1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 void CollectorPolicy::initialize_flags() {
  51   assert(max_alignment() >= min_alignment(),
  52       err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  53           max_alignment(), min_alignment()));
  54   assert(max_alignment() % min_alignment() == 0,
  55       err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  56           max_alignment(), min_alignment()));
  57 
  58   if (MaxHeapSize < InitialHeapSize) {
  59     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  60   }
  61 
  62   if (MetaspaceSize > MaxMetaspaceSize) {
  63     MaxMetaspaceSize = MetaspaceSize;
  64   }
  65   MetaspaceSize = MAX2(min_alignment(), align_size_down_(MetaspaceSize, min_alignment()));
  66   // Don't increase Metaspace size limit above specified.
  67   MaxMetaspaceSize = align_size_down(MaxMetaspaceSize, max_alignment());
  68   if (MetaspaceSize > MaxMetaspaceSize) {
  69     MetaspaceSize = MaxMetaspaceSize;
  70   }
  71 
  72   MinMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MinMetaspaceExpansion, min_alignment()));
  73   MaxMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MaxMetaspaceExpansion, min_alignment()));
  74 
  75   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
  76 
  77   assert(MetaspaceSize    % min_alignment() == 0, "metapace alignment");
  78   assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
  79   if (MetaspaceSize < 256*K) {
  80     vm_exit_during_initialization("Too small initial Metaspace size");
  81   }
  82 }
  83 
  84 void CollectorPolicy::initialize_size_info() {
  85   // User inputs from -mx and ms must be aligned
  86   set_min_heap_byte_size(align_size_up(Arguments::min_heap_size(), min_alignment()));
  87   set_initial_heap_byte_size(align_size_up(InitialHeapSize, min_alignment()));
  88   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
  89 
  90   // Check heap parameter properties
  91   if (initial_heap_byte_size() < M) {
  92     vm_exit_during_initialization("Too small initial heap");
  93   }
  94   // Check heap parameter properties
  95   if (min_heap_byte_size() < M) {
  96     vm_exit_during_initialization("Too small minimum heap");
  97   }
  98   if (initial_heap_byte_size() <= NewSize) {
  99      // make sure there is at least some room in old space
 100     vm_exit_during_initialization("Too small initial heap for new size specified");
 101   }
 102   if (max_heap_byte_size() < min_heap_byte_size()) {
 103     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 104   }
 105   if (initial_heap_byte_size() < min_heap_byte_size()) {
 106     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 107   }
 108   if (max_heap_byte_size() < initial_heap_byte_size()) {
 109     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 110   }
 111 
 112   if (PrintGCDetails && Verbose) {
 113     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 114       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 115       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
 116   }
 117 }
 118 
 119 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 120   bool result = _should_clear_all_soft_refs;
 121   set_should_clear_all_soft_refs(false);
 122   return result;
 123 }
 124 
 125 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 126                                            int max_covered_regions) {
 127   switch (rem_set_name()) {
 128   case GenRemSet::CardTable: {
 129     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
 130     return res;
 131   }
 132   default:
 133     guarantee(false, "unrecognized GenRemSet::Name");
 134     return NULL;
 135   }
 136 }
 137 
 138 void CollectorPolicy::cleared_all_soft_refs() {
 139   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 140   // have been cleared in the last collection but if the gc overhear
 141   // limit continues to be near, SoftRefs should still be cleared.
 142   if (size_policy() != NULL) {
 143     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 144   }
 145   _all_soft_refs_clear = true;
 146 }
 147 
 148 
 149 // GenCollectorPolicy methods.
 150 
 151 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 152   size_t x = base_size / (NewRatio+1);
 153   size_t new_gen_size = x > min_alignment() ?
 154                      align_size_down(x, min_alignment()) :
 155                      min_alignment();
 156   return new_gen_size;
 157 }
 158 
 159 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 160                                                  size_t maximum_size) {
 161   size_t alignment = min_alignment();
 162   size_t max_minus = maximum_size - alignment;
 163   return desired_size < max_minus ? desired_size : max_minus;
 164 }
 165 
 166 
 167 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 168                                                 size_t init_promo_size,
 169                                                 size_t init_survivor_size) {
 170   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 171   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 172                                         init_promo_size,
 173                                         init_survivor_size,
 174                                         max_gc_pause_sec,
 175                                         GCTimeRatio);
 176 }
 177 
 178 size_t GenCollectorPolicy::compute_max_alignment() {
 179   // The card marking array and the offset arrays for old generations are
 180   // committed in os pages as well. Make sure they are entirely full (to
 181   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 182   // byte entry and the os page size is 4096, the maximum heap size should
 183   // be 512*4096 = 2MB aligned.
