1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
  27 
  28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
  30 #include "gc_implementation/g1/survRateGroup.hpp"
  31 #include "gc_implementation/shared/ageTable.hpp"
  32 #include "gc_implementation/shared/spaceDecorator.hpp"
  33 #include "memory/space.inline.hpp"
  34 #include "memory/watermark.hpp"
  35 #include "utilities/macros.hpp"
  36 
  37 #if INCLUDE_ALL_GCS
  38 
  39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  40 // can be collected independently.
  41 
  42 // NOTE: Although a HeapRegion is a Space, its
  43 // Space::initDirtyCardClosure method must not be called.
  44 // The problem is that the existence of this method breaks
  45 // the independence of barrier sets from remembered sets.
  46 // The solution is to remove this method from the definition
  47 // of a Space.
  48 
  49 class CompactibleSpace;
  50 class ContiguousSpace;
  51 class HeapRegionRemSet;
  52 class HeapRegionRemSetIterator;
  53 class HeapRegion;
  54 class HeapRegionSetBase;
  55 
  56 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
  57 #define HR_FORMAT_PARAMS(_hr_) \
  58                 (_hr_)->hrs_index(), \
  59                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
  60                 (_hr_)->startsHumongous() ? "HS" : \
  61                 (_hr_)->continuesHumongous() ? "HC" : \
  62                 !(_hr_)->is_empty() ? "O" : "F", \
  63                 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
  64 
  65 // sentinel value for hrs_index
  66 #define G1_NULL_HRS_INDEX ((uint) -1)
  67 
  68 // A dirty card to oop closure for heap regions. It
  69 // knows how to get the G1 heap and how to use the bitmap
  70 // in the concurrent marker used by G1 to filter remembered
  71 // sets.
  72 
  73 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
  74 public:
  75   // Specification of possible DirtyCardToOopClosure filtering.
  76   enum FilterKind {
  77     NoFilterKind,
  78     IntoCSFilterKind,
  79     OutOfRegionFilterKind
  80   };
  81 
  82 protected:
  83   HeapRegion* _hr;
  84   FilterKind _fk;
  85   G1CollectedHeap* _g1;
  86 
  87   void walk_mem_region_with_cl(MemRegion mr,
  88                                HeapWord* bottom, HeapWord* top,
  89                                ExtendedOopClosure* cl);
  90 
  91   // We don't specialize this for FilteringClosure; filtering is handled by
  92   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
  93   // warning.
  94   void walk_mem_region_with_cl(MemRegion mr,
  95                                HeapWord* bottom, HeapWord* top,
  96                                FilteringClosure* cl) {
  97     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
  98                                              (ExtendedOopClosure*)cl);
  99   }
 100 
 101   // Get the actual top of the area on which the closure will
 102   // operate, given where the top is assumed to be (the end of the
 103   // memory region passed to do_MemRegion) and where the object
 104   // at the top is assumed to start. For example, an object may
 105   // start at the top but actually extend past the assumed top,
 106   // in which case the top becomes the end of the object.
 107   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
 108     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
 109   }
 110 
 111   // Walk the given memory region from bottom to (actual) top
 112   // looking for objects and applying the oop closure (_cl) to
 113   // them. The base implementation of this treats the area as
 114   // blocks, where a block may or may not be an object. Sub-
 115   // classes should override this to provide more accurate
 116   // or possibly more efficient walking.
 117   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
 118     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
 119   }
 120 
 121 public:
 122   HeapRegionDCTOC(G1CollectedHeap* g1,
 123                   HeapRegion* hr, ExtendedOopClosure* cl,
 124                   CardTableModRefBS::PrecisionStyle precision,
 125                   FilterKind fk);
 126 };
 127 
 128 // The complicating factor is that BlockOffsetTable diverged
 129 // significantly, and we need functionality that is only in the G1 version.
 130 // So I copied that code, which led to an alternate G1 version of
 131 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
 132 // be reconciled, then G1OffsetTableContigSpace could go away.
