1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_TYPE_HPP
  26 #define SHARE_VM_OPTO_TYPE_HPP
  27 
  28 #include "ci/ciValueKlass.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 // This class defines a Type lattice.  The lattice is used in the constant
  38 // propagation algorithms, and for some type-checking of the iloc code.
  39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  40 // float & double precision constants, sets of data-labels and code-labels.
  41 // The complete lattice is described below.  Subtypes have no relationship to
  42 // up or down in the lattice; that is entirely determined by the behavior of
  43 // the MEET/JOIN functions.
  44 
  45 class Dict;
  46 class Type;
  47 class   TypeD;
  48 class   TypeF;
  49 class   TypeInt;
  50 class   TypeLong;
  51 class   TypeNarrowPtr;
  52 class     TypeNarrowOop;
  53 class     TypeNarrowKlass;
  54 class   TypeAry;
  55 class   TypeTuple;
  56 class   TypeValueType;
  57 class   TypeVect;
  58 class     TypeVectS;
  59 class     TypeVectD;
  60 class     TypeVectX;
  61 class     TypeVectY;
  62 class     TypeVectZ;
  63 class   TypePtr;
  64 class     TypeRawPtr;
  65 class     TypeOopPtr;
  66 class       TypeInstPtr;
  67 class       TypeAryPtr;
  68 class       TypeValueTypePtr;
  69 class     TypeKlassPtr;
  70 class     TypeMetadataPtr;
  71 
  72 //------------------------------Type-------------------------------------------
  73 // Basic Type object, represents a set of primitive Values.
  74 // Types are hash-cons'd into a private class dictionary, so only one of each
  75 // different kind of Type exists.  Types are never modified after creation, so
  76 // all their interesting fields are constant.
  77 class Type {
  78   friend class VMStructs;
  79 
  80 public:
  81   enum TYPES {
  82     Bad=0,                      // Type check
  83     Control,                    // Control of code (not in lattice)
  84     Top,                        // Top of the lattice
  85     Int,                        // Integer range (lo-hi)
  86     Long,                       // Long integer range (lo-hi)
  87     Half,                       // Placeholder half of doubleword
  88     NarrowOop,                  // Compressed oop pointer
  89     NarrowKlass,                // Compressed klass pointer
  90 
  91     Tuple,                      // Method signature or object layout
  92     Array,                      // Array types
  93     VectorS,                    //  32bit Vector types
  94     VectorD,                    //  64bit Vector types
  95     VectorX,                    // 128bit Vector types
  96     VectorY,                    // 256bit Vector types
  97     VectorZ,                    // 512bit Vector types
  98     ValueType,                  // Value type
  99 
 100     AnyPtr,                     // Any old raw, klass, inst, or array pointer
 101     RawPtr,                     // Raw (non-oop) pointers
 102     OopPtr,                     // Any and all Java heap entities
 103     InstPtr,                    // Instance pointers (non-array objects)
 104     ValueTypePtr,               // Oop to heap allocated value type
 105     AryPtr,                     // Array pointers
 106     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 107 
 108     MetadataPtr,                // Generic metadata
 109     KlassPtr,                   // Klass pointers
 110 
 111     Function,                   // Function signature
 112     Abio,                       // Abstract I/O
 113     Return_Address,             // Subroutine return address
 114     Memory,                     // Abstract store
 115     FloatTop,                   // No float value
 116     FloatCon,                   // Floating point constant
 117     FloatBot,                   // Any float value
 118     DoubleTop,                  // No double value
 119     DoubleCon,                  // Double precision constant
 120     DoubleBot,                  // Any double value
 121     Bottom,                     // Bottom of lattice
 122     lastype                     // Bogus ending type (not in lattice)
 123   };
 124 
 125   // Signal values for offsets from a base pointer
 126   enum OFFSET_SIGNALS {
 127     OffsetTop = -2000000000,    // undefined offset
 128     OffsetBot = -2000000001     // any possible offset
 129   };
 130 
 131   class Offset {
 132   private:
 133     const int _offset;
 134 
 135   public:
 136     explicit Offset(int offset) : _offset(offset) {}
 137 
 138     const Offset meet(const Offset other) const;
 139     const Offset dual() const;
 140     const Offset add(intptr_t offset) const;
 141     bool operator==(const Offset& other) const {
 142       return _offset == other._offset;
 143     }
 144     bool operator!=(const Offset& other) const {
 145       return _offset != other._offset;
 146     }
 147     int get() const { return _offset; }
 148 
 149     void dump2(outputStream *st) const;
 150 
 151     static const Offset top;
 152     static const Offset bottom;
 153   };
 154 
 155   // Min and max WIDEN values.
 156   enum WIDEN {
 157     WidenMin = 0,
 158     WidenMax = 3
 159   };
 160 
 161 private:
 162   typedef struct {
 163     const TYPES                dual_type;
 164     const BasicType            basic_type;
 165     const char*                msg;
 166     const bool                 isa_oop;
 167     const int                  ideal_reg;
 168     const relocInfo::relocType reloc;
 169   } TypeInfo;
 170 
 171   // Dictionary of types shared among compilations.
 172   static Dict* _shared_type_dict;
 173   static TypeInfo _type_info[];
 174 
 175   static int uhash( const Type *const t );
 176   // Structural equality check.  Assumes that cmp() has already compared
 177   // the _base types and thus knows it can cast 't' appropriately.
 178   virtual bool eq( const Type *t ) const;
 179 
 180   // Top-level hash-table of types
 181   static Dict *type_dict() {
 182     return Compile::current()->type_dict();
 183   }
 184 
 185   // DUAL operation: reflect around lattice centerline.  Used instead of
 186   // join to ensure my lattice is symmetric up and down.  Dual is computed
 187   // lazily, on demand, and cached in _dual.
 188   const Type *_dual;            // Cached dual value
 189   // Table for efficient dualing of base types
 190   static const TYPES dual_type[lastype];
 191 
 192 #ifdef ASSERT
 193   // One type is interface, the other is oop
 194   virtual bool interface_vs_oop_helper(const Type *t) const;
 195 #endif
 196 
 197   const Type *meet_helper(const Type *t, bool include_speculative) const;
 198 
 199 protected:
 200   // Each class of type is also identified by its base.
 201   const TYPES _base;            // Enum of Types type
 202 
 203   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 204   // ~Type();                   // Use fast deallocation
 205   const Type *hashcons();       // Hash-cons the type
 206   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 207   const Type *join_helper(const Type *t, bool include_speculative) const {
 208     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 209   }
 210 
 211 public:
 212 
 213   inline void* operator new( size_t x ) throw() {
 214     Compile* compile = Compile::current();
 215     compile->set_type_last_size(x);
 216     void *temp = compile->type_arena()->Amalloc_D(x);
 217     compile->set_type_hwm(temp);
 218     return temp;
 219   }
 220   inline void operator delete( void* ptr ) {
 221     Compile* compile = Compile::current();
 222     compile->type_arena()->Afree(ptr,compile->type_last_size());
 223   }
 224 
 225   // Initialize the type system for a particular compilation.
 226   static void Initialize(Compile* compile);
 227 
 228   // Initialize the types shared by all compilations.
 229   static void Initialize_shared(Compile* compile);
 230 
 231   TYPES base() const {
 232     assert(_base > Bad && _base < lastype, "sanity");
 233     return _base;
 234   }
 235 
 236   // Create a new hash-consd type
 237   static const Type *make(enum TYPES);
 238   // Test for equivalence of types
 239   static int cmp( const Type *const t1, const Type *const t2 );
 240   // Test for higher or equal in lattice
 241   // Variant that drops the speculative part of the types
 242   bool higher_equal(const Type *t) const {
 243     return !cmp(meet(t),t->remove_speculative());
 244   }
 245   // Variant that keeps the speculative part of the types
 246   bool higher_equal_speculative(const Type *t) const {
 247     return !cmp(meet_speculative(t),t);
 248   }
 249 
 250   // MEET operation; lower in lattice.
 251   // Variant that drops the speculative part of the types
 252   const Type *meet(const Type *t) const {
 253     return meet_helper(t, false);
 254   }
 255   // Variant that keeps the speculative part of the types
 256   const Type *meet_speculative(const Type *t) const {
 257     return meet_helper(t, true)->cleanup_speculative();
 258   }
 259   // WIDEN: 'widens' for Ints and other range types
 260   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 261   // NARROW: complement for widen, used by pessimistic phases
 262   virtual const Type *narrow( const Type *old ) const { return this; }
 263 
 264   // DUAL operation: reflect around lattice centerline.  Used instead of
 265   // join to ensure my lattice is symmetric up and down.
 266   const Type *dual() const { return _dual; }
 267 
 268   // Compute meet dependent on base type
 269   virtual const Type *xmeet( const Type *t ) const;
 270   virtual const Type *xdual() const;    // Compute dual right now.