 184   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
 185 
 186   // Parallel GC does its own alignment of the generations to avoid requiring a
 187   // large page (256M on some platforms) for the permanent generation.  The
 188   // other collectors should also be updated to do their own alignment and then
 189   // this use of lcm() should be removed.
 190   if (UseLargePages && !UseParallelGC) {
 191       // in presence of large pages we have to make sure that our
 192       // alignment is large page aware
 193       alignment = lcm(os::large_page_size(), alignment);
 194   }
 195 
 196   return alignment;
 197 }
 198 
 199 void GenCollectorPolicy::initialize_flags() {
 200   // All sizes must be multiples of the generation granularity.
 201   set_min_alignment((uintx) Generation::GenGrain);
 202   set_max_alignment(compute_max_alignment());
 203 
 204   CollectorPolicy::initialize_flags();
 205 
 206   // All generational heaps have a youngest gen; handle those flags here.
 207 
 208   // Adjust max size parameters
 209   if (NewSize > MaxNewSize) {
 210     MaxNewSize = NewSize;
 211   }
 212   NewSize = align_size_down(NewSize, min_alignment());
 213   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
 214 
 215   // Check validity of heap flags
 216   assert(NewSize     % min_alignment() == 0, "eden space alignment");
 217   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
 218 
 219   if (NewSize < 3*min_alignment()) {
 220      // make sure there room for eden and two survivor spaces
 221     vm_exit_during_initialization("Too small new size specified");
 222   }
 223   if (SurvivorRatio < 1 || NewRatio < 1) {
 224     vm_exit_during_initialization("Invalid heap ratio specified");
 225   }
 226 }
 227 
 228 void TwoGenerationCollectorPolicy::initialize_flags() {
 229   GenCollectorPolicy::initialize_flags();
 230 
 231   OldSize = align_size_down(OldSize, min_alignment());
 232 
 233   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 234     // NewRatio will be used later to set the young generation size so we use
 235     // it to calculate how big the heap should be based on the requested OldSize
 236     // and NewRatio.
 237     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 238     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 239 
 240     calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
 241     MaxHeapSize = calculated_heapsize;
 242     InitialHeapSize = calculated_heapsize;
 243   }
 244   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 245 
 246   // adjust max heap size if necessary
 247   if (NewSize + OldSize > MaxHeapSize) {
 248     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 249       // somebody set a maximum heap size with the intention that we should not
 250       // exceed it. Adjust New/OldSize as necessary.
 251       uintx calculated_size = NewSize + OldSize;
 252       double shrink_factor = (double) MaxHeapSize / calculated_size;
 253       // align
 254       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
 255       // OldSize is already aligned because above we aligned MaxHeapSize to
 256       // max_alignment(), and we just made sure that NewSize is aligned to
 257       // min_alignment(). In initialize_flags() we verified that max_alignment()
 258       // is a multiple of min_alignment().
 259       OldSize = MaxHeapSize - NewSize;
 260     } else {
 261       MaxHeapSize = NewSize + OldSize;
 262     }
 263   }
 264   // need to do this again
 265   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 266 
 267   // adjust max heap size if necessary
 268   if (NewSize + OldSize > MaxHeapSize) {
 269     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 270       // somebody set a maximum heap size with the intention that we should not
 271       // exceed it. Adjust New/OldSize as necessary.
 272       uintx calculated_size = NewSize + OldSize;
 273       double shrink_factor = (double) MaxHeapSize / calculated_size;
 274       // align
 275       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
 276       // OldSize is already aligned because above we aligned MaxHeapSize to
 277       // max_alignment(), and we just made sure that NewSize is aligned to
 278       // min_alignment(). In initialize_flags() we verified that max_alignment()
 279       // is a multiple of min_alignment().
 280       OldSize = MaxHeapSize - NewSize;
 281     } else {
 282       MaxHeapSize = NewSize + OldSize;
 283     }
 284   }
 285   // need to do this again
 286   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 287 
 288   always_do_update_barrier = UseConcMarkSweepGC;
 289 
 290   // Check validity of heap flags
 291   assert(OldSize     % min_alignment() == 0, "old space alignment");
 292   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
 293 }
 294 
 295 // Values set on the command line win over any ergonomically
 296 // set command line parameters.