 133 
 134 // The idea behind time stamps is the following. Doing a save_marks on
 135 // all regions at every GC pause is time consuming (if I remember
 136 // well, 10ms or so). So, we would like to do that only for regions
 137 // that are GC alloc regions. To achieve this, we use time
 138 // stamps. For every evacuation pause, G1CollectedHeap generates a
 139 // unique time stamp (essentially a counter that gets
 140 // incremented). Every time we want to call save_marks on a region,
 141 // we set the saved_mark_word to top and also copy the current GC
 142 // time stamp to the time stamp field of the space. Reading the
 143 // saved_mark_word involves checking the time stamp of the
 144 // region. If it is the same as the current GC time stamp, then we
 145 // can safely read the saved_mark_word field, as it is valid. If the
 146 // time stamp of the region is not the same as the current GC time
 147 // stamp, then we instead read top, as the saved_mark_word field is
 148 // invalid. Time stamps (on the regions and also on the
 149 // G1CollectedHeap) are reset at every cleanup (we iterate over
 150 // the regions anyway) and at the end of a Full GC. The current scheme
 151 // that uses sequential unsigned ints will fail only if we have 4b
 152 // evacuation pauses between two cleanups, which is _highly_ unlikely.
 153 
 154 class G1OffsetTableContigSpace: public ContiguousSpace {
 155   friend class VMStructs;
 156  protected:
 157   G1BlockOffsetArrayContigSpace _offsets;
 158   Mutex _par_alloc_lock;
 159   volatile unsigned _gc_time_stamp;
 160   // When we need to retire an allocation region, while other threads
 161   // are also concurrently trying to allocate into it, we typically
 162   // allocate a dummy object at the end of the region to ensure that
 163   // no more allocations can take place in it. However, sometimes we
 164   // want to know where the end of the last "real" object we allocated
 165   // into the region was and this is what this keeps track.
 166   HeapWord* _pre_dummy_top;
 167 
 168  public:
 169   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 170                            MemRegion mr);
 171 
 172   void set_bottom(HeapWord* value);
 173   void set_end(HeapWord* value);
 174 
 175   virtual HeapWord* saved_mark_word() const;
 176   virtual void set_saved_mark();
 177   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
 178   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
 179 
 180   // See the comment above in the declaration of _pre_dummy_top for an
 181   // explanation of what it is.
 182   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
 183     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
 184     _pre_dummy_top = pre_dummy_top;
 185   }
 186   HeapWord* pre_dummy_top() {
 187     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
 188   }
 189   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
 190 
 191   virtual void clear(bool mangle_space);
 192 
 193   HeapWord* block_start(const void* p);
 194   HeapWord* block_start_const(const void* p) const;
 195 
 196   // Add offset table update.
 197   virtual HeapWord* allocate(size_t word_size);
 198   HeapWord* par_allocate(size_t word_size);
 199 
 200   // MarkSweep support phase3
 201   virtual HeapWord* initialize_threshold();
 202   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 203 
 204   virtual void print() const;
 205 
 206   void reset_bot() {
 207     _offsets.zero_bottom_entry();
 208     _offsets.initialize_threshold();
 209   }
 210 
 211   void update_bot_for_object(HeapWord* start, size_t word_size) {
 212     _offsets.alloc_block(start, word_size);
 213   }
 214 
 215   void print_bot_on(outputStream* out) {
 216     _offsets.print_on(out);
 217   }
 218 };
 219 
 220 class HeapRegion: public G1OffsetTableContigSpace {
 221   friend class VMStructs;
 222  private:
 223 
 224   enum HumongousType {
 225     NotHumongous = 0,
 226     StartsHumongous,
 227     ContinuesHumongous
 228   };
 229 
 230   // Requires that the region "mr" be dense with objects, and begin and end
 231   // with an object.
 232   void oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl);
 233 
 234   // The remembered set for this region.
 235   // (Might want to make this "inline" later, to avoid some alloc failure
 236   // issues.)
 237   HeapRegionRemSet* _rem_set;
 238 
 239   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
 240 
 241  protected:
 242   // The index of this region in the heap region sequence.
 243   uint  _hrs_index;
 244 
 245   HumongousType _humongous_type;
 246   // For a humongous region, region in which it starts.
 247   HeapRegion* _humongous_start_region;
 248   // For the start region of a humongous sequence, it's original end().
 249   HeapWord* _orig_end;
 250 
 251   // True iff the region is in current collection_set.
 252   bool _in_collection_set;
 253 
 254   // True iff an attempt to evacuate an object in the region failed.
 255   bool _evacuation_failed;
 256 
 257   // A heap region may be a member one of a number of special subsets, each
 258   // represented as linked lists through the field below.  Currently, these
 259   // sets include:
 260   //   The collection set.
 261   //   The set of allocation regions used in a collection pause.
 262   //   Spaces that may contain gray objects.
