1 /*
   2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  29 #include "memory/collectorPolicy.hpp"
  30 #include "memory/generation.hpp"
  31 #include "memory/sharedHeap.hpp"
  32 
  33 class SubTasksDone;
  34 
  35 // A "GenCollectedHeap" is a SharedHeap that uses generational
  36 // collection.  It is represented with a sequence of Generation's.
  37 class GenCollectedHeap : public SharedHeap {
  38   friend class GenCollectorPolicy;
  39   friend class Generation;
  40   friend class DefNewGeneration;
  41   friend class TenuredGeneration;
  42   friend class ConcurrentMarkSweepGeneration;
  43   friend class CMSCollector;
  44   friend class GenMarkSweep;
  45   friend class VM_GenCollectForAllocation;
  46   friend class VM_GenCollectFull;
  47   friend class VM_GenCollectFullConcurrent;
  48   friend class VM_GC_HeapInspection;
  49   friend class VM_HeapDumper;
  50   friend class HeapInspection;
  51   friend class GCCauseSetter;
  52   friend class VMStructs;
  53 public:
  54   enum SomeConstants {
  55     max_gens = 10
  56   };
  57 
  58   friend class VM_PopulateDumpSharedSpace;
  59 
  60  protected:
  61   // Fields:
  62   static GenCollectedHeap* _gch;
  63 
  64  private:
  65   int _n_gens;
  66   Generation* _gens[max_gens];
  67   GenerationSpec** _gen_specs;
  68 
  69   // The generational collector policy.
  70   GenCollectorPolicy* _gen_policy;
  71 
  72   // Indicates that the most recent previous incremental collection failed.
  73   // The flag is cleared when an action is taken that might clear the
  74   // condition that caused that incremental collection to fail.
  75   bool _incremental_collection_failed;
  76 
  77   // In support of ExplicitGCInvokesConcurrent functionality
  78   unsigned int _full_collections_completed;
  79 
  80   // Data structure for claiming the (potentially) parallel tasks in
  81   // (gen-specific) strong roots processing.
  82   SubTasksDone* _gen_process_strong_tasks;
  83   SubTasksDone* gen_process_strong_tasks() { return _gen_process_strong_tasks; }
  84 
  85   // In block contents verification, the number of header words to skip
  86   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
  87 
  88 protected:
  89   // Directs each generation up to and including "collectedGen" to recompute
  90   // its desired size.
  91   void compute_new_generation_sizes(int collectedGen);
  92 
  93   // Helper functions for allocation
  94   HeapWord* attempt_allocation(size_t size,
  95                                bool   is_tlab,
  96                                bool   first_only);
  97 
  98   // Helper function for two callbacks below.
  99   // Considers collection of the first max_level+1 generations.
 100   void do_collection(bool   full,
 101                      bool   clear_all_soft_refs,
 102                      size_t size,
 103                      bool   is_tlab,
 104                      int    max_level);
 105 
 106   // Callback from VM_GenCollectForAllocation operation.
 107   // This function does everything necessary/possible to satisfy an
 108   // allocation request that failed in the youngest generation that should
 109   // have handled it (including collection, expansion, etc.)
 110   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 111 
 112   // Callback from VM_GenCollectFull operation.
 113   // Perform a full collection of the first max_level+1 generations.
 114   virtual void do_full_collection(bool clear_all_soft_refs);
 115   void do_full_collection(bool clear_all_soft_refs, int max_level);
 116 
 117   // Does the "cause" of GC indicate that
 118   // we absolutely __must__ clear soft refs?
 119   bool must_clear_all_soft_refs();
 120 
 121 public:
 122   GenCollectedHeap(GenCollectorPolicy *policy);
 123 
 124   GCStats* gc_stats(int level) const;
 125 
 126   // Returns JNI_OK on success
 127   virtual jint initialize();
 128   char* allocate(size_t alignment,
 129                  size_t* _total_reserved, int* _n_covered_regions,
 130                  ReservedSpace* heap_rs);
 131 
 132   // Does operations required after initialization has been done.