 271 
 272   // JOIN operation; higher in lattice.  Done by finding the dual of the
 273   // meet of the dual of the 2 inputs.
 274   // Variant that drops the speculative part of the types
 275   const Type *join(const Type *t) const {
 276     return join_helper(t, false);
 277   }
 278   // Variant that keeps the speculative part of the types
 279   const Type *join_speculative(const Type *t) const {
 280     return join_helper(t, true)->cleanup_speculative();
 281   }
 282 
 283   // Modified version of JOIN adapted to the needs Node::Value.
 284   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 285   // Currently, it also works around limitations involving interface types.
 286   // Variant that drops the speculative part of the types
 287   const Type *filter(const Type *kills) const {
 288     return filter_helper(kills, false);
 289   }
 290   // Variant that keeps the speculative part of the types
 291   const Type *filter_speculative(const Type *kills) const {
 292     return filter_helper(kills, true)->cleanup_speculative();
 293   }
 294 
 295 #ifdef ASSERT
 296   // One type is interface, the other is oop
 297   virtual bool interface_vs_oop(const Type *t) const;
 298 #endif
 299 
 300   // Returns true if this pointer points at memory which contains a
 301   // compressed oop references.
 302   bool is_ptr_to_narrowoop() const;
 303   bool is_ptr_to_narrowklass() const;
 304 
 305   bool is_ptr_to_boxing_obj() const;
 306 
 307 
 308   // Convenience access
 309   float getf() const;
 310   double getd() const;
 311 
 312   const TypeInt    *is_int() const;
 313   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 314   const TypeLong   *is_long() const;
 315   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 316   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 317   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 318   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 319   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 320   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 321   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 322   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 323   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 324   const TypeVect   *is_vect() const;             // Vector
 325   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 326   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 327   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 328   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 329   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 330   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 331   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 332   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 333   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 334   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 335   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 336   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 337   const TypeInstPtr  *is_instptr() const;        // Instance
 338   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 339   const TypeAryPtr   *is_aryptr() const;         // Array oop
 340   const TypeValueType* isa_valuetype() const;    // Returns NULL if not Value Type
 341   const TypeValueType* is_valuetype() const;     // Value Type
 342   const TypeValueTypePtr* isa_valuetypeptr() const; // Value Type Pointer
 343   const TypeValueTypePtr* is_valuetypeptr() const;  // Returns NULL if not Value Type Pointer
 344 
 345   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 346   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 347   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 348   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 349 
 350   virtual bool      is_finite() const;           // Has a finite value
 351   virtual bool      is_nan()    const;           // Is not a number (NaN)
 352 
 353   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 354   const TypePtr* make_ptr() const;
 355 
 356   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 357   // Asserts if the underlying type is not an oopptr or narrowoop.
 358   const TypeOopPtr* make_oopptr() const;
 359 
 360   // Returns this compressed pointer or the equivalent compressed version
 361   // of this pointer type.
 362   const TypeNarrowOop* make_narrowoop() const;
 363 
 364   // Returns this compressed klass pointer or the equivalent
 365   // compressed version of this pointer type.
 366   const TypeNarrowKlass* make_narrowklass() const;
 367 
 368   // Special test for register pressure heuristic
 369   bool is_floatingpoint() const;        // True if Float or Double base type
 370 
 371   // Do you have memory, directly or through a tuple?
 372   bool has_memory( ) const;
 373 
 374   // TRUE if type is a singleton
 375   virtual bool singleton(void) const;
 376 
 377   // TRUE if type is above the lattice centerline, and is therefore vacuous
 378   virtual bool empty(void) const;
 379 
 380   // Return a hash for this type.  The hash function is public so ConNode
 381   // (constants) can hash on their constant, which is represented by a Type.
 382   virtual int hash() const;
 383 
 384   // Map ideal registers (machine types) to ideal types
 385   static const Type *mreg2type[];
 386 
 387   // Printing, statistics
 388 #ifndef PRODUCT
 389   void         dump_on(outputStream *st) const;
 390   void         dump() const {
 391     dump_on(tty);
 392   }
 393   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 394   static  void dump_stats();
 395 
 396   static const char* str(const Type* t);
 397 #endif
 398   void typerr(const Type *t) const; // Mixing types error
 399 
 400   // Create basic type
 401   static const Type* get_const_basic_type(BasicType type) {
 402     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 403     return _const_basic_type[type];
 404   }
 405 
 406   // For two instance arrays of same dimension, return the base element types.
 407   // Otherwise or if the arrays have different dimensions, return NULL.
 408   static void get_arrays_base_elements(const Type *a1, const Type *a2,
 409                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
 410 
 411   // Mapping to the array element's basic type.
 412   BasicType array_element_basic_type() const;
 413 
 414   // Create standard type for a ciType:
 415   static const Type* get_const_type(ciType* type);
 416 
 417   // Create standard zero value:
 418   static const Type* get_zero_type(BasicType type) {
 419     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 420     return _zero_type[type];
 421   }
 422 
 423   // Report if this is a zero value (not top).
 424   bool is_zero_type() const {
 425     BasicType type = basic_type();
 426     if (type == T_VOID || type >= T_CONFLICT)
 427       return false;
 428     else
 429       return (this == _zero_type[type]);
 430   }
 431 
 432   // Convenience common pre-built types.
 433   static const Type *ABIO;
 434   static const Type *BOTTOM;
 435   static const Type *CONTROL;
 436   static const Type *DOUBLE;
 437   static const Type *FLOAT;
 438   static const Type *HALF;
 439   static const Type *MEMORY;
 440   static const Type *MULTI;
 441   static const Type *RETURN_ADDRESS;
 442   static const Type *TOP;
 443 
 444   // Mapping from compiler type to VM BasicType
 445   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 446   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
 447   const char* msg() const            { return _type_info[_base].msg; }
 448   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 449   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 450 
 451   // Mapping from CI type system to compiler type:
 452   static const Type* get_typeflow_type(ciType* type);
 453 
 454   static const Type* make_from_constant(ciConstant constant,
 455                                         bool require_constant = false,
 456                                         int stable_dimension = 0,
 457                                         bool is_narrow = false,
 458                                         bool is_autobox_cache = false);
 459 
 460   static const Type* make_constant_from_field(ciInstance* holder,
 461                                               int off,
 462                                               bool is_unsigned_load,
 463                                               BasicType loadbt);
 464 
 465   static const Type* make_constant_from_field(ciField* field,
 466                                               ciInstance* holder,
 467                                               BasicType loadbt,
 468                                               bool is_unsigned_load);
 469 
 470   static const Type* make_constant_from_array_element(ciArray* array,
 471                                                       int off,
 472                                                       int stable_dimension,
 473                                                       BasicType loadbt,
 474                                                       bool is_unsigned_load);
 475 
 476   // Speculative type helper methods. See TypePtr.
 477   virtual const TypePtr* speculative() const                                  { return NULL; }
 478   virtual ciKlass* speculative_type() const                                   { return NULL; }
 479   virtual ciKlass* speculative_type_not_null() const                          { return NULL; }
 480   virtual bool speculative_maybe_null() const                                 { return true; }
 481   virtual const Type* remove_speculative() const                              { return this; }
 482   virtual const Type* cleanup_speculative() const                             { return this; }
 483   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != NULL; }
 484   virtual bool would_improve_ptr(bool maybe_null) const                       { return !maybe_null; }
 485   const Type* maybe_remove_speculative(bool include_speculative) const;
 486 
 487   virtual bool maybe_null() const { return true; }
 488 
 489 private:
 490   // support arrays
 491   static const BasicType _basic_type[];
 492   static const Type*        _zero_type[T_CONFLICT+1];
 493   static const Type* _const_basic_type[T_CONFLICT+1];
 494 };
 495 
 496 //------------------------------TypeF------------------------------------------
 497 // Class of Float-Constant Types.
 498 class TypeF : public Type {
 499   TypeF( float f ) : Type(FloatCon), _f(f) {};
 500 public:
 501   virtual bool eq( const Type *t ) const;
 502   virtual int  hash() const;             // Type specific hashing
 503   virtual bool singleton(void) const;    // TRUE if type is a singleton
 504   virtual bool empty(void) const;        // TRUE if type is vacuous
 505 public:
 506   const float _f;               // Float constant
 507 
 508   static const TypeF *make(float f);
 509 
 510   virtual bool        is_finite() const;  // Has a finite value
 511   virtual bool        is_nan()    const;  // Is not a number (NaN)
 512 
 513   virtual const Type *xmeet( const Type *t ) const;
 514   virtual const Type *xdual() const;    // Compute dual right now.
 515   // Convenience common pre-built types.