 263   HeapRegion* _next_in_special_set;
 264 
 265   // next region in the young "generation" region set
 266   HeapRegion* _next_young_region;
 267 
 268   // Next region whose cards need cleaning
 269   HeapRegion* _next_dirty_cards_region;
 270 
 271   // Fields used by the HeapRegionSetBase class and subclasses.
 272   HeapRegion* _next;
 273 #ifdef ASSERT
 274   HeapRegionSetBase* _containing_set;
 275 #endif // ASSERT
 276   bool _pending_removal;
 277 
 278   // For parallel heapRegion traversal.
 279   jint _claimed;
 280 
 281   // We use concurrent marking to determine the amount of live data
 282   // in each heap region.
 283   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
 284   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
 285 
 286   // The calculated GC efficiency of the region.
 287   double _gc_efficiency;
 288 
 289   enum YoungType {
 290     NotYoung,                   // a region is not young
 291     Young,                      // a region is young
 292     Survivor                    // a region is young and it contains survivors
 293   };
 294 
 295   volatile YoungType _young_type;
 296   int  _young_index_in_cset;
 297   SurvRateGroup* _surv_rate_group;
 298   int  _age_index;
 299 
 300   // The start of the unmarked area. The unmarked area extends from this
 301   // word until the top and/or end of the region, and is the part
 302   // of the region for which no marking was done, i.e. objects may
 303   // have been allocated in this part since the last mark phase.
 304   // "prev" is the top at the start of the last completed marking.
 305   // "next" is the top at the start of the in-progress marking (if any.)
 306   HeapWord* _prev_top_at_mark_start;
 307   HeapWord* _next_top_at_mark_start;
 308   // If a collection pause is in progress, this is the top at the start
 309   // of that pause.
 310 
 311   void init_top_at_mark_start() {
 312     assert(_prev_marked_bytes == 0 &&
 313            _next_marked_bytes == 0,
 314            "Must be called after zero_marked_bytes.");
 315     HeapWord* bot = bottom();
 316     _prev_top_at_mark_start = bot;
 317     _next_top_at_mark_start = bot;
 318   }
 319 
 320   void set_young_type(YoungType new_type) {
 321     //assert(_young_type != new_type, "setting the same type" );
 322     // TODO: add more assertions here
 323     _young_type = new_type;
 324   }
 325 
 326   // Cached attributes used in the collection set policy information
 327 
 328   // The RSet length that was added to the total value
 329   // for the collection set.
 330   size_t _recorded_rs_length;
 331 
 332   // The predicted elapsed time that was added to total value
 333   // for the collection set.
 334   double _predicted_elapsed_time_ms;
 335 
 336   // The predicted number of bytes to copy that was added to
 337   // the total value for the collection set.
 338   size_t _predicted_bytes_to_copy;
 339 
 340  public:
 341   HeapRegion(uint hrs_index,
 342              G1BlockOffsetSharedArray* sharedOffsetArray,
 343              MemRegion mr);
 344 
 345   static int    LogOfHRGrainBytes;
 346   static int    LogOfHRGrainWords;
 347 
 348   static size_t GrainBytes;
 349   static size_t GrainWords;
 350   static size_t CardsPerRegion;
 351 
 352   static size_t align_up_to_region_byte_size(size_t sz) {
 353     return (sz + (size_t) GrainBytes - 1) &
 354                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
 355   }
 356 
 357   // It sets up the heap region size (GrainBytes / GrainWords), as
 358   // well as other related fields that are based on the heap region
 359   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
 360   // CardsPerRegion). All those fields are considered constant
 361   // throughout the JVM's execution, therefore they should only be set
 362   // up once during initialization time.
 363   static void setup_heap_region_size(uintx min_heap_size);
 364 
 365   enum ClaimValues {
 366     InitialClaimValue          = 0,
 367     FinalCountClaimValue       = 1,
 368     NoteEndClaimValue          = 2,
 369     ScrubRemSetClaimValue      = 3,
 370     ParVerifyClaimValue        = 4,
 371     RebuildRSClaimValue        = 5,
 372     ParEvacFailureClaimValue   = 6,
 373     AggregateCountClaimValue   = 7,
 374     VerifyCountClaimValue      = 8
 375   };
 376 
 377   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
 378     assert(is_young(), "we can only skip BOT updates on young regions");
 379     return ContiguousSpace::par_allocate(word_size);
 380   }
 381   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
 382     assert(is_young(), "we can only skip BOT updates on young regions");
 383     return ContiguousSpace::allocate(word_size);
 384   }
 385 
 386   // If this region is a member of a HeapRegionSeq, the index in that
 387   // sequence, otherwise -1.