 133   void post_initialize();
 134 
 135   // Initialize ("weak") refs processing support
 136   virtual void ref_processing_init();
 137 
 138   virtual CollectedHeap::Name kind() const {
 139     return CollectedHeap::GenCollectedHeap;
 140   }
 141 
 142   // The generational collector policy.
 143   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 144   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
 145 
 146   // Adaptive size policy
 147   virtual AdaptiveSizePolicy* size_policy() {
 148     return gen_policy()->size_policy();
 149   }
 150 
 151   // return the (conservative) maximum heap alignment
 152   static size_t max_heap_alignment() {
 153     return Generation::GenGrain;
 154   }
 155 
 156   size_t capacity() const;
 157   size_t used() const;
 158 
 159   // Save the "used_region" for generations level and lower.
 160   void save_used_regions(int level);
 161 
 162   size_t max_capacity() const;
 163 
 164   HeapWord* mem_allocate(size_t size,
 165                          bool*  gc_overhead_limit_was_exceeded);
 166 
 167   // We may support a shared contiguous allocation area, if the youngest
 168   // generation does.
 169   bool supports_inline_contig_alloc() const;
 170   HeapWord** top_addr() const;
 171   HeapWord** end_addr() const;
 172 
 173   // Return an estimate of the maximum allocation that could be performed
 174   // without triggering any collection activity.  In a generational
 175   // collector, for example, this is probably the largest allocation that
 176   // could be supported in the youngest generation.  It is "unsafe" because
 177   // no locks are taken; the result should be treated as an approximation,
 178   // not a guarantee.
 179   size_t unsafe_max_alloc();
 180 
 181   // Does this heap support heap inspection? (+PrintClassHistogram)
 182   virtual bool supports_heap_inspection() const { return true; }
 183 
 184   // Perform a full collection of the heap; intended for use in implementing
 185   // "System.gc". This implies as full a collection as the CollectedHeap
 186   // supports. Caller does not hold the Heap_lock on entry.
 187   void collect(GCCause::Cause cause);
 188 
 189   // The same as above but assume that the caller holds the Heap_lock.
 190   void collect_locked(GCCause::Cause cause);
 191 
 192   // Perform a full collection of the first max_level+1 generations.
 193   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 194   void collect(GCCause::Cause cause, int max_level);
 195 
 196   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 197   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 198   // be expensive to compute in general, so, to prevent
 199   // their inadvertent use in product jvm's, we restrict their use to
 200   // assertion checking or verification only.
 201   bool is_in(const void* p) const;
 202 
 203   // override
 204   bool is_in_closed_subset(const void* p) const {
 205     if (UseConcMarkSweepGC) {
 206       return is_in_reserved(p);
 207     } else {
 208       return is_in(p);
 209     }
 210   }
 211 
 212   // Returns true if the reference is to an object in the reserved space
 213   // for the young generation.
 214   // Assumes the the young gen address range is less than that of the old gen.
 215   bool is_in_young(oop p);
 216 
 217 #ifdef ASSERT
 218   virtual bool is_in_partial_collection(const void* p);
 219 #endif
 220 
 221   virtual bool is_scavengable(const void* addr) {
 222     return is_in_young((oop)addr);
 223   }
 224 
 225   // Iteration functions.
 226   void oop_iterate(ExtendedOopClosure* cl);
 227   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
 228   void object_iterate(ObjectClosure* cl);
 229   void safe_object_iterate(ObjectClosure* cl);
 230   void object_iterate_since_last_GC(ObjectClosure* cl);
 231   Space* space_containing(const void* addr) const;
 232 
 233   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 234   // each address in the (reserved) heap is a member of exactly
 235   // one block.  The defining characteristic of a block is that it is
 236   // possible to find its size, and thus to progress forward to the next
 237   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 238   // represent Java objects, or they might be free blocks in a
 239   // free-list-based heap (or subheap), as long as the two kinds are
 240   // distinguishable and the size of each is determinable.