 516   static const TypeF *ZERO; // positive zero only
 517   static const TypeF *ONE;
 518 #ifndef PRODUCT
 519   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 520 #endif
 521 };
 522 
 523 //------------------------------TypeD------------------------------------------
 524 // Class of Double-Constant Types.
 525 class TypeD : public Type {
 526   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 527 public:
 528   virtual bool eq( const Type *t ) const;
 529   virtual int  hash() const;             // Type specific hashing
 530   virtual bool singleton(void) const;    // TRUE if type is a singleton
 531   virtual bool empty(void) const;        // TRUE if type is vacuous
 532 public:
 533   const double _d;              // Double constant
 534 
 535   static const TypeD *make(double d);
 536 
 537   virtual bool        is_finite() const;  // Has a finite value
 538   virtual bool        is_nan()    const;  // Is not a number (NaN)
 539 
 540   virtual const Type *xmeet( const Type *t ) const;
 541   virtual const Type *xdual() const;    // Compute dual right now.
 542   // Convenience common pre-built types.
 543   static const TypeD *ZERO; // positive zero only
 544   static const TypeD *ONE;
 545 #ifndef PRODUCT
 546   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 547 #endif
 548 };
 549 
 550 //------------------------------TypeInt----------------------------------------
 551 // Class of integer ranges, the set of integers between a lower bound and an
 552 // upper bound, inclusive.
 553 class TypeInt : public Type {
 554   TypeInt( jint lo, jint hi, int w );
 555 protected:
 556   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 557 
 558 public:
 559   typedef jint NativeType;
 560   virtual bool eq( const Type *t ) const;
 561   virtual int  hash() const;             // Type specific hashing
 562   virtual bool singleton(void) const;    // TRUE if type is a singleton
 563   virtual bool empty(void) const;        // TRUE if type is vacuous
 564   const jint _lo, _hi;          // Lower bound, upper bound
 565   const short _widen;           // Limit on times we widen this sucker
 566 
 567   static const TypeInt *make(jint lo);
 568   // must always specify w
 569   static const TypeInt *make(jint lo, jint hi, int w);
 570 
 571   // Check for single integer
 572   int is_con() const { return _lo==_hi; }
 573   bool is_con(int i) const { return is_con() && _lo == i; }
 574   jint get_con() const { assert( is_con(), "" );  return _lo; }
 575 
 576   virtual bool        is_finite() const;  // Has a finite value
 577 
 578   virtual const Type *xmeet( const Type *t ) const;
 579   virtual const Type *xdual() const;    // Compute dual right now.
 580   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 581   virtual const Type *narrow( const Type *t ) const;
 582   // Do not kill _widen bits.
 583   // Convenience common pre-built types.
 584   static const TypeInt *MINUS_1;
 585   static const TypeInt *ZERO;
 586   static const TypeInt *ONE;
 587   static const TypeInt *BOOL;
 588   static const TypeInt *CC;
 589   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 590   static const TypeInt *CC_GT;  // [1]   == ONE
 591   static const TypeInt *CC_EQ;  // [0]   == ZERO
 592   static const TypeInt *CC_LE;  // [-1,0]
 593   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 594   static const TypeInt *BYTE;
 595   static const TypeInt *UBYTE;
 596   static const TypeInt *CHAR;
 597   static const TypeInt *SHORT;
 598   static const TypeInt *POS;
 599   static const TypeInt *POS1;
 600   static const TypeInt *INT;
 601   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 602   static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT
 603 
 604   static const TypeInt *as_self(const Type *t) { return t->is_int(); }
 605 #ifndef PRODUCT
 606   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 607 #endif
 608 };
 609 
 610 
 611 //------------------------------TypeLong---------------------------------------
 612 // Class of long integer ranges, the set of integers between a lower bound and
 613 // an upper bound, inclusive.
 614 class TypeLong : public Type {
 615   TypeLong( jlong lo, jlong hi, int w );
 616 protected:
 617   // Do not kill _widen bits.
 618   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 619 public:
 620   typedef jlong NativeType;
 621   virtual bool eq( const Type *t ) const;
 622   virtual int  hash() const;             // Type specific hashing
 623   virtual bool singleton(void) const;    // TRUE if type is a singleton
 624   virtual bool empty(void) const;        // TRUE if type is vacuous
 625 public:
 626   const jlong _lo, _hi;         // Lower bound, upper bound
 627   const short _widen;           // Limit on times we widen this sucker
 628 
 629   static const TypeLong *make(jlong lo);
 630   // must always specify w
 631   static const TypeLong *make(jlong lo, jlong hi, int w);
 632 
 633   // Check for single integer
 634   int is_con() const { return _lo==_hi; }
 635   bool is_con(int i) const { return is_con() && _lo == i; }
 636   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 637 
 638   // Check for positive 32-bit value.
 639   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 640 
 641   virtual bool        is_finite() const;  // Has a finite value
 642 
 643 
 644   virtual const Type *xmeet( const Type *t ) const;
 645   virtual const Type *xdual() const;    // Compute dual right now.
 646   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 647   virtual const Type *narrow( const Type *t ) const;
 648   // Convenience common pre-built types.
 649   static const TypeLong *MINUS_1;
 650   static const TypeLong *ZERO;
 651   static const TypeLong *ONE;
 652   static const TypeLong *POS;
 653   static const TypeLong *LONG;
 654   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 655   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 656   static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG
 657 
 658   // static convenience methods.
 659   static const TypeLong *as_self(const Type *t) { return t->is_long(); }
 660 
 661 #ifndef PRODUCT
 662   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 663 #endif
 664 };
 665 
 666 //------------------------------TypeTuple--------------------------------------
 667 // Class of Tuple Types, essentially type collections for function signatures
 668 // and class layouts.  It happens to also be a fast cache for the HotSpot
 669 // signature types.
 670 class TypeTuple : public Type {
 671   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 672 
 673   const uint          _cnt;              // Count of fields
 674   const Type ** const _fields;           // Array of field types
 675 
 676 public:
 677   virtual bool eq( const Type *t ) const;
 678   virtual int  hash() const;             // Type specific hashing
 679   virtual bool singleton(void) const;    // TRUE if type is a singleton
 680   virtual bool empty(void) const;        // TRUE if type is vacuous
 681 
 682   // Accessors:
 683   uint cnt() const { return _cnt; }
 684   const Type* field_at(uint i) const {
 685     assert(i < _cnt, "oob");
 686     return _fields[i];
 687   }
 688   void set_field_at(uint i, const Type* t) {
 689     assert(i < _cnt, "oob");
 690     _fields[i] = t;
 691   }
 692 
 693   static const TypeTuple *make( uint cnt, const Type **fields );
 694   static const TypeTuple *make_range(ciSignature *sig);
 695   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig, bool vt_fields_as_args = false);
 696 
 697   // Subroutine call type with space allocated for argument types
 698   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 699   static const Type **fields( uint arg_cnt );
 700 
 701   virtual const Type *xmeet( const Type *t ) const;
 702   virtual const Type *xdual() const;    // Compute dual right now.
 703   // Convenience common pre-built types.
 704   static const TypeTuple *IFBOTH;
 705   static const TypeTuple *IFFALSE;
 706   static const TypeTuple *IFTRUE;
 707   static const TypeTuple *IFNEITHER;
 708   static const TypeTuple *LOOPBODY;
 709   static const TypeTuple *MEMBAR;
 710   static const TypeTuple *STORECONDITIONAL;
 711   static const TypeTuple *START_I2C;
 712   static const TypeTuple *INT_PAIR;
 713   static const TypeTuple *LONG_PAIR;
 714   static const TypeTuple *INT_CC_PAIR;
 715   static const TypeTuple *LONG_CC_PAIR;
 716 #ifndef PRODUCT
 717   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 718 #endif
 719 };
 720 
 721 //------------------------------TypeAry----------------------------------------
 722 // Class of Array Types
 723 class TypeAry : public Type {
 724   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 725       _elem(elem), _size(size), _stable(stable) {}
 726 public:
 727   virtual bool eq( const Type *t ) const;
 728   virtual int  hash() const;             // Type specific hashing
 729   virtual bool singleton(void) const;    // TRUE if type is a singleton
 730   virtual bool empty(void) const;        // TRUE if type is vacuous
 731 
 732 private:
 733   const Type *_elem;            // Element type of array
 734   const TypeInt *_size;         // Elements in array
 735   const bool _stable;           // Are elements @Stable?
 736   friend class TypeAryPtr;
 737 
 738 public:
 739   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 740 
 741   virtual const Type *xmeet( const Type *t ) const;
 742   virtual const Type *xdual() const;    // Compute dual right now.
 743   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 744   virtual const Type* remove_speculative() const;
 745   virtual const Type* cleanup_speculative() const;
 746 #ifdef ASSERT
 747   // One type is interface, the other is oop
 748   virtual bool interface_vs_oop(const Type *t) const;
 749 #endif
 750 #ifndef PRODUCT
 751   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 752 #endif
 753 };
 754 
 755 
 756 //------------------------------TypeValue---------------------------------------
 757 // Class of Value Type Types
 758 class TypeValueType : public Type {
 759 private:
 760   ciValueKlass* _vk;
 761 
 762 protected:
 763   TypeValueType(ciValueKlass* vk) : Type(ValueType) { _vk = vk; }
 764 
 765 public:
 766   static const TypeValueType* make(ciValueKlass* vk);
 767   ciValueKlass* value_klass() const { return _vk; }
 768 
 769   virtual bool eq(const Type* t) const;
 770   virtual int  hash() const;             // Type specific hashing
 771   virtual bool singleton(void) const;    // TRUE if type is a singleton
 772   virtual bool empty(void) const;        // TRUE if type is vacuous
 773 
 774   virtual const Type* xmeet(const Type* t) const;
 775   virtual const Type* xdual() const;     // Compute dual right now.
 776 
 777 #ifndef PRODUCT
 778   virtual void dump2(Dict &d, uint, outputStream* st) const; // Specialized per-Type dumping
 779 #endif
 780 };
 781 
 782 //------------------------------TypeVect---------------------------------------
 783 // Class of Vector Types
 784 class TypeVect : public Type {
 785   const Type*   _elem;  // Vector's element type
 786   const uint  _length;  // Elements in vector (power of 2)
 787 
 788 protected:
 789   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 790     _elem(elem), _length(length) {}
 791 
 792 public:
 793   const Type* element_type() const { return _elem; }
 794   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 795   uint length() const { return _length; }
 796   uint length_in_bytes() const {
 797    return _length * type2aelembytes(element_basic_type());
 798   }
 799 
 800   virtual bool eq(const Type *t) const;
 801   virtual int  hash() const;             // Type specific hashing
 802   virtual bool singleton(void) const;    // TRUE if type is a singleton
 803   virtual bool empty(void) const;        // TRUE if type is vacuous
 804 
 805   static const TypeVect *make(const BasicType elem_bt, uint length) {
 806     // Use bottom primitive type.
 807     return make(get_const_basic_type(elem_bt), length);
 808   }
 809   // Used directly by Replicate nodes to construct singleton vector.
 810   static const TypeVect *make(const Type* elem, uint length);
 811 
 812   virtual const Type *xmeet( const Type *t) const;
 813   virtual const Type *xdual() const;     // Compute dual right now.
 814 
 815   static const TypeVect *VECTS;
 816   static const TypeVect *VECTD;
 817   static const TypeVect *VECTX;
 818   static const TypeVect *VECTY;
 819   static const TypeVect *VECTZ;
 820 
 821 #ifndef PRODUCT
 822   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 823 #endif
 824 };
 825 
 826 class TypeVectS : public TypeVect {
 827   friend class TypeVect;
 828   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 829 };
 830 
 831 class TypeVectD : public TypeVect {
 832   friend class TypeVect;
 833   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 834 };
 835 
 836 class TypeVectX : public TypeVect {
 837   friend class TypeVect;
 838   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 839 };
 840 
 841 class TypeVectY : public TypeVect {
 842   friend class TypeVect;
 843   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 844 };
 845 
 846 class TypeVectZ : public TypeVect {
 847   friend class TypeVect;
 848   TypeVectZ(const Type* elem, uint length) : TypeVect(VectorZ, elem, length) {}
 849 };
 850 
 851 //------------------------------TypePtr----------------------------------------
 852 // Class of machine Pointer Types: raw data, instances or arrays.
 853 // If the _base enum is AnyPtr, then this refers to all of the above.
 854 // Otherwise the _base will indicate which subset of pointers is affected,
 855 // and the class will be inherited from.
 856 class TypePtr : public Type {
 857   friend class TypeNarrowPtr;
 858 public:
 859   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 860 protected:
 861   TypePtr(TYPES t, PTR ptr, Offset offset,
 862           const TypePtr* speculative = NULL,
 863           int inline_depth = InlineDepthBottom) :
 864     Type(t), _ptr(ptr), _offset(offset), _speculative(speculative),
 865     _inline_depth(inline_depth) {}
 866   static const PTR ptr_meet[lastPTR][lastPTR];
 867   static const PTR ptr_dual[lastPTR];
 868   static const char * const ptr_msg[lastPTR];
 869 
 870   enum {
 871     InlineDepthBottom = INT_MAX,
 872     InlineDepthTop = -InlineDepthBottom
 873   };
 874 
 875   // Extra type information profiling gave us. We propagate it the
 876   // same way the rest of the type info is propagated. If we want to
 877   // use it, then we have to emit a guard: this part of the type is
 878   // not something we know but something we speculate about the type.
 879   const TypePtr*   _speculative;
 880   // For speculative types, we record at what inlining depth the
 881   // profiling point that provided the data is. We want to favor
 882   // profile data coming from outer scopes which are likely better for
 883   // the current compilation.
 884   int _inline_depth;
 885 
 886   // utility methods to work on the speculative part of the type
 887   const TypePtr* dual_speculative() const;
 888   const TypePtr* xmeet_speculative(const TypePtr* other) const;
 889   bool eq_speculative(const TypePtr* other) const;
 890   int hash_speculative() const;
 891   const TypePtr* add_offset_speculative(intptr_t offset) const;
 892 #ifndef PRODUCT
 893   void dump_speculative(outputStream *st) const;
 894 #endif
 895 
 896   // utility methods to work on the inline depth of the type
 897   int dual_inline_depth() const;
 898   int meet_inline_depth(int depth) const;
 899 #ifndef PRODUCT
 900   void dump_inline_depth(outputStream *st) const;
 901 #endif
 902 
 903 public:
 904   const Offset _offset;         // Offset into oop, with TOP & BOT
 905   const PTR _ptr;               // Pointer equivalence class
 906 
 907   const int offset() const { return _offset.get(); }
 908   const PTR ptr()    const { return _ptr; }
 909 
 910   static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
 911                              const TypePtr* speculative = NULL,
 912                              int inline_depth = InlineDepthBottom);
 913 
 914   // Return a 'ptr' version of this type
 915   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 916 
 917   virtual intptr_t get_con() const;
 918 
 919   Offset xadd_offset(intptr_t offset) const;
 920   virtual const TypePtr *add_offset( intptr_t offset ) const;
 921   virtual bool eq(const Type *t) const;
 922   virtual int  hash() const;             // Type specific hashing
 923 
 924   virtual bool singleton(void) const;    // TRUE if type is a singleton
 925   virtual bool empty(void) const;        // TRUE if type is vacuous
 926   virtual const Type *xmeet( const Type *t ) const;
 927   virtual const Type *xmeet_helper( const Type *t ) const;
 928   Offset meet_offset(int offset) const;
 929   Offset dual_offset() const;
 930   virtual const Type *xdual() const;    // Compute dual right now.
 931 
 932   // meet, dual and join over pointer equivalence sets
 933   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 934   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 935 
 936   // This is textually confusing unless one recalls that
 937   // join(t) == dual()->meet(t->dual())->dual().
 938   PTR join_ptr( const PTR in_ptr ) const {
 939     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 940   }
 941 
 942   // Speculative type helper methods.
 943   virtual const TypePtr* speculative() const { return _speculative; }
 944   int inline_depth() const                   { return _inline_depth; }
 945   virtual ciKlass* speculative_type() const;
 946   virtual ciKlass* speculative_type_not_null() const;
 947   virtual bool speculative_maybe_null() const;
 948   virtual const Type* remove_speculative() const;
 949   virtual const Type* cleanup_speculative() const;
 950   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
 951   virtual bool would_improve_ptr(bool maybe_null) const;
 952   virtual const TypePtr* with_inline_depth(int depth) const;
 953 
 954   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
 955 
 956   // Tests for relation to centerline of type lattice:
 957   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 958   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 959   // Convenience common pre-built types.
 960   static const TypePtr *NULL_PTR;
 961   static const TypePtr *NOTNULL;
 962   static const TypePtr *BOTTOM;
 963 #ifndef PRODUCT
 964   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 965 #endif
 966 };
 967 
 968 //------------------------------TypeRawPtr-------------------------------------
 969 // Class of raw pointers, pointers to things other than Oops.  Examples
 970 // include the stack pointer, top of heap, card-marking area, handles, etc.