 297 // Ergonomic choice of parameters are done before this
 298 // method is called.  Values for command line parameters such as NewSize
 299 // and MaxNewSize feed those ergonomic choices into this method.
 300 // This method makes the final generation sizings consistent with
 301 // themselves and with overall heap sizings.
 302 // In the absence of explicitly set command line flags, policies
 303 // such as the use of NewRatio are used to size the generation.
 304 void GenCollectorPolicy::initialize_size_info() {
 305   CollectorPolicy::initialize_size_info();
 306 
 307   // min_alignment() is used for alignment within a generation.
 308   // There is additional alignment done down stream for some
 309   // collectors that sometimes causes unwanted rounding up of
 310   // generations sizes.
 311 
 312   // Determine maximum size of gen0
 313 
 314   size_t max_new_size = 0;
 315   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 316     if (MaxNewSize < min_alignment()) {
 317       max_new_size = min_alignment();
 318     }
 319     if (MaxNewSize >= max_heap_byte_size()) {
 320       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
 321                                      min_alignment());
 322       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 323         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 324         "new generation size of " SIZE_FORMAT "k will be used.",
 325         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
 326     } else {
 327       max_new_size = align_size_down(MaxNewSize, min_alignment());
 328     }
 329 
 330   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 331   // specially at this point to just use an ergonomically set
 332   // MaxNewSize to set max_new_size.  For cases with small
 333   // heaps such a policy often did not work because the MaxNewSize
 334   // was larger than the entire heap.  The interpretation given
 335   // to ergonomically set flags is that the flags are set
 336   // by different collectors for their own special needs but
 337   // are not allowed to badly shape the heap.  This allows the
 338   // different collectors to decide what's best for themselves
 339   // without having to factor in the overall heap shape.  It
 340   // can be the case in the future that the collectors would
 341   // only make "wise" ergonomics choices and this policy could
 342   // just accept those choices.  The choices currently made are
 343   // not always "wise".
 344   } else {
 345     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
 346     // Bound the maximum size by NewSize below (since it historically
 347     // would have been NewSize and because the NewRatio calculation could
 348     // yield a size that is too small) and bound it by MaxNewSize above.
 349     // Ergonomics plays here by previously calculating the desired
 350     // NewSize and MaxNewSize.
 351     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 352   }
 353   assert(max_new_size > 0, "All paths should set max_new_size");
 354 
 355   // Given the maximum gen0 size, determine the initial and
 356   // minimum gen0 sizes.
 357 
 358   if (max_heap_byte_size() == min_heap_byte_size()) {
 359     // The maximum and minimum heap sizes are the same so
 360     // the generations minimum and initial must be the
 361     // same as its maximum.
 362     set_min_gen0_size(max_new_size);
 363     set_initial_gen0_size(max_new_size);
 364     set_max_gen0_size(max_new_size);
 365   } else {
 366     size_t desired_new_size = 0;
 367     if (!FLAG_IS_DEFAULT(NewSize)) {
 368       // If NewSize is set ergonomically (for example by cms), it
 369       // would make sense to use it.  If it is used, also use it
 370       // to set the initial size.  Although there is no reason
 371       // the minimum size and the initial size have to be the same,
 372       // the current implementation gets into trouble during the calculation
 373       // of the tenured generation sizes if they are different.
 374       // Note that this makes the initial size and the minimum size
 375       // generally small compared to the NewRatio calculation.
 376       _min_gen0_size = NewSize;
 377       desired_new_size = NewSize;
 378       max_new_size = MAX2(max_new_size, NewSize);
 379     } else {
 380       // For the case where NewSize is the default, use NewRatio
 381       // to size the minimum and initial generation sizes.
 382       // Use the default NewSize as the floor for these values.  If
 383       // NewRatio is overly large, the resulting sizes can be too
 384       // small.
 385       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
 386                           NewSize);
 387       desired_new_size =
 388         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
 389              NewSize);
 390     }
 391 
 392     assert(_min_gen0_size > 0, "Sanity check");
 393     set_initial_gen0_size(desired_new_size);
 394     set_max_gen0_size(max_new_size);
 395 
 396     // At this point the desirable initial and minimum sizes have been
 397     // determined without regard to the maximum sizes.
 398 
 399     // Bound the sizes by the corresponding overall heap sizes.
