1 /*
   2  * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  28 #include "gc_implementation/g1/heapRegion.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  31 #include "gc_implementation/g1/g1RemSetSummary.hpp"
  32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  33 #include "runtime/thread.inline.hpp"
  34 
  35 class GetRSThreadVTimeClosure : public ThreadClosure {
  36 private:
  37   G1RemSetSummary* _summary;
  38   uint _counter;
  39 
  40 public:
  41   GetRSThreadVTimeClosure(G1RemSetSummary * summary) : ThreadClosure(), _summary(summary), _counter(0) {
  42     assert(_summary != NULL, "just checking");
  43   }
  44 
  45   virtual void do_thread(Thread* t) {
  46     ConcurrentG1RefineThread* crt = (ConcurrentG1RefineThread*) t;
  47     _summary->set_rs_thread_vtime(_counter, crt->vtime_accum());
  48     _counter++;
  49   }
  50 };
  51 
  52 void G1RemSetSummary::update() {
  53   _num_refined_cards = remset()->conc_refine_cards();
  54   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  55   _num_processed_buf_mutator = dcqs.processed_buffers_mut();
  56   _num_processed_buf_rs_threads = dcqs.processed_buffers_rs_thread();
  57 
  58   _num_coarsenings = HeapRegionRemSet::n_coarsenings();
  59 
  60   ConcurrentG1Refine * cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  61   if (_rs_threads_vtimes != NULL) {
  62     GetRSThreadVTimeClosure p(this);
  63     cg1r->worker_threads_do(&p);
  64   }
  65   set_sampling_thread_vtime(cg1r->sampling_thread()->vtime_accum());
  66 }
  67 
  68 void G1RemSetSummary::set_rs_thread_vtime(uint thread, double value) {
  69   assert(_rs_threads_vtimes != NULL, "just checking");
  70   assert(thread < _num_vtimes, "just checking");
  71   _rs_threads_vtimes[thread] = value;
  72 }
  73 
  74 double G1RemSetSummary::rs_thread_vtime(uint thread) const {
  75   assert(_rs_threads_vtimes != NULL, "just checking");
  76   assert(thread < _num_vtimes, "just checking");
  77   return _rs_threads_vtimes[thread];
  78 }
  79 
  80 void G1RemSetSummary::initialize(G1RemSet* remset, uint num_workers) {
  81   assert(_rs_threads_vtimes == NULL, "just checking");
  82   assert(remset != NULL, "just checking");
  83 
  84   _remset = remset;
  85   _num_vtimes = num_workers;
  86   _rs_threads_vtimes = NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC);
  87   memset(_rs_threads_vtimes, 0, sizeof(double) * _num_vtimes);
  88 
  89   update();
  90 }
  91 
  92 void G1RemSetSummary::set(G1RemSetSummary* other) {
  93   assert(other != NULL, "just checking");
  94   assert(remset() == other->remset(), "just checking");
  95   assert(_num_vtimes == other->_num_vtimes, "just checking");
  96 
  97   _num_refined_cards = other->num_concurrent_refined_cards();
  98 
  99   _num_processed_buf_mutator = other->num_processed_buf_mutator();
 100   _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads();
 101 
 102   _num_coarsenings = other->_num_coarsenings;
 103 
 104   memcpy(_rs_threads_vtimes, other->_rs_threads_vtimes, sizeof(double) * _num_vtimes);
 105 
 106   set_sampling_thread_vtime(other->sampling_thread_vtime());
 107 }
 108 
 109 void G1RemSetSummary::subtract_from(G1RemSetSummary* other) {
 110   assert(other != NULL, "just checking");
 111   assert(remset() == other->remset(), "just checking");
 112   assert(_num_vtimes == other->_num_vtimes, "just checking");
 113 
 114   _num_refined_cards = other->num_concurrent_refined_cards() - _num_refined_cards;
 115 
 116   _num_processed_buf_mutator = other->num_processed_buf_mutator() - _num_processed_buf_mutator;
 117   _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads() - _num_processed_buf_rs_threads;
 118 
 119   _num_coarsenings = other->num_coarsenings() - _num_coarsenings;
 120 
 121   for (uint i = 0; i < _num_vtimes; i++) {
 122     set_rs_thread_vtime(i, other->rs_thread_vtime(i) - rs_thread_vtime(i));
 123   }
 124 
 125   _sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime;
 126 }
 127 
 128 class RegionTypeCounter {
 129 private:
 130   size_t _mem_size;
 131   size_t _occupied;
 132   size_t _amount;
 133 
 134   static double percent_of(size_t* value, size_t total) {
 135     if (total != 0) {
 136       return ((double)*value / total) * 100.0f;
 137     } else {
 138       return 0.0f;
 139     }
 140   }
 141 
 142   double mem_size_percent_of(size_t total) {
 143     return percent_of(&_mem_size, total);
 144   }
 145 
 146   double occupied_percent_of(size_t total) {
 147     return percent_of(&_occupied, total);
 148   }
 149 
 150   size_t amount() const { return _amount; }
 151 
 152 public:
 153 
 154   RegionTypeCounter() : _mem_size(0), _occupied(0), _amount(0) { }
 155 
 156   void add(size_t mem_size, size_t occupied) {
 157     _mem_size += mem_size;
 158     _occupied += occupied;
 159     _amount++;
 160   }
 161 
 162   size_t mem_size() const { return _mem_size; }
 163   size_t occupied() const { return _occupied; }
 164 
 165   void print_mem_info_on(outputStream * out, size_t total, char const * type) {
 166     out->print_cr("    %8dK (%5.1f%%) by %zd %s regions", mem_size()/K, mem_size_percent_of(total), amount(), type);
 167   }
 168 
 169   void print_occupied_info_on(outputStream * out, size_t total, char const * type) {
 170     out->print_cr("     %8d (%5.1f%%) entries by %zd %s regions", occupied(), occupied_percent_of(total), amount(), type);
 171   }
 172 };
 173 
 174 
 175 class HRRSStatsIter: public HeapRegionClosure {
 176 private:
 177   size_t _max_mem_sz;
 178   HeapRegion* _max_mem_sz_region;
 179 
 180   RegionTypeCounter _young;
 181   RegionTypeCounter _humonguous;
 182   RegionTypeCounter _free;
 183   RegionTypeCounter _old;
 184   RegionTypeCounter _all;
 185 
 186   size_t total_mem_sz()           { return _all.mem_size(); }
 187   size_t max_mem_sz()             { return _max_mem_sz; }
 188   size_t occupied()               { return _all.occupied(); }
 189   HeapRegion* max_mem_sz_region() { return _max_mem_sz_region; }
 190 
 191 public:
 192   HRRSStatsIter() : _max_mem_sz(0), _max_mem_sz_region(NULL),
 193     _all(), _young(), _humonguous(), _free(), _old()
 194   {}
 195 
 196   bool doHeapRegion(HeapRegion* r) {
 197     size_t mem_sz = r->rem_set()->mem_size();
 198     if (mem_sz > _max_mem_sz) {
 199       _max_mem_sz = mem_sz;
 200       _max_mem_sz_region = r;
 201     }
 202     size_t occ = r->rem_set()->occupied();
 203 
 204     _all.add(mem_sz, occ);
 205     if (r->is_young()) {
 206       _young.add(mem_sz, occ);
 207     } else if (r->isHumongous()) {
 208       _humonguous.add(mem_sz, occ);
 209     } else if (r->is_empty()) {
 210       _free.add(mem_sz, occ);
 211     } else {
 212       _old.add(mem_sz, occ);
 213     }
 214 
 215     return false;
 216   }
 217 
 218   void print_summary_on(outputStream* out) {
 219     out->print_cr("  Total heap region rem set sizes = "SIZE_FORMAT"K."
 220                   "  Max = "SIZE_FORMAT"K.",
 221                   total_mem_sz() / K, max_mem_sz() / K);
 222     _young.print_mem_info_on(out, total_mem_sz(), "Young");
 223     _humonguous.print_mem_info_on(out, total_mem_sz(), "Humonguous");
 224     _free.print_mem_info_on(out, total_mem_sz(), "Free");
 225     _old.print_mem_info_on(out, total_mem_sz(), "Old");
 226     out->print_cr("  Static structures = "SIZE_FORMAT"K,"
 227                   " free_lists = "SIZE_FORMAT"K.",
 228                   HeapRegionRemSet::static_mem_size() / K,
 229                   HeapRegionRemSet::fl_mem_size() / K);
 230 
 231     out->print_cr("    "SIZE_FORMAT" occupied cards represented.",
 232                   occupied());
 233     _young.print_occupied_info_on(out, occupied(), "Young");
 234     _humonguous.print_occupied_info_on(out, occupied(), "Humonguous");
 235     _free.print_occupied_info_on(out, occupied(), "Free");
 236     _old.print_occupied_info_on(out, occupied(), "Old");
 237 
 238     HeapRegionRemSet* rem_set = max_mem_sz_region()->rem_set();
 239     out->print_cr("    Max size region = "HR_FORMAT", "
 240                   "size = "SIZE_FORMAT "K, occupied = "SIZE_FORMAT"K.",
 241                   HR_FORMAT_PARAMS(max_mem_sz_region()),
 242                   (rem_set->mem_size() + K - 1) / K,
 243                   (rem_set->occupied() + K - 1) / K);
 244   }
 245 };
 246 
 247 double calc_percentage(size_t numerator, size_t denominator) {
 248   if (denominator != 0) {
 249     return (double)numerator / denominator * 100.0;
 250   } else {
 251     return 0.0f;
 252   }
 253 }
 254 
 255 void G1RemSetSummary::print_on(outputStream* out) {
 256   out->print_cr("\n Concurrent RS processed "SIZE_FORMAT" cards",
 257                 num_concurrent_refined_cards());
 258   out->print_cr("  Of %d completed buffers:", num_processed_buf_total());
 259   out->print_cr("     %8d (%5.1f%%) by concurrent RS threads.",
 260                 num_processed_buf_total(),
 261                 calc_percentage(num_processed_buf_rs_threads(), num_processed_buf_total()));
 262   out->print_cr("     %8d (%5.1f%%) by mutator threads.",
 263                 num_processed_buf_mutator(),
 264                 calc_percentage(num_processed_buf_mutator(), num_processed_buf_total()));
 265   out->print_cr("  Concurrent RS threads times (s)");
 266   out->print("     ");
 267   for (uint i = 0; i < _num_vtimes; i++) {
 268     out->print("    %5.2f", rs_thread_vtime(i));
 269   }
 270   out->cr();
 271   out->print_cr("  Concurrent sampling threads times (s)");
 272   out->print_cr("         %5.2f", sampling_thread_vtime());
 273 
 274   HRRSStatsIter blk;
 275   G1CollectedHeap::heap()->heap_region_iterate(&blk);
 276   blk.print_summary_on(out);
 277 
 278   out->print_cr("    Did %d coarsenings.", num_coarsenings());
 279 }