1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 void CollectorPolicy::initialize_flags() {
  51   assert(max_alignment() >= min_alignment(),
  52       err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  53           max_alignment(), min_alignment()));
  54   assert(max_alignment() % min_alignment() == 0,
  55       err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  56           max_alignment(), min_alignment()));
  57 
  58   if (MaxHeapSize < InitialHeapSize) {
  59     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  60   }
  61 
  62   if (MetaspaceSize > MaxMetaspaceSize) {
  63     MaxMetaspaceSize = MetaspaceSize;
  64   }
  65   MetaspaceSize = MAX2(min_alignment(), align_size_down_(MetaspaceSize, min_alignment()));
  66   // Don't increase Metaspace size limit above specified.
  67   MaxMetaspaceSize = align_size_down(MaxMetaspaceSize, max_alignment());
  68   if (MetaspaceSize > MaxMetaspaceSize) {
  69     MetaspaceSize = MaxMetaspaceSize;
  70   }
  71 
  72   MinMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MinMetaspaceExpansion, min_alignment()));
  73   MaxMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MaxMetaspaceExpansion, min_alignment()));
  74 
  75   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
  76 
  77   assert(MetaspaceSize    % min_alignment() == 0, "metapace alignment");
  78   assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
  79   if (MetaspaceSize < 256*K) {
  80     vm_exit_during_initialization("Too small initial Metaspace size");
  81   }
  82 }
  83 
  84 void CollectorPolicy::initialize_size_info() {
  85   // User inputs from -mx and ms must be aligned
  86   set_min_heap_byte_size(align_size_up(Arguments::min_heap_size(), min_alignment()));
  87   set_initial_heap_byte_size(align_size_up(InitialHeapSize, min_alignment()));
  88   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
  89 
  90   // Check heap parameter properties
  91   if (initial_heap_byte_size() < M) {
  92     vm_exit_during_initialization("Too small initial heap");
  93   }
  94   // Check heap parameter properties
  95   if (min_heap_byte_size() < M) {
  96     vm_exit_during_initialization("Too small minimum heap");
  97   }
  98   if (initial_heap_byte_size() <= NewSize) {
  99      // make sure there is at least some room in old space
 100     vm_exit_during_initialization("Too small initial heap for new size specified");
 101   }
 102   if (max_heap_byte_size() < min_heap_byte_size()) {
 103     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 104   }
 105   if (initial_heap_byte_size() < min_heap_byte_size()) {
 106     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 107   }
 108   if (max_heap_byte_size() < initial_heap_byte_size()) {
 109     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 110   }
 111 
 112   if (PrintGCDetails && Verbose) {
 113     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 114       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 115       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
 116   }
 117 }
 118 
 119 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 120   bool result = _should_clear_all_soft_refs;
 121   set_should_clear_all_soft_refs(false);
 122   return result;
 123 }
 124 
 125 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 126                                            int max_covered_regions) {
 127   switch (rem_set_name()) {
 128   case GenRemSet::CardTable: {
 129     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
 130     return res;
 131   }
 132   default:
 133     guarantee(false, "unrecognized GenRemSet::Name");
 134     return NULL;
 135   }
 136 }
 137 
 138 void CollectorPolicy::cleared_all_soft_refs() {
 139   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 140   // have been cleared in the last collection but if the gc overhear
 141   // limit continues to be near, SoftRefs should still be cleared.
 142   if (size_policy() != NULL) {
 143     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 144   }
 145   _all_soft_refs_clear = true;
 146 }
 147 
 148 size_t CollectorPolicy::compute_max_alignment() {
 149   // The card marking array and the offset arrays for old generations are
 150   // committed in os pages as well. Make sure they are entirely full (to
 151   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 152   // byte entry and the os page size is 4096, the maximum heap size should
 153   // be 512*4096 = 2MB aligned.
 154 
 155   // there is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
 156   // is supported.
 157   return GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 158 }
 159 
 160 // GenCollectorPolicy methods.
 161 
 162 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 163   size_t x = base_size / (NewRatio+1);
 164   size_t new_gen_size = x > min_alignment() ?
 165                      align_size_down(x, min_alignment()) :
 166                      min_alignment();
 167   return new_gen_size;
 168 }
 169 
 170 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 171                                                  size_t maximum_size) {
 172   size_t alignment = min_alignment();
 173   size_t max_minus = maximum_size - alignment;
 174   return desired_size < max_minus ? desired_size : max_minus;
 175 }
 176 
 177 
 178 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 179                                                 size_t init_promo_size,
 180                                                 size_t init_survivor_size) {
 181   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 182   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 183                                         init_promo_size,
 184                                         init_survivor_size,
 185                                         max_gc_pause_sec,
 186                                         GCTimeRatio);
 187 }
 188 
 189 void GenCollectorPolicy::initialize_flags() {
 190   // All sizes must be multiples of the generation granularity.
 191   set_min_alignment((uintx) Generation::GenGrain);
 192   set_max_alignment(compute_max_alignment());
 193 
 194   CollectorPolicy::initialize_flags();
 195 
 196   // All generational heaps have a youngest gen; handle those flags here.
 197 
 198   // Adjust max size parameters
 199   if (NewSize > MaxNewSize) {
 200     MaxNewSize = NewSize;
 201   }
 202   NewSize = align_size_down(NewSize, min_alignment());
 203   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
 204 
 205   // Check validity of heap flags
 206   assert(NewSize     % min_alignment() == 0, "eden space alignment");
 207   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
 208 
 209   if (NewSize < 3*min_alignment()) {
 210      // make sure there room for eden and two survivor spaces
 211     vm_exit_during_initialization("Too small new size specified");
 212   }
 213   if (SurvivorRatio < 1 || NewRatio < 1) {
 214     vm_exit_during_initialization("Invalid heap ratio specified");
 215   }
 216 }
 217 
 218 void TwoGenerationCollectorPolicy::initialize_flags() {
 219   GenCollectorPolicy::initialize_flags();
 220 
 221   OldSize = align_size_down(OldSize, min_alignment());
 222 
 223   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 224     // NewRatio will be used later to set the young generation size so we use
 225     // it to calculate how big the heap should be based on the requested OldSize
 226     // and NewRatio.
 227     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 228     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 229 
 230     calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
 231     MaxHeapSize = calculated_heapsize;
 232     InitialHeapSize = calculated_heapsize;
 233   }
 234   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 235 
 236   // adjust max heap size if necessary
 237   if (NewSize + OldSize > MaxHeapSize) {
 238     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 239       // somebody set a maximum heap size with the intention that we should not
 240       // exceed it. Adjust New/OldSize as necessary.
 241       uintx calculated_size = NewSize + OldSize;
 242       double shrink_factor = (double) MaxHeapSize / calculated_size;
 243       // align
 244       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
 245       // OldSize is already aligned because above we aligned MaxHeapSize to
 246       // max_alignment(), and we just made sure that NewSize is aligned to
 247       // min_alignment(). In initialize_flags() we verified that max_alignment()
 248       // is a multiple of min_alignment().
 249       OldSize = MaxHeapSize - NewSize;
 250     } else {
 251       MaxHeapSize = NewSize + OldSize;
 252     }
 253   }
 254   // need to do this again
 255   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 256 
 257   // adjust max heap size if necessary
 258   if (NewSize + OldSize > MaxHeapSize) {
 259     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 260       // somebody set a maximum heap size with the intention that we should not
 261       // exceed it. Adjust New/OldSize as necessary.
 262       uintx calculated_size = NewSize + OldSize;
 263       double shrink_factor = (double) MaxHeapSize / calculated_size;
 264       // align
 265       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
 266       // OldSize is already aligned because above we aligned MaxHeapSize to
 267       // max_alignment(), and we just made sure that NewSize is aligned to
 268       // min_alignment(). In initialize_flags() we verified that max_alignment()
 269       // is a multiple of min_alignment().
 270       OldSize = MaxHeapSize - NewSize;
 271     } else {
 272       MaxHeapSize = NewSize + OldSize;
 273     }
 274   }
 275   // need to do this again
 276   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 277 
 278   always_do_update_barrier = UseConcMarkSweepGC;
 279 
 280   // Check validity of heap flags
 281   assert(OldSize     % min_alignment() == 0, "old space alignment");
 282   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
 283 }
 284 
 285 // Values set on the command line win over any ergonomically
 286 // set command line parameters.
 287 // Ergonomic choice of parameters are done before this
 288 // method is called.  Values for command line parameters such as NewSize
 289 // and MaxNewSize feed those ergonomic choices into this method.
 290 // This method makes the final generation sizings consistent with
 291 // themselves and with overall heap sizings.
 292 // In the absence of explicitly set command line flags, policies
 293 // such as the use of NewRatio are used to size the generation.
 294 void GenCollectorPolicy::initialize_size_info() {
 295   CollectorPolicy::initialize_size_info();
 296 
 297   // min_alignment() is used for alignment within a generation.
 298   // There is additional alignment done down stream for some
 299   // collectors that sometimes causes unwanted rounding up of
 300   // generations sizes.
 301 
 302   // Determine maximum size of gen0
 303 
 304   size_t max_new_size = 0;
 305   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 306     if (MaxNewSize < min_alignment()) {
 307       max_new_size = min_alignment();
 308     }
 309     if (MaxNewSize >= max_heap_byte_size()) {
 310       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
 311                                      min_alignment());
 312       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 313         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 314         "new generation size of " SIZE_FORMAT "k will be used.",
 315         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
 316     } else {
 317       max_new_size = align_size_down(MaxNewSize, min_alignment());
 318     }
 319 
 320   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 321   // specially at this point to just use an ergonomically set
 322   // MaxNewSize to set max_new_size.  For cases with small
 323   // heaps such a policy often did not work because the MaxNewSize
 324   // was larger than the entire heap.  The interpretation given
 325   // to ergonomically set flags is that the flags are set
 326   // by different collectors for their own special needs but
 327   // are not allowed to badly shape the heap.  This allows the
 328   // different collectors to decide what's best for themselves
 329   // without having to factor in the overall heap shape.  It
 330   // can be the case in the future that the collectors would
 331   // only make "wise" ergonomics choices and this policy could
 332   // just accept those choices.  The choices currently made are
 333   // not always "wise".
 334   } else {
 335     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
 336     // Bound the maximum size by NewSize below (since it historically
 337     // would have been NewSize and because the NewRatio calculation could
 338     // yield a size that is too small) and bound it by MaxNewSize above.
 339     // Ergonomics plays here by previously calculating the desired
 340     // NewSize and MaxNewSize.
 341     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 342   }
 343   assert(max_new_size > 0, "All paths should set max_new_size");
 344 
 345   // Given the maximum gen0 size, determine the initial and
 346   // minimum gen0 sizes.
 347 
 348   if (max_heap_byte_size() == min_heap_byte_size()) {
 349     // The maximum and minimum heap sizes are the same so
 350     // the generations minimum and initial must be the
 351     // same as its maximum.
 352     set_min_gen0_size(max_new_size);
 353     set_initial_gen0_size(max_new_size);
 354     set_max_gen0_size(max_new_size);
 355   } else {
 356     size_t desired_new_size = 0;
 357     if (!FLAG_IS_DEFAULT(NewSize)) {
 358       // If NewSize is set ergonomically (for example by cms), it
 359       // would make sense to use it.  If it is used, also use it
 360       // to set the initial size.  Although there is no reason
 361       // the minimum size and the initial size have to be the same,
 362       // the current implementation gets into trouble during the calculation
 363       // of the tenured generation sizes if they are different.
 364       // Note that this makes the initial size and the minimum size
 365       // generally small compared to the NewRatio calculation.
 366       _min_gen0_size = NewSize;
 367       desired_new_size = NewSize;
 368       max_new_size = MAX2(max_new_size, NewSize);
 369     } else {
 370       // For the case where NewSize is the default, use NewRatio
 371       // to size the minimum and initial generation sizes.
 372       // Use the default NewSize as the floor for these values.  If
 373       // NewRatio is overly large, the resulting sizes can be too
 374       // small.
 375       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
 376                           NewSize);
 377       desired_new_size =
 378         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
 379              NewSize);
 380     }
 381 
 382     assert(_min_gen0_size > 0, "Sanity check");
 383     set_initial_gen0_size(desired_new_size);
 384     set_max_gen0_size(max_new_size);
 385 
 386     // At this point the desirable initial and minimum sizes have been
 387     // determined without regard to the maximum sizes.
 388 
 389     // Bound the sizes by the corresponding overall heap sizes.
 390     set_min_gen0_size(
 391       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
 392     set_initial_gen0_size(
 393       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
 394     set_max_gen0_size(
 395       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
 396 
 397     // At this point all three sizes have been checked against the
 398     // maximum sizes but have not been checked for consistency
 399     // among the three.
 400 
 401     // Final check min <= initial <= max
 402     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
 403     set_initial_gen0_size(
 404       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
 405     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
 406   }
 407 
 408   if (PrintGCDetails && Verbose) {
 409     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 410       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 411       min_gen0_size(), initial_gen0_size(), max_gen0_size());
 412   }
 413 }
 414 
 415 // Call this method during the sizing of the gen1 to make
 416 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 417 // the most freedom in sizing because it is done before the
 418 // policy for gen1 is applied.  Once gen1 policies have been applied,
 419 // there may be conflicts in the shape of the heap and this method
 420 // is used to make the needed adjustments.  The application of the
 421 // policies could be more sophisticated (iterative for example) but
 422 // keeping it simple also seems a worthwhile goal.
 423 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 424                                                      size_t* gen1_size_ptr,
 425                                                      const size_t heap_size,
 426                                                      const size_t min_gen1_size) {
 427   bool result = false;
 428 
 429   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 430     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 431         (heap_size >= min_gen1_size + min_alignment())) {
 432       // Adjust gen0 down to accommodate min_gen1_size
 433       *gen0_size_ptr = heap_size - min_gen1_size;
 434       *gen0_size_ptr =
 435         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
 436              min_alignment());
 437       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 438       result = true;
 439     } else {
 440       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 441       *gen1_size_ptr =
 442         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
 443                        min_alignment());
 444     }
 445   }
 446   return result;
 447 }
 448 
 449 // Minimum sizes of the generations may be different than
 450 // the initial sizes.  An inconsistently is permitted here
 451 // in the total size that can be specified explicitly by
 452 // command line specification of OldSize and NewSize and
 453 // also a command line specification of -Xms.  Issue a warning
 454 // but allow the values to pass.
 455 
 456 void TwoGenerationCollectorPolicy::initialize_size_info() {
 457   GenCollectorPolicy::initialize_size_info();
 458 
 459   // At this point the minimum, initial and maximum sizes
 460   // of the overall heap and of gen0 have been determined.
 461   // The maximum gen1 size can be determined from the maximum gen0
 462   // and maximum heap size since no explicit flags exits
 463   // for setting the gen1 maximum.
 464   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
 465   _max_gen1_size =
 466     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
 467          min_alignment());
 468   // If no explicit command line flag has been set for the
 469   // gen1 size, use what is left for gen1.
 470   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 471     // The user has not specified any value or ergonomics
 472     // has chosen a value (which may or may not be consistent
 473     // with the overall heap size).  In either case make
 474     // the minimum, maximum and initial sizes consistent
 475     // with the gen0 sizes and the overall heap sizes.
 476     assert(min_heap_byte_size() > _min_gen0_size,
 477       "gen0 has an unexpected minimum size");
 478     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
 479     set_min_gen1_size(
 480       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
 481            min_alignment()));
 482     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
 483     set_initial_gen1_size(
 484       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
 485            min_alignment()));
 486 
 487   } else {
 488     // It's been explicitly set on the command line.  Use the
 489     // OldSize and then determine the consequences.
 490     set_min_gen1_size(OldSize);
 491     set_initial_gen1_size(OldSize);
 492 
 493     // If the user has explicitly set an OldSize that is inconsistent
 494     // with other command line flags, issue a warning.
 495     // The generation minimums and the overall heap mimimum should
 496     // be within one heap alignment.
 497     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
 498            min_heap_byte_size()) {
 499       warning("Inconsistency between minimum heap size and minimum "
 500           "generation sizes: using minimum heap = " SIZE_FORMAT,
 501           min_heap_byte_size());
 502     }
 503     if ((OldSize > _max_gen1_size)) {
 504       warning("Inconsistency between maximum heap size and maximum "
 505           "generation sizes: using maximum heap = " SIZE_FORMAT
 506           " -XX:OldSize flag is being ignored",
 507           max_heap_byte_size());
 508     }
 509     // If there is an inconsistency between the OldSize and the minimum and/or
 510     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 511     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 512                           min_heap_byte_size(), OldSize)) {
 513       if (PrintGCDetails && Verbose) {
 514         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 515               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 516               min_gen0_size(), initial_gen0_size(), max_gen0_size());
 517       }
 518     }
 519     // Initial size
 520     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 521                          initial_heap_byte_size(), OldSize)) {
 522       if (PrintGCDetails && Verbose) {
 523         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 524           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 525           min_gen0_size(), initial_gen0_size(), max_gen0_size());
 526       }
 527     }
 528   }
 529   // Enforce the maximum gen1 size.
 530   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
 531 
 532   // Check that min gen1 <= initial gen1 <= max gen1
 533   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
 534   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
 535 
 536   if (PrintGCDetails && Verbose) {
 537     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 538       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 539       min_gen1_size(), initial_gen1_size(), max_gen1_size());
 540   }
 541 }
 542 
 543 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 544                                         bool is_tlab,
 545                                         bool* gc_overhead_limit_was_exceeded) {
 546   GenCollectedHeap *gch = GenCollectedHeap::heap();
 547 
 548   debug_only(gch->check_for_valid_allocation_state());
 549   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 550 
 551   // In general gc_overhead_limit_was_exceeded should be false so
 552   // set it so here and reset it to true only if the gc time
 553   // limit is being exceeded as checked below.
 554   *gc_overhead_limit_was_exceeded = false;
 555 
 556   HeapWord* result = NULL;
 557 
 558   // Loop until the allocation is satisified,
 559   // or unsatisfied after GC.
 560   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 561     HandleMark hm; // discard any handles allocated in each iteration
 562 
 563     // First allocation attempt is lock-free.
 564     Generation *gen0 = gch->get_gen(0);
 565     assert(gen0->supports_inline_contig_alloc(),
 566       "Otherwise, must do alloc within heap lock");
 567     if (gen0->should_allocate(size, is_tlab)) {
 568       result = gen0->par_allocate(size, is_tlab);
 569       if (result != NULL) {
 570         assert(gch->is_in_reserved(result), "result not in heap");
 571         return result;
 572       }
 573     }
 574     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 575     {
 576       MutexLocker ml(Heap_lock);
 577       if (PrintGC && Verbose) {
 578         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 579                       " attempting locked slow path allocation");
 580       }
 581       // Note that only large objects get a shot at being
 582       // allocated in later generations.
 583       bool first_only = ! should_try_older_generation_allocation(size);
 584 
 585       result = gch->attempt_allocation(size, is_tlab, first_only);
 586       if (result != NULL) {
 587         assert(gch->is_in_reserved(result), "result not in heap");
 588         return result;
 589       }
 590 
 591       if (GC_locker::is_active_and_needs_gc()) {
 592         if (is_tlab) {
 593           return NULL;  // Caller will retry allocating individual object
 594         }
 595         if (!gch->is_maximal_no_gc()) {
 596           // Try and expand heap to satisfy request
 597           result = expand_heap_and_allocate(size, is_tlab);
 598           // result could be null if we are out of space
 599           if (result != NULL) {
 600             return result;
 601           }
 602         }
 603 
 604         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 605           return NULL; // we didn't get to do a GC and we didn't get any memory
 606         }
 607 
 608         // If this thread is not in a jni critical section, we stall
 609         // the requestor until the critical section has cleared and
 610         // GC allowed. When the critical section clears, a GC is
 611         // initiated by the last thread exiting the critical section; so
 612         // we retry the allocation sequence from the beginning of the loop,
 613         // rather than causing more, now probably unnecessary, GC attempts.
 614         JavaThread* jthr = JavaThread::current();
 615         if (!jthr->in_critical()) {
 616           MutexUnlocker mul(Heap_lock);
 617           // Wait for JNI critical section to be exited
 618           GC_locker::stall_until_clear();
 619           gclocker_stalled_count += 1;
 620           continue;
 621         } else {
 622           if (CheckJNICalls) {
 623             fatal("Possible deadlock due to allocating while"
 624                   " in jni critical section");
 625           }
 626           return NULL;
 627         }
 628       }
 629 
 630       // Read the gc count while the heap lock is held.
 631       gc_count_before = Universe::heap()->total_collections();
 632     }
 633 
 634     VM_GenCollectForAllocation op(size,
 635                                   is_tlab,
 636                                   gc_count_before);
 637     VMThread::execute(&op);
 638     if (op.prologue_succeeded()) {
 639       result = op.result();
 640       if (op.gc_locked()) {
 641          assert(result == NULL, "must be NULL if gc_locked() is true");
 642          continue;  // retry and/or stall as necessary
 643       }
 644 
 645       // Allocation has failed and a collection
 646       // has been done.  If the gc time limit was exceeded the
 647       // this time, return NULL so that an out-of-memory
 648       // will be thrown.  Clear gc_overhead_limit_exceeded
 649       // so that the overhead exceeded does not persist.
 650 
 651       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 652       const bool softrefs_clear = all_soft_refs_clear();
 653 
 654       if (limit_exceeded && softrefs_clear) {
 655         *gc_overhead_limit_was_exceeded = true;
 656         size_policy()->set_gc_overhead_limit_exceeded(false);
 657         if (op.result() != NULL) {
 658           CollectedHeap::fill_with_object(op.result(), size);
 659         }
 660         return NULL;
 661       }
 662       assert(result == NULL || gch->is_in_reserved(result),
 663              "result not in heap");
 664       return result;
 665     }
 666 
 667     // Give a warning if we seem to be looping forever.
 668     if ((QueuedAllocationWarningCount > 0) &&
 669         (try_count % QueuedAllocationWarningCount == 0)) {
 670           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 671                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 672     }
 673   }
 674 }
 675 
 676 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 677                                                        bool   is_tlab) {
 678   GenCollectedHeap *gch = GenCollectedHeap::heap();
 679   HeapWord* result = NULL;
 680   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 681     Generation *gen = gch->get_gen(i);
 682     if (gen->should_allocate(size, is_tlab)) {
 683       result = gen->expand_and_allocate(size, is_tlab);
 684     }
 685   }
 686   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 687   return result;
 688 }
 689 
 690 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 691                                                         bool   is_tlab) {
 692   GenCollectedHeap *gch = GenCollectedHeap::heap();
 693   GCCauseSetter x(gch, GCCause::_allocation_failure);
 694   HeapWord* result = NULL;
 695 
 696   assert(size != 0, "Precondition violated");
 697   if (GC_locker::is_active_and_needs_gc()) {
 698     // GC locker is active; instead of a collection we will attempt
 699     // to expand the heap, if there's room for expansion.
 700     if (!gch->is_maximal_no_gc()) {
 701       result = expand_heap_and_allocate(size, is_tlab);
 702     }
 703     return result;   // could be null if we are out of space
 704   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 705     // Do an incremental collection.
 706     gch->do_collection(false            /* full */,
 707                        false            /* clear_all_soft_refs */,
 708                        size             /* size */,
 709                        is_tlab          /* is_tlab */,
 710                        number_of_generations() - 1 /* max_level */);
 711   } else {
 712     if (Verbose && PrintGCDetails) {
 713       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 714     }
 715     // Try a full collection; see delta for bug id 6266275
 716     // for the original code and why this has been simplified
 717     // with from-space allocation criteria modified and
 718     // such allocation moved out of the safepoint path.
 719     gch->do_collection(true             /* full */,
 720                        false            /* clear_all_soft_refs */,
 721                        size             /* size */,
 722                        is_tlab          /* is_tlab */,
 723                        number_of_generations() - 1 /* max_level */);
 724   }
 725 
 726   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 727 
 728   if (result != NULL) {
 729     assert(gch->is_in_reserved(result), "result not in heap");
 730     return result;
 731   }
 732 
 733   // OK, collection failed, try expansion.
 734   result = expand_heap_and_allocate(size, is_tlab);
 735   if (result != NULL) {
 736     return result;
 737   }
 738 
 739   // If we reach this point, we're really out of memory. Try every trick
 740   // we can to reclaim memory. Force collection of soft references. Force
 741   // a complete compaction of the heap. Any additional methods for finding
 742   // free memory should be here, especially if they are expensive. If this
 743   // attempt fails, an OOM exception will be thrown.
 744   {
 745     IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 746 
 747     gch->do_collection(true             /* full */,
 748                        true             /* clear_all_soft_refs */,
 749                        size             /* size */,
 750                        is_tlab          /* is_tlab */,
 751                        number_of_generations() - 1 /* max_level */);
 752   }
 753 
 754   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 755   if (result != NULL) {
 756     assert(gch->is_in_reserved(result), "result not in heap");
 757     return result;
 758   }
 759 
 760   assert(!should_clear_all_soft_refs(),
 761     "Flag should have been handled and cleared prior to this point");
 762 
 763   // What else?  We might try synchronous finalization later.  If the total
 764   // space available is large enough for the allocation, then a more
 765   // complete compaction phase than we've tried so far might be
 766   // appropriate.
 767   return NULL;
 768 }
 769 
 770 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 771                                                  ClassLoaderData* loader_data,
 772                                                  size_t word_size,
 773                                                  Metaspace::MetadataType mdtype) {
 774   uint loop_count = 0;
 775   uint gc_count = 0;
 776   uint full_gc_count = 0;
 777 
 778   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 779 
 780   do {
 781     MetaWord* result = NULL;
 782     if (GC_locker::is_active_and_needs_gc()) {
 783       // If the GC_locker is active, just expand and allocate.
 784       // If that does not succeed, wait if this thread is not
 785       // in a critical section itself.
 786       result =
 787         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 788                                                                mdtype);
 789       if (result != NULL) {
 790         return result;
 791       }
 792       JavaThread* jthr = JavaThread::current();
 793       if (!jthr->in_critical()) {
 794         // Wait for JNI critical section to be exited
 795         GC_locker::stall_until_clear();
 796         // The GC invoked by the last thread leaving the critical
 797         // section will be a young collection and a full collection
 798         // is (currently) needed for unloading classes so continue
 799         // to the next iteration to get a full GC.
 800         continue;
 801       } else {
 802         if (CheckJNICalls) {
 803           fatal("Possible deadlock due to allocating while"
 804                 " in jni critical section");
 805         }
 806         return NULL;
 807       }
 808     }
 809 
 810     {  // Need lock to get self consistent gc_count's
 811       MutexLocker ml(Heap_lock);
 812       gc_count      = Universe::heap()->total_collections();
 813       full_gc_count = Universe::heap()->total_full_collections();
 814     }
 815 
 816     // Generate a VM operation
 817     VM_CollectForMetadataAllocation op(loader_data,
 818                                        word_size,
 819                                        mdtype,
 820                                        gc_count,
 821                                        full_gc_count,
 822                                        GCCause::_metadata_GC_threshold);
 823     VMThread::execute(&op);
 824 
 825     // If GC was locked out, try again.  Check
 826     // before checking success because the prologue
 827     // could have succeeded and the GC still have
 828     // been locked out.
 829     if (op.gc_locked()) {
 830       continue;
 831     }
 832 
 833     if (op.prologue_succeeded()) {
 834       return op.result();
 835     }
 836     loop_count++;
 837     if ((QueuedAllocationWarningCount > 0) &&
 838         (loop_count % QueuedAllocationWarningCount == 0)) {
 839       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 840               " size=%d", loop_count, word_size);
 841     }
 842   } while (true);  // Until a GC is done
 843 }
 844 
 845 // Return true if any of the following is true:
 846 // . the allocation won't fit into the current young gen heap
 847 // . gc locker is occupied (jni critical section)
 848 // . heap memory is tight -- the most recent previous collection
 849 //   was a full collection because a partial collection (would
 850 //   have) failed and is likely to fail again
 851 bool GenCollectorPolicy::should_try_older_generation_allocation(
 852         size_t word_size) const {
 853   GenCollectedHeap* gch = GenCollectedHeap::heap();
 854   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 855   return    (word_size > heap_word_size(gen0_capacity))
 856          || GC_locker::is_active_and_needs_gc()
 857          || gch->incremental_collection_failed();
 858 }
 859 
 860 
 861 //
 862 // MarkSweepPolicy methods
 863 //
 864 
 865 MarkSweepPolicy::MarkSweepPolicy() {
 866   initialize_all();
 867 }
 868 
 869 void MarkSweepPolicy::initialize_generations() {
 870   _generations = new GenerationSpecPtr[number_of_generations()];
 871   if (_generations == NULL)
 872     vm_exit_during_initialization("Unable to allocate gen spec");
 873 
 874   if (UseParNewGC) {
 875     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 876   } else {
 877     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 878   }
 879   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 880 
 881   if (_generations[0] == NULL || _generations[1] == NULL)
 882     vm_exit_during_initialization("Unable to allocate gen spec");
 883 }
 884 
 885 void MarkSweepPolicy::initialize_gc_policy_counters() {
 886   // initialize the policy counters - 2 collectors, 3 generations
 887   if (UseParNewGC) {
 888     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 889   } else {
 890     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 891   }
 892 }