 388   uint hrs_index() const { return _hrs_index; }
 389 
 390   // The number of bytes marked live in the region in the last marking phase.
 391   size_t marked_bytes()    { return _prev_marked_bytes; }
 392   size_t live_bytes() {
 393     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
 394   }
 395 
 396   // The number of bytes counted in the next marking.
 397   size_t next_marked_bytes() { return _next_marked_bytes; }
 398   // The number of bytes live wrt the next marking.
 399   size_t next_live_bytes() {
 400     return
 401       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
 402   }
 403 
 404   // A lower bound on the amount of garbage bytes in the region.
 405   size_t garbage_bytes() {
 406     size_t used_at_mark_start_bytes =
 407       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
 408     assert(used_at_mark_start_bytes >= marked_bytes(),
 409            "Can't mark more than we have.");
 410     return used_at_mark_start_bytes - marked_bytes();
 411   }
 412 
 413   // Return the amount of bytes we'll reclaim if we collect this
 414   // region. This includes not only the known garbage bytes in the
 415   // region but also any unallocated space in it, i.e., [top, end),
 416   // since it will also be reclaimed if we collect the region.
 417   size_t reclaimable_bytes() {
 418     size_t known_live_bytes = live_bytes();
 419     assert(known_live_bytes <= capacity(), "sanity");
 420     return capacity() - known_live_bytes;
 421   }
 422 
 423   // An upper bound on the number of live bytes in the region.
 424   size_t max_live_bytes() { return used() - garbage_bytes(); }
 425 
 426   void add_to_marked_bytes(size_t incr_bytes) {
 427     _next_marked_bytes = _next_marked_bytes + incr_bytes;
 428     assert(_next_marked_bytes <= used(), "invariant" );
 429   }
 430 
 431   void zero_marked_bytes()      {
 432     _prev_marked_bytes = _next_marked_bytes = 0;
 433   }
 434 
 435   bool isHumongous() const { return _humongous_type != NotHumongous; }
 436   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
 437   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
 438   // For a humongous region, region in which it starts.
 439   HeapRegion* humongous_start_region() const {
 440     return _humongous_start_region;
 441   }
 442 
 443   // Return the number of distinct regions that are covered by this region:
 444   // 1 if the region is not humongous, >= 1 if the region is humongous.
 445   uint region_num() const {
 446     if (!isHumongous()) {
 447       return 1U;
 448     } else {
 449       assert(startsHumongous(), "doesn't make sense on HC regions");
 450       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
 451       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
 452     }
 453   }
 454 
 455   // Return the index + 1 of the last HC regions that's associated
 456   // with this HS region.
 457   uint last_hc_index() const {
 458     assert(startsHumongous(), "don't call this otherwise");
 459     return hrs_index() + region_num();
 460   }
 461 
 462   // Same as Space::is_in_reserved, but will use the original size of the region.
 463   // The original size is different only for start humongous regions. They get
 464   // their _end set up to be the end of the last continues region of the
 465   // corresponding humongous object.
 466   bool is_in_reserved_raw(const void* p) const {
 467     return _bottom <= p && p < _orig_end;
 468   }
 469 
 470   // Makes the current region be a "starts humongous" region, i.e.,
 471   // the first region in a series of one or more contiguous regions
 472   // that will contain a single "humongous" object. The two parameters
 473   // are as follows:
 474   //
 475   // new_top : The new value of the top field of this region which
 476   // points to the end of the humongous object that's being
 477   // allocated. If there is more than one region in the series, top
 478   // will lie beyond this region's original end field and on the last
 479   // region in the series.
 480   //
 481   // new_end : The new value of the end field of this region which
 482   // points to the end of the last region in the series. If there is
 483   // one region in the series (namely: this one) end will be the same
 484   // as the original end of this region.
 485   //
 486   // Updating top and end as described above makes this region look as
 487   // if it spans the entire space taken up by all the regions in the
 488   // series and an single allocation moved its top to new_top. This
 489   // ensures that the space (capacity / allocated) taken up by all
 490   // humongous regions can be calculated by just looking at the
 491   // "starts humongous" regions and by ignoring the "continues
 492   // humongous" regions.
 493   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
 494 
 495   // Makes the current region be a "continues humongous'
 496   // region. first_hr is the "start humongous" region of the series
 497   // which this region will be part of.
 498   void set_continuesHumongous(HeapRegion* first_hr);
 499 
 500   // Unsets the humongous-related fields on the region.
 501   void set_notHumongous();
 502 
 503   // If the region has a remembered set, return a pointer to it.
 504   HeapRegionRemSet* rem_set() const {
 505     return _rem_set;
 506   }
 507 
 508   // True iff the region is in current collection_set.
 509   bool in_collection_set() const {
 510     return _in_collection_set;
 511   }
 512   void set_in_collection_set(bool b) {
 513     _in_collection_set = b;
 514   }
 515   HeapRegion* next_in_collection_set() {
 516     assert(in_collection_set(), "should only invoke on member of CS.");
 517     assert(_next_in_special_set == NULL ||
 518            _next_in_special_set->in_collection_set(),
 519            "Malformed CS.");
 520     return _next_in_special_set;
 521   }
 522   void set_next_in_collection_set(HeapRegion* r) {
 523     assert(in_collection_set(), "should only invoke on member of CS.");
 524     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
 525     _next_in_special_set = r;
 526   }
 527 
 528   // Methods used by the HeapRegionSetBase class and subclasses.
 529 
 530   // Getter and setter for the next field used to link regions into
 531   // linked lists.
 532   HeapRegion* next()              { return _next; }
 533 
 534   void set_next(HeapRegion* next) { _next = next; }
 535 
 536   // Every region added to a set is tagged with a reference to that
 537   // set. This is used for doing consistency checking to make sure that
 538   // the contents of a set are as they should be and it's only
 539   // available in non-product builds.
 540 #ifdef ASSERT
 541   void set_containing_set(HeapRegionSetBase* containing_set) {
 542     assert((containing_set == NULL && _containing_set != NULL) ||
 543            (containing_set != NULL && _containing_set == NULL),
 544            err_msg("containing_set: "PTR_FORMAT" "
 545                    "_containing_set: "PTR_FORMAT,
 546                    containing_set, _containing_set));
 547 
 548     _containing_set = containing_set;
 549   }
 550 
 551   HeapRegionSetBase* containing_set() { return _containing_set; }
 552 #else // ASSERT
 553   void set_containing_set(HeapRegionSetBase* containing_set) { }
 554 
 555   // containing_set() is only used in asserts so there's no reason
 556   // to provide a dummy version of it.
 557 #endif // ASSERT
 558 
 559   // If we want to remove regions from a list in bulk we can simply tag
 560   // them with the pending_removal tag and call the
 561   // remove_all_pending() method on the list.
 562 
 563   bool pending_removal() { return _pending_removal; }
 564 
 565   void set_pending_removal(bool pending_removal) {
 566     if (pending_removal) {
 567       assert(!_pending_removal && containing_set() != NULL,
 568              "can only set pending removal to true if it's false and "
 569              "the region belongs to a region set");
 570     } else {
 571       assert( _pending_removal && containing_set() == NULL,
 572               "can only set pending removal to false if it's true and "
 573               "the region does not belong to a region set");
 574     }
 575 
 576     _pending_removal = pending_removal;
 577   }
 578 
 579   HeapRegion* get_next_young_region() { return _next_young_region; }
 580   void set_next_young_region(HeapRegion* hr) {
 581     _next_young_region = hr;
 582   }
 583 
 584   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
 585   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
 586   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
 587   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
 588 
 589   HeapWord* orig_end() { return _orig_end; }
 590 
 591   // Allows logical separation between objects allocated before and after.
 592   void save_marks();
 593 
 594   // Reset HR stuff to default values.
 595   void hr_clear(bool par, bool clear_space);
 596   void par_clear();
 597 
 598   // Get the start of the unmarked area in this region.
 599   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
 600   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
 601 
 602   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
 603   // allocated in the current region before the last call to "save_mark".
 604   void oop_before_save_marks_iterate(ExtendedOopClosure* cl);
 605 
 606   // Note the start or end of marking. This tells the heap region
 607   // that the collector is about to start or has finished (concurrently)
 608   // marking the heap.
 609 
 610   // Notify the region that concurrent marking is starting. Initialize
 611   // all fields related to the next marking info.