 971 class TypeRawPtr : public TypePtr {
 972 protected:
 973   TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
 974 public:
 975   virtual bool eq( const Type *t ) const;
 976   virtual int  hash() const;     // Type specific hashing
 977 
 978   const address _bits;          // Constant value, if applicable
 979 
 980   static const TypeRawPtr *make( PTR ptr );
 981   static const TypeRawPtr *make( address bits );
 982 
 983   // Return a 'ptr' version of this type
 984   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 985 
 986   virtual intptr_t get_con() const;
 987 
 988   virtual const TypePtr *add_offset( intptr_t offset ) const;
 989 
 990   virtual const Type *xmeet( const Type *t ) const;
 991   virtual const Type *xdual() const;    // Compute dual right now.
 992   // Convenience common pre-built types.
 993   static const TypeRawPtr *BOTTOM;
 994   static const TypeRawPtr *NOTNULL;
 995 #ifndef PRODUCT
 996   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 997 #endif
 998 };
 999 
1000 //------------------------------TypeOopPtr-------------------------------------
1001 // Some kind of oop (Java pointer), either instance or array.
1002 class TypeOopPtr : public TypePtr {
1003 protected:
1004   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id,
1005              const TypePtr* speculative, int inline_depth);
1006 public:
1007   virtual bool eq( const Type *t ) const;
1008   virtual int  hash() const;             // Type specific hashing
1009   virtual bool singleton(void) const;    // TRUE if type is a singleton
1010   enum {
1011    InstanceTop = -1,   // undefined instance
1012    InstanceBot = 0     // any possible instance
1013   };
1014 protected:
1015 
1016   // Oop is NULL, unless this is a constant oop.
1017   ciObject*     _const_oop;   // Constant oop
1018   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
1019   ciKlass*      _klass;       // Klass object
1020   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1021   bool          _klass_is_exact;
1022   bool          _is_ptr_to_narrowoop;
1023   bool          _is_ptr_to_narrowklass;
1024   bool          _is_ptr_to_boxed_value;
1025 
1026   // If not InstanceTop or InstanceBot, indicates that this is
1027   // a particular instance of this type which is distinct.
1028   // This is the node index of the allocation node creating this instance.
1029   int           _instance_id;
1030 
1031   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1032 
1033   int dual_instance_id() const;
1034   int meet_instance_id(int uid) const;
1035 
1036   // Do not allow interface-vs.-noninterface joins to collapse to top.
1037   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1038 
1039 public:
1040   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1041   // Respects UseUniqueSubclasses.
1042   // If the klass is final, the resulting type will be exact.
1043   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
1044     return make_from_klass_common(klass, true, false);
1045   }
1046   // Same as before, but will produce an exact type, even if
1047   // the klass is not final, as long as it has exactly one implementation.
1048   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
1049     return make_from_klass_common(klass, true, true);
1050   }
1051   // Same as before, but does not respects UseUniqueSubclasses.
1052   // Use this only for creating array element types.
1053   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
1054     return make_from_klass_common(klass, false, false);
1055   }
1056   // Creates a singleton type given an object.
1057   // If the object cannot be rendered as a constant,
1058   // may return a non-singleton type.
1059   // If require_constant, produce a NULL if a singleton is not possible.
1060   static const TypeOopPtr* make_from_constant(ciObject* o,
1061                                               bool require_constant = false);
1062 
1063   // Make a generic (unclassed) pointer to an oop.
1064   static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1065                                 const TypePtr* speculative = NULL,
1066                                 int inline_depth = InlineDepthBottom);
1067 
1068   ciObject* const_oop()    const { return _const_oop; }
1069   virtual ciKlass* klass() const { return _klass;     }
1070   bool klass_is_exact()    const { return _klass_is_exact; }
1071 
1072   // Returns true if this pointer points at memory which contains a
1073   // compressed oop references.
1074   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1075   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1076   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1077   bool is_known_instance()       const { return _instance_id > 0; }
1078   int  instance_id()             const { return _instance_id; }
1079   bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1080 
1081   virtual intptr_t get_con() const;
1082 
1083   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1084 
1085   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1086 
1087   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1088 
1089   // corresponding pointer to klass, for a given instance
1090   const TypeKlassPtr* as_klass_type() const;
1091 
1092   virtual const TypePtr *add_offset( intptr_t offset ) const;
1093 
1094   // Speculative type helper methods.
1095   virtual const Type* remove_speculative() const;
1096   virtual const Type* cleanup_speculative() const;
1097   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1098   virtual const TypePtr* with_inline_depth(int depth) const;
1099 
1100   virtual const Type *xdual() const;    // Compute dual right now.
1101   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1102   virtual const Type *xmeet_helper(const Type *t) const;
1103 
1104   // Convenience common pre-built type.
1105   static const TypeOopPtr *BOTTOM;
1106 #ifndef PRODUCT
1107   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1108 #endif
1109 };
1110 
1111 //------------------------------TypeInstPtr------------------------------------
1112 // Class of Java object pointers, pointing either to non-array Java instances
1113 // or to a Klass* (including array klasses).
1114 class TypeInstPtr : public TypeOopPtr {
1115   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id,
1116               const TypePtr* speculative, int inline_depth);
1117   virtual bool eq( const Type *t ) const;
1118   virtual int  hash() const;             // Type specific hashing
1119 
1120   ciSymbol*  _name;        // class name
1121 
1122  public:
1123   ciSymbol* name()         const { return _name; }
1124 
1125   bool  is_loaded() const { return _klass->is_loaded(); }
1126 
1127   // Make a pointer to a constant oop.
1128   static const TypeInstPtr *make(ciObject* o) {
1129     return make(TypePtr::Constant, o->klass(), true, o, Offset(0), InstanceBot);
1130   }
1131   // Make a pointer to a constant oop with offset.
1132   static const TypeInstPtr* make(ciObject* o, Offset offset) {
1133     return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
1134   }
1135 
1136   // Make a pointer to some value of type klass.
1137   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
1138     return make(ptr, klass, false, NULL, Offset(0), InstanceBot);
1139   }
1140 
1141   // Make a pointer to some non-polymorphic value of exactly type klass.
1142   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1143     return make(ptr, klass, true, NULL, Offset(0), InstanceBot);
1144   }
1145 
1146   // Make a pointer to some value of type klass with offset.
1147   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1148     return make(ptr, klass, false, NULL, offset, InstanceBot);
1149   }
1150 
1151   // Make a pointer to an oop.
1152   static const TypeInstPtr* make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset,
1153                                  int instance_id = InstanceBot,
1154                                  const TypePtr* speculative = NULL,
1155                                  int inline_depth = InlineDepthBottom);
1156 
1157   /** Create constant type for a constant boxed value */
1158   const Type* get_const_boxed_value() const;
1159 
1160   // If this is a java.lang.Class constant, return the type for it or NULL.
1161   // Pass to Type::get_const_type to turn it to a type, which will usually
1162   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1163   ciType* java_mirror_type() const;
1164 
1165   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1166 
1167   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1168 
1169   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1170 
1171   virtual const TypePtr *add_offset( intptr_t offset ) const;
1172 
1173   // Speculative type helper methods.
1174   virtual const Type* remove_speculative() const;
1175   virtual const TypePtr* with_inline_depth(int depth) const;
1176 
1177   // the core of the computation of the meet of 2 types
1178   virtual const Type *xmeet_helper(const Type *t) const;
1179   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
1180   virtual const Type *xdual() const;    // Compute dual right now.
1181 
1182   // Convenience common pre-built types.
1183   static const TypeInstPtr *NOTNULL;
1184   static const TypeInstPtr *BOTTOM;
1185   static const TypeInstPtr *MIRROR;
1186   static const TypeInstPtr *MARK;
1187   static const TypeInstPtr *KLASS;
1188 #ifndef PRODUCT
1189   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1190 #endif
1191 };
1192 
1193 //------------------------------TypeAryPtr-------------------------------------
1194 // Class of Java array pointers
1195 class TypeAryPtr : public TypeOopPtr {
1196   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1197               Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1198               const TypePtr* speculative, int inline_depth)
1199     : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative, inline_depth),
1200     _ary(ary),
1201     _is_autobox_cache(is_autobox_cache),
1202     _field_offset(field_offset)
1203  {
1204 #ifdef ASSERT
1205     if (k != NULL) {
1206       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
1207       ciKlass* ck = compute_klass(true);
1208       if (k != ck) {
1209         this->dump(); tty->cr();
1210         tty->print(" k: ");
1211         k->print(); tty->cr();
1212         tty->print("ck: ");
1213         if (ck != NULL) ck->print();
1214         else tty->print("<NULL>");
1215         tty->cr();
1216         assert(false, "unexpected TypeAryPtr::_klass");
1217       }
1218     }
1219 #endif
1220   }
1221   virtual bool eq( const Type *t ) const;
1222   virtual int hash() const;     // Type specific hashing
1223   const TypeAry *_ary;          // Array we point into
1224   const bool     _is_autobox_cache;
1225   Offset meet_field_offset(int offset) const;
1226   Offset dual_field_offset() const;
1227 
1228   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1229 
1230 public:
1231   // For flattened value type arrays, each field of the value type in
1232   // the array has its own memory slice so we need to keep track of
1233   // which field is accessed
1234   const Offset   _field_offset;
1235   // Accessors
1236   ciKlass* klass() const;
1237   const TypeAry* ary() const  { return _ary; }
1238   const Type*    elem() const { return _ary->_elem; }
1239   const TypeInt* size() const { return _ary->_size; }
1240   bool      is_stable() const { return _ary->_stable; }
1241 
1242   bool is_autobox_cache() const { return _is_autobox_cache; }
1243 
1244   static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1245                                 Offset field_offset = Offset::bottom,
1246                                 int instance_id = InstanceBot,
1247                                 const TypePtr* speculative = NULL,
1248                                 int inline_depth = InlineDepthBottom);
1249   // Constant pointer to array
1250   static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1251                                 Offset field_offset = Offset::bottom,
1252                                 int instance_id = InstanceBot,
1253                                 const TypePtr* speculative = NULL,
1254                                 int inline_depth = InlineDepthBottom,
1255                                 bool is_autobox_cache = false);
1256 
1257   // Return a 'ptr' version of this type
1258   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1259 
1260   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1261 
1262   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1263 
1264   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1265   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1266 
1267   virtual bool empty(void) const;        // TRUE if type is vacuous
1268   virtual const TypePtr *add_offset( intptr_t offset ) const;
1269 
1270   // Speculative type helper methods.