 400     set_min_gen0_size(
 401       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
 402     set_initial_gen0_size(
 403       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
 404     set_max_gen0_size(
 405       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
 406 
 407     // At this point all three sizes have been checked against the
 408     // maximum sizes but have not been checked for consistency
 409     // among the three.
 410 
 411     // Final check min <= initial <= max
 412     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
 413     set_initial_gen0_size(
 414       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
 415     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
 416   }
 417 
 418   if (PrintGCDetails && Verbose) {
 419     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 420       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 421       min_gen0_size(), initial_gen0_size(), max_gen0_size());
 422   }
 423 }
 424 
 425 // Call this method during the sizing of the gen1 to make
 426 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 427 // the most freedom in sizing because it is done before the
 428 // policy for gen1 is applied.  Once gen1 policies have been applied,
 429 // there may be conflicts in the shape of the heap and this method
 430 // is used to make the needed adjustments.  The application of the
 431 // policies could be more sophisticated (iterative for example) but
 432 // keeping it simple also seems a worthwhile goal.
 433 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 434                                                      size_t* gen1_size_ptr,
 435                                                      const size_t heap_size,
 436                                                      const size_t min_gen1_size) {
 437   bool result = false;
 438 
 439   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 440     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 441         (heap_size >= min_gen1_size + min_alignment())) {
 442       // Adjust gen0 down to accommodate min_gen1_size
 443       *gen0_size_ptr = heap_size - min_gen1_size;
 444       *gen0_size_ptr =
 445         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
 446              min_alignment());
 447       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 448       result = true;
 449     } else {
 450       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 451       *gen1_size_ptr =
 452         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
 453                        min_alignment());
 454     }
 455   }
 456   return result;
 457 }
 458 
 459 // Minimum sizes of the generations may be different than
 460 // the initial sizes.  An inconsistently is permitted here
 461 // in the total size that can be specified explicitly by
 462 // command line specification of OldSize and NewSize and
 463 // also a command line specification of -Xms.  Issue a warning
 464 // but allow the values to pass.
 465 
 466 void TwoGenerationCollectorPolicy::initialize_size_info() {
 467   GenCollectorPolicy::initialize_size_info();
 468 
 469   // At this point the minimum, initial and maximum sizes
 470   // of the overall heap and of gen0 have been determined.
 471   // The maximum gen1 size can be determined from the maximum gen0
 472   // and maximum heap size since no explicit flags exits
 473   // for setting the gen1 maximum.
 474   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
 475   _max_gen1_size =
 476     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
 477          min_alignment());
 478   // If no explicit command line flag has been set for the
 479   // gen1 size, use what is left for gen1.
 480   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 481     // The user has not specified any value or ergonomics
 482     // has chosen a value (which may or may not be consistent
 483     // with the overall heap size).  In either case make
 484     // the minimum, maximum and initial sizes consistent
 485     // with the gen0 sizes and the overall heap sizes.
 486     assert(min_heap_byte_size() > _min_gen0_size,
 487       "gen0 has an unexpected minimum size");
 488     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
 489     set_min_gen1_size(
 490       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
 491            min_alignment()));
 492     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
 493     set_initial_gen1_size(
 494       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
 495            min_alignment()));
 496 
 497   } else {
 498     // It's been explicitly set on the command line.  Use the
 499     // OldSize and then determine the consequences.
 500     set_min_gen1_size(OldSize);
 501     set_initial_gen1_size(OldSize);
 502 
 503     // If the user has explicitly set an OldSize that is inconsistent
 504     // with other command line flags, issue a warning.
 505     // The generation minimums and the overall heap mimimum should
 506     // be within one heap alignment.
 507     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
 508            min_heap_byte_size()) {
 509       warning("Inconsistency between minimum heap size and minimum "
 510           "generation sizes: using minimum heap = " SIZE_FORMAT,
 511           min_heap_byte_size());
 512     }
 513     if ((OldSize > _max_gen1_size)) {
 514       warning("Inconsistency between maximum heap size and maximum "
 515           "generation sizes: using maximum heap = " SIZE_FORMAT
 516           " -XX:OldSize flag is being ignored",
 517           max_heap_byte_size());
 518     }
 519     // If there is an inconsistency between the OldSize and the minimum and/or
 520     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 521     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 522                           min_heap_byte_size(), OldSize)) {
 523       if (PrintGCDetails && Verbose) {
 524         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 525               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 526               min_gen0_size(), initial_gen0_size(), max_gen0_size());
 527       }
 528     }
 529     // Initial size
 530     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 531                          initial_heap_byte_size(), OldSize)) {
 532       if (PrintGCDetails && Verbose) {
 533         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 534           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 535           min_gen0_size(), initial_gen0_size(), max_gen0_size());
 536       }
 537     }
 538   }
 539   // Enforce the maximum gen1 size.