 612   inline void note_start_of_marking();
 613 
 614   // Notify the region that concurrent marking has finished. Copy the
 615   // (now finalized) next marking info fields into the prev marking
 616   // info fields.
 617   inline void note_end_of_marking();
 618 
 619   // Notify the region that it will be used as to-space during a GC
 620   // and we are about to start copying objects into it.
 621   inline void note_start_of_copying(bool during_initial_mark);
 622 
 623   // Notify the region that it ceases being to-space during a GC and
 624   // we will not copy objects into it any more.
 625   inline void note_end_of_copying(bool during_initial_mark);
 626 
 627   // Notify the region that we are about to start processing
 628   // self-forwarded objects during evac failure handling.
 629   void note_self_forwarding_removal_start(bool during_initial_mark,
 630                                           bool during_conc_mark);
 631 
 632   // Notify the region that we have finished processing self-forwarded
 633   // objects during evac failure handling.
 634   void note_self_forwarding_removal_end(bool during_initial_mark,
 635                                         bool during_conc_mark,
 636                                         size_t marked_bytes);
 637 
 638   // Returns "false" iff no object in the region was allocated when the
 639   // last mark phase ended.
 640   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
 641 
 642   void reset_during_compaction() {
 643     assert(isHumongous() && startsHumongous(),
 644            "should only be called for starts humongous regions");
 645 
 646     zero_marked_bytes();
 647     init_top_at_mark_start();
 648   }
 649 
 650   void calc_gc_efficiency(void);
 651   double gc_efficiency() { return _gc_efficiency;}
 652 
 653   bool is_young() const     { return _young_type != NotYoung; }
 654   bool is_survivor() const  { return _young_type == Survivor; }
 655 
 656   int  young_index_in_cset() const { return _young_index_in_cset; }
 657   void set_young_index_in_cset(int index) {
 658     assert( (index == -1) || is_young(), "pre-condition" );
 659     _young_index_in_cset = index;
 660   }
 661 
 662   int age_in_surv_rate_group() {
 663     assert( _surv_rate_group != NULL, "pre-condition" );
 664     assert( _age_index > -1, "pre-condition" );
 665     return _surv_rate_group->age_in_group(_age_index);
 666   }
 667 
 668   void record_surv_words_in_group(size_t words_survived) {
 669     assert( _surv_rate_group != NULL, "pre-condition" );
 670     assert( _age_index > -1, "pre-condition" );
 671     int age_in_group = age_in_surv_rate_group();
 672     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
 673   }
 674 
 675   int age_in_surv_rate_group_cond() {
 676     if (_surv_rate_group != NULL)
 677       return age_in_surv_rate_group();
 678     else
 679       return -1;
 680   }
 681 
 682   SurvRateGroup* surv_rate_group() {
 683     return _surv_rate_group;
 684   }
 685 
 686   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
 687     assert( surv_rate_group != NULL, "pre-condition" );
 688     assert( _surv_rate_group == NULL, "pre-condition" );
 689     assert( is_young(), "pre-condition" );
 690 
 691     _surv_rate_group = surv_rate_group;
 692     _age_index = surv_rate_group->next_age_index();
 693   }
 694 
 695   void uninstall_surv_rate_group() {
 696     if (_surv_rate_group != NULL) {
 697       assert( _age_index > -1, "pre-condition" );
 698       assert( is_young(), "pre-condition" );
 699 
 700       _surv_rate_group = NULL;
 701       _age_index = -1;
 702     } else {
 703       assert( _age_index == -1, "pre-condition" );
 704     }
 705   }
 706 
 707   void set_young() { set_young_type(Young); }
 708 
 709   void set_survivor() { set_young_type(Survivor); }
 710 
 711   void set_not_young() { set_young_type(NotYoung); }
 712 
 713   // Determine if an object has been allocated since the last
 714   // mark performed by the collector. This returns true iff the object
 715   // is within the unmarked area of the region.
 716   bool obj_allocated_since_prev_marking(oop obj) const {
 717     return (HeapWord *) obj >= prev_top_at_mark_start();
 718   }
 719   bool obj_allocated_since_next_marking(oop obj) const {
 720     return (HeapWord *) obj >= next_top_at_mark_start();
 721   }
 722 
 723   // For parallel heapRegion traversal.
 724   bool claimHeapRegion(int claimValue);
 725   jint claim_value() { return _claimed; }
 726   // Use this carefully: only when you're sure no one is claiming...
 727   void set_claim_value(int claimValue) { _claimed = claimValue; }
 728 
 729   // Returns the "evacuation_failed" property of the region.
 730   bool evacuation_failed() { return _evacuation_failed; }
 731 
 732   // Sets the "evacuation_failed" property of the region.
 733   void set_evacuation_failed(bool b) {
 734     _evacuation_failed = b;
 735 
 736     if (b) {
 737       _next_marked_bytes = 0;
 738     }
 739   }
 740 
 741   // Requires that "mr" be entirely within the region.
 742   // Apply "cl->do_object" to all objects that intersect with "mr".
 743   // If the iteration encounters an unparseable portion of the region,
 744   // or if "cl->abort()" is true after a closure application,
 745   // terminate the iteration and return the address of the start of the
 746   // subregion that isn't done.  (The two can be distinguished by querying
 747   // "cl->abort()".)  Return of "NULL" indicates that the iteration
 748   // completed.
 749   HeapWord*
 750   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
 751 
 752   // filter_young: if true and the region is a young region then we
 753   // skip the iteration.
 754   // card_ptr: if not NULL, and we decide that the card is not young
 755   // and we iterate over it, we'll clean the card before we start the
 756   // iteration.
 757   HeapWord*
 758   oops_on_card_seq_iterate_careful(MemRegion mr,
 759                                    FilterOutOfRegionClosure* cl,
 760                                    bool filter_young,
 761                                    jbyte* card_ptr);
 762 
 763   // A version of block start that is guaranteed to find *some* block
 764   // boundary at or before "p", but does not object iteration, and may
 765   // therefore be used safely when the heap is unparseable.
 766   HeapWord* block_start_careful(const void* p) const {
 767     return _offsets.block_start_careful(p);
 768   }
 769 
 770   // Requires that "addr" is within the region.  Returns the start of the
 771   // first ("careful") block that starts at or after "addr", or else the
 772   // "end" of the region if there is no such block.
 773   HeapWord* next_block_start_careful(HeapWord* addr);
 774 
 775   size_t recorded_rs_length() const        { return _recorded_rs_length; }
 776   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
 777   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
 778 
 779   void set_recorded_rs_length(size_t rs_length) {
 780     _recorded_rs_length = rs_length;
 781   }
 782 
 783   void set_predicted_elapsed_time_ms(double ms) {
 784     _predicted_elapsed_time_ms = ms;
 785   }
 786 
 787   void set_predicted_bytes_to_copy(size_t bytes) {
 788     _predicted_bytes_to_copy = bytes;
 789   }
 790 
 791 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
 792   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
 793   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
 794 
 795   virtual CompactibleSpace* next_compaction_space() const;
 796 
 797   virtual void reset_after_compaction();
 798 
 799   void print() const;
 800   void print_on(outputStream* st) const;
 801 
 802   // vo == UsePrevMarking  -> use "prev" marking information,
 803   // vo == UseNextMarking -> use "next" marking information
 804   // vo == UseMarkWord    -> use the mark word in the object header
 805   //
 806   // NOTE: Only the "prev" marking information is guaranteed to be
 807   // consistent most of the time, so most calls to this should use
 808   // vo == UsePrevMarking.
 809   // Currently, there is only one case where this is called with
 810   // vo == UseNextMarking, which is to verify the "next" marking
 811   // information at the end of remark.
 812   // Currently there is only one place where this is called with
 813   // vo == UseMarkWord, which is to verify the marking during a
 814   // full GC.
 815   void verify(VerifyOption vo, bool *failures) const;
 816 
 817   // Override; it uses the "prev" marking information
 818   virtual void verify() const;
 819 };
 820 
 821 // HeapRegionClosure is used for iterating over regions.
 822 // Terminates the iteration when the "doHeapRegion" method returns "true".
 823 class HeapRegionClosure : public StackObj {
 824   friend class HeapRegionSeq;
 825   friend class G1CollectedHeap;
 826 
 827   bool _complete;
 828   void incomplete() { _complete = false; }
 829 
 830  public:
 831   HeapRegionClosure(): _complete(true) {}
 832 
 833   // Typically called on each region until it returns true.
 834   virtual bool doHeapRegion(HeapRegion* r) = 0;
 835 
 836   // True after iteration if the closure was applied to all heap regions
 837   // and returned "false" in all cases.
 838   bool complete() { return _complete; }
 839 };
 840 
 841 #endif // INCLUDE_ALL_GCS
 842 
 843 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP