1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 void CollectorPolicy::initialize_flags() {
  51   assert(max_alignment() >= min_alignment(),
  52       err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  53           max_alignment(), min_alignment()));
  54   assert(max_alignment() % min_alignment() == 0,
  55       err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  56           max_alignment(), min_alignment()));
  57 
  58   if (MaxHeapSize < InitialHeapSize) {
  59     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  60   }
  61 
  62   if (MetaspaceSize > MaxMetaspaceSize) {
  63     MaxMetaspaceSize = MetaspaceSize;
  64   }
  65   MetaspaceSize = MAX2(min_alignment(), align_size_down_(MetaspaceSize, min_alignment()));
  66   // Don't increase Metaspace size limit above specified.
  67   MaxMetaspaceSize = align_size_down(MaxMetaspaceSize, max_alignment());
  68   if (MetaspaceSize > MaxMetaspaceSize) {
  69     MetaspaceSize = MaxMetaspaceSize;
  70   }
  71 
  72   MinMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MinMetaspaceExpansion, min_alignment()));
  73   MaxMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MaxMetaspaceExpansion, min_alignment()));
  74 
  75   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
  76 
  77   assert(MetaspaceSize    % min_alignment() == 0, "metapace alignment");
  78   assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
  79   if (MetaspaceSize < 256*K) {
  80     vm_exit_during_initialization("Too small initial Metaspace size");
  81   }
  82 }
  83 
  84 void CollectorPolicy::initialize_size_info() {
  85   // User inputs from -mx and ms must be aligned
  86   set_min_heap_byte_size(align_size_up(Arguments::min_heap_size(), min_alignment()));
  87   set_initial_heap_byte_size(align_size_up(InitialHeapSize, min_alignment()));
  88   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
  89 
  90   // Check heap parameter properties
  91   if (initial_heap_byte_size() < M) {
  92     vm_exit_during_initialization("Too small initial heap");
  93   }
  94   // Check heap parameter properties
  95   if (min_heap_byte_size() < M) {
  96     vm_exit_during_initialization("Too small minimum heap");
  97   }
  98   if (initial_heap_byte_size() <= NewSize) {
  99      // make sure there is at least some room in old space
 100     vm_exit_during_initialization("Too small initial heap for new size specified");
 101   }
 102   if (max_heap_byte_size() < min_heap_byte_size()) {
 103     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 104   }
 105   if (initial_heap_byte_size() < min_heap_byte_size()) {
 106     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 107   }
 108   if (max_heap_byte_size() < initial_heap_byte_size()) {
 109     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 110   }
 111 
 112   if (PrintGCDetails && Verbose) {
 113     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 114       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 115       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
 116   }
 117 }
 118 
 119 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 120   bool result = _should_clear_all_soft_refs;
 121   set_should_clear_all_soft_refs(false);
 122   return result;
 123 }
 124 
 125 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 126                                            int max_covered_regions) {
 127   switch (rem_set_name()) {
 128   case GenRemSet::CardTable: {
 129     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
 130     return res;
 131   }
 132   default:
 133     guarantee(false, "unrecognized GenRemSet::Name");
 134     return NULL;
 135   }
 136 }
 137 
 138 void CollectorPolicy::cleared_all_soft_refs() {
 139   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 140   // have been cleared in the last collection but if the gc overhear
 141   // limit continues to be near, SoftRefs should still be cleared.
 142   if (size_policy() != NULL) {
 143     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 144   }
 145   _all_soft_refs_clear = true;
 146 }
 147 
 148 
 149 // GenCollectorPolicy methods.
 150 
 151 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 152   size_t x = base_size / (NewRatio+1);
 153   size_t new_gen_size = x > min_alignment() ?
 154                      align_size_down(x, min_alignment()) :
 155                      min_alignment();
 156   return new_gen_size;
 157 }
 158 
 159 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 160                                                  size_t maximum_size) {
 161   size_t alignment = min_alignment();
 162   size_t max_minus = maximum_size - alignment;
 163   return desired_size < max_minus ? desired_size : max_minus;
 164 }
 165 
 166 
 167 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 168                                                 size_t init_promo_size,
 169                                                 size_t init_survivor_size) {
 170   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 171   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 172                                         init_promo_size,
 173                                         init_survivor_size,
 174                                         max_gc_pause_sec,
 175                                         GCTimeRatio);
 176 }
 177 
 178 size_t GenCollectorPolicy::compute_max_alignment() {
 179   // The card marking array and the offset arrays for old generations are
 180   // committed in os pages as well. Make sure they are entirely full (to
 181   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 182   // byte entry and the os page size is 4096, the maximum heap size should
 183   // be 512*4096 = 2MB aligned.
 184   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
 185 
 186   // Parallel GC does its own alignment of the generations to avoid requiring a
 187   // large page (256M on some platforms) for the permanent generation.  The
 188   // other collectors should also be updated to do their own alignment and then
 189   // this use of lcm() should be removed.
 190   if (UseLargePages && !UseParallelGC) {
 191       // in presence of large pages we have to make sure that our
 192       // alignment is large page aware
 193       alignment = lcm(os::large_page_size(), alignment);
 194   }
 195 
 196   return alignment;
 197 }
 198 
 199 void GenCollectorPolicy::initialize_flags() {
 200   // All sizes must be multiples of the generation granularity.
 201   set_min_alignment((uintx) Generation::GenGrain);
 202   set_max_alignment(compute_max_alignment());
 203 
 204   CollectorPolicy::initialize_flags();
 205 
 206   // All generational heaps have a youngest gen; handle those flags here.
 207 
 208   // Adjust max size parameters
 209   if (NewSize > MaxNewSize) {
 210     MaxNewSize = NewSize;
 211   }
 212   NewSize = align_size_down(NewSize, min_alignment());
 213   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
 214 
 215   // Check validity of heap flags
 216   assert(NewSize     % min_alignment() == 0, "eden space alignment");
 217   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
 218 
 219   if (NewSize < 3*min_alignment()) {
 220      // make sure there room for eden and two survivor spaces
 221     vm_exit_during_initialization("Too small new size specified");
 222   }
 223   if (SurvivorRatio < 1 || NewRatio < 1) {
 224     vm_exit_during_initialization("Invalid heap ratio specified");
 225   }
 226 }
 227 
 228 void TwoGenerationCollectorPolicy::initialize_flags() {
 229   GenCollectorPolicy::initialize_flags();
 230 
 231   OldSize = align_size_down(OldSize, min_alignment());
 232 
 233   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 234     // NewRatio will be used later to set the young generation size so we use
 235     // it to calculate how big the heap should be based on the requested OldSize
 236     // and NewRatio.
 237     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 238     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 239 
 240     calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
 241     MaxHeapSize = calculated_heapsize;
 242     InitialHeapSize = calculated_heapsize;
 243   }
 244   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 245 
 246   // adjust max heap size if necessary
 247   if (NewSize + OldSize > MaxHeapSize) {
 248     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 249       // somebody set a maximum heap size with the intention that we should not
 250       // exceed it. Adjust New/OldSize as necessary.
 251       uintx calculated_size = NewSize + OldSize;
 252       double shrink_factor = (double) MaxHeapSize / calculated_size;
 253       // align
 254       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
 255       // OldSize is already aligned because above we aligned MaxHeapSize to
 256       // max_alignment(), and we just made sure that NewSize is aligned to
 257       // min_alignment(). In initialize_flags() we verified that max_alignment()
 258       // is a multiple of min_alignment().
 259       OldSize = MaxHeapSize - NewSize;
 260     } else {
 261       MaxHeapSize = NewSize + OldSize;
 262     }
 263   }
 264   // need to do this again
 265   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 266 
 267   always_do_update_barrier = UseConcMarkSweepGC;
 268 
 269   // Check validity of heap flags
 270   assert(OldSize     % min_alignment() == 0, "old space alignment");
 271   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
 272 }
 273 
 274 // Values set on the command line win over any ergonomically
 275 // set command line parameters.
 276 // Ergonomic choice of parameters are done before this
 277 // method is called.  Values for command line parameters such as NewSize
 278 // and MaxNewSize feed those ergonomic choices into this method.
 279 // This method makes the final generation sizings consistent with
 280 // themselves and with overall heap sizings.
 281 // In the absence of explicitly set command line flags, policies
 282 // such as the use of NewRatio are used to size the generation.
 283 void GenCollectorPolicy::initialize_size_info() {
 284   CollectorPolicy::initialize_size_info();
 285 
 286   // min_alignment() is used for alignment within a generation.
 287   // There is additional alignment done down stream for some
 288   // collectors that sometimes causes unwanted rounding up of
 289   // generations sizes.
 290 
 291   // Determine maximum size of gen0
 292 
 293   size_t max_new_size = 0;
 294   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 295     if (MaxNewSize < min_alignment()) {
 296       max_new_size = min_alignment();
 297     }
 298     if (MaxNewSize >= max_heap_byte_size()) {
 299       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
 300                                      min_alignment());
 301       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 302         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 303         "new generation size of " SIZE_FORMAT "k will be used.",
 304         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
 305     } else {
 306       max_new_size = align_size_down(MaxNewSize, min_alignment());
 307     }
 308 
 309   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 310   // specially at this point to just use an ergonomically set
 311   // MaxNewSize to set max_new_size.  For cases with small
 312   // heaps such a policy often did not work because the MaxNewSize
 313   // was larger than the entire heap.  The interpretation given
 314   // to ergonomically set flags is that the flags are set
 315   // by different collectors for their own special needs but
 316   // are not allowed to badly shape the heap.  This allows the
 317   // different collectors to decide what's best for themselves
 318   // without having to factor in the overall heap shape.  It
 319   // can be the case in the future that the collectors would
 320   // only make "wise" ergonomics choices and this policy could
 321   // just accept those choices.  The choices currently made are
 322   // not always "wise".
 323   } else {
 324     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
 325     // Bound the maximum size by NewSize below (since it historically
 326     // would have been NewSize and because the NewRatio calculation could
 327     // yield a size that is too small) and bound it by MaxNewSize above.
 328     // Ergonomics plays here by previously calculating the desired
 329     // NewSize and MaxNewSize.
 330     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 331   }
 332   assert(max_new_size > 0, "All paths should set max_new_size");
 333 
 334   // Given the maximum gen0 size, determine the initial and
 335   // minimum gen0 sizes.
 336 
 337   if (max_heap_byte_size() == min_heap_byte_size()) {
 338     // The maximum and minimum heap sizes are the same so
 339     // the generations minimum and initial must be the
 340     // same as its maximum.
 341     set_min_gen0_size(max_new_size);
 342     set_initial_gen0_size(max_new_size);
 343     set_max_gen0_size(max_new_size);
 344   } else {
 345     size_t desired_new_size = 0;
 346     if (!FLAG_IS_DEFAULT(NewSize)) {
 347       // If NewSize is set ergonomically (for example by cms), it
 348       // would make sense to use it.  If it is used, also use it
 349       // to set the initial size.  Although there is no reason
 350       // the minimum size and the initial size have to be the same,
 351       // the current implementation gets into trouble during the calculation
 352       // of the tenured generation sizes if they are different.
 353       // Note that this makes the initial size and the minimum size
 354       // generally small compared to the NewRatio calculation.
 355       _min_gen0_size = NewSize;
 356       desired_new_size = NewSize;
 357       max_new_size = MAX2(max_new_size, NewSize);
 358     } else {
 359       // For the case where NewSize is the default, use NewRatio
 360       // to size the minimum and initial generation sizes.
 361       // Use the default NewSize as the floor for these values.  If
 362       // NewRatio is overly large, the resulting sizes can be too
 363       // small.
 364       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
 365                           NewSize);
 366       desired_new_size =
 367         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
 368              NewSize);
 369     }
 370 
 371     assert(_min_gen0_size > 0, "Sanity check");
 372     set_initial_gen0_size(desired_new_size);
 373     set_max_gen0_size(max_new_size);
 374 
 375     // At this point the desirable initial and minimum sizes have been
 376     // determined without regard to the maximum sizes.
 377 
 378     // Bound the sizes by the corresponding overall heap sizes.
 379     set_min_gen0_size(
 380       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
 381     set_initial_gen0_size(
 382       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
 383     set_max_gen0_size(
 384       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
 385 
 386     // At this point all three sizes have been checked against the
 387     // maximum sizes but have not been checked for consistency
 388     // among the three.
 389 
 390     // Final check min <= initial <= max
 391     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
 392     set_initial_gen0_size(
 393       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
 394     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
 395   }
 396 
 397   if (PrintGCDetails && Verbose) {
 398     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 399       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 400       min_gen0_size(), initial_gen0_size(), max_gen0_size());
 401   }
 402 }
 403 
 404 // Call this method during the sizing of the gen1 to make
 405 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 406 // the most freedom in sizing because it is done before the
 407 // policy for gen1 is applied.  Once gen1 policies have been applied,
 408 // there may be conflicts in the shape of the heap and this method
 409 // is used to make the needed adjustments.  The application of the
 410 // policies could be more sophisticated (iterative for example) but
 411 // keeping it simple also seems a worthwhile goal.
 412 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 413                                                      size_t* gen1_size_ptr,
 414                                                      const size_t heap_size,
 415                                                      const size_t min_gen1_size) {
 416   bool result = false;
 417 
 418   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 419     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 420         (heap_size >= min_gen1_size + min_alignment())) {
 421       // Adjust gen0 down to accommodate min_gen1_size
 422       *gen0_size_ptr = heap_size - min_gen1_size;
 423       *gen0_size_ptr =
 424         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
 425              min_alignment());
 426       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 427       result = true;
 428     } else {
 429       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 430       *gen1_size_ptr =
 431         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
 432                        min_alignment());
 433     }
 434   }
 435   return result;
 436 }
 437 
 438 // Minimum sizes of the generations may be different than
 439 // the initial sizes.  An inconsistently is permitted here
 440 // in the total size that can be specified explicitly by
 441 // command line specification of OldSize and NewSize and
 442 // also a command line specification of -Xms.  Issue a warning
 443 // but allow the values to pass.
 444 
 445 void TwoGenerationCollectorPolicy::initialize_size_info() {
 446   GenCollectorPolicy::initialize_size_info();
 447 
 448   // At this point the minimum, initial and maximum sizes
 449   // of the overall heap and of gen0 have been determined.
 450   // The maximum gen1 size can be determined from the maximum gen0
 451   // and maximum heap size since no explicit flags exits
 452   // for setting the gen1 maximum.
 453   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
 454   _max_gen1_size =
 455     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
 456          min_alignment());
 457   // If no explicit command line flag has been set for the
 458   // gen1 size, use what is left for gen1.
 459   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 460     // The user has not specified any value or ergonomics
 461     // has chosen a value (which may or may not be consistent
 462     // with the overall heap size).  In either case make
 463     // the minimum, maximum and initial sizes consistent
 464     // with the gen0 sizes and the overall heap sizes.
 465     assert(min_heap_byte_size() > _min_gen0_size,
 466       "gen0 has an unexpected minimum size");
 467     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
 468     set_min_gen1_size(
 469       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
 470            min_alignment()));
 471     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
 472     set_initial_gen1_size(
 473       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
 474            min_alignment()));
 475 
 476   } else {
 477     // It's been explicitly set on the command line.  Use the
 478     // OldSize and then determine the consequences.
 479     set_min_gen1_size(OldSize);
 480     set_initial_gen1_size(OldSize);
 481 
 482     // If the user has explicitly set an OldSize that is inconsistent
 483     // with other command line flags, issue a warning.
 484     // The generation minimums and the overall heap mimimum should
 485     // be within one heap alignment.
 486     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
 487            min_heap_byte_size()) {
 488       warning("Inconsistency between minimum heap size and minimum "
 489           "generation sizes: using minimum heap = " SIZE_FORMAT,
 490           min_heap_byte_size());
 491     }
 492     if ((OldSize > _max_gen1_size)) {
 493       warning("Inconsistency between maximum heap size and maximum "
 494           "generation sizes: using maximum heap = " SIZE_FORMAT
 495           " -XX:OldSize flag is being ignored",
 496           max_heap_byte_size());
 497     }
 498     // If there is an inconsistency between the OldSize and the minimum and/or
 499     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 500     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 501                           min_heap_byte_size(), OldSize)) {
 502       if (PrintGCDetails && Verbose) {
 503         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 504               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 505               min_gen0_size(), initial_gen0_size(), max_gen0_size());
 506       }
 507     }
 508     // Initial size
 509     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 510                          initial_heap_byte_size(), OldSize)) {
 511       if (PrintGCDetails && Verbose) {
 512         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 513           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 514           min_gen0_size(), initial_gen0_size(), max_gen0_size());
 515       }
 516     }
 517   }
 518   // Enforce the maximum gen1 size.
 519   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
 520 
 521   // Check that min gen1 <= initial gen1 <= max gen1
 522   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
 523   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
 524 
 525   if (PrintGCDetails && Verbose) {
 526     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 527       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 528       min_gen1_size(), initial_gen1_size(), max_gen1_size());
 529   }
 530 }
 531 
 532 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 533                                         bool is_tlab,
 534                                         bool* gc_overhead_limit_was_exceeded) {
 535   GenCollectedHeap *gch = GenCollectedHeap::heap();
 536 
 537   debug_only(gch->check_for_valid_allocation_state());
 538   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 539 
 540   // In general gc_overhead_limit_was_exceeded should be false so
 541   // set it so here and reset it to true only if the gc time
 542   // limit is being exceeded as checked below.
 543   *gc_overhead_limit_was_exceeded = false;
 544 
 545   HeapWord* result = NULL;
 546 
 547   // Loop until the allocation is satisified,
 548   // or unsatisfied after GC.
 549   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 550     HandleMark hm; // discard any handles allocated in each iteration
 551 
 552     // First allocation attempt is lock-free.
 553     Generation *gen0 = gch->get_gen(0);
 554     assert(gen0->supports_inline_contig_alloc(),
 555       "Otherwise, must do alloc within heap lock");
 556     if (gen0->should_allocate(size, is_tlab)) {
 557       result = gen0->par_allocate(size, is_tlab);
 558       if (result != NULL) {
 559         assert(gch->is_in_reserved(result), "result not in heap");
 560         return result;
 561       }
 562     }
 563     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 564     {
 565       MutexLocker ml(Heap_lock);
 566       if (PrintGC && Verbose) {
 567         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 568                       " attempting locked slow path allocation");
 569       }
 570       // Note that only large objects get a shot at being
 571       // allocated in later generations.
 572       bool first_only = ! should_try_older_generation_allocation(size);
 573 
 574       result = gch->attempt_allocation(size, is_tlab, first_only);
 575       if (result != NULL) {
 576         assert(gch->is_in_reserved(result), "result not in heap");
 577         return result;
 578       }
 579 
 580       if (GC_locker::is_active_and_needs_gc()) {
 581         if (is_tlab) {
 582           return NULL;  // Caller will retry allocating individual object
 583         }
 584         if (!gch->is_maximal_no_gc()) {
 585           // Try and expand heap to satisfy request
 586           result = expand_heap_and_allocate(size, is_tlab);
 587           // result could be null if we are out of space
 588           if (result != NULL) {
 589             return result;
 590           }
 591         }
 592 
 593         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 594           return NULL; // we didn't get to do a GC and we didn't get any memory
 595         }
 596 
 597         // If this thread is not in a jni critical section, we stall
 598         // the requestor until the critical section has cleared and
 599         // GC allowed. When the critical section clears, a GC is
 600         // initiated by the last thread exiting the critical section; so
 601         // we retry the allocation sequence from the beginning of the loop,
 602         // rather than causing more, now probably unnecessary, GC attempts.
 603         JavaThread* jthr = JavaThread::current();
 604         if (!jthr->in_critical()) {
 605           MutexUnlocker mul(Heap_lock);
 606           // Wait for JNI critical section to be exited
 607           GC_locker::stall_until_clear();
 608           gclocker_stalled_count += 1;
 609           continue;
 610         } else {
 611           if (CheckJNICalls) {
 612             fatal("Possible deadlock due to allocating while"
 613                   " in jni critical section");
 614           }
 615           return NULL;
 616         }
 617       }
 618 
 619       // Read the gc count while the heap lock is held.
 620       gc_count_before = Universe::heap()->total_collections();
 621     }
 622 
 623     VM_GenCollectForAllocation op(size,
 624                                   is_tlab,
 625                                   gc_count_before);
 626     VMThread::execute(&op);
 627     if (op.prologue_succeeded()) {
 628       result = op.result();
 629       if (op.gc_locked()) {
 630          assert(result == NULL, "must be NULL if gc_locked() is true");
 631          continue;  // retry and/or stall as necessary
 632       }
 633 
 634       // Allocation has failed and a collection
 635       // has been done.  If the gc time limit was exceeded the
 636       // this time, return NULL so that an out-of-memory
 637       // will be thrown.  Clear gc_overhead_limit_exceeded
 638       // so that the overhead exceeded does not persist.
 639 
 640       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 641       const bool softrefs_clear = all_soft_refs_clear();
 642 
 643       if (limit_exceeded && softrefs_clear) {
 644         *gc_overhead_limit_was_exceeded = true;
 645         size_policy()->set_gc_overhead_limit_exceeded(false);
 646         if (op.result() != NULL) {
 647           CollectedHeap::fill_with_object(op.result(), size);
 648         }
 649         return NULL;
 650       }
 651       assert(result == NULL || gch->is_in_reserved(result),
 652              "result not in heap");
 653       return result;
 654     }
 655 
 656     // Give a warning if we seem to be looping forever.
 657     if ((QueuedAllocationWarningCount > 0) &&
 658         (try_count % QueuedAllocationWarningCount == 0)) {
 659           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 660                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 661     }
 662   }
 663 }
 664 
 665 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 666                                                        bool   is_tlab) {
 667   GenCollectedHeap *gch = GenCollectedHeap::heap();
 668   HeapWord* result = NULL;
 669   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 670     Generation *gen = gch->get_gen(i);
 671     if (gen->should_allocate(size, is_tlab)) {
 672       result = gen->expand_and_allocate(size, is_tlab);
 673     }
 674   }
 675   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 676   return result;
 677 }
 678 
 679 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 680                                                         bool   is_tlab) {
 681   GenCollectedHeap *gch = GenCollectedHeap::heap();
 682   GCCauseSetter x(gch, GCCause::_allocation_failure);
 683   HeapWord* result = NULL;
 684 
 685   assert(size != 0, "Precondition violated");
 686   if (GC_locker::is_active_and_needs_gc()) {
 687     // GC locker is active; instead of a collection we will attempt
 688     // to expand the heap, if there's room for expansion.
 689     if (!gch->is_maximal_no_gc()) {
 690       result = expand_heap_and_allocate(size, is_tlab);
 691     }
 692     return result;   // could be null if we are out of space
 693   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 694     // Do an incremental collection.
 695     gch->do_collection(false            /* full */,
 696                        false            /* clear_all_soft_refs */,
 697                        size             /* size */,
 698                        is_tlab          /* is_tlab */,
 699                        number_of_generations() - 1 /* max_level */);
 700   } else {
 701     if (Verbose && PrintGCDetails) {
 702       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 703     }
 704     // Try a full collection; see delta for bug id 6266275
 705     // for the original code and why this has been simplified
 706     // with from-space allocation criteria modified and
 707     // such allocation moved out of the safepoint path.
 708     gch->do_collection(true             /* full */,
 709                        false            /* clear_all_soft_refs */,
 710                        size             /* size */,
 711                        is_tlab          /* is_tlab */,
 712                        number_of_generations() - 1 /* max_level */);
 713   }
 714 
 715   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 716 
 717   if (result != NULL) {
 718     assert(gch->is_in_reserved(result), "result not in heap");
 719     return result;
 720   }
 721 
 722   // OK, collection failed, try expansion.
 723   result = expand_heap_and_allocate(size, is_tlab);
 724   if (result != NULL) {
 725     return result;
 726   }
 727 
 728   // If we reach this point, we're really out of memory. Try every trick
 729   // we can to reclaim memory. Force collection of soft references. Force
 730   // a complete compaction of the heap. Any additional methods for finding
 731   // free memory should be here, especially if they are expensive. If this
 732   // attempt fails, an OOM exception will be thrown.
 733   {
 734     IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 735 
 736     gch->do_collection(true             /* full */,
 737                        true             /* clear_all_soft_refs */,
 738                        size             /* size */,
 739                        is_tlab          /* is_tlab */,
 740                        number_of_generations() - 1 /* max_level */);
 741   }
 742 
 743   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 744   if (result != NULL) {
 745     assert(gch->is_in_reserved(result), "result not in heap");
 746     return result;
 747   }
 748 
 749   assert(!should_clear_all_soft_refs(),
 750     "Flag should have been handled and cleared prior to this point");
 751 
 752   // What else?  We might try synchronous finalization later.  If the total
 753   // space available is large enough for the allocation, then a more
 754   // complete compaction phase than we've tried so far might be
 755   // appropriate.
 756   return NULL;
 757 }
 758 
 759 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 760                                                  ClassLoaderData* loader_data,
 761                                                  size_t word_size,
 762                                                  Metaspace::MetadataType mdtype) {
 763   uint loop_count = 0;
 764   uint gc_count = 0;
 765   uint full_gc_count = 0;
 766 
 767   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 768 
 769   do {
 770     MetaWord* result = NULL;
 771     if (GC_locker::is_active_and_needs_gc()) {
 772       // If the GC_locker is active, just expand and allocate.
 773       // If that does not succeed, wait if this thread is not
 774       // in a critical section itself.
 775       result =
 776         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 777                                                                mdtype);
 778       if (result != NULL) {
 779         return result;
 780       }
 781       JavaThread* jthr = JavaThread::current();
 782       if (!jthr->in_critical()) {
 783         // Wait for JNI critical section to be exited
 784         GC_locker::stall_until_clear();
 785         // The GC invoked by the last thread leaving the critical
 786         // section will be a young collection and a full collection
 787         // is (currently) needed for unloading classes so continue
 788         // to the next iteration to get a full GC.
 789         continue;
 790       } else {
 791         if (CheckJNICalls) {
 792           fatal("Possible deadlock due to allocating while"
 793                 " in jni critical section");
 794         }
 795         return NULL;
 796       }
 797     }
 798 
 799     {  // Need lock to get self consistent gc_count's
 800       MutexLocker ml(Heap_lock);
 801       gc_count      = Universe::heap()->total_collections();
 802       full_gc_count = Universe::heap()->total_full_collections();
 803     }
 804 
 805     // Generate a VM operation
 806     VM_CollectForMetadataAllocation op(loader_data,
 807                                        word_size,
 808                                        mdtype,
 809                                        gc_count,
 810                                        full_gc_count,
 811                                        GCCause::_metadata_GC_threshold);
 812     VMThread::execute(&op);
 813 
 814     // If GC was locked out, try again.  Check
 815     // before checking success because the prologue
 816     // could have succeeded and the GC still have
 817     // been locked out.
 818     if (op.gc_locked()) {
 819       continue;
 820     }
 821 
 822     if (op.prologue_succeeded()) {
 823       return op.result();
 824     }
 825     loop_count++;
 826     if ((QueuedAllocationWarningCount > 0) &&
 827         (loop_count % QueuedAllocationWarningCount == 0)) {
 828       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 829               " size=%d", loop_count, word_size);
 830     }
 831   } while (true);  // Until a GC is done
 832 }
 833 
 834 // Return true if any of the following is true:
 835 // . the allocation won't fit into the current young gen heap
 836 // . gc locker is occupied (jni critical section)
 837 // . heap memory is tight -- the most recent previous collection
 838 //   was a full collection because a partial collection (would
 839 //   have) failed and is likely to fail again
 840 bool GenCollectorPolicy::should_try_older_generation_allocation(
 841         size_t word_size) const {
 842   GenCollectedHeap* gch = GenCollectedHeap::heap();
 843   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 844   return    (word_size > heap_word_size(gen0_capacity))
 845          || GC_locker::is_active_and_needs_gc()
 846          || gch->incremental_collection_failed();
 847 }
 848 
 849 
 850 //
 851 // MarkSweepPolicy methods
 852 //
 853 
 854 MarkSweepPolicy::MarkSweepPolicy() {
 855   initialize_all();
 856 }
 857 
 858 void MarkSweepPolicy::initialize_generations() {
 859   _generations = new GenerationSpecPtr[number_of_generations()];
 860   if (_generations == NULL)
 861     vm_exit_during_initialization("Unable to allocate gen spec");
 862 
 863   if (UseParNewGC) {
 864     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 865   } else {
 866     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 867   }
 868   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 869 
 870   if (_generations[0] == NULL || _generations[1] == NULL)
 871     vm_exit_during_initialization("Unable to allocate gen spec");
 872 }
 873 
 874 void MarkSweepPolicy::initialize_gc_policy_counters() {
 875   // initialize the policy counters - 2 collectors, 3 generations
 876   if (UseParNewGC) {
 877     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 878   } else {
 879     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 880   }
 881 }