 540   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
 541 
 542   // Check that min gen1 <= initial gen1 <= max gen1
 543   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
 544   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
 545 
 546   if (PrintGCDetails && Verbose) {
 547     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 548       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 549       min_gen1_size(), initial_gen1_size(), max_gen1_size());
 550   }
 551 }
 552 
 553 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 554                                         bool is_tlab,
 555                                         bool* gc_overhead_limit_was_exceeded) {
 556   GenCollectedHeap *gch = GenCollectedHeap::heap();
 557 
 558   debug_only(gch->check_for_valid_allocation_state());
 559   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 560 
 561   // In general gc_overhead_limit_was_exceeded should be false so
 562   // set it so here and reset it to true only if the gc time
 563   // limit is being exceeded as checked below.
 564   *gc_overhead_limit_was_exceeded = false;
 565 
 566   HeapWord* result = NULL;
 567 
 568   // Loop until the allocation is satisified,
 569   // or unsatisfied after GC.
 570   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 571     HandleMark hm; // discard any handles allocated in each iteration
 572 
 573     // First allocation attempt is lock-free.
 574     Generation *gen0 = gch->get_gen(0);
 575     assert(gen0->supports_inline_contig_alloc(),
 576       "Otherwise, must do alloc within heap lock");
 577     if (gen0->should_allocate(size, is_tlab)) {
 578       result = gen0->par_allocate(size, is_tlab);
 579       if (result != NULL) {
 580         assert(gch->is_in_reserved(result), "result not in heap");
 581         return result;
 582       }
 583     }
 584     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 585     {
 586       MutexLocker ml(Heap_lock);
 587       if (PrintGC && Verbose) {
 588         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 589                       " attempting locked slow path allocation");
 590       }
 591       // Note that only large objects get a shot at being
 592       // allocated in later generations.
 593       bool first_only = ! should_try_older_generation_allocation(size);
 594 
 595       result = gch->attempt_allocation(size, is_tlab, first_only);
 596       if (result != NULL) {
 597         assert(gch->is_in_reserved(result), "result not in heap");
 598         return result;
 599       }
 600 
 601       if (GC_locker::is_active_and_needs_gc()) {
 602         if (is_tlab) {
 603           return NULL;  // Caller will retry allocating individual object
 604         }
 605         if (!gch->is_maximal_no_gc()) {
 606           // Try and expand heap to satisfy request
 607           result = expand_heap_and_allocate(size, is_tlab);
 608           // result could be null if we are out of space
 609           if (result != NULL) {
 610             return result;
 611           }
 612         }
 613 
 614         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 615           return NULL; // we didn't get to do a GC and we didn't get any memory
 616         }
 617 
 618         // If this thread is not in a jni critical section, we stall
 619         // the requestor until the critical section has cleared and
 620         // GC allowed. When the critical section clears, a GC is
 621         // initiated by the last thread exiting the critical section; so
 622         // we retry the allocation sequence from the beginning of the loop,
 623         // rather than causing more, now probably unnecessary, GC attempts.
 624         JavaThread* jthr = JavaThread::current();
 625         if (!jthr->in_critical()) {
 626           MutexUnlocker mul(Heap_lock);
 627           // Wait for JNI critical section to be exited
 628           GC_locker::stall_until_clear();
 629           gclocker_stalled_count += 1;
 630           continue;
 631         } else {
 632           if (CheckJNICalls) {
 633             fatal("Possible deadlock due to allocating while"
 634                   " in jni critical section");
 635           }
 636           return NULL;
 637         }
 638       }
 639 
 640       // Read the gc count while the heap lock is held.
 641       gc_count_before = Universe::heap()->total_collections();
 642     }
 643 
 644     VM_GenCollectForAllocation op(size,
 645                                   is_tlab,
 646                                   gc_count_before);
 647     VMThread::execute(&op);
 648     if (op.prologue_succeeded()) {
 649       result = op.result();
 650       if (op.gc_locked()) {
 651          assert(result == NULL, "must be NULL if gc_locked() is true");
 652          continue;  // retry and/or stall as necessary
 653       }
 654 
 655       // Allocation has failed and a collection
 656       // has been done.  If the gc time limit was exceeded the
 657       // this time, return NULL so that an out-of-memory
 658       // will be thrown.  Clear gc_overhead_limit_exceeded
 659       // so that the overhead exceeded does not persist.
 660 
 661       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 662       const bool softrefs_clear = all_soft_refs_clear();
 663 
 664       if (limit_exceeded && softrefs_clear) {
 665         *gc_overhead_limit_was_exceeded = true;
 666         size_policy()->set_gc_overhead_limit_exceeded(false);
 667         if (op.result() != NULL) {
 668           CollectedHeap::fill_with_object(op.result(), size);
 669         }
 670         return NULL;
 671       }
 672       assert(result == NULL || gch->is_in_reserved(result),
 673              "result not in heap");
 674       return result;
 675     }
 676 
 677     // Give a warning if we seem to be looping forever.
 678     if ((QueuedAllocationWarningCount > 0) &&
 679         (try_count % QueuedAllocationWarningCount == 0)) {
 680           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 681                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 682     }
 683   }
 684 }
 685 
 686 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 687                                                        bool   is_tlab) {
 688   GenCollectedHeap *gch = GenCollectedHeap::heap();
 689   HeapWord* result = NULL;
 690   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 691     Generation *gen = gch->get_gen(i);
 692     if (gen->should_allocate(size, is_tlab)) {
 693       result = gen->expand_and_allocate(size, is_tlab);
 694     }
 695   }
 696   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 697   return result;
 698 }
 699 
 700 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 701                                                         bool   is_tlab) {
 702   GenCollectedHeap *gch = GenCollectedHeap::heap();
 703   GCCauseSetter x(gch, GCCause::_allocation_failure);
 704   HeapWord* result = NULL;
 705 
 706   assert(size != 0, "Precondition violated");
 707   if (GC_locker::is_active_and_needs_gc()) {
 708     // GC locker is active; instead of a collection we will attempt
 709     // to expand the heap, if there's room for expansion.
 710     if (!gch->is_maximal_no_gc()) {
 711       result = expand_heap_and_allocate(size, is_tlab);
 712     }
 713     return result;   // could be null if we are out of space
 714   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 715     // Do an incremental collection.
 716     gch->do_collection(false            /* full */,
 717                        false            /* clear_all_soft_refs */,
 718                        size             /* size */,
 719                        is_tlab          /* is_tlab */,
 720                        number_of_generations() - 1 /* max_level */);
 721   } else {
 722     if (Verbose && PrintGCDetails) {
 723       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 724     }
 725     // Try a full collection; see delta for bug id 6266275
 726     // for the original code and why this has been simplified
 727     // with from-space allocation criteria modified and
 728     // such allocation moved out of the safepoint path.
 729     gch->do_collection(true             /* full */,
 730                        false            /* clear_all_soft_refs */,
 731                        size             /* size */,
 732                        is_tlab          /* is_tlab */,
 733                        number_of_generations() - 1 /* max_level */);
 734   }
 735 
 736   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 737 
 738   if (result != NULL) {
 739     assert(gch->is_in_reserved(result), "result not in heap");
 740     return result;
 741   }
 742 
 743   // OK, collection failed, try expansion.
 744   result = expand_heap_and_allocate(size, is_tlab);
 745   if (result != NULL) {
 746     return result;
 747   }
 748 
 749   // If we reach this point, we're really out of memory. Try every trick
 750   // we can to reclaim memory. Force collection of soft references. Force
 751   // a complete compaction of the heap. Any additional methods for finding
 752   // free memory should be here, especially if they are expensive. If this
 753   // attempt fails, an OOM exception will be thrown.
 754   {
 755     IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 756 
 757     gch->do_collection(true             /* full */,
 758                        true             /* clear_all_soft_refs */,
 759                        size             /* size */,
 760                        is_tlab          /* is_tlab */,
 761                        number_of_generations() - 1 /* max_level */);
 762   }
 763 
 764   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 765   if (result != NULL) {
 766     assert(gch->is_in_reserved(result), "result not in heap");
 767     return result;
 768   }
 769 
 770   assert(!should_clear_all_soft_refs(),
 771     "Flag should have been handled and cleared prior to this point");
 772 
 773   // What else?  We might try synchronous finalization later.  If the total
 774   // space available is large enough for the allocation, then a more
 775   // complete compaction phase than we've tried so far might be
 776   // appropriate.