1271   virtual const Type* remove_speculative() const;
1272   virtual const TypePtr* with_inline_depth(int depth) const;
1273 
1274   // the core of the computation of the meet of 2 types
1275   virtual const Type *xmeet_helper(const Type *t) const;
1276   virtual const Type *xdual() const;    // Compute dual right now.
1277 
1278   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1279   int stable_dimension() const;
1280 
1281   const TypeAryPtr* cast_to_autobox_cache(bool cache) const;
1282 
1283   const int field_offset() const { return _field_offset.get(); }
1284   const TypeAryPtr* with_field_offset(int offset) const;
1285   const TypePtr* with_field_offset_and_offset(intptr_t offset) const;
1286 
1287   // Convenience common pre-built types.
1288   static const TypeAryPtr *RANGE;
1289   static const TypeAryPtr *OOPS;
1290   static const TypeAryPtr *NARROWOOPS;
1291   static const TypeAryPtr *BYTES;
1292   static const TypeAryPtr *SHORTS;
1293   static const TypeAryPtr *CHARS;
1294   static const TypeAryPtr *INTS;
1295   static const TypeAryPtr *LONGS;
1296   static const TypeAryPtr *FLOATS;
1297   static const TypeAryPtr *DOUBLES;
1298   // selects one of the above:
1299   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1300     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1301     return _array_body_type[elem];
1302   }
1303   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1304   // sharpen the type of an int which is used as an array size
1305 #ifdef ASSERT
1306   // One type is interface, the other is oop
1307   virtual bool interface_vs_oop(const Type *t) const;
1308 #endif
1309 #ifndef PRODUCT
1310   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1311 #endif
1312 };
1313 
1314 //------------------------------TypeValueTypePtr-------------------------------------
1315 // Class of value type pointers
1316 class TypeValueTypePtr : public TypeOopPtr {
1317   TypeValueTypePtr(const TypeValueType* vt, PTR ptr, ciObject* o, Offset offset, int instance_id, const TypePtr* speculative, int inline_depth)
1318     : TypeOopPtr(ValueTypePtr, ptr, vt->value_klass(), true, o, offset, instance_id, speculative, inline_depth) {
1319     _vt = vt;
1320   }
1321 
1322   const TypeValueType* _vt;    // Value type we point to
1323 
1324 public:
1325   // Make a pointer to a value type
1326   static const TypeValueTypePtr* make(const TypeValueType* vt, PTR ptr = TypePtr::BotPTR, ciObject* o = NULL, Offset offset = Offset(0),
1327                                       int instance_id = InstanceBot, const TypePtr* speculative = NULL, int inline_depth = InlineDepthBottom);
1328   // Make a pointer to a value type
1329   static const TypeValueTypePtr* make(PTR ptr, ciValueKlass* vk, ciObject* o = NULL) { return make(TypeValueType::make(vk), ptr, o); }
1330   // Make a pointer to a constant value type
1331   static const TypeValueTypePtr* make(ciObject* o) { return make(TypePtr::Constant, o->klass()->as_value_klass(), o);  }
1332 
1333   const TypeValueType* value_type() const { return _vt; }
1334 
1335   virtual const TypePtr* add_offset(intptr_t offset) const;
1336 
1337   virtual const Type* cast_to_ptr_type(PTR ptr) const;
1338   virtual const TypeOopPtr* cast_to_instance_id(int instance_id) const;
1339 
1340   virtual bool eq(const Type* t) const;
1341   virtual int  hash() const;             // Type specific hashing
1342   virtual bool empty(void) const;        // TRUE if type is vacuous
1343 
1344   virtual const Type* xmeet_helper(const Type* t) const;
1345   virtual const Type* xdual() const;
1346 
1347 #ifndef PRODUCT
1348   virtual void dump2(Dict &d, uint depth, outputStream* st) const; // Specialized per-Type dumping
1349 #endif
1350 };
1351 
1352 //------------------------------TypeMetadataPtr-------------------------------------
1353 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1354 class TypeMetadataPtr : public TypePtr {
1355 protected:
1356   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1357   // Do not allow interface-vs.-noninterface joins to collapse to top.
1358   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1359 public:
1360   virtual bool eq( const Type *t ) const;
1361   virtual int  hash() const;             // Type specific hashing
1362   virtual bool singleton(void) const;    // TRUE if type is a singleton
1363 
1364 private:
1365   ciMetadata*   _metadata;
1366 
1367 public:
1368   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1369 
1370   static const TypeMetadataPtr* make(ciMethod* m);
1371   static const TypeMetadataPtr* make(ciMethodData* m);
1372 
1373   ciMetadata* metadata() const { return _metadata; }
1374 
1375   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1376 
1377   virtual const TypePtr *add_offset( intptr_t offset ) const;
1378 
1379   virtual const Type *xmeet( const Type *t ) const;
1380   virtual const Type *xdual() const;    // Compute dual right now.
1381 
1382   virtual intptr_t get_con() const;
1383 
1384   // Convenience common pre-built types.
1385   static const TypeMetadataPtr *BOTTOM;
1386 
1387 #ifndef PRODUCT
1388   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1389 #endif
1390 };
1391 
1392 //------------------------------TypeKlassPtr-----------------------------------
1393 // Class of Java Klass pointers
1394 class TypeKlassPtr : public TypePtr {
1395   TypeKlassPtr(PTR ptr, ciKlass* klass, Offset offset);
1396 
1397 protected:
1398   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1399  public:
1400   virtual bool eq( const Type *t ) const;
1401   virtual int hash() const;             // Type specific hashing
1402   virtual bool singleton(void) const;    // TRUE if type is a singleton
1403  private:
1404 
1405   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1406 
1407   ciKlass* _klass;
1408 
1409   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1410   bool          _klass_is_exact;
1411 
1412 public:
1413   ciSymbol* name()  const { return klass()->name(); }
1414 
1415   ciKlass* klass() const { return  _klass; }
1416   bool klass_is_exact()    const { return _klass_is_exact; }
1417 
1418   bool  is_loaded() const { return klass()->is_loaded(); }
1419 
1420   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1421   // Respects UseUniqueSubclasses.
1422   // If the klass is final, the resulting type will be exact.
1423   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
1424     return make_from_klass_common(klass, true, false);
1425   }
1426   // Same as before, but will produce an exact type, even if
1427   // the klass is not final, as long as it has exactly one implementation.
1428   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
1429     return make_from_klass_common(klass, true, true);
1430   }
1431   // Same as before, but does not respects UseUniqueSubclasses.
1432   // Use this only for creating array element types.
1433   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
1434     return make_from_klass_common(klass, false, false);
1435   }
1436 
1437   // Make a generic (unclassed) pointer to metadata.
1438   static const TypeKlassPtr* make(PTR ptr, Offset offset);
1439 
1440   // ptr to klass 'k'
1441   static const TypeKlassPtr* make(ciKlass* k) { return make( TypePtr::Constant, k, Offset(0)); }
1442   // ptr to klass 'k' with offset
1443   static const TypeKlassPtr* make(ciKlass* k, Offset offset) { return make( TypePtr::Constant, k, offset); }
1444   // ptr to klass 'k' or sub-klass
1445   static const TypeKlassPtr* make(PTR ptr, ciKlass* k, Offset offset);
1446 
1447   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1448 
1449   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1450 
1451   // corresponding pointer to instance, for a given class
1452   const TypeOopPtr* as_instance_type() const;
1453 
1454   virtual const TypePtr *add_offset( intptr_t offset ) const;
1455   virtual const Type    *xmeet( const Type *t ) const;
1456   virtual const Type    *xdual() const;      // Compute dual right now.
1457 
1458   virtual intptr_t get_con() const;
1459 
1460   // Convenience common pre-built types.
1461   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1462   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1463 #ifndef PRODUCT
1464   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1465 #endif
1466 };
1467 
1468 class TypeNarrowPtr : public Type {
1469 protected:
1470   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1471 
1472   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
1473                                                   Type(t) {
1474     assert(ptrtype->offset() == 0 ||
1475            ptrtype->offset() == OffsetBot ||
1476            ptrtype->offset() == OffsetTop, "no real offsets");
1477   }
1478 
1479   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1480   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1481   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1482   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1483   // Do not allow interface-vs.-noninterface joins to collapse to top.
1484   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1485 public:
1486   virtual bool eq( const Type *t ) const;
1487   virtual int  hash() const;             // Type specific hashing
1488   virtual bool singleton(void) const;    // TRUE if type is a singleton
1489 
1490   virtual const Type *xmeet( const Type *t ) const;
1491   virtual const Type *xdual() const;    // Compute dual right now.
1492 
1493   virtual intptr_t get_con() const;
1494 
1495   virtual bool empty(void) const;        // TRUE if type is vacuous
1496 
1497   // returns the equivalent ptr type for this compressed pointer
1498   const TypePtr *get_ptrtype() const {
1499     return _ptrtype;
1500   }
1501 
1502 #ifndef PRODUCT
1503   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1504 #endif
1505 };
1506 
1507 //------------------------------TypeNarrowOop----------------------------------
1508 // A compressed reference to some kind of Oop.  This type wraps around
1509 // a preexisting TypeOopPtr and forwards most of it's operations to
1510 // the underlying type.  It's only real purpose is to track the
1511 // oopness of the compressed oop value when we expose the conversion
1512 // between the normal and the compressed form.
1513 class TypeNarrowOop : public TypeNarrowPtr {
1514 protected:
1515   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1516   }
1517 
1518   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1519     return t->isa_narrowoop();
1520   }
1521 
1522   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1523     return t->is_narrowoop();
1524   }
1525 
1526   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1527     return new TypeNarrowOop(t);
1528   }
1529 
1530   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1531     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1532   }
1533 
1534 public:
1535 
1536   static const TypeNarrowOop *make( const TypePtr* type);
1537 
1538   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1539     return make(TypeOopPtr::make_from_constant(con, require_constant));
1540   }
1541 
1542   static const TypeNarrowOop *BOTTOM;
1543   static const TypeNarrowOop *NULL_PTR;
1544 
1545   virtual const Type* remove_speculative() const;
1546   virtual const Type* cleanup_speculative() const;
1547 
1548 #ifndef PRODUCT
1549   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1550 #endif
1551 };
1552 
1553 //------------------------------TypeNarrowKlass----------------------------------
1554 // A compressed reference to klass pointer.  This type wraps around a
1555 // preexisting TypeKlassPtr and forwards most of it's operations to
1556 // the underlying type.
1557 class TypeNarrowKlass : public TypeNarrowPtr {
1558 protected:
1559   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1560   }
1561 
1562   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1563     return t->isa_narrowklass();
1564   }
1565 
1566   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1567     return t->is_narrowklass();
1568   }
1569 
1570   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1571     return new TypeNarrowKlass(t);
1572   }
1573 
1574   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1575     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1576   }
1577 
1578 public:
1579   static const TypeNarrowKlass *make( const TypePtr* type);
1580 
1581   // static const TypeNarrowKlass *BOTTOM;
1582   static const TypeNarrowKlass *NULL_PTR;
1583 
1584 #ifndef PRODUCT
1585   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1586 #endif
1587 };
1588 
1589 //------------------------------TypeFunc---------------------------------------
1590 // Class of Array Types
1591 class TypeFunc : public Type {
1592   TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range) : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range(range) {}
1593   virtual bool eq( const Type *t ) const;
1594   virtual int  hash() const;             // Type specific hashing
1595   virtual bool singleton(void) const;    // TRUE if type is a singleton
1596   virtual bool empty(void) const;        // TRUE if type is vacuous
1597 
1598   // Domains of inputs: value type arguments are not passed by
1599   // reference, instead each field of the value type is passed as an
1600   // argument. We maintain 2 views of the argument list here: one
1601   // based on the signature (with a value type argument as a single
1602   // slot), one based on the actual calling convention (with a value
1603   // type argument as a list of its fields).
1604   const TypeTuple* const _domain_sig;
1605   const TypeTuple* const _domain_cc;
1606   const TypeTuple* const _range;      // Range of results
1607 
1608 public:
1609   // Constants are shared among ADLC and VM
1610   enum { Control    = AdlcVMDeps::Control,
1611          I_O        = AdlcVMDeps::I_O,
1612          Memory     = AdlcVMDeps::Memory,
1613          FramePtr   = AdlcVMDeps::FramePtr,
1614          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1615          Parms      = AdlcVMDeps::Parms
1616   };
1617 
1618 
1619   // Accessors:
1620   const TypeTuple* domain_sig() const { return _domain_sig; }
1621   const TypeTuple* domain_cc() const { return _domain_cc; }
1622   const TypeTuple* range()  const { return _range; }
1623 
1624   static const TypeFunc *make(ciMethod* method);
1625   static const TypeFunc *make(ciSignature signature, const Type* extra);
1626   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* domain_cc, const TypeTuple* range);
1627   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1628 
1629   virtual const Type *xmeet( const Type *t ) const;
1630   virtual const Type *xdual() const;    // Compute dual right now.
1631 
1632   BasicType return_type() const;
1633 
1634 #ifndef PRODUCT
1635   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1636 #endif
1637   // Convenience common pre-built types.
1638 };
1639 
1640 //------------------------------accessors--------------------------------------
1641 inline bool Type::is_ptr_to_narrowoop() const {
1642 #ifdef _LP64
1643   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1644 #else
1645   return false;
1646 #endif
1647 }
1648 
1649 inline bool Type::is_ptr_to_narrowklass() const {
1650 #ifdef _LP64
1651   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1652 #else
1653   return false;
1654 #endif
1655 }
1656 
1657 inline float Type::getf() const {
1658   assert( _base == FloatCon, "Not a FloatCon" );
1659   return ((TypeF*)this)->_f;
1660 }
1661 
1662 inline double Type::getd() const {
1663   assert( _base == DoubleCon, "Not a DoubleCon" );
1664   return ((TypeD*)this)->_d;
1665 }
1666 
1667 inline const TypeInt *Type::is_int() const {
1668   assert( _base == Int, "Not an Int" );
1669   return (TypeInt*)this;
1670 }
1671 
1672 inline const TypeInt *Type::isa_int() const {
1673   return ( _base == Int ? (TypeInt*)this : NULL);
1674 }
1675 
1676 inline const TypeLong *Type::is_long() const {
1677   assert( _base == Long, "Not a Long" );
1678   return (TypeLong*)this;
1679 }
1680 
1681 inline const TypeLong *Type::isa_long() const {
1682   return ( _base == Long ? (TypeLong*)this : NULL);
1683 }
1684 
1685 inline const TypeF *Type::isa_float() const {
1686   return ((_base == FloatTop ||
1687            _base == FloatCon ||
1688            _base == FloatBot) ? (TypeF*)this : NULL);
1689 }
1690 
1691 inline const TypeF *Type::is_float_constant() const {
1692   assert( _base == FloatCon, "Not a Float" );
1693   return (TypeF*)this;
1694 }
1695 
1696 inline const TypeF *Type::isa_float_constant() const {
1697   return ( _base == FloatCon ? (TypeF*)this : NULL);
1698 }
1699 
1700 inline const TypeD *Type::isa_double() const {
1701   return ((_base == DoubleTop ||
1702            _base == DoubleCon ||
1703            _base == DoubleBot) ? (TypeD*)this : NULL);
1704 }
1705 
1706 inline const TypeD *Type::is_double_constant() const {
1707   assert( _base == DoubleCon, "Not a Double" );
1708   return (TypeD*)this;
1709 }
1710 
1711 inline const TypeD *Type::isa_double_constant() const {
1712   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1713 }
1714 
1715 inline const TypeTuple *Type::is_tuple() const {
1716   assert( _base == Tuple, "Not a Tuple" );
1717   return (TypeTuple*)this;
1718 }
1719 
1720 inline const TypeAry *Type::is_ary() const {
1721   assert( _base == Array , "Not an Array" );
1722   return (TypeAry*)this;
1723 }
1724 
1725 inline const TypeVect *Type::is_vect() const {
1726   assert( _base >= VectorS && _base <= VectorZ, "Not a Vector" );
1727   return (TypeVect*)this;
1728 }
1729 
1730 inline const TypeVect *Type::isa_vect() const {
1731   return (_base >= VectorS && _base <= VectorZ) ? (TypeVect*)this : NULL;
1732 }
1733 
1734 inline const TypePtr *Type::is_ptr() const {
1735   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1736   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1737   return (TypePtr*)this;
1738 }
1739 
1740 inline const TypePtr *Type::isa_ptr() const {
1741   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1742   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1743 }
1744 
1745 inline const TypeOopPtr *Type::is_oopptr() const {
1746   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1747   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1748   return (TypeOopPtr*)this;
1749 }
1750 
1751 inline const TypeOopPtr *Type::isa_oopptr() const {
1752   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1753   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1754 }
1755 
1756 inline const TypeRawPtr *Type::isa_rawptr() const {
1757   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1758 }
1759 
1760 inline const TypeRawPtr *Type::is_rawptr() const {
1761   assert( _base == RawPtr, "Not a raw pointer" );
1762   return (TypeRawPtr*)this;
1763 }
1764 
1765 inline const TypeInstPtr *Type::isa_instptr() const {
1766   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1767 }
1768 
1769 inline const TypeInstPtr *Type::is_instptr() const {
1770   assert( _base == InstPtr, "Not an object pointer" );
1771   return (TypeInstPtr*)this;
1772 }
1773 
1774 inline const TypeAryPtr *Type::isa_aryptr() const {
1775   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1776 }
1777 
1778 inline const TypeAryPtr *Type::is_aryptr() const {
1779   assert( _base == AryPtr, "Not an array pointer" );
1780   return (TypeAryPtr*)this;
1781 }
1782 
1783 inline const TypeValueType* Type::isa_valuetype() const {
1784   return (_base == ValueType) ? (TypeValueType*)this : NULL;
1785 }
1786 
1787 inline const TypeValueType* Type::is_valuetype() const {
1788   assert(_base == ValueType, "Not a value type");
1789   return (TypeValueType*)this;
1790 }
1791 
1792 inline const TypeValueTypePtr* Type::isa_valuetypeptr() const {
1793   return (_base == ValueTypePtr) ? (TypeValueTypePtr*)this : NULL;
1794 }
1795 
1796 inline const TypeValueTypePtr* Type::is_valuetypeptr() const {
1797   assert(_base == ValueTypePtr, "Not a value type pointer");
1798   return (TypeValueTypePtr*)this;
1799 }
1800 
1801 inline const TypeNarrowOop *Type::is_narrowoop() const {
1802   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1803   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1804   return (TypeNarrowOop*)this;
1805 }
1806 
1807 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1808   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1809   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1810 }
1811 
1812 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1813   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1814   return (TypeNarrowKlass*)this;
1815 }
1816 
1817 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1818   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1819 }
1820 
1821 inline const TypeMetadataPtr *Type::is_metadataptr() const {
1822   // MetadataPtr is the first and CPCachePtr the last
1823   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
1824   return (TypeMetadataPtr*)this;
1825 }
1826 
1827 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
1828   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
1829 }
1830 
1831 inline const TypeKlassPtr *Type::isa_klassptr() const {
1832   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1833 }
1834 
1835 inline const TypeKlassPtr *Type::is_klassptr() const {
1836   assert( _base == KlassPtr, "Not a klass pointer" );
1837   return (TypeKlassPtr*)this;
1838 }
1839 
1840 inline const TypePtr* Type::make_ptr() const {
1841   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1842                               ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
1843                                                        isa_ptr());
1844 }
1845 
1846 inline const TypeOopPtr* Type::make_oopptr() const {
1847   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
1848 }
1849 
1850 inline const TypeNarrowOop* Type::make_narrowoop() const {
1851   return (_base == NarrowOop) ? is_narrowoop() :
1852                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1853 }
1854 
1855 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1856   return (_base == NarrowKlass) ? is_narrowklass() :
1857                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1858 }
1859 
1860 inline bool Type::is_floatingpoint() const {
1861   if( (_base == FloatCon)  || (_base == FloatBot) ||
1862       (_base == DoubleCon) || (_base == DoubleBot) )
1863     return true;
1864   return false;
1865 }
1866 
1867 inline bool Type::is_ptr_to_boxing_obj() const {
1868   const TypeInstPtr* tp = isa_instptr();
1869   return (tp != NULL) && (tp->offset() == 0) &&
1870          tp->klass()->is_instance_klass()  &&
1871          tp->klass()->as_instance_klass()->is_box_klass();
1872 }
1873 
1874 
1875 // ===============================================================
1876 // Things that need to be 64-bits in the 64-bit build but
1877 // 32-bits in the 32-bit build.  Done this way to get full
1878 // optimization AND strong typing.
1879 #ifdef _LP64
1880 
1881 // For type queries and asserts
1882 #define is_intptr_t  is_long
1883 #define isa_intptr_t isa_long
1884 #define find_intptr_t_type find_long_type
1885 #define find_intptr_t_con  find_long_con
1886 #define TypeX        TypeLong
1887 #define Type_X       Type::Long
1888 #define TypeX_X      TypeLong::LONG
1889 #define TypeX_ZERO   TypeLong::ZERO
1890 // For 'ideal_reg' machine registers
1891 #define Op_RegX      Op_RegL
1892 // For phase->intcon variants
1893 #define MakeConX     longcon
1894 #define ConXNode     ConLNode
1895 // For array index arithmetic
1896 #define MulXNode     MulLNode
1897 #define AndXNode     AndLNode
1898 #define OrXNode      OrLNode
1899 #define CmpXNode     CmpLNode
1900 #define SubXNode     SubLNode
1901 #define LShiftXNode  LShiftLNode
1902 // For object size computation:
1903 #define AddXNode     AddLNode
1904 #define RShiftXNode  RShiftLNode
1905 // For card marks and hashcodes
1906 #define URShiftXNode URShiftLNode
1907 // UseOptoBiasInlining
1908 #define XorXNode     XorLNode
1909 #define StoreXConditionalNode StoreLConditionalNode
1910 // Opcodes
1911 #define Op_LShiftX   Op_LShiftL
1912 #define Op_AndX      Op_AndL
1913 #define Op_AddX      Op_AddL
1914 #define Op_SubX      Op_SubL
1915 #define Op_XorX      Op_XorL
1916 #define Op_URShiftX  Op_URShiftL
1917 // conversions
1918 #define ConvI2X(x)   ConvI2L(x)
1919 #define ConvL2X(x)   (x)
1920 #define ConvX2I(x)   ConvL2I(x)
1921 #define ConvX2L(x)   (x)
1922 #define ConvX2UL(x)  (x)
1923 
1924 #else
1925 
1926 // For type queries and asserts
1927 #define is_intptr_t  is_int
1928 #define isa_intptr_t isa_int
1929 #define find_intptr_t_type find_int_type
1930 #define find_intptr_t_con  find_int_con
1931 #define TypeX        TypeInt
1932 #define Type_X       Type::Int
1933 #define TypeX_X      TypeInt::INT
1934 #define TypeX_ZERO   TypeInt::ZERO
1935 // For 'ideal_reg' machine registers
1936 #define Op_RegX      Op_RegI
1937 // For phase->intcon variants
1938 #define MakeConX     intcon
1939 #define ConXNode     ConINode
1940 // For array index arithmetic
1941 #define MulXNode     MulINode
1942 #define AndXNode     AndINode
1943 #define OrXNode      OrINode
1944 #define CmpXNode     CmpINode
1945 #define SubXNode     SubINode
1946 #define LShiftXNode  LShiftINode
1947 // For object size computation:
1948 #define AddXNode     AddINode
1949 #define RShiftXNode  RShiftINode
1950 // For card marks and hashcodes
1951 #define URShiftXNode URShiftINode
1952 // UseOptoBiasInlining
1953 #define XorXNode     XorINode
1954 #define StoreXConditionalNode StoreIConditionalNode
1955 // Opcodes
1956 #define Op_LShiftX   Op_LShiftI
1957 #define Op_AndX      Op_AndI
1958 #define Op_AddX      Op_AddI
1959 #define Op_SubX      Op_SubI
1960 #define Op_XorX      Op_XorI
1961 #define Op_URShiftX  Op_URShiftI
1962 // conversions
1963 #define ConvI2X(x)   (x)
1964 #define ConvL2X(x)   ConvL2I(x)
1965 #define ConvX2I(x)   (x)
1966 #define ConvX2L(x)   ConvI2L(x)
1967 #define ConvX2UL(x)  ConvI2UL(x)
1968 
1969 #endif
1970 
1971 #endif // SHARE_VM_OPTO_TYPE_HPP