 241 
 242   // Returns the address of the start of the "block" that contains the
 243   // address "addr".  We say "blocks" instead of "object" since some heaps
 244   // may not pack objects densely; a chunk may either be an object or a
 245   // non-object.
 246   virtual HeapWord* block_start(const void* addr) const;
 247 
 248   // Requires "addr" to be the start of a chunk, and returns its size.
 249   // "addr + size" is required to be the start of a new chunk, or the end
 250   // of the active area of the heap. Assumes (and verifies in non-product
 251   // builds) that addr is in the allocated part of the heap and is
 252   // the start of a chunk.
 253   virtual size_t block_size(const HeapWord* addr) const;
 254 
 255   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 256   // the block is an object. Assumes (and verifies in non-product
 257   // builds) that addr is in the allocated part of the heap and is
 258   // the start of a chunk.
 259   virtual bool block_is_obj(const HeapWord* addr) const;
 260 
 261   // Section on TLAB's.
 262   virtual bool supports_tlab_allocation() const;
 263   virtual size_t tlab_capacity(Thread* thr) const;
 264   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 265   virtual HeapWord* allocate_new_tlab(size_t size);
 266 
 267   // Can a compiler initialize a new object without store barriers?
 268   // This permission only extends from the creation of a new object
 269   // via a TLAB up to the first subsequent safepoint.
 270   virtual bool can_elide_tlab_store_barriers() const {
 271     return true;
 272   }
 273 
 274   virtual bool card_mark_must_follow_store() const {
 275     return UseConcMarkSweepGC;
 276   }
 277 
 278   // We don't need barriers for stores to objects in the
 279   // young gen and, a fortiori, for initializing stores to
 280   // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
 281   // only and may need to be re-examined in case other
 282   // kinds of collectors are implemented in the future.
 283   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 284     // We wanted to assert that:-
 285     // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
 286     //       "Check can_elide_initializing_store_barrier() for this collector");
 287     // but unfortunately the flag UseSerialGC need not necessarily always
 288     // be set when DefNew+Tenured are being used.
 289     return is_in_young(new_obj);
 290   }
 291 
 292   // The "requestor" generation is performing some garbage collection
 293   // action for which it would be useful to have scratch space.  The
 294   // requestor promises to allocate no more than "max_alloc_words" in any
 295   // older generation (via promotion say.)   Any blocks of space that can
 296   // be provided are returned as a list of ScratchBlocks, sorted by
 297   // decreasing size.
 298   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 299   // Allow each generation to reset any scratch space that it has
 300   // contributed as it needs.
 301   void release_scratch();
 302 
 303   // Ensure parsability: override
 304   virtual void ensure_parsability(bool retire_tlabs);
 305 
 306   // Time in ms since the longest time a collector ran in
 307   // in any generation.
 308   virtual jlong millis_since_last_gc();
 309 
 310   // Total number of full collections completed.
 311   unsigned int total_full_collections_completed() {
 312     assert(_full_collections_completed <= _total_full_collections,
 313            "Can't complete more collections than were started");
 314     return _full_collections_completed;
 315   }
 316 
 317   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 318   unsigned int update_full_collections_completed();
 319   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 320   unsigned int update_full_collections_completed(unsigned int count);
 321 
 322   // Update "time of last gc" for all constituent generations
 323   // to "now".
 324   void update_time_of_last_gc(jlong now) {
 325     for (int i = 0; i < _n_gens; i++) {
 326       _gens[i]->update_time_of_last_gc(now);
 327     }
 328   }
 329 
 330   // Update the gc statistics for each generation.
 331   // "level" is the level of the lastest collection
 332   void update_gc_stats(int current_level, bool full) {
 333     for (int i = 0; i < _n_gens; i++) {
 334       _gens[i]->update_gc_stats(current_level, full);
 335     }
 336   }
 337 
 338   // Override.
 339   bool no_gc_in_progress() { return !is_gc_active(); }
 340 
 341   // Override.
 342   void prepare_for_verify();
 343 
 344   // Override.
 345   void verify(bool silent, VerifyOption option);
 346 
 347   // Override.
 348   virtual void print_on(outputStream* st) const;
 349   virtual void print_gc_threads_on(outputStream* st) const;
 350   virtual void gc_threads_do(ThreadClosure* tc) const;
 351   virtual void print_tracing_info() const;
 352   virtual void print_on_error(outputStream* st) const;
 353 
 354   // PrintGC, PrintGCDetails support
 355   void print_heap_change(size_t prev_used) const;
 356 
 357   // The functions below are helper functions that a subclass of
 358   // "CollectedHeap" can use in the implementation of its virtual
 359   // functions.
 360 
 361   class GenClosure : public StackObj {
 362    public:
 363     virtual void do_generation(Generation* gen) = 0;
 364   };
 365 
 366   // Apply "cl.do_generation" to all generations in the heap
 367   // If "old_to_young" determines the order.
 368   void generation_iterate(GenClosure* cl, bool old_to_young);
 369 
 370   void space_iterate(SpaceClosure* cl);
 371 
 372   // Return "true" if all generations have reached the
 373   // maximal committed limit that they can reach, without a garbage
 374   // collection.
 375   virtual bool is_maximal_no_gc() const;
 376 
 377   // Return the generation before "gen", or else NULL.
 378   Generation* prev_gen(Generation* gen) const {
 379     int l = gen->level();
 380     if (l == 0) return NULL;
 381     else return _gens[l-1];
 382   }
 383 
 384   // Return the generation after "gen", or else NULL.
 385   Generation* next_gen(Generation* gen) const {
 386     int l = gen->level() + 1;
 387     if (l == _n_gens) return NULL;
 388     else return _gens[l];
 389   }
 390 
 391   Generation* get_gen(int i) const {
 392     if (i >= 0 && i < _n_gens)
 393       return _gens[i];
 394     else
 395       return NULL;
 396   }
 397 
 398   int n_gens() const {
 399     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
 400     return _n_gens;
 401   }
 402 
 403   // Convenience function to be used in situations where the heap type can be
 404   // asserted to be this type.
 405   static GenCollectedHeap* heap();
 406 
 407   void set_par_threads(uint t);
 408 
 409   // Invoke the "do_oop" method of one of the closures "not_older_gens"
 410   // or "older_gens" on root locations for the generation at
 411   // "level".  (The "older_gens" closure is used for scanning references
 412   // from older generations; "not_older_gens" is used everywhere else.)
 413   // If "younger_gens_as_roots" is false, younger generations are
 414   // not scanned as roots; in this case, the caller must be arranging to
 415   // scan the younger generations itself.  (For example, a generation might
 416   // explicitly mark reachable objects in younger generations, to avoid
 417   // excess storage retention.)
 418   // The "so" argument determines which of the roots
 419   // the closure is applied to:
 420   // "SO_None" does none;
 421   // "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
 422   // "SO_SystemClasses" to all the "system" classes and loaders;
 423   // "SO_Strings" applies the closure to all entries in the StringTable.
 424   void gen_process_strong_roots(int level,
 425                                 bool younger_gens_as_roots,
 426                                 // The remaining arguments are in an order
 427                                 // consistent with SharedHeap::process_strong_roots:
 428                                 bool activate_scope,
 429                                 bool is_scavenging,
 430                                 SharedHeap::ScanningOption so,
 431                                 OopsInGenClosure* not_older_gens,
 432                                 bool do_code_roots,
 433                                 OopsInGenClosure* older_gens,
 434                                 KlassClosure* klass_closure);
 435 
 436   // Apply "blk" to all the weak roots of the system.  These include
 437   // JNI weak roots, the code cache, system dictionary, symbol table,
 438   // string table, and referents of reachable weak refs.