 777   return NULL;
 778 }
 779 
 780 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 781                                                  ClassLoaderData* loader_data,
 782                                                  size_t word_size,
 783                                                  Metaspace::MetadataType mdtype) {
 784   uint loop_count = 0;
 785   uint gc_count = 0;
 786   uint full_gc_count = 0;
 787 
 788   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 789 
 790   do {
 791     MetaWord* result = NULL;
 792     if (GC_locker::is_active_and_needs_gc()) {
 793       // If the GC_locker is active, just expand and allocate.
 794       // If that does not succeed, wait if this thread is not
 795       // in a critical section itself.
 796       result =
 797         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 798                                                                mdtype);
 799       if (result != NULL) {
 800         return result;
 801       }
 802       JavaThread* jthr = JavaThread::current();
 803       if (!jthr->in_critical()) {
 804         // Wait for JNI critical section to be exited
 805         GC_locker::stall_until_clear();
 806         // The GC invoked by the last thread leaving the critical
 807         // section will be a young collection and a full collection
 808         // is (currently) needed for unloading classes so continue
 809         // to the next iteration to get a full GC.
 810         continue;
 811       } else {
 812         if (CheckJNICalls) {
 813           fatal("Possible deadlock due to allocating while"
 814                 " in jni critical section");
 815         }
 816         return NULL;
 817       }
 818     }
 819 
 820     {  // Need lock to get self consistent gc_count's
 821       MutexLocker ml(Heap_lock);
 822       gc_count      = Universe::heap()->total_collections();
 823       full_gc_count = Universe::heap()->total_full_collections();
 824     }
 825 
 826     // Generate a VM operation
 827     VM_CollectForMetadataAllocation op(loader_data,
 828                                        word_size,
 829                                        mdtype,
 830                                        gc_count,
 831                                        full_gc_count,
 832                                        GCCause::_metadata_GC_threshold);
 833     VMThread::execute(&op);
 834 
 835     // If GC was locked out, try again.  Check
 836     // before checking success because the prologue
 837     // could have succeeded and the GC still have
 838     // been locked out.
 839     if (op.gc_locked()) {
 840       continue;
 841     }
 842 
 843     if (op.prologue_succeeded()) {
 844       return op.result();
 845     }
 846     loop_count++;
 847     if ((QueuedAllocationWarningCount > 0) &&
 848         (loop_count % QueuedAllocationWarningCount == 0)) {
 849       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 850               " size=%d", loop_count, word_size);
 851     }
 852   } while (true);  // Until a GC is done
 853 }
 854 
 855 // Return true if any of the following is true:
 856 // . the allocation won't fit into the current young gen heap
 857 // . gc locker is occupied (jni critical section)
 858 // . heap memory is tight -- the most recent previous collection
 859 //   was a full collection because a partial collection (would
 860 //   have) failed and is likely to fail again
 861 bool GenCollectorPolicy::should_try_older_generation_allocation(
 862         size_t word_size) const {
 863   GenCollectedHeap* gch = GenCollectedHeap::heap();
 864   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 865   return    (word_size > heap_word_size(gen0_capacity))
 866          || GC_locker::is_active_and_needs_gc()
 867          || gch->incremental_collection_failed();
 868 }
 869 
 870 
 871 //
 872 // MarkSweepPolicy methods
 873 //
 874 
 875 MarkSweepPolicy::MarkSweepPolicy() {
 876   initialize_all();
 877 }
 878 
 879 void MarkSweepPolicy::initialize_generations() {
 880   _generations = new GenerationSpecPtr[number_of_generations()];
 881   if (_generations == NULL)
 882     vm_exit_during_initialization("Unable to allocate gen spec");
 883 
 884   if (UseParNewGC) {
 885     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 886   } else {
 887     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 888   }
 889   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 890 
 891   if (_generations[0] == NULL || _generations[1] == NULL)
 892     vm_exit_during_initialization("Unable to allocate gen spec");
 893 }
 894 
 895 void MarkSweepPolicy::initialize_gc_policy_counters() {
 896   // initialize the policy counters - 2 collectors, 3 generations
 897   if (UseParNewGC) {
 898     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 899   } else {
 900     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 901   }
 902 }