1 /*
   2  * Copyright (c) 2014, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Allocator.inline.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1CollectionSet.hpp"
  29 #include "gc/g1/g1OopClosures.inline.hpp"
  30 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  31 #include "gc/g1/g1RootClosures.hpp"
  32 #include "gc/g1/g1StringDedup.hpp"
  33 #include "gc/shared/gcTrace.hpp"
  34 #include "gc/shared/taskqueue.inline.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "oops/access.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/prefetch.inline.hpp"
  39 
  40 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id, size_t young_cset_length)
  41   : _g1h(g1h),
  42     _refs(g1h->task_queue(worker_id)),
  43     _dcq(&g1h->dirty_card_queue_set()),
  44     _ct(g1h->card_table()),
  45     _closures(NULL),
  46     _plab_allocator(NULL),
  47     _age_table(false),
  48     _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
  49     _scanner(g1h, this),
  50     _hash_seed(17),
  51     _worker_id(worker_id),
  52     _stack_drain_upper_threshold(GCDrainStackTargetSize * 2 + 1),
  53     _stack_drain_lower_threshold(GCDrainStackTargetSize),
  54     _trim_ticks(),
  55     _old_gen_is_full(false)
  56 {
  57   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  58   // we "sacrifice" entry 0 to keep track of surviving bytes for
  59   // non-young regions (where the age is -1)
  60   // We also add a few elements at the beginning and at the end in
  61   // an attempt to eliminate cache contention
  62   size_t real_length = 1 + young_cset_length;
  63   size_t array_length = PADDING_ELEM_NUM +
  64                       real_length +
  65                       PADDING_ELEM_NUM;
  66   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  67   if (_surviving_young_words_base == NULL)
  68     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  69                           "Not enough space for young surv histo.");
  70   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  71   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  72 
  73   _plab_allocator = new G1PLABAllocator(_g1h->allocator());
  74 
  75   _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
  76   // The dest for Young is used when the objects are aged enough to
  77   // need to be moved to the next space.
  78   _dest[InCSetState::Young]        = InCSetState::Old;
  79   _dest[InCSetState::Old]          = InCSetState::Old;
  80 
  81   _closures = G1EvacuationRootClosures::create_root_closures(this, _g1h);
  82 }
  83 
  84 // Pass locally gathered statistics to global state.
  85 void G1ParScanThreadState::flush(size_t* surviving_young_words) {
  86   _dcq.flush();
  87   // Update allocation statistics.
  88   _plab_allocator->flush_and_retire_stats();
  89   _g1h->g1_policy()->record_age_table(&_age_table);
  90 
  91   uint length = _g1h->collection_set()->young_region_length();
  92   for (uint region_index = 0; region_index < length; region_index++) {
  93     surviving_young_words[region_index] += _surviving_young_words[region_index];
  94   }
  95 }
  96 
  97 G1ParScanThreadState::~G1ParScanThreadState() {
  98   delete _plab_allocator;
  99   delete _closures;
 100   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
 101 }
 102 
 103 void G1ParScanThreadState::waste(size_t& wasted, size_t& undo_wasted) {
 104   _plab_allocator->waste(wasted, undo_wasted);
 105 }
 106 
 107 #ifdef ASSERT
 108 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
 109   assert(ref != NULL, "invariant");
 110   assert(UseCompressedOops, "sanity");
 111   assert(!has_partial_array_mask(ref), "ref=" PTR_FORMAT, p2i(ref));
 112   oop p = RawAccess<>::oop_load(ref);
 113   assert(_g1h->is_in_g1_reserved(p),
 114          "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 115   return true;
 116 }
 117 
 118 bool G1ParScanThreadState::verify_ref(oop* ref) const {
 119   assert(ref != NULL, "invariant");
 120   if (has_partial_array_mask(ref)) {
 121     // Must be in the collection set--it's already been copied.
 122     oop p = clear_partial_array_mask(ref);
 123     assert(_g1h->is_in_cset(p),
 124            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 125   } else {
 126     oop p = RawAccess<>::oop_load(ref);
 127     assert(_g1h->is_in_g1_reserved(p),
 128            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 129   }
 130   return true;
 131 }
 132 
 133 bool G1ParScanThreadState::verify_task(StarTask ref) const {
 134   if (ref.is_narrow()) {
 135     return verify_ref((narrowOop*) ref);
 136   } else {
 137     return verify_ref((oop*) ref);
 138   }
 139 }
 140 #endif // ASSERT
 141 
 142 void G1ParScanThreadState::trim_queue() {
 143   StarTask ref;
 144   do {
 145     // Fully drain the queue.
 146     trim_queue_to_threshold(0);
 147   } while (!_refs->is_empty());
 148 }
 149 
 150 HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
 151                                                       InCSetState* dest,
 152                                                       size_t word_sz,
 153                                                       bool previous_plab_refill_failed) {
 154   assert(state.is_in_cset_or_humongous(), "Unexpected state: " CSETSTATE_FORMAT, state.value());
 155   assert(dest->is_in_cset_or_humongous(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
 156 
 157   // Right now we only have two types of regions (young / old) so
 158   // let's keep the logic here simple. We can generalize it when necessary.
 159   if (dest->is_young()) {
 160     bool plab_refill_in_old_failed = false;
 161     HeapWord* const obj_ptr = _plab_allocator->allocate(InCSetState::Old,
 162                                                         word_sz,
 163                                                         &plab_refill_in_old_failed);
 164     // Make sure that we won't attempt to copy any other objects out
 165     // of a survivor region (given that apparently we cannot allocate
 166     // any new ones) to avoid coming into this slow path again and again.
 167     // Only consider failed PLAB refill here: failed inline allocations are
 168     // typically large, so not indicative of remaining space.
 169     if (previous_plab_refill_failed) {
 170       _tenuring_threshold = 0;
 171     }
 172 
 173     if (obj_ptr != NULL) {
 174       dest->set_old();
 175     } else {
 176       // We just failed to allocate in old gen. The same idea as explained above
 177       // for making survivor gen unavailable for allocation applies for old gen.
 178       _old_gen_is_full = plab_refill_in_old_failed;
 179     }
 180     return obj_ptr;
 181   } else {
 182     _old_gen_is_full = previous_plab_refill_failed;
 183     assert(dest->is_old(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
 184     // no other space to try.
 185     return NULL;
 186   }
 187 }
 188 
 189 InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
 190   if (state.is_young()) {
 191     age = !m->has_displaced_mark_helper() ? m->age()
 192                                           : m->displaced_mark_helper()->age();
 193     if (age < _tenuring_threshold) {
 194       return state;
 195     }
 196   }
 197   return dest(state);
 198 }
 199 
 200 void G1ParScanThreadState::report_promotion_event(InCSetState const dest_state,
 201                                                   oop const old, size_t word_sz, uint age,
 202                                                   HeapWord * const obj_ptr) const {
 203   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_state);
 204   if (alloc_buf->contains(obj_ptr)) {
 205     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz, age,
 206                                                              dest_state.value() == InCSetState::Old,
 207                                                              alloc_buf->word_sz());
 208   } else {
 209     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz, age,
 210                                                               dest_state.value() == InCSetState::Old);
 211   }
 212 }
 213 
 214 oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
 215                                                  oop const old,
 216                                                  markOop const old_mark) {
 217   const size_t word_sz = old->size();
 218   HeapRegion* const from_region = _g1h->heap_region_containing(old);
 219   // +1 to make the -1 indexes valid...
 220   const int young_index = from_region->young_index_in_cset()+1;
 221   assert( (from_region->is_young() && young_index >  0) ||
 222          (!from_region->is_young() && young_index == 0), "invariant" );
 223 
 224   uint age = 0;
 225   InCSetState dest_state = next_state(state, old_mark, age);
 226   // The second clause is to prevent premature evacuation failure in case there
 227   // is still space in survivor, but old gen is full.
 228   if (_old_gen_is_full && dest_state.is_old()) {
 229     return handle_evacuation_failure_par(old, old_mark);
 230   }
 231   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_state, word_sz);
 232 
 233   // PLAB allocations should succeed most of the time, so we'll
 234   // normally check against NULL once and that's it.
 235   if (obj_ptr == NULL) {
 236     bool plab_refill_failed = false;
 237     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_state, word_sz, &plab_refill_failed);
 238     if (obj_ptr == NULL) {
 239       obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, plab_refill_failed);
 240       if (obj_ptr == NULL) {
 241         // This will either forward-to-self, or detect that someone else has
 242         // installed a forwarding pointer.
 243         return handle_evacuation_failure_par(old, old_mark);
 244       }
 245     }
 246     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
 247       // The events are checked individually as part of the actual commit
 248       report_promotion_event(dest_state, old, word_sz, age, obj_ptr);
 249     }
 250   }
 251 
 252   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 253   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 254 
 255 #ifndef PRODUCT
 256   // Should this evacuation fail?
 257   if (_g1h->evacuation_should_fail()) {
 258     // Doing this after all the allocation attempts also tests the
 259     // undo_allocation() method too.
 260     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz);
 261     return handle_evacuation_failure_par(old, old_mark);
 262   }
 263 #endif // !PRODUCT
 264 
 265   // We're going to allocate linearly, so might as well prefetch ahead.
 266   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 267 
 268   const oop obj = oop(obj_ptr);
 269   const oop forward_ptr = old->forward_to_atomic(obj);
 270   if (forward_ptr == NULL) {
 271     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
 272 
 273     if (dest_state.is_young()) {
 274       if (age < markOopDesc::max_age) {
 275         age++;
 276       }
 277       if (old_mark->has_displaced_mark_helper()) {
 278         // In this case, we have to install the mark word first,
 279         // otherwise obj looks to be forwarded (the old mark word,
 280         // which contains the forward pointer, was copied)
 281         obj->set_mark_raw(old_mark);
 282         markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
 283         old_mark->set_displaced_mark_helper(new_mark);
 284       } else {
 285         obj->set_mark_raw(old_mark->set_age(age));
 286       }
 287       _age_table.add(age, word_sz);
 288     } else {
 289       obj->set_mark_raw(old_mark);
 290     }
 291 
 292     if (G1StringDedup::is_enabled()) {
 293       const bool is_from_young = state.is_young();
 294       const bool is_to_young = dest_state.is_young();
 295       assert(is_from_young == _g1h->heap_region_containing(old)->is_young(),
 296              "sanity");
 297       assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(),
 298              "sanity");
 299       G1StringDedup::enqueue_from_evacuation(is_from_young,
 300                                              is_to_young,
 301                                              _worker_id,
 302                                              obj);
 303     }
 304 
 305     _surviving_young_words[young_index] += word_sz;
 306 
 307     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 308       // We keep track of the next start index in the length field of
 309       // the to-space object. The actual length can be found in the
 310       // length field of the from-space object.
 311       arrayOop(obj)->set_length(0);
 312       oop* old_p = set_partial_array_mask(old);
 313       do_oop_partial_array(old_p);
 314     } else {
 315       HeapRegion* const to_region = _g1h->heap_region_containing(obj_ptr);
 316       _scanner.set_region(to_region);
 317       obj->oop_iterate_backwards(&_scanner);
 318     }
 319     return obj;
 320   } else {
 321     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz);
 322     return forward_ptr;
 323   }
 324 }
 325 
 326 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
 327   assert(worker_id < _n_workers, "out of bounds access");
 328   if (_states[worker_id] == NULL) {
 329     _states[worker_id] = new G1ParScanThreadState(_g1h, worker_id, _young_cset_length);
 330   }
 331   return _states[worker_id];
 332 }
 333 
 334 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
 335   assert(_flushed, "thread local state from the per thread states should have been flushed");
 336   return _surviving_young_words_total;
 337 }
 338 
 339 void G1ParScanThreadStateSet::flush() {
 340   assert(!_flushed, "thread local state from the per thread states should be flushed once");
 341 
 342   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
 343     G1ParScanThreadState* pss = _states[worker_index];
 344 
 345     if (pss == NULL) {
 346       continue;
 347     }
 348 
 349     pss->flush(_surviving_young_words_total);
 350     delete pss;
 351     _states[worker_index] = NULL;
 352   }
 353   _flushed = true;
 354 }
 355 
 356 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
 357   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
 358 
 359   oop forward_ptr = old->forward_to_atomic(old);
 360   if (forward_ptr == NULL) {
 361     // Forward-to-self succeeded. We are the "owner" of the object.
 362     HeapRegion* r = _g1h->heap_region_containing(old);
 363 
 364     if (!r->evacuation_failed()) {
 365       r->set_evacuation_failed(true);
 366      _g1h->hr_printer()->evac_failure(r);
 367     }
 368 
 369     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
 370 
 371     _scanner.set_region(r);
 372     old->oop_iterate_backwards(&_scanner);
 373 
 374     return old;
 375   } else {
 376     // Forward-to-self failed. Either someone else managed to allocate
 377     // space for this object (old != forward_ptr) or they beat us in
 378     // self-forwarding it (old == forward_ptr).
 379     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
 380            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
 381            "should not be in the CSet",
 382            p2i(old), p2i(forward_ptr));
 383     return forward_ptr;
 384   }
 385 }
 386 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h, uint n_workers, size_t young_cset_length) :
 387     _g1h(g1h),
 388     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)),
 389     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length, mtGC)),
 390     _young_cset_length(young_cset_length),
 391     _n_workers(n_workers),
 392     _flushed(false) {
 393   for (uint i = 0; i < n_workers; ++i) {
 394     _states[i] = NULL;
 395   }
 396   memset(_surviving_young_words_total, 0, young_cset_length * sizeof(size_t));
 397 }
 398 
 399 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
 400   assert(_flushed, "thread local state from the per thread states should have been flushed");
 401   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
 402   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
 403 }