tty->print_cr(" Compiled exception table :");
 740     table.print();
 741     nm->print_code();
 742     guarantee(false, "missing exception handler");
 743     return NULL;
 744   }
 745 
 746   return nm->code_begin() + t->pco();
 747 }
 748 
 749 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 750   // These errors occur only at call sites
 751   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 752 JRT_END
 753 
 754 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 755   // These errors occur only at call sites
 756   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 757 JRT_END
 758 
 759 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 760   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 761 JRT_END
 762 
 763 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 764   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 765 JRT_END
 766 
 767 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 768   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 769   // cache sites (when the callee activation is not yet set up) so we are at a call site
 770   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 771 JRT_END
 772 
 773 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 774   throw_StackOverflowError_common(thread, false);
 775 JRT_END
 776 
 777 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 778   throw_StackOverflowError_common(thread, true);
 779 JRT_END
 780 
 781 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 782   // We avoid using the normal exception construction in this case because
 783   // it performs an upcall to Java, and we're already out of stack space.
 784   Thread* THREAD = thread;
 785   Klass* k = SystemDictionary::StackOverflowError_klass();
 786   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 787   if (delayed) {
 788     java_lang_Throwable::set_message(exception_oop,
 789                                      Universe::delayed_stack_overflow_error_message());
 790   }
 791   Handle exception (thread, exception_oop);
 792   if (StackTraceInThrowable) {
 793     java_lang_Throwable::fill_in_stack_trace(exception);
 794   }
 795   // Increment counter for hs_err file reporting
 796   Atomic::inc(&Exceptions::_stack_overflow_errors);
 797   throw_and_post_jvmti_exception(thread, exception);
 798 }
 799 
 800 #if INCLUDE_JVMCI
 801 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, nmethod* nm, int deopt_reason) {
 802   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 803   thread->set_jvmci_implicit_exception_pc(pc);
 804   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 805   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 806 }
 807 #endif // INCLUDE_JVMCI
 808 
 809 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 810                                                            address pc,
 811                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 812 {
 813   address target_pc = NULL;
 814 
 815   if (Interpreter::contains(pc)) {
 816 #ifdef CC_INTERP
 817     // C++ interpreter doesn't throw implicit exceptions
 818     ShouldNotReachHere();
 819 #else
 820     switch (exception_kind) {
 821       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 822       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 823       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 824       default:                      ShouldNotReachHere();
 825     }
 826 #endif // !CC_INTERP
 827   } else {
 828     switch (exception_kind) {
 829       case STACK_OVERFLOW: {
 830         // Stack overflow only occurs upon frame setup; the callee is
 831         // going to be unwound. Dispatch to a shared runtime stub
 832         // which will cause the StackOverflowError to be fabricated
 833         // and processed.
 834         // Stack overflow should never occur during deoptimization:
 835         // the compiled method bangs the stack by as much as the
 836         // interpreter would need in case of a deoptimization. The
 837         // deoptimization blob and uncommon trap blob bang the stack
 838         // in a debug VM to verify the correctness of the compiled
 839         // method stack banging.
 840         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 841         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 842         return StubRoutines::throw_StackOverflowError_entry();
 843       }
 844 
 845       case IMPLICIT_NULL: {
 846         if (VtableStubs::contains(pc)) {
 847           // We haven't yet entered the callee frame. Fabricate an
 848           // exception and begin dispatching it in the caller. Since
 849           // the caller was at a call site, it's safe to destroy all
 850           // caller-saved registers, as these entry points do.
 851           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 852 
 853           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 854           if (vt_stub == NULL) return NULL;
 855 
 856           if (vt_stub->is_abstract_method_error(pc)) {
 857             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 858             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 859             return StubRoutines::throw_AbstractMethodError_entry();
 860           } else {
 861             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 862             return StubRoutines::throw_NullPointerException_at_call_entry();
 863           }
 864         } else {
 865           CodeBlob* cb = CodeCache::find_blob(pc);
 866 
 867           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 868           if (cb == NULL) return NULL;
 869 
 870           // Exception happened in CodeCache. Must be either:
 871           // 1. Inline-cache check in C2I handler blob,
 872           // 2. Inline-cache check in nmethod, or
 873           // 3. Implicit null exception in nmethod
 874 
 875           if (!cb->is_nmethod()) {
 876             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 877             if (!is_in_blob) {
 878               // Allow normal crash reporting to handle this
 879               return NULL;
 880             }
 881             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 882             // There is no handler here, so we will simply unwind.
 883             return StubRoutines::throw_NullPointerException_at_call_entry();
 884           }
 885 
 886           // Otherwise, it's an nmethod.  Consult its exception handlers.
 887           nmethod* nm = (nmethod*)cb;
 888           if (nm->inlinecache_check_contains(pc)) {
 889             // exception happened inside inline-cache check code
 890             // => the nmethod is not yet active (i.e., the frame
 891             // is not set up yet) => use return address pushed by
 892             // caller => don't push another return address
 893             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 894             return StubRoutines::throw_NullPointerException_at_call_entry();
 895           }
 896 
 897           if (nm->method()->is_method_handle_intrinsic()) {
 898             // exception happened inside MH dispatch code, similar to a vtable stub
 899             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 900             return StubRoutines::throw_NullPointerException_at_call_entry();
 901           }
 902 
 903 #ifndef PRODUCT
 904           _implicit_null_throws++;
 905 #endif
 906 #if INCLUDE_JVMCI
 907           if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 908             // If there's no PcDesc then we'll die way down inside of
 909             // deopt instead of just getting normal error reporting,
 910             // so only go there if it will succeed.
 911             return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_null_check);
 912           } else {
 913 #endif // INCLUDE_JVMCI
 914           assert (nm->is_nmethod(), "Expect nmethod");
 915           target_pc = nm->continuation_for_implicit_exception(pc);
 916 #if INCLUDE_JVMCI
 917           }
 918 #endif // INCLUDE_JVMCI
 919           // If there's an unexpected fault, target_pc might be NULL,
 920           // in which case we want to fall through into the normal
 921           // error handling code.
 922         }
 923 
 924         break; // fall through
 925       }
 926 
 927 
 928       case IMPLICIT_DIVIDE_BY_ZERO: {
 929         nmethod* nm = CodeCache::find_nmethod(pc);
 930         guarantee(nm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 931 #ifndef PRODUCT
 932         _implicit_div0_throws++;
 933 #endif
 934 #if INCLUDE_JVMCI
 935         if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 936           return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_div0_check);
 937         } else {
 938 #endif // INCLUDE_JVMCI
 939         target_pc = nm->continuation_for_implicit_exception(pc);
 940 #if INCLUDE_JVMCI
 941         }
 942 #endif // INCLUDE_JVMCI
 943         // If there's an unexpected fault, target_pc might be NULL,
 944         // in which case we want to fall through into the normal
 945         // error handling code.
 946         break; // fall through
 947       }
 948 
 949       default: ShouldNotReachHere();
 950     }
 951 
 952     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 953 
 954     if (exception_kind == IMPLICIT_NULL) {
 955 #ifndef PRODUCT
 956       // for AbortVMOnException flag
 957       Exceptions::debug_check_abort("java.lang.NullPointerException");
 958 #endif //PRODUCT
 959       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 960     } else {
 961 #ifndef PRODUCT
 962       // for AbortVMOnException flag
 963       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 964 #endif //PRODUCT
 965       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 966     }
 967     return target_pc;
 968   }
 969 
 970   ShouldNotReachHere();
 971   return NULL;
 972 }
 973 
 974 
 975 /**
 976  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 977  * installed in the native function entry of all native Java methods before
 978  * they get linked to their actual native methods.
 979  *
 980  * \note
 981  * This method actually never gets called!  The reason is because
 982  * the interpreter's native entries call NativeLookup::lookup() which
 983  * throws the exception when the lookup fails.  The exception is then
 984  * caught and forwarded on the return from NativeLookup::lookup() call
 985  * before the call to the native function.  This might change in the future.
 986  */
 987 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 988 {
 989   // We return a bad value here to make sure that the exception is
 990   // forwarded before we look at the return value.
 991   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 992 }
 993 JNI_END
 994 
 995 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 996   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 997 }
 998 
 999 
1000 #ifndef PRODUCT
1001 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
1002   const frame f = thread->last_frame();
1003   assert(f.is_interpreted_frame(), "must be an interpreted frame");
1004 #ifndef PRODUCT
1005   methodHandle mh(THREAD, f.interpreter_frame_method());
1006   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
1007 #endif // !PRODUCT
1008   return preserve_this_value;
1009 JRT_END
1010 #endif // !PRODUCT
1011 
1012 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
1013   assert(obj->is_oop(), "must be a valid oop");
1014 #if INCLUDE_JVMCI
1015   // This removes the requirement for JVMCI compilers to emit code
1016   // performing a dynamic check that obj has a finalizer before
1017   // calling this routine. There should be no performance impact
1018   // for C1 since it emits a dynamic check. C2 and the interpreter
1019   // uses other runtime routines for registering finalizers.
1020   if (!obj->klass()->has_finalizer()) {
1021     return;
1022   }
1023 #endif // INCLUDE_JVMCI
1024   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1025   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1026 JRT_END
1027 
1028 
1029 jlong SharedRuntime::get_java_tid(Thread* thread) {
1030   if (thread != NULL) {
1031     if (thread->is_Java_thread()) {
1032       oop obj = ((JavaThread*)thread)->threadObj();
1033       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1034     }
1035   }
1036   return 0;
1037 }
1038 
1039 /**
1040  * This function ought to be a void function, but cannot be because
1041  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1042  * 6254741.  Once that is fixed we can remove the dummy return value.
1043  */
1044 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1045   return dtrace_object_alloc_base(Thread::current(), o, size);
1046 }
1047 
1048 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1049   assert(DTraceAllocProbes, "wrong call");
1050   Klass* klass = o->klass();
1051   Symbol* name = klass->name();
1052   HOTSPOT_OBJECT_ALLOC(
1053                    get_java_tid(thread),
1054                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1055   return 0;
1056 }
1057 
1058 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1059     JavaThread* thread, Method* method))
1060   assert(DTraceMethodProbes, "wrong call");
1061   Symbol* kname = method->klass_name();
1062   Symbol* name = method->name();
1063   Symbol* sig = method->signature();
1064   HOTSPOT_METHOD_ENTRY(
1065       get_java_tid(thread),
1066       (char *) kname->bytes(), kname->utf8_length(),
1067       (char *) name->bytes(), name->utf8_length(),
1068       (char *) sig->bytes(), sig->utf8_length());
1069   return 0;
1070 JRT_END
1071 
1072 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1073     JavaThread* thread, Method* method))
1074   assert(DTraceMethodProbes, "wrong call");
1075   Symbol* kname = method->klass_name();
1076   Symbol* name = method->name();
1077   Symbol* sig = method->signature();
1078   HOTSPOT_METHOD_RETURN(
1079       get_java_tid(thread),
1080       (char *) kname->bytes(), kname->utf8_length(),
1081       (char *) name->bytes(), name->utf8_length(),
1082       (char *) sig->bytes(), sig->utf8_length());
1083   return 0;
1084 JRT_END
1085 
1086 
1087 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1088 // for a call current in progress, i.e., arguments has been pushed on stack
1089 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1090 // vtable updates, etc.  Caller frame must be compiled.
1091 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1092   ResourceMark rm(THREAD);
1093 
1094   // last java frame on stack (which includes native call frames)
1095   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1096 
1097   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1098 }
1099 
1100 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1101   nmethod* caller_nm = vfst.nm();
1102 
1103   nmethodLocker caller_lock(caller_nm);
1104 
1105   address pc = vfst.frame_pc();
1106   { // Get call instruction under lock because another thread may be busy patching it.
1107     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1108     return caller_nm->attached_method_before_pc(pc);
1109   }
1110   return NULL;
1111 }
1112 
1113 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1114 // for a call current in progress, i.e., arguments has been pushed on stack
1115 // but callee has not been invoked yet.  Caller frame must be compiled.
1116 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1117                                               vframeStream& vfst,
1118                                               Bytecodes::Code& bc,
1119                                               CallInfo& callinfo, TRAPS) {
1120   Handle receiver;
1121   Handle nullHandle;  //create a handy null handle for exception returns
1122 
1123   assert(!vfst.at_end(), "Java frame must exist");
1124 
1125   // Find caller and bci from vframe
1126   methodHandle caller(THREAD, vfst.method());
1127   int          bci   = vfst.bci();
1128 
1129   Bytecode_invoke bytecode(caller, bci);
1130   int bytecode_index = bytecode.index();
1131 
1132   methodHandle attached_method = extract_attached_method(vfst);
1133   if (attached_method.not_null()) {
1134     methodHandle callee = bytecode.static_target(CHECK_NH);
1135     vmIntrinsics::ID id = callee->intrinsic_id();
1136     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1137     // it attaches statically resolved method to the call site.
1138     if (MethodHandles::is_signature_polymorphic(id) &&
1139         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1140       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1141 
1142       // Adjust invocation mode according to the attached method.
1143       switch (bc) {
1144         case Bytecodes::_invokeinterface:
1145           if (!attached_method->method_holder()->is_interface()) {
1146             bc = Bytecodes::_invokevirtual;
1147           }
1148           break;
1149         case Bytecodes::_invokehandle:
1150           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1151             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1152                                               : Bytecodes::_invokevirtual;
1153           }
1154           break;
1155       }
1156     }
1157   } else {
1158     bc = bytecode.invoke_code();
1159   }
1160 
1161   bool has_receiver = bc != Bytecodes::_invokestatic &&
1162                       bc != Bytecodes::_invokedynamic &&
1163                       bc != Bytecodes::_invokehandle &&
1164                       bc != Bytecodes::_invokedirect;
1165 
1166   // Find receiver for non-static call
1167   if (has_receiver) {
1168     // This register map must be update since we need to find the receiver for
1169     // compiled frames. The receiver might be in a register.
1170     RegisterMap reg_map2(thread);
1171     frame stubFrame   = thread->last_frame();
1172     // Caller-frame is a compiled frame
1173     frame callerFrame = stubFrame.sender(&reg_map2);
1174 
1175     if (attached_method.is_null()) {
1176       methodHandle callee = bytecode.static_target(CHECK_NH);
1177       if (callee.is_null()) {
1178         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1179       }
1180     }
1181 
1182     // Retrieve from a compiled argument list
1183     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1184 
1185     if (receiver.is_null()) {
1186       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1187     }
1188   }
1189 
1190   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1191 
1192   // Resolve method
1193   if (attached_method.not_null()) {
1194     // Parameterized by attached method.
1195     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1196   } else {
1197     // Parameterized by bytecode.
1198     constantPoolHandle constants(THREAD, caller->constants());
1199     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1200   }
1201 
1202 #ifdef ASSERT
1203   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1204   if (has_receiver) {
1205     assert(receiver.not_null(), "should have thrown exception");
1206     KlassHandle receiver_klass(THREAD, receiver->klass());
1207     Klass* rk = NULL;
1208     if (attached_method.not_null()) {
1209       // In case there's resolved method attached, use its holder during the check.
1210       rk = attached_method->method_holder();
1211     } else {
1212       // Klass is already loaded.
1213       constantPoolHandle constants(THREAD, caller->constants());
1214       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1215     }
1216     KlassHandle static_receiver_klass(THREAD, rk);
1217     methodHandle callee = callinfo.selected_method();
1218     assert(receiver_klass->is_subtype_of(static_receiver_klass()),
1219            "actual receiver must be subclass of static receiver klass");
1220     if (receiver_klass->is_instance_klass()) {
1221       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1222         tty->print_cr("ERROR: Klass not yet initialized!!");
1223         receiver_klass()->print();
1224       }
1225       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1226     }
1227   }
1228 #endif
1229 
1230   return receiver;
1231 }
1232 
1233 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1234   ResourceMark rm(THREAD);
1235   // We need first to check if any Java activations (compiled, interpreted)
1236   // exist on the stack since last JavaCall.  If not, we need
1237   // to get the target method from the JavaCall wrapper.
1238   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1239   methodHandle callee_method;
1240   if (vfst.at_end()) {
1241     // No Java frames were found on stack since we did the JavaCall.
1242     // Hence the stack can only contain an entry_frame.  We need to
1243     // find the target method from the stub frame.
1244     RegisterMap reg_map(thread, false);
1245     frame fr = thread->last_frame();
1246     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1247     fr = fr.sender(&reg_map);
1248     assert(fr.is_entry_frame(), "must be");
1249     // fr is now pointing to the entry frame.
1250     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1251     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1252   } else {
1253     Bytecodes::Code bc;
1254     CallInfo callinfo;
1255     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1256     callee_method = callinfo.selected_method();
1257   }
1258   assert(callee_method()->is_method(), "must be");
1259   return callee_method;
1260 }
1261 
1262 // Resolves a call.
1263 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1264                                            bool is_virtual,
1265                                            bool is_optimized, TRAPS) {
1266   methodHandle callee_method;
1267   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1268   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1269     int retry_count = 0;
1270     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1271            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1272       // If has a pending exception then there is no need to re-try to
1273       // resolve this method.
1274       // If the method has been redefined, we need to try again.
1275       // Hack: we have no way to update the vtables of arrays, so don't
1276       // require that java.lang.Object has been updated.
1277 
1278       // It is very unlikely that method is redefined more than 100 times
1279       // in the middle of resolve. If it is looping here more than 100 times
1280       // means then there could be a bug here.
1281       guarantee((retry_count++ < 100),
1282                 "Could not resolve to latest version of redefined method");
1283       // method is redefined in the middle of resolve so re-try.
1284       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1285     }
1286   }
1287   return callee_method;
1288 }
1289 
1290 // Resolves a call.  The compilers generate code for calls that go here
1291 // and are patched with the real destination of the call.
1292 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1293                                            bool is_virtual,
1294                                            bool is_optimized, TRAPS) {
1295 
1296   ResourceMark rm(thread);
1297   RegisterMap cbl_map(thread, false);
1298   frame caller_frame = thread->last_frame().sender(&cbl_map);
1299 
1300   CodeBlob* caller_cb = caller_frame.cb();
1301   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1302   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1303 
1304   // make sure caller is not getting deoptimized
1305   // and removed before we are done with it.
1306   // CLEANUP - with lazy deopt shouldn't need this lock
1307   nmethodLocker caller_lock(caller_nm);
1308 
1309   // determine call info & receiver
1310   // note: a) receiver is NULL for static calls
1311   //       b) an exception is thrown if receiver is NULL for non-static calls
1312   CallInfo call_info;
1313   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1314   Handle receiver = find_callee_info(thread, invoke_code,
1315                                      call_info, CHECK_(methodHandle()));
1316   methodHandle callee_method = call_info.selected_method();
1317 
1318   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1319          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1320          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1321          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1322          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1323 
1324   assert(caller_nm->is_alive(), "It should be alive");
1325 
1326 #ifndef PRODUCT
1327   // tracing/debugging/statistics
1328   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1329                 (is_virtual) ? (&_resolve_virtual_ctr) :
1330                                (&_resolve_static_ctr);
1331   Atomic::inc(addr);
1332 
1333   if (TraceCallFixup) {
1334     ResourceMark rm(thread);
1335     tty->print("resolving %s%s (%s) call to",
1336       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1337       Bytecodes::name(invoke_code));
1338     callee_method->print_short_name(tty);
1339     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1340                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1341   }
1342 #endif
1343 
1344   // JSR 292 key invariant:
1345   // If the resolved method is a MethodHandle invoke target, the call
1346   // site must be a MethodHandle call site, because the lambda form might tail-call
1347   // leaving the stack in a state unknown to either caller or callee
1348   // TODO detune for now but we might need it again
1349 //  assert(!callee_method->is_compiled_lambda_form() ||
1350 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1351 
1352   // Compute entry points. This might require generation of C2I converter
1353   // frames, so we cannot be holding any locks here. Furthermore, the
1354   // computation of the entry points is independent of patching the call.  We
1355   // always return the entry-point, but we only patch the stub if the call has
1356   // not been deoptimized.  Return values: For a virtual call this is an
1357   // (cached_oop, destination address) pair. For a static call/optimized
1358   // virtual this is just a destination address.
1359 
1360   StaticCallInfo static_call_info;
1361   CompiledICInfo virtual_call_info;
1362 
1363   // Make sure the callee nmethod does not get deoptimized and removed before
1364   // we are done patching the code.
1365   nmethod* callee_nm = callee_method->code();
1366   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1367     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1368     callee_nm = NULL;
1369   }
1370   nmethodLocker nl_callee(callee_nm);
1371 #ifdef ASSERT
1372   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1373 #endif
1374 
1375   if (is_virtual) {
1376     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle || invoke_code == Bytecodes::_invokedirect, "sanity check");
1377     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1378     KlassHandle h_klass(THREAD, (invoke_code == Bytecodes::_invokehandle || invoke_code == Bytecodes::_invokedirect) ? NULL : receiver->klass());
1379     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1380                      is_optimized, static_bound, virtual_call_info,
1381                      CHECK_(methodHandle()));
1382   } else {
1383     // static call
1384     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1385   }
1386 
1387   // grab lock, check for deoptimization and potentially patch caller
1388   {
1389     MutexLocker ml_patch(CompiledIC_lock);
1390 
1391     // Lock blocks for safepoint during which both nmethods can change state.
1392 
1393     // Now that we are ready to patch if the Method* was redefined then
1394     // don't update call site and let the caller retry.
1395     // Don't update call site if callee nmethod was unloaded or deoptimized.
1396     // Don't update call site if callee nmethod was replaced by an other nmethod
1397     // which may happen when multiply alive nmethod (tiered compilation)
1398     // will be supported.
1399     if (!callee_method->is_old() &&
1400         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1401 #ifdef ASSERT
1402       // We must not try to patch to jump to an already unloaded method.
1403       if (dest_entry_point != 0) {
1404         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1405         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1406                "should not call unloaded nmethod");
1407       }
1408 #endif
1409       if (is_virtual) {
1410         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1411         if (inline_cache->is_clean()) {
1412           inline_cache->set_to_monomorphic(virtual_call_info);
1413         }
1414       } else {
1415         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1416         if (ssc->is_clean()) ssc->set(static_call_info);
1417       }
1418     }
1419 
1420   } // unlock CompiledIC_lock
1421 
1422   return callee_method;
1423 }
1424 
1425 
1426 // Inline caches exist only in compiled code
1427 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1428 #ifdef ASSERT
1429   RegisterMap reg_map(thread, false);
1430   frame stub_frame = thread->last_frame();
1431   assert(stub_frame.is_runtime_frame(), "sanity check");
1432   frame caller_frame = stub_frame.sender(&reg_map);
1433   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1434 #endif /* ASSERT */
1435 
1436   methodHandle callee_method;
1437   JRT_BLOCK
1438     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1439     // Return Method* through TLS
1440     thread->set_vm_result_2(callee_method());
1441   JRT_BLOCK_END
1442   // return compiled code entry point after potential safepoints
1443   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1444   return callee_method->verified_code_entry();
1445 JRT_END
1446 
1447 
1448 // Handle call site that has been made non-entrant
1449 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1450   // 6243940 We might end up in here if the callee is deoptimized
1451   // as we race to call it.  We don't want to take a safepoint if
1452   // the caller was interpreted because the caller frame will look
1453   // interpreted to the stack walkers and arguments are now
1454   // "compiled" so it is much better to make this transition
1455   // invisible to the stack walking code. The i2c path will
1456   // place the callee method in the callee_target. It is stashed
1457   // there because if we try and find the callee by normal means a
1458   // safepoint is possible and have trouble gc'ing the compiled args.
1459   RegisterMap reg_map(thread, false);
1460   frame stub_frame = thread->last_frame();
1461   assert(stub_frame.is_runtime_frame(), "sanity check");
1462   frame caller_frame = stub_frame.sender(&reg_map);
1463 
1464   if (caller_frame.is_interpreted_frame() ||
1465       caller_frame.is_entry_frame()) {
1466     Method* callee = thread->callee_target();
1467     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1468     thread->set_vm_result_2(callee);
1469     thread->set_callee_target(NULL);
1470     return callee->get_c2i_entry();
1471   }
1472 
1473   // Must be compiled to compiled path which is safe to stackwalk
1474   methodHandle callee_method;
1475   JRT_BLOCK
1476     // Force resolving of caller (if we called from compiled frame)
1477     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1478     thread->set_vm_result_2(callee_method());
1479   JRT_BLOCK_END
1480   // return compiled code entry point after potential safepoints
1481   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1482   return callee_method->verified_code_entry();
1483 JRT_END
1484 
1485 // Handle abstract method call
1486 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1487   return StubRoutines::throw_AbstractMethodError_entry();
1488 JRT_END
1489 
1490 
1491 // resolve a static call and patch code
1492 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1493   methodHandle callee_method;
1494   JRT_BLOCK
1495     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1496     thread->set_vm_result_2(callee_method());
1497   JRT_BLOCK_END
1498   // return compiled code entry point after potential safepoints
1499   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1500   return callee_method->verified_code_entry();
1501 JRT_END
1502 
1503 
1504 // resolve virtual call and update inline cache to monomorphic
1505 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1506   methodHandle callee_method;
1507   JRT_BLOCK
1508     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1509     thread->set_vm_result_2(callee_method());
1510   JRT_BLOCK_END
1511   // return compiled code entry point after potential safepoints
1512   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1513   return callee_method->verified_code_entry();
1514 JRT_END
1515 
1516 
1517 // Resolve a virtual call that can be statically bound (e.g., always
1518 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1519 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1520   methodHandle callee_method;
1521   JRT_BLOCK
1522     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1523     thread->set_vm_result_2(callee_method());
1524   JRT_BLOCK_END
1525   // return compiled code entry point after potential safepoints
1526   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1527   return callee_method->verified_code_entry();
1528 JRT_END
1529 
1530 
1531 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1532   ResourceMark rm(thread);
1533   CallInfo call_info;
1534   Bytecodes::Code bc;
1535 
1536   // receiver is NULL for static calls. An exception is thrown for NULL
1537   // receivers for non-static calls
1538   Handle receiver = find_callee_info(thread, bc, call_info,
1539                                      CHECK_(methodHandle()));
1540   // Compiler1 can produce virtual call sites that can actually be statically bound
1541   // If we fell thru to below we would think that the site was going megamorphic
1542   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1543   // we'd try and do a vtable dispatch however methods that can be statically bound
1544   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1545   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1546   // plain ic_miss) and the site will be converted to an optimized virtual call site
1547   // never to miss again. I don't believe C2 will produce code like this but if it
1548   // did this would still be the correct thing to do for it too, hence no ifdef.
1549   //
1550   if (call_info.resolved_method()->can_be_statically_bound()) {
1551     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1552     if (TraceCallFixup) {
1553       RegisterMap reg_map(thread, false);
1554       frame caller_frame = thread->last_frame().sender(&reg_map);
1555       ResourceMark rm(thread);
1556       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1557       callee_method->print_short_name(tty);
1558       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1559       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1560     }
1561     return callee_method;
1562   }
1563 
1564   methodHandle callee_method = call_info.selected_method();
1565 
1566   bool should_be_mono = false;
1567 
1568 #ifndef PRODUCT
1569   Atomic::inc(&_ic_miss_ctr);
1570 
1571   // Statistics & Tracing
1572   if (TraceCallFixup) {
1573     ResourceMark rm(thread);
1574     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1575     callee_method->print_short_name(tty);
1576     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1577   }
1578 
1579   if (ICMissHistogram) {
1580     MutexLocker m(VMStatistic_lock);
1581     RegisterMap reg_map(thread, false);
1582     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1583     // produce statistics under the lock
1584     trace_ic_miss(f.pc());
1585   }
1586 #endif
1587 
1588   // install an event collector so that when a vtable stub is created the
1589   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1590   // event can't be posted when the stub is created as locks are held
1591   // - instead the event will be deferred until the event collector goes
1592   // out of scope.
1593   JvmtiDynamicCodeEventCollector event_collector;
1594 
1595   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1596   { MutexLocker ml_patch (CompiledIC_lock);
1597     RegisterMap reg_map(thread, false);
1598     frame caller_frame = thread->last_frame().sender(&reg_map);
1599     CodeBlob* cb = caller_frame.cb();
1600     if (cb->is_nmethod()) {
1601       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1602       bool should_be_mono = false;
1603       if (inline_cache->is_optimized()) {
1604         if (TraceCallFixup) {
1605           ResourceMark rm(thread);
1606           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1607           callee_method->print_short_name(tty);
1608           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1609         }
1610         should_be_mono = true;
1611       } else if (inline_cache->is_icholder_call()) {
1612         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1613         if (ic_oop != NULL) {
1614 
1615           if (receiver()->klass() == ic_oop->holder_klass()) {
1616             // This isn't a real miss. We must have seen that compiled code
1617             // is now available and we want the call site converted to a
1618             // monomorphic compiled call site.
1619             // We can't assert for callee_method->code() != NULL because it
1620             // could have been deoptimized in the meantime
1621             if (TraceCallFixup) {
1622               ResourceMark rm(thread);
1623               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1624               callee_method->print_short_name(tty);
1625               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1626             }
1627             should_be_mono = true;
1628           }
1629         }
1630       }
1631 
1632       if (should_be_mono) {
1633 
1634         // We have a path that was monomorphic but was going interpreted
1635         // and now we have (or had) a compiled entry. We correct the IC
1636         // by using a new icBuffer.
1637         CompiledICInfo info;
1638         KlassHandle receiver_klass(THREAD, receiver()->klass());
1639         inline_cache->compute_monomorphic_entry(callee_method,
1640                                                 receiver_klass,
1641                                                 inline_cache->is_optimized(),
1642                                                 false,
1643                                                 info, CHECK_(methodHandle()));
1644         inline_cache->set_to_monomorphic(info);
1645       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1646         // Potential change to megamorphic
1647         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1648         if (!successful) {
1649           inline_cache->set_to_clean();
1650         }
1651       } else {
1652         // Either clean or megamorphic
1653       }
1654     } else {
1655       fatal("Unimplemented");
1656     }
1657   } // Release CompiledIC_lock
1658 
1659   return callee_method;
1660 }
1661 
1662 //
1663 // Resets a call-site in compiled code so it will get resolved again.
1664 // This routines handles both virtual call sites, optimized virtual call
1665 // sites, and static call sites. Typically used to change a call sites
1666 // destination from compiled to interpreted.
1667 //
1668 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1669   ResourceMark rm(thread);
1670   RegisterMap reg_map(thread, false);
1671   frame stub_frame = thread->last_frame();
1672   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1673   frame caller = stub_frame.sender(&reg_map);
1674 
1675   // Do nothing if the frame isn't a live compiled frame.
1676   // nmethod could be deoptimized by the time we get here
1677   // so no update to the caller is needed.
1678 
1679   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1680 
1681     address pc = caller.pc();
1682 
1683     // Check for static or virtual call
1684     bool is_static_call = false;
1685     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1686 
1687     // Default call_addr is the location of the "basic" call.
1688     // Determine the address of the call we a reresolving. With
1689     // Inline Caches we will always find a recognizable call.
1690     // With Inline Caches disabled we may or may not find a
1691     // recognizable call. We will always find a call for static
1692     // calls and for optimized virtual calls. For vanilla virtual
1693     // calls it depends on the state of the UseInlineCaches switch.
1694     //
1695     // With Inline Caches disabled we can get here for a virtual call
1696     // for two reasons:
1697     //   1 - calling an abstract method. The vtable for abstract methods
1698     //       will run us thru handle_wrong_method and we will eventually
1699     //       end up in the interpreter to throw the ame.
1700     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1701     //       call and between the time we fetch the entry address and
1702     //       we jump to it the target gets deoptimized. Similar to 1
1703     //       we will wind up in the interprter (thru a c2i with c2).
1704     //
1705     address call_addr = NULL;
1706     {
1707       // Get call instruction under lock because another thread may be
1708       // busy patching it.
1709       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1710       // Location of call instruction
1711       if (NativeCall::is_call_before(pc)) {
1712         NativeCall *ncall = nativeCall_before(pc);
1713         call_addr = ncall->instruction_address();
1714       }
1715     }
1716     // Make sure nmethod doesn't get deoptimized and removed until
1717     // this is done with it.
1718     // CLEANUP - with lazy deopt shouldn't need this lock
1719     nmethodLocker nmlock(caller_nm);
1720 
1721     if (call_addr != NULL) {
1722       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1723       int ret = iter.next(); // Get item
1724       if (ret) {
1725         assert(iter.addr() == call_addr, "must find call");
1726         if (iter.type() == relocInfo::static_call_type) {
1727           is_static_call = true;
1728         } else {
1729           assert(iter.type() == relocInfo::virtual_call_type ||
1730                  iter.type() == relocInfo::opt_virtual_call_type
1731                 , "unexpected relocInfo. type");
1732         }
1733       } else {
1734         assert(!UseInlineCaches, "relocation info. must exist for this address");
1735       }
1736 
1737       // Cleaning the inline cache will force a new resolve. This is more robust
1738       // than directly setting it to the new destination, since resolving of calls
1739       // is always done through the same code path. (experience shows that it
1740       // leads to very hard to track down bugs, if an inline cache gets updated
1741       // to a wrong method). It should not be performance critical, since the
1742       // resolve is only done once.
1743 
1744       MutexLocker ml(CompiledIC_lock);
1745       if (is_static_call) {
1746         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1747         ssc->set_to_clean();
1748       } else {
1749         // compiled, dispatched call (which used to call an interpreted method)
1750         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1751         inline_cache->set_to_clean();
1752       }
1753     }
1754   }
1755 
1756   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1757 
1758 
1759 #ifndef PRODUCT
1760   Atomic::inc(&_wrong_method_ctr);
1761 
1762   if (TraceCallFixup) {
1763     ResourceMark rm(thread);
1764     tty->print("handle_wrong_method reresolving call to");
1765     callee_method->print_short_name(tty);
1766     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1767   }
1768 #endif
1769 
1770   return callee_method;
1771 }
1772 
1773 #ifdef ASSERT
1774 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1775                                                                 const BasicType* sig_bt,
1776                                                                 const VMRegPair* regs) {
1777   ResourceMark rm;
1778   const int total_args_passed = method->size_of_parameters();
1779   const VMRegPair*    regs_with_member_name = regs;
1780         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1781 
1782   const int member_arg_pos = total_args_passed - 1;
1783   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1784   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1785 
1786   const bool is_outgoing = method->is_method_handle_intrinsic();
1787   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1788 
1789   for (int i = 0; i < member_arg_pos; i++) {
1790     VMReg a =    regs_with_member_name[i].first();
1791     VMReg b = regs_without_member_name[i].first();
1792     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1793   }
1794   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1795 }
1796 #endif
1797 
1798 // ---------------------------------------------------------------------------
1799 // We are calling the interpreter via a c2i. Normally this would mean that
1800 // we were called by a compiled method. However we could have lost a race
1801 // where we went int -> i2c -> c2i and so the caller could in fact be
1802 // interpreted. If the caller is compiled we attempt to patch the caller
1803 // so he no longer calls into the interpreter.
1804 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1805   Method* moop(method);
1806 
1807   address entry_point = moop->from_compiled_entry();
1808 
1809   // It's possible that deoptimization can occur at a call site which hasn't
1810   // been resolved yet, in which case this function will be called from
1811   // an nmethod that has been patched for deopt and we can ignore the
1812   // request for a fixup.
1813   // Also it is possible that we lost a race in that from_compiled_entry
1814   // is now back to the i2c in that case we don't need to patch and if
1815   // we did we'd leap into space because the callsite needs to use
1816   // "to interpreter" stub in order to load up the Method*. Don't
1817   // ask me how I know this...
1818 
1819   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1820   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1821     return;
1822   }
1823 
1824   // The check above makes sure this is a nmethod.
1825   nmethod* nm = cb->as_nmethod_or_null();
1826   assert(nm, "must be");
1827 
1828   // Get the return PC for the passed caller PC.
1829   address return_pc = caller_pc + frame::pc_return_offset;
1830 
1831   // There is a benign race here. We could be attempting to patch to a compiled
1832   // entry point at the same time the callee is being deoptimized. If that is
1833   // the case then entry_point may in fact point to a c2i and we'd patch the
1834   // call site with the same old data. clear_code will set code() to NULL
1835   // at the end of it. If we happen to see that NULL then we can skip trying
1836   // to patch. If we hit the window where the callee has a c2i in the
1837   // from_compiled_entry and the NULL isn't present yet then we lose the race
1838   // and patch the code with the same old data. Asi es la vida.
1839 
1840   if (moop->code() == NULL) return;
1841 
1842   if (nm->is_in_use()) {
1843 
1844     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1845     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1846     if (NativeCall::is_call_before(return_pc)) {
1847       NativeCall *call = nativeCall_before(return_pc);
1848       //
1849       // bug 6281185. We might get here after resolving a call site to a vanilla
1850       // virtual call. Because the resolvee uses the verified entry it may then
1851       // see compiled code and attempt to patch the site by calling us. This would
1852       // then incorrectly convert the call site to optimized and its downhill from
1853       // there. If you're lucky you'll get the assert in the bugid, if not you've
1854       // just made a call site that could be megamorphic into a monomorphic site
1855       // for the rest of its life! Just another racing bug in the life of
1856       // fixup_callers_callsite ...
1857       //
1858       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1859       iter.next();
1860       assert(iter.has_current(), "must have a reloc at java call site");
1861       relocInfo::relocType typ = iter.reloc()->type();
1862       if (typ != relocInfo::static_call_type &&
1863            typ != relocInfo::opt_virtual_call_type &&
1864            typ != relocInfo::static_stub_type) {
1865         return;
1866       }
1867       address destination = call->destination();
1868       if (destination != entry_point) {
1869         CodeBlob* callee = CodeCache::find_blob(destination);
1870         // callee == cb seems weird. It means calling interpreter thru stub.
1871         if (callee == cb || callee->is_adapter_blob()) {
1872           // static call or optimized virtual
1873           if (TraceCallFixup) {
1874             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1875             moop->print_short_name(tty);
1876             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1877           }
1878           call->set_destination_mt_safe(entry_point);
1879         } else {
1880           if (TraceCallFixup) {
1881             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1882             moop->print_short_name(tty);
1883             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1884           }
1885           // assert is too strong could also be resolve destinations.
1886           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1887         }
1888       } else {
1889           if (TraceCallFixup) {
1890             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1891             moop->print_short_name(tty);
1892             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1893           }
1894       }
1895     }
1896   }
1897 IRT_END
1898 
1899 
1900 // same as JVM_Arraycopy, but called directly from compiled code
1901 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1902                                                 oopDesc* dest, jint dest_pos,
1903                                                 jint length,
1904                                                 JavaThread* thread)) {
1905 #ifndef PRODUCT
1906   _slow_array_copy_ctr++;
1907 #endif
1908   // Check if we have null pointers
1909   if (src == NULL || dest == NULL) {
1910     THROW(vmSymbols::java_lang_NullPointerException());
1911   }
1912   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1913   // even though the copy_array API also performs dynamic checks to ensure
1914   // that src and dest are truly arrays (and are conformable).
1915   // The copy_array mechanism is awkward and could be removed, but
1916   // the compilers don't call this function except as a last resort,
1917   // so it probably doesn't matter.
1918   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1919                                         (arrayOopDesc*)dest, dest_pos,
1920                                         length, thread);
1921 }
1922 JRT_END
1923 
1924 char* SharedRuntime::generate_class_cast_message(
1925     JavaThread* thread, const char* objName) {
1926 
1927   // Get target class name from the checkcast instruction
1928   vframeStream vfst(thread, true);
1929   assert(!vfst.at_end(), "Java frame must exist");
1930   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1931   Klass* targetKlass = vfst.method()->constants()->klass_at(
1932     cc.index(), thread);
1933   return generate_class_cast_message(objName, targetKlass->external_name());
1934 }
1935 
1936 char* SharedRuntime::generate_class_cast_message(
1937     const char* objName, const char* targetKlassName, const char* desc) {
1938   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1939 
1940   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1941   if (NULL == message) {
1942     // Shouldn't happen, but don't cause even more problems if it does
1943     message = const_cast<char*>(objName);
1944   } else {
1945     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1946   }
1947   return message;
1948 }
1949 
1950 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1951   (void) JavaThread::current()->reguard_stack();
1952 JRT_END
1953 
1954 
1955 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1956 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1957   // Disable ObjectSynchronizer::quick_enter() in default config
1958   // until JDK-8077392 is resolved.
1959   if ((SyncFlags & 256) != 0 && !SafepointSynchronize::is_synchronizing()) {
1960     // Only try quick_enter() if we're not trying to reach a safepoint
1961     // so that the calling thread reaches the safepoint more quickly.
1962     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1963   }
1964   // NO_ASYNC required because an async exception on the state transition destructor
1965   // would leave you with the lock held and it would never be released.
1966   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1967   // and the model is that an exception implies the method failed.
1968   JRT_BLOCK_NO_ASYNC
1969   oop obj(_obj);
1970   if (PrintBiasedLockingStatistics) {
1971     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1972   }
1973   Handle h_obj(THREAD, obj);
1974   if (UseBiasedLocking) {
1975     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1976     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1977   } else {
1978     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1979   }
1980   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1981   JRT_BLOCK_END
1982 JRT_END
1983 
1984 // Handles the uncommon cases of monitor unlocking in compiled code
1985 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
1986    oop obj(_obj);
1987   assert(JavaThread::current() == THREAD, "invariant");
1988   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1989   // testing was unable to ever fire the assert that guarded it so I have removed it.
1990   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1991 #undef MIGHT_HAVE_PENDING
1992 #ifdef MIGHT_HAVE_PENDING
1993   // Save and restore any pending_exception around the exception mark.
1994   // While the slow_exit must not throw an exception, we could come into
1995   // this routine with one set.
1996   oop pending_excep = NULL;
1997   const char* pending_file;
1998   int pending_line;
1999   if (HAS_PENDING_EXCEPTION) {
2000     pending_excep = PENDING_EXCEPTION;
2001     pending_file  = THREAD->exception_file();
2002     pending_line  = THREAD->exception_line();
2003     CLEAR_PENDING_EXCEPTION;
2004   }
2005 #endif /* MIGHT_HAVE_PENDING */
2006 
2007   {
2008     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2009     EXCEPTION_MARK;
2010     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2011   }
2012 
2013 #ifdef MIGHT_HAVE_PENDING
2014   if (pending_excep != NULL) {
2015     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2016   }
2017 #endif /* MIGHT_HAVE_PENDING */
2018 JRT_END
2019 
2020 #ifndef PRODUCT
2021 
2022 void SharedRuntime::print_statistics() {
2023   ttyLocker ttyl;
2024   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2025 
2026   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2027 
2028   SharedRuntime::print_ic_miss_histogram();
2029 
2030   if (CountRemovableExceptions) {
2031     if (_nof_removable_exceptions > 0) {
2032       Unimplemented(); // this counter is not yet incremented
2033       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2034     }
2035   }
2036 
2037   // Dump the JRT_ENTRY counters
2038   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2039   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2040   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2041   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2042   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2043   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2044   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2045 
2046   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2047   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2048   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2049   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2050   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2051 
2052   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2053   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2054   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2055   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2056   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2057   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2058   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2059   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2060   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2061   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2062   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2063   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2064   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2065   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2066   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2067   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2068 
2069   AdapterHandlerLibrary::print_statistics();
2070 
2071   if (xtty != NULL)  xtty->tail("statistics");
2072 }
2073 
2074 inline double percent(int x, int y) {
2075   return 100.0 * x / MAX2(y, 1);
2076 }
2077 
2078 class MethodArityHistogram {
2079  public:
2080   enum { MAX_ARITY = 256 };
2081  private:
2082   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2083   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2084   static int _max_arity;                      // max. arity seen
2085   static int _max_size;                       // max. arg size seen
2086 
2087   static void add_method_to_histogram(nmethod* nm) {
2088     Method* m = nm->method();
2089     ArgumentCount args(m->signature());
2090     int arity   = args.size() + (m->is_static() ? 0 : 1);
2091     int argsize = m->size_of_parameters();
2092     arity   = MIN2(arity, MAX_ARITY-1);
2093     argsize = MIN2(argsize, MAX_ARITY-1);
2094     int count = nm->method()->compiled_invocation_count();
2095     _arity_histogram[arity]  += count;
2096     _size_histogram[argsize] += count;
2097     _max_arity = MAX2(_max_arity, arity);
2098     _max_size  = MAX2(_max_size, argsize);
2099   }
2100 
2101   void print_histogram_helper(int n, int* histo, const char* name) {
2102     const int N = MIN2(5, n);
2103     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2104     double sum = 0;
2105     double weighted_sum = 0;
2106     int i;
2107     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2108     double rest = sum;
2109     double percent = sum / 100;
2110     for (i = 0; i <= N; i++) {
2111       rest -= histo[i];
2112       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2113     }
2114     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2115     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2116   }
2117 
2118   void print_histogram() {
2119     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2120     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2121     tty->print_cr("\nSame for parameter size (in words):");
2122     print_histogram_helper(_max_size, _size_histogram, "size");
2123     tty->cr();
2124   }
2125 
2126  public:
2127   MethodArityHistogram() {
2128     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2129     _max_arity = _max_size = 0;
2130     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2131     CodeCache::nmethods_do(add_method_to_histogram);
2132     print_histogram();
2133   }
2134 };
2135 
2136 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2137 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2138 int MethodArityHistogram::_max_arity;
2139 int MethodArityHistogram::_max_size;
2140 
2141 void SharedRuntime::print_call_statistics(int comp_total) {
2142   tty->print_cr("Calls from compiled code:");
2143   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2144   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2145   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2146   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2147   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2148   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2149   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2150   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2151   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2152   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2153   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2154   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2155   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2156   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2157   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2158   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2159   tty->cr();
2160   tty->print_cr("Note 1: counter updates are not MT-safe.");
2161   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2162   tty->print_cr("        %% in nested categories are relative to their category");
2163   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2164   tty->cr();
2165 
2166   MethodArityHistogram h;
2167 }
2168 #endif
2169 
2170 
2171 // A simple wrapper class around the calling convention information
2172 // that allows sharing of adapters for the same calling convention.
2173 class AdapterFingerPrint : public CHeapObj<mtCode> {
2174  private:
2175   enum {
2176     _basic_type_bits = 4,
2177     _basic_type_mask = right_n_bits(_basic_type_bits),
2178     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2179     _compact_int_count = 3
2180   };
2181   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2182   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2183 
2184   union {
2185     int  _compact[_compact_int_count];
2186     int* _fingerprint;
2187   } _value;
2188   int _length; // A negative length indicates the fingerprint is in the compact form,
2189                // Otherwise _value._fingerprint is the array.
2190 
2191   // Remap BasicTypes that are handled equivalently by the adapters.
2192   // These are correct for the current system but someday it might be
2193   // necessary to make this mapping platform dependent.
2194   static int adapter_encoding(BasicType in, bool is_valuetype) {
2195     switch (in) {
2196       case T_BOOLEAN:
2197       case T_BYTE:
2198       case T_SHORT:
2199       case T_CHAR: {
2200         if (is_valuetype) {
2201           // Do not widen value type field types
2202           assert(ValueTypePassFieldsAsArgs, "must be enabled");
2203           return in;
2204         } else {
2205           // They are all promoted to T_INT in the calling convention
2206           return T_INT;
2207         }
2208       }
2209 
2210       case T_VALUETYPE: {
2211         // If value types are passed as fields, return 'in' to differentiate
2212         // between a T_VALUETYPE and a T_OBJECT in the signature.
2213         return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false);
2214       }
2215       case T_OBJECT:
2216       case T_ARRAY:
2217         // In other words, we assume that any register good enough for
2218         // an int or long is good enough for a managed pointer.
2219 #ifdef _LP64
2220         return T_LONG;
2221 #else
2222         return T_INT;
2223 #endif
2224 
2225       case T_INT:
2226       case T_LONG:
2227       case T_FLOAT:
2228       case T_DOUBLE:
2229       case T_VOID:
2230         return in;
2231 
2232       default:
2233         ShouldNotReachHere();
2234         return T_CONFLICT;
2235     }
2236   }
2237 
2238  public:
2239   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2240     // The fingerprint is based on the BasicType signature encoded
2241     // into an array of ints with eight entries per int.
2242     int* ptr;
2243     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2244     if (len <= _compact_int_count) {
2245       assert(_compact_int_count == 3, "else change next line");
2246       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2247       // Storing the signature encoded as signed chars hits about 98%
2248       // of the time.
2249       _length = -len;
2250       ptr = _value._compact;
2251     } else {
2252       _length = len;
2253       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2254       ptr = _value._fingerprint;
2255     }
2256 
2257     // Now pack the BasicTypes with 8 per int
2258     int sig_index = 0;
2259     BasicType prev_sbt = T_ILLEGAL;
2260     int vt_count = 0;
2261     for (int index = 0; index < len; index++) {
2262       int value = 0;
2263       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2264         int bt = 0;
2265         if (sig_index < total_args_passed) {
2266           BasicType sbt = sig_bt[sig_index++];
2267           if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) {
2268             // Found start of value type in signature
2269             vt_count++;
2270           } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID &&
2271                      prev_sbt != T_LONG && prev_sbt != T_DOUBLE) {
2272             // Found end of value type in signature
2273             vt_count--;
2274             assert(vt_count >= 0, "invalid vt_count");
2275           }
2276           bt = adapter_encoding(sbt, vt_count > 0);
2277           prev_sbt = sbt;
2278         }
2279         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2280         value = (value << _basic_type_bits) | bt;
2281       }
2282       ptr[index] = value;
2283     }
2284     assert(vt_count == 0, "invalid vt_count");
2285   }
2286 
2287   ~AdapterFingerPrint() {
2288     if (_length > 0) {
2289       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2290     }
2291   }
2292 
2293   int value(int index) {
2294     if (_length < 0) {
2295       return _value._compact[index];
2296     }
2297     return _value._fingerprint[index];
2298   }
2299   int length() {
2300     if (_length < 0) return -_length;
2301     return _length;
2302   }
2303 
2304   bool is_compact() {
2305     return _length <= 0;
2306   }
2307 
2308   unsigned int compute_hash() {
2309     int hash = 0;
2310     for (int i = 0; i < length(); i++) {
2311       int v = value(i);
2312       hash = (hash << 8) ^ v ^ (hash >> 5);
2313     }
2314     return (unsigned int)hash;
2315   }
2316 
2317   const char* as_string() {
2318     stringStream st;
2319     st.print("0x");
2320     for (int i = 0; i < length(); i++) {
2321       st.print("%08x", value(i));
2322     }
2323     return st.as_string();
2324   }
2325 
2326   bool equals(AdapterFingerPrint* other) {
2327     if (other->_length != _length) {
2328       return false;
2329     }
2330     if (_length < 0) {
2331       assert(_compact_int_count == 3, "else change next line");
2332       return _value._compact[0] == other->_value._compact[0] &&
2333              _value._compact[1] == other->_value._compact[1] &&
2334              _value._compact[2] == other->_value._compact[2];
2335     } else {
2336       for (int i = 0; i < _length; i++) {
2337         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2338           return false;
2339         }
2340       }
2341     }
2342     return true;
2343   }
2344 };
2345 
2346 
2347 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2348 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2349   friend class AdapterHandlerTableIterator;
2350 
2351  private:
2352 
2353 #ifndef PRODUCT
2354   static int _lookups; // number of calls to lookup
2355   static int _buckets; // number of buckets checked
2356   static int _equals;  // number of buckets checked with matching hash
2357   static int _hits;    // number of successful lookups
2358   static int _compact; // number of equals calls with compact signature
2359 #endif
2360 
2361   AdapterHandlerEntry* bucket(int i) {
2362     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2363   }
2364 
2365  public:
2366   AdapterHandlerTable()
2367     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2368 
2369   // Create a new entry suitable for insertion in the table
2370   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, Symbol* sig_extended) {
2371     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2372     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, sig_extended);
2373     return entry;
2374   }
2375 
2376   // Insert an entry into the table
2377   void add(AdapterHandlerEntry* entry) {
2378     int index = hash_to_index(entry->hash());
2379     add_entry(index, entry);
2380   }
2381 
2382   void free_entry(AdapterHandlerEntry* entry) {
2383     entry->deallocate();
2384     BasicHashtable<mtCode>::free_entry(entry);
2385   }
2386 
2387   // Find a entry with the same fingerprint if it exists
2388   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2389     NOT_PRODUCT(_lookups++);
2390     AdapterFingerPrint fp(total_args_passed, sig_bt);
2391     unsigned int hash = fp.compute_hash();
2392     int index = hash_to_index(hash);
2393     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2394       NOT_PRODUCT(_buckets++);
2395       if (e->hash() == hash) {
2396         NOT_PRODUCT(_equals++);
2397         if (fp.equals(e->fingerprint())) {
2398 #ifndef PRODUCT
2399           if (fp.is_compact()) _compact++;
2400           _hits++;
2401 #endif
2402           return e;
2403         }
2404       }
2405     }
2406     return NULL;
2407   }
2408 
2409 #ifndef PRODUCT
2410   void print_statistics() {
2411     ResourceMark rm;
2412     int longest = 0;
2413     int empty = 0;
2414     int total = 0;
2415     int nonempty = 0;
2416     for (int index = 0; index < table_size(); index++) {
2417       int count = 0;
2418       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2419         count++;
2420       }
2421       if (count != 0) nonempty++;
2422       if (count == 0) empty++;
2423       if (count > longest) longest = count;
2424       total += count;
2425     }
2426     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2427                   empty, longest, total, total / (double)nonempty);
2428     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2429                   _lookups, _buckets, _equals, _hits, _compact);
2430   }
2431 #endif
2432 };
2433 
2434 
2435 #ifndef PRODUCT
2436 
2437 int AdapterHandlerTable::_lookups;
2438 int AdapterHandlerTable::_buckets;
2439 int AdapterHandlerTable::_equals;
2440 int AdapterHandlerTable::_hits;
2441 int AdapterHandlerTable::_compact;
2442 
2443 #endif
2444 
2445 class AdapterHandlerTableIterator : public StackObj {
2446  private:
2447   AdapterHandlerTable* _table;
2448   int _index;
2449   AdapterHandlerEntry* _current;
2450 
2451   void scan() {
2452     while (_index < _table->table_size()) {
2453       AdapterHandlerEntry* a = _table->bucket(_index);
2454       _index++;
2455       if (a != NULL) {
2456         _current = a;
2457         return;
2458       }
2459     }
2460   }
2461 
2462  public:
2463   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2464     scan();
2465   }
2466   bool has_next() {
2467     return _current != NULL;
2468   }
2469   AdapterHandlerEntry* next() {
2470     if (_current != NULL) {
2471       AdapterHandlerEntry* result = _current;
2472       _current = _current->next();
2473       if (_current == NULL) scan();
2474       return result;
2475     } else {
2476       return NULL;
2477     }
2478   }
2479 };
2480 
2481 
2482 // ---------------------------------------------------------------------------
2483 // Implementation of AdapterHandlerLibrary
2484 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2485 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2486 const int AdapterHandlerLibrary_size = 16*K;
2487 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2488 
2489 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2490   // Should be called only when AdapterHandlerLibrary_lock is active.
2491   if (_buffer == NULL) // Initialize lazily
2492       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2493   return _buffer;
2494 }
2495 
2496 extern "C" void unexpected_adapter_call() {
2497   ShouldNotCallThis();
2498 }
2499 
2500 void AdapterHandlerLibrary::initialize() {
2501   if (_adapters != NULL) return;
2502   _adapters = new AdapterHandlerTable();
2503 
2504   if (!CodeCacheExtensions::skip_compiler_support()) {
2505     // Create a special handler for abstract methods.  Abstract methods
2506     // are never compiled so an i2c entry is somewhat meaningless, but
2507     // throw AbstractMethodError just in case.
2508     // Pass wrong_method_abstract for the c2i transitions to return
2509     // AbstractMethodError for invalid invocations.
2510     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2511     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2512                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2513                                                                 wrong_method_abstract, wrong_method_abstract);
2514   } else {
2515     // Adapters are not supposed to be used.
2516     // Generate a special one to cause an error if used (and store this
2517     // singleton in place of the useless _abstract_method_error adapter).
2518     address entry = (address) &unexpected_adapter_call;
2519     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2520                                                                 entry,
2521                                                                 entry,
2522                                                                 entry);
2523 
2524   }
2525 }
2526 
2527 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2528                                                       address i2c_entry,
2529                                                       address c2i_entry,
2530                                                       address c2i_unverified_entry,
2531                                                       Symbol* sig_extended) {
2532   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, sig_extended);
2533 }
2534 
2535 // Value type arguments are not passed by reference, instead each
2536 // field of the value type is passed as an argument. This helper
2537 // function collects the fields of the value types (including embedded
2538 // value type's fields) in a list. Included with the field's type is
2539 // the offset of each field in the value type: i2c and c2i adapters
2540 // need that to load or store fields. Finally, the list of fields is
2541 // sorted in order of increasing offsets: the adapters and the
2542 // compiled code need and agreed upon order of fields.
2543 //
2544 // The list of basic type that is returned starts with a T_VALUETYPE
2545 // and ends with an extra T_VOID. T_VALUETYPE/T_VOID are used as
2546 // delimiters. Every entry between the two is a field of the value
2547 // type. If there's an embedded value type in the list, it also starts
2548 // with a T_VALUETYPE and ends with a T_VOID. This is so we can
2549 // generate a unique fingerprint for the method's adapters and we can
2550 // generate the list of basic types from the interpreter point of view
2551 // (value types passed as reference: iterate on the list until a
2552 // T_VALUETYPE, drop everything until and including the closing
2553 // T_VOID) or the compiler point of view (each field of the value
2554 // types is an argument: drop all T_VALUETYPE/T_VOID from the list).
2555 static GrowableArray<SigEntry> collect_fields(ValueKlass* vk, int base_off = 0) {
2556   GrowableArray<SigEntry> sig_extended;
2557   sig_extended.push(SigEntry(T_VALUETYPE, base_off));
2558   for (JavaFieldStream fs(vk); !fs.done(); fs.next()) {
2559     if (fs.access_flags().is_static())  continue;
2560     fieldDescriptor& fd = fs.field_descriptor();
2561     BasicType bt = fd.field_type();
2562     int offset = base_off + fd.offset() - (base_off > 0 ? vk->first_field_offset() : 0);
2563     if (bt == T_VALUETYPE) {
2564       Symbol* signature = fd.signature();
2565       JavaThread* THREAD = JavaThread::current();
2566       oop loader = vk->class_loader();
2567       oop protection_domain = vk->protection_domain();
2568       Klass* klass = SystemDictionary::resolve_or_null(signature,
2569                                                        Handle(THREAD, loader), Handle(THREAD, protection_domain),
2570                                                        THREAD);
2571       assert(klass != NULL && !HAS_PENDING_EXCEPTION, "lookup shouldn't fail");
2572       const GrowableArray<SigEntry>& embedded = collect_fields(ValueKlass::cast(klass), offset);
2573       sig_extended.appendAll(&embedded);
2574     } else {
2575       sig_extended.push(SigEntry(bt, offset));
2576       if (bt == T_LONG || bt == T_DOUBLE) {
2577         sig_extended.push(SigEntry(T_VOID, offset));
2578       }
2579     }
2580   }
2581   int offset = base_off + vk->size_helper()*HeapWordSize - (base_off > 0 ? vk->first_field_offset() : 0);
2582   sig_extended.push(SigEntry(T_VOID, offset)); // hack: use T_VOID to mark end of value type fields
2583   if (base_off == 0) {
2584     sig_extended.sort(SigEntry::compare);
2585   }
2586   assert(sig_extended.at(0)._bt == T_VALUETYPE && sig_extended.at(sig_extended.length()-1)._bt == T_VOID, "broken structure");
2587   return sig_extended;
2588 }
2589 
2590 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2591   // Use customized signature handler.  Need to lock around updates to
2592   // the AdapterHandlerTable (it is not safe for concurrent readers
2593   // and a single writer: this could be fixed if it becomes a
2594   // problem).
2595 
2596   ResourceMark rm;
2597 
2598   NOT_PRODUCT(int insts_size = 0);
2599   AdapterBlob* new_adapter = NULL;
2600   AdapterHandlerEntry* entry = NULL;
2601   AdapterFingerPrint* fingerprint = NULL;
2602   {
2603     MutexLocker mu(AdapterHandlerLibrary_lock);
2604     // make sure data structure is initialized
2605     initialize();
2606 
2607     if (CodeCacheExtensions::skip_compiler_support()) {
2608       // adapters are useless and should not be used, including the
2609       // abstract_method_handler. However, some callers check that
2610       // an adapter was installed.
2611       // Return the singleton adapter, stored into _abstract_method_handler
2612       // and modified to cause an error if we ever call it.
2613       return _abstract_method_handler;
2614     }
2615 
2616     if (method->is_abstract()) {
2617       return _abstract_method_handler;
2618     }
2619 
2620     // Fill in the signature array, for the calling-convention call.
2621     GrowableArray<SigEntry> sig_extended;
2622     {
2623       MutexUnlocker mul(AdapterHandlerLibrary_lock);
2624       Thread* THREAD = Thread::current();
2625       Handle class_loader(THREAD, method->method_holder()->class_loader());
2626       Handle protection_domain(THREAD, method->method_holder()->protection_domain());
2627       GrowableArray<BasicType> sig_bt_tmp;
2628 
2629       int i = 0;
2630       if (!method->is_static()) {  // Pass in receiver first
2631         Klass* holder = method->method_holder();
2632         if (ValueTypePassFieldsAsArgs && holder->is_value()) {
2633           ValueKlass* vk = ValueKlass::cast(holder);
2634           if (vk == SystemDictionary::___Value_klass()) {
2635             // If the holder of the method is __Value, we must pass a
2636             // reference. FIXME: this shouldn't be T_OBJECT as a value
2637             // type reference is not necessarily an oop. Ideally we
2638             // would use T_VALUETYPE but we can't because T_VALUETYPE
2639             // is used here as a marker right before the list of
2640             // fields for the value type.
2641             sig_extended.push(SigEntry(T_OBJECT));
2642           } else {
2643             const GrowableArray<SigEntry>& sig_vk = collect_fields(vk);
2644             sig_extended.appendAll(&sig_vk);
2645           }
2646         } else {
2647           sig_extended.push(SigEntry(T_OBJECT));
2648         }
2649       }
2650       for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2651         if (ValueTypePassFieldsAsArgs && ss.type() == T_VALUETYPE) {
2652           Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
2653           assert(k != NULL && !HAS_PENDING_EXCEPTION, "can resolve klass?");
2654           assert(k != SystemDictionary::___Value_klass(), "unsupported");
2655           ValueKlass* vk = ValueKlass::cast(k);
2656           const GrowableArray<SigEntry>& sig_vk = collect_fields(vk);
2657           sig_extended.appendAll(&sig_vk);
2658         } else {
2659           sig_extended.push(SigEntry(ss.type()));
2660           if (ss.type() == T_LONG || ss.type() == T_DOUBLE) {
2661             sig_extended.push(SigEntry(T_VOID));
2662           }
2663         }
2664       }
2665     }
2666 
2667     int values = 0;
2668     if (ValueTypePassFieldsAsArgs) {
2669       for (int i = 0; i < sig_extended.length(); i++) {
2670         if (sig_extended.at(i)._bt == T_VALUETYPE) {
2671           values++;
2672         }
2673       }
2674     }
2675     int total_args_passed_cc = sig_extended.length() - 2 * values;
2676     BasicType* sig_bt_cc = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_cc);
2677 
2678     int j = 0;
2679     for (int i = 0; i < sig_extended.length(); i++) {
2680       if (!ValueTypePassFieldsAsArgs) {
2681         sig_bt_cc[j++] = sig_extended.at(i)._bt;
2682       } else if (sig_extended.at(i)._bt != T_VALUETYPE &&
2683                  (sig_extended.at(i)._bt != T_VOID ||
2684                   sig_extended.at(i-1)._bt == T_LONG ||
2685                   sig_extended.at(i-1)._bt == T_DOUBLE)) {
2686         sig_bt_cc[j++] = sig_extended.at(i)._bt;
2687       }
2688     }
2689     assert(j == total_args_passed_cc, "bad number of arguments");
2690 
2691     int total_args_passed_fp = sig_extended.length();
2692     BasicType* sig_bt_fp = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_fp);
2693     for (int i = 0; i < sig_extended.length(); i++) {
2694       sig_bt_fp[i] = sig_extended.at(i)._bt;
2695     }
2696 
2697     VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed_cc);
2698 
2699     // Lookup method signature's fingerprint
2700     entry = _adapters->lookup(total_args_passed_fp, sig_bt_fp);
2701 
2702 #ifdef ASSERT
2703     AdapterHandlerEntry* shared_entry = NULL;
2704     // Start adapter sharing verification only after the VM is booted.
2705     if (VerifyAdapterSharing && (entry != NULL)) {
2706       shared_entry = entry;
2707       entry = NULL;
2708     }
2709 #endif
2710 
2711     if (entry != NULL) {
2712       return entry;
2713     }
2714 
2715     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2716     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt_cc, regs, total_args_passed_cc, false);
2717 
2718     // Make a C heap allocated version of the fingerprint to store in the adapter
2719     fingerprint = new AdapterFingerPrint(total_args_passed_fp, sig_bt_fp);
2720 
2721     // StubRoutines::code2() is initialized after this function can be called. As a result,
2722     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2723     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2724     // stub that ensure that an I2C stub is called from an interpreter frame.
2725     bool contains_all_checks = StubRoutines::code2() != NULL;
2726 
2727     // Create I2C & C2I handlers
2728     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2729     if (buf != NULL) {
2730       CodeBuffer buffer(buf);
2731       short buffer_locs[20];
2732       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2733                                              sizeof(buffer_locs)/sizeof(relocInfo));
2734 
2735 
2736       MacroAssembler _masm(&buffer);
2737       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2738                                                      comp_args_on_stack,
2739                                                      sig_extended,
2740                                                      regs,
2741                                                      fingerprint,
2742                                                      new_adapter);
2743 #ifdef ASSERT
2744       if (VerifyAdapterSharing) {
2745         if (shared_entry != NULL) {
2746           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2747           // Release the one just created and return the original
2748           _adapters->free_entry(entry);
2749           return shared_entry;
2750         } else  {
2751           entry->save_code(buf->code_begin(), buffer.insts_size());
2752         }
2753       }
2754 #endif
2755 
2756       NOT_PRODUCT(insts_size = buffer.insts_size());
2757     }
2758     if (new_adapter == NULL) {
2759       // CodeCache is full, disable compilation
2760       // Ought to log this but compile log is only per compile thread
2761       // and we're some non descript Java thread.
2762       return NULL; // Out of CodeCache space
2763     }
2764     entry->relocate(new_adapter->content_begin());
2765 #ifndef PRODUCT
2766     // debugging suppport
2767     if (PrintAdapterHandlers || PrintStubCode) {
2768       ttyLocker ttyl;
2769       entry->print_adapter_on(tty);
2770       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2771                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2772                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2773       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2774       if (Verbose || PrintStubCode) {
2775         address first_pc = entry->base_address();
2776         if (first_pc != NULL) {
2777           Disassembler::decode(first_pc, first_pc + insts_size);
2778           tty->cr();
2779         }
2780       }
2781     }
2782 #endif
2783     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2784     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2785     if (contains_all_checks || !VerifyAdapterCalls) {
2786       _adapters->add(entry);
2787     }
2788   }
2789   // Outside of the lock
2790   if (new_adapter != NULL) {
2791     char blob_id[256];
2792     jio_snprintf(blob_id,
2793                  sizeof(blob_id),
2794                  "%s(%s)@" PTR_FORMAT,
2795                  new_adapter->name(),
2796                  fingerprint->as_string(),
2797                  new_adapter->content_begin());
2798     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2799 
2800     if (JvmtiExport::should_post_dynamic_code_generated()) {
2801       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2802     }
2803   }
2804   return entry;
2805 }
2806 
2807 address AdapterHandlerEntry::base_address() {
2808   address base = _i2c_entry;
2809   if (base == NULL)  base = _c2i_entry;
2810   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2811   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2812   return base;
2813 }
2814 
2815 void AdapterHandlerEntry::relocate(address new_base) {
2816   address old_base = base_address();
2817   assert(old_base != NULL, "");
2818   ptrdiff_t delta = new_base - old_base;
2819   if (_i2c_entry != NULL)
2820     _i2c_entry += delta;
2821   if (_c2i_entry != NULL)
2822     _c2i_entry += delta;
2823   if (_c2i_unverified_entry != NULL)
2824     _c2i_unverified_entry += delta;
2825   assert(base_address() == new_base, "");
2826 }
2827 
2828 
2829 void AdapterHandlerEntry::deallocate() {
2830   delete _fingerprint;
2831 #ifdef ASSERT
2832   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2833 #endif
2834 }
2835 
2836 
2837 #ifdef ASSERT
2838 // Capture the code before relocation so that it can be compared
2839 // against other versions.  If the code is captured after relocation
2840 // then relative instructions won't be equivalent.
2841 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2842   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2843   _saved_code_length = length;
2844   memcpy(_saved_code, buffer, length);
2845 }
2846 
2847 
2848 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2849   if (length != _saved_code_length) {
2850     return false;
2851   }
2852 
2853   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2854 }
2855 #endif
2856 
2857 
2858 /**
2859  * Create a native wrapper for this native method.  The wrapper converts the
2860  * Java-compiled calling convention to the native convention, handles
2861  * arguments, and transitions to native.  On return from the native we transition
2862  * back to java blocking if a safepoint is in progress.
2863  */
2864 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2865   ResourceMark rm;
2866   nmethod* nm = NULL;
2867 
2868   assert(method->is_native(), "must be native");
2869   assert(method->is_method_handle_intrinsic() ||
2870          method->has_native_function(), "must have something valid to call!");
2871 
2872   {
2873     // Perform the work while holding the lock, but perform any printing outside the lock
2874     MutexLocker mu(AdapterHandlerLibrary_lock);
2875     // See if somebody beat us to it
2876     if (method->code() != NULL) {
2877       return;
2878     }
2879 
2880     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2881     assert(compile_id > 0, "Must generate native wrapper");
2882 
2883 
2884     ResourceMark rm;
2885     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2886     if (buf != NULL) {
2887       CodeBuffer buffer(buf);
2888       double locs_buf[20];
2889       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2890       MacroAssembler _masm(&buffer);
2891 
2892       // Fill in the signature array, for the calling-convention call.
2893       const int total_args_passed = method->size_of_parameters();
2894 
2895       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2896       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2897       int i=0;
2898       if (!method->is_static())  // Pass in receiver first
2899         sig_bt[i++] = T_OBJECT;
2900       SignatureStream ss(method->signature());
2901       for (; !ss.at_return_type(); ss.next()) {
2902         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2903         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2904           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2905       }
2906       assert(i == total_args_passed, "");
2907       BasicType ret_type = ss.type();
2908 
2909       // Now get the compiled-Java layout as input (or output) arguments.
2910       // NOTE: Stubs for compiled entry points of method handle intrinsics
2911       // are just trampolines so the argument registers must be outgoing ones.
2912       const bool is_outgoing = method->is_method_handle_intrinsic();
2913       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2914 
2915       // Generate the compiled-to-native wrapper code
2916       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2917 
2918       if (nm != NULL) {
2919         method->set_code(method, nm);
2920 
2921         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2922         if (directive->PrintAssemblyOption) {
2923           nm->print_code();
2924         }
2925         DirectivesStack::release(directive);
2926       }
2927     }
2928   } // Unlock AdapterHandlerLibrary_lock
2929 
2930 
2931   // Install the generated code.
2932   if (nm != NULL) {
2933     if (PrintCompilation) {
2934       ttyLocker ttyl;
2935       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2936     }
2937     nm->post_compiled_method_load_event();
2938   }
2939 }
2940 
2941 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2942   assert(thread == JavaThread::current(), "must be");
2943   // The code is about to enter a JNI lazy critical native method and
2944   // _needs_gc is true, so if this thread is already in a critical
2945   // section then just return, otherwise this thread should block
2946   // until needs_gc has been cleared.
2947   if (thread->in_critical()) {
2948     return;
2949   }
2950   // Lock and unlock a critical section to give the system a chance to block
2951   GCLocker::lock_critical(thread);
2952   GCLocker::unlock_critical(thread);
2953 JRT_END
2954 
2955 // -------------------------------------------------------------------------
2956 // Java-Java calling convention
2957 // (what you use when Java calls Java)
2958 
2959 //------------------------------name_for_receiver----------------------------------
2960 // For a given signature, return the VMReg for parameter 0.
2961 VMReg SharedRuntime::name_for_receiver() {
2962   VMRegPair regs;
2963   BasicType sig_bt = T_OBJECT;
2964   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2965   // Return argument 0 register.  In the LP64 build pointers
2966   // take 2 registers, but the VM wants only the 'main' name.
2967   return regs.first();
2968 }
2969 
2970 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2971   // This method is returning a data structure allocating as a
2972   // ResourceObject, so do not put any ResourceMarks in here.
2973   char *s = sig->as_C_string();
2974   int len = (int)strlen(s);
2975   s++; len--;                   // Skip opening paren
2976   char *t = s+len;
2977   while (*(--t) != ')');      // Find close paren
2978 
2979   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2980   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2981   int cnt = 0;
2982   if (has_receiver) {
2983     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2984   }
2985 
2986   while (s < t) {
2987     switch (*s++) {            // Switch on signature character
2988     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2989     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2990     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2991     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2992     case 'I': sig_bt[cnt++] = T_INT;     break;
2993     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2994     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2995     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2996     case 'V': sig_bt[cnt++] = T_VOID;    break;
2997     case 'L':                   // Oop
2998       while (*s++ != ';');   // Skip signature
2999       sig_bt[cnt++] = T_OBJECT;
3000       break;
3001     case 'Q':                   // Oop
3002       while (*s++ != ';');   // Skip signature
3003       sig_bt[cnt++] = T_VALUETYPE;
3004       break;
3005     case '[': {                 // Array
3006       do {                      // Skip optional size
3007         while (*s >= '0' && *s <= '9') s++;
3008       } while (*s++ == '[');   // Nested arrays?
3009       // Skip element type
3010       if (s[-1] == 'L')
3011         while (*s++ != ';'); // Skip signature
3012       sig_bt[cnt++] = T_ARRAY;
3013       break;
3014     }
3015     default : ShouldNotReachHere();
3016     }
3017   }
3018 
3019   if (has_appendix) {
3020     sig_bt[cnt++] = T_OBJECT;
3021   }
3022 
3023   assert(cnt < 256, "grow table size");
3024 
3025   int comp_args_on_stack;
3026   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3027 
3028   // the calling convention doesn't count out_preserve_stack_slots so
3029   // we must add that in to get "true" stack offsets.
3030 
3031   if (comp_args_on_stack) {
3032     for (int i = 0; i < cnt; i++) {
3033       VMReg reg1 = regs[i].first();
3034       if (reg1->is_stack()) {
3035         // Yuck
3036         reg1 = reg1->bias(out_preserve_stack_slots());
3037       }
3038       VMReg reg2 = regs[i].second();
3039       if (reg2->is_stack()) {
3040         // Yuck
3041         reg2 = reg2->bias(out_preserve_stack_slots());
3042       }
3043       regs[i].set_pair(reg2, reg1);
3044     }
3045   }
3046 
3047   // results
3048   *arg_size = cnt;
3049   return regs;
3050 }
3051 
3052 // OSR Migration Code
3053 //
3054 // This code is used convert interpreter frames into compiled frames.  It is
3055 // called from very start of a compiled OSR nmethod.  A temp array is
3056 // allocated to hold the interesting bits of the interpreter frame.  All
3057 // active locks are inflated to allow them to move.  The displaced headers and
3058 // active interpreter locals are copied into the temp buffer.  Then we return
3059 // back to the compiled code.  The compiled code then pops the current
3060 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3061 // copies the interpreter locals and displaced headers where it wants.
3062 // Finally it calls back to free the temp buffer.
3063 //
3064 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3065 
3066 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3067 
3068   //
3069   // This code is dependent on the memory layout of the interpreter local
3070   // array and the monitors. On all of our platforms the layout is identical
3071   // so this code is shared. If some platform lays the their arrays out
3072   // differently then this code could move to platform specific code or
3073   // the code here could be modified to copy items one at a time using
3074   // frame accessor methods and be platform independent.
3075 
3076   frame fr = thread->last_frame();
3077   assert(fr.is_interpreted_frame(), "");
3078   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3079 
3080   // Figure out how many monitors are active.
3081   int active_monitor_count = 0;
3082   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3083        kptr < fr.interpreter_frame_monitor_begin();
3084        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3085     if (kptr->obj() != NULL) active_monitor_count++;
3086   }
3087 
3088   // QQQ we could place number of active monitors in the array so that compiled code
3089   // could double check it.
3090 
3091   Method* moop = fr.interpreter_frame_method();
3092   int max_locals = moop->max_locals();
3093   // Allocate temp buffer, 1 word per local & 2 per active monitor
3094   int buf_size_words = max_locals + active_monitor_count*2;
3095   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3096 
3097   // Copy the locals.  Order is preserved so that loading of longs works.
3098   // Since there's no GC I can copy the oops blindly.
3099   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3100   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3101                        (HeapWord*)&buf[0],
3102                        max_locals);
3103 
3104   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3105   int i = max_locals;
3106   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3107        kptr2 < fr.interpreter_frame_monitor_begin();
3108        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3109     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3110       BasicLock *lock = kptr2->lock();
3111       // Inflate so the displaced header becomes position-independent
3112       if (lock->displaced_header()->is_unlocked())
3113         ObjectSynchronizer::inflate_helper(kptr2->obj());
3114       // Now the displaced header is free to move
3115       buf[i++] = (intptr_t)lock->displaced_header();
3116       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3117     }
3118   }
3119   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3120 
3121   return buf;
3122 JRT_END
3123 
3124 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3125   FREE_C_HEAP_ARRAY(intptr_t, buf);
3126 JRT_END
3127 
3128 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3129   AdapterHandlerTableIterator iter(_adapters);
3130   while (iter.has_next()) {
3131     AdapterHandlerEntry* a = iter.next();
3132     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3133   }
3134   return false;
3135 }
3136 
3137 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3138   AdapterHandlerTableIterator iter(_adapters);
3139   while (iter.has_next()) {
3140     AdapterHandlerEntry* a = iter.next();
3141     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3142       st->print("Adapter for signature: ");
3143       a->print_adapter_on(tty);
3144       return;
3145     }
3146   }
3147   assert(false, "Should have found handler");
3148 }
3149 
3150 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3151   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3152                p2i(this), fingerprint()->as_string(),
3153                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3154 
3155 }
3156 
3157 #ifndef PRODUCT
3158 
3159 void AdapterHandlerLibrary::print_statistics() {
3160   _adapters->print_statistics();
3161 }
3162 
3163 #endif /* PRODUCT */
3164 
3165 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3166   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3167   thread->enable_stack_reserved_zone();
3168   thread->set_reserved_stack_activation(thread->stack_base());
3169 JRT_END
3170 
3171 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3172   frame activation;
3173   int decode_offset = 0;
3174   nmethod* nm = NULL;
3175   frame prv_fr = fr;
3176   int count = 1;
3177 
3178   assert(fr.is_java_frame(), "Must start on Java frame");
3179 
3180   while (!fr.is_first_frame()) {
3181     Method* method = NULL;
3182     // Compiled java method case.
3183     if (decode_offset != 0) {
3184       DebugInfoReadStream stream(nm, decode_offset);
3185       decode_offset = stream.read_int();
3186       method = (Method*)nm->metadata_at(stream.read_int());
3187     } else {
3188       if (fr.is_first_java_frame()) break;
3189       address pc = fr.pc();
3190       prv_fr = fr;
3191       if (fr.is_interpreted_frame()) {
3192         method = fr.interpreter_frame_method();
3193         fr = fr.java_sender();
3194       } else {
3195         CodeBlob* cb = fr.cb();
3196         fr = fr.java_sender();
3197         if (cb == NULL || !cb->is_nmethod()) {
3198           continue;
3199         }
3200         nm = (nmethod*)cb;
3201         if (nm->method()->is_native()) {
3202           method = nm->method();
3203         } else {
3204           PcDesc* pd = nm->pc_desc_at(pc);
3205           assert(pd != NULL, "PcDesc must not be NULL");
3206           decode_offset = pd->scope_decode_offset();
3207           // if decode_offset is not equal to 0, it will execute the
3208           // "compiled java method case" at the beginning of the loop.
3209           continue;
3210         }
3211       }
3212     }
3213     if (method->has_reserved_stack_access()) {
3214       ResourceMark rm(thread);
3215       activation = prv_fr;
3216       warning("Potentially dangerous stack overflow in "
3217               "ReservedStackAccess annotated method %s [%d]",
3218               method->name_and_sig_as_C_string(), count++);
3219       EventReservedStackActivation event;
3220       if (event.should_commit()) {
3221         event.set_method(method);
3222         event.commit();
3223       }
3224     }
3225   }
3226   return activation;
3227 }
3228 
3229 // We are at a compiled code to interpreter call. We need backing
3230 // buffers for all value type arguments. Allocate an object array to
3231 // hold them (convenient because once we're done with it we don't have
3232 // to worry about freeing it).
3233 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method))
3234 {
3235   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3236   ResourceMark rm;
3237   JavaThread* THREAD = thread;
3238   methodHandle callee(callee_method);
3239 
3240   int nb_slots = 0;
3241   bool has_value_receiver = !callee->is_static() && callee->method_holder()->is_value();
3242   if (has_value_receiver) {
3243     nb_slots++;
3244   }
3245   Handle class_loader(THREAD, callee->method_holder()->class_loader());
3246   Handle protection_domain(THREAD, callee->method_holder()->protection_domain());
3247   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3248     if (ss.type() == T_VALUETYPE) {
3249       nb_slots++;
3250     }
3251   }
3252   objArrayHandle array = oopFactory::new_objectArray(nb_slots, CHECK);
3253   int i = 0;
3254   if (has_value_receiver) {
3255     ValueKlass* vk = ValueKlass::cast(callee->method_holder());
3256     oop res = vk->allocate_instance(CHECK);
3257     array->obj_at_put(i, res);
3258     i++;
3259   }
3260   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3261     if (ss.type() == T_VALUETYPE) {
3262       Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
3263       assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
3264       ValueKlass* vk = ValueKlass::cast(k);
3265       oop res = vk->allocate_instance(CHECK);
3266       array->obj_at_put(i, res);
3267       i++;
3268     }
3269   }
3270   thread->set_vm_result(array());
3271   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3272 }
3273 JRT_END
3274 
3275 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields.
3276 // This is called from the C2I adapter after value type arguments were heap allocated and initialized.
3277 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array, Method* callee_method))
3278 {
3279   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3280   assert(array->is_oop(), "should be oop");
3281   methodHandle callee(callee_method);
3282   for (int i = 0; i < array->length(); ++i) {
3283     instanceOop valueOop = (instanceOop)array->obj_at(i);
3284     ValueKlass* vk = ValueKlass::cast(valueOop->klass());
3285     if (vk->contains_oops()) {
3286       const address dst_oop_addr = ((address) (void*) valueOop);
3287       OopMapBlock* map = vk->start_of_nonstatic_oop_maps();
3288       OopMapBlock* const end = map + vk->nonstatic_oop_map_count();
3289       while (map != end) {
3290         address doop_address = dst_oop_addr + map->offset();
3291         oopDesc::bs()->write_ref_array((HeapWord*) doop_address, map->count());
3292         map++;
3293       }
3294     }
3295   }
3296   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3297 }
3298 JRT_END