 439   void gen_process_weak_roots(OopClosure* root_closure,
 440                               CodeBlobClosure* code_roots);
 441 
 442   // Set the saved marks of generations, if that makes sense.
 443   // In particular, if any generation might iterate over the oops
 444   // in other generations, it should call this method.
 445   void save_marks();
 446 
 447   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 448   // allocated since the last call to save_marks in generations at or above
 449   // "level".  The "cur" closure is
 450   // applied to references in the generation at "level", and the "older"
 451   // closure to older generations.
 452 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 453   void oop_since_save_marks_iterate(int level,                          \
 454                                     OopClosureType* cur,                \
 455                                     OopClosureType* older);
 456 
 457   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 458 
 459 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 460 
 461   // Returns "true" iff no allocations have occurred in any generation at
 462   // "level" or above since the last
 463   // call to "save_marks".
 464   bool no_allocs_since_save_marks(int level);
 465 
 466   // Returns true if an incremental collection is likely to fail.
 467   // We optionally consult the young gen, if asked to do so;
 468   // otherwise we base our answer on whether the previous incremental
 469   // collection attempt failed with no corrective action as of yet.
 470   bool incremental_collection_will_fail(bool consult_young) {
 471     // Assumes a 2-generation system; the first disjunct remembers if an
 472     // incremental collection failed, even when we thought (second disjunct)
 473     // that it would not.
 474     assert(heap()->collector_policy()->is_two_generation_policy(),
 475            "the following definition may not be suitable for an n(>2)-generation system");
 476     return incremental_collection_failed() ||
 477            (consult_young && !get_gen(0)->collection_attempt_is_safe());
 478   }
 479 
 480   // If a generation bails out of an incremental collection,
 481   // it sets this flag.
 482   bool incremental_collection_failed() const {
 483     return _incremental_collection_failed;
 484   }
 485   void set_incremental_collection_failed() {
 486     _incremental_collection_failed = true;
 487   }
 488   void clear_incremental_collection_failed() {
 489     _incremental_collection_failed = false;
 490   }
 491 
 492   // Promotion of obj into gen failed.  Try to promote obj to higher
 493   // gens in ascending order; return the new location of obj if successful.
 494   // Otherwise, try expand-and-allocate for obj in each generation starting at
 495   // gen; return the new location of obj if successful.  Otherwise, return NULL.
 496   oop handle_failed_promotion(Generation* gen,
 497                               oop obj,
 498                               size_t obj_size);
 499 
 500 private:
 501   // Accessor for memory state verification support
 502   NOT_PRODUCT(
 503     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
 504   )
 505 
 506   // Override
 507   void check_for_non_bad_heap_word_value(HeapWord* addr,
 508     size_t size) PRODUCT_RETURN;
 509 
 510   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 511   // in an essential way: compaction is performed across generations, by
 512   // iterating over spaces.
 513   void prepare_for_compaction();
 514 
 515   // Perform a full collection of the first max_level+1 generations.
 516   // This is the low level interface used by the public versions of
 517   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 518   void collect_locked(GCCause::Cause cause, int max_level);
 519 
 520   // Returns success or failure.
 521   bool create_cms_collector();
 522 
 523   // In support of ExplicitGCInvokesConcurrent functionality
 524   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 525   void collect_mostly_concurrent(GCCause::Cause cause);
 526 
 527   // Save the tops of the spaces in all generations
 528   void record_gen_tops_before_GC() PRODUCT_RETURN;
 529 
 530 protected:
 531   virtual void gc_prologue(bool full);
 532   virtual void gc_epilogue(bool full);
 533 };
 534 
 535 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP