/* * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_implementation/g1/concurrentG1Refine.hpp" #include "gc_implementation/g1/concurrentG1RefineThread.hpp" #include "gc_implementation/g1/heapRegion.hpp" #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" #include "gc_implementation/g1/g1RemSet.inline.hpp" #include "gc_implementation/g1/g1RemSetSummary.hpp" #include "gc_implementation/g1/heapRegionRemSet.hpp" #include "runtime/thread.inline.hpp" class GetRSThreadVTimeClosure : public ThreadClosure { private: G1RemSetSummary* _summary; uint _counter; public: GetRSThreadVTimeClosure(G1RemSetSummary * summary) : ThreadClosure(), _summary(summary), _counter(0) { assert(_summary != NULL, "just checking"); } virtual void do_thread(Thread* t) { ConcurrentG1RefineThread* crt = (ConcurrentG1RefineThread*) t; _summary->set_rs_thread_vtime(_counter, crt->vtime_accum()); _counter++; } }; void G1RemSetSummary::update() { _num_refined_cards = remset()->conc_refine_cards(); DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); _num_processed_buf_mutator = dcqs.processed_buffers_mut(); _num_processed_buf_rs_threads = dcqs.processed_buffers_rs_thread(); _num_coarsenings = HeapRegionRemSet::n_coarsenings(); ConcurrentG1Refine * cg1r = G1CollectedHeap::heap()->concurrent_g1_refine(); if (_rs_threads_vtimes != NULL) { GetRSThreadVTimeClosure p(this); cg1r->worker_threads_do(&p); } set_sampling_thread_vtime(cg1r->sampling_thread()->vtime_accum()); } void G1RemSetSummary::set_rs_thread_vtime(uint thread, double value) { assert(_rs_threads_vtimes != NULL, "just checking"); assert(thread < _num_vtimes, "just checking"); _rs_threads_vtimes[thread] = value; } double G1RemSetSummary::rs_thread_vtime(uint thread) const { assert(_rs_threads_vtimes != NULL, "just checking"); assert(thread < _num_vtimes, "just checking"); return _rs_threads_vtimes[thread]; } void G1RemSetSummary::initialize(G1RemSet* remset, uint num_workers) { assert(_rs_threads_vtimes == NULL, "just checking"); assert(remset != NULL, "just checking"); _remset = remset; _num_vtimes = num_workers; _rs_threads_vtimes = NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC); memset(_rs_threads_vtimes, 0, sizeof(double) * _num_vtimes); update(); } void G1RemSetSummary::set(G1RemSetSummary* other) { assert(other != NULL, "just checking"); assert(remset() == other->remset(), "just checking"); assert(_num_vtimes == other->_num_vtimes, "just checking"); _num_refined_cards = other->num_concurrent_refined_cards(); _num_processed_buf_mutator = other->num_processed_buf_mutator(); _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads(); _num_coarsenings = other->_num_coarsenings; memcpy(_rs_threads_vtimes, other->_rs_threads_vtimes, sizeof(double) * _num_vtimes); set_sampling_thread_vtime(other->sampling_thread_vtime()); } void G1RemSetSummary::subtract_from(G1RemSetSummary* other) { assert(other != NULL, "just checking"); assert(remset() == other->remset(), "just checking"); assert(_num_vtimes == other->_num_vtimes, "just checking"); _num_refined_cards = other->num_concurrent_refined_cards() - _num_refined_cards; _num_processed_buf_mutator = other->num_processed_buf_mutator() - _num_processed_buf_mutator; _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads() - _num_processed_buf_rs_threads; _num_coarsenings = other->num_coarsenings() - _num_coarsenings; for (uint i = 0; i < _num_vtimes; i++) { set_rs_thread_vtime(i, other->rs_thread_vtime(i) - rs_thread_vtime(i)); } _sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime; } class HRRSStatsIter: public HeapRegionClosure { private: size_t _max_mem_sz; HeapRegion* _max_mem_sz_region; struct region_type_counter_t { private: size_t _mem_size; size_t _occupied; size_t _amount; static double percent_of(size_t* value, size_t total) { if (total != 0) { return ((double)*value / total) * 100.0f; } else { return 0.0f; } } double mem_size_percent_of(size_t total) { return percent_of(&_mem_size, total); } double occupied_percent_of(size_t total) { return percent_of(&_occupied, total); } size_t amount() const { return _amount; } public: region_type_counter_t() : _mem_size(0), _occupied(0), _amount(0) { } void add(size_t mem_size, size_t occupied) { _mem_size += mem_size; _occupied += occupied; _amount++; } size_t mem_size() const { return _mem_size; } size_t occupied() const { return _occupied; } void print_mem_info_on(outputStream * out, size_t total, char const * type) { out->print_cr(" %8dK (%5.1f%%) by %zd %s regions", mem_size()/K, mem_size_percent_of(total), amount(), type); } void print_occupied_info_on(outputStream * out, size_t total, char const * type) { out->print_cr(" %8d (%5.1f%%) entries by %zd %s regions", occupied(), occupied_percent_of(total), amount(), type); } }; region_type_counter_t _young; region_type_counter_t _humonguous; region_type_counter_t _free; region_type_counter_t _other; region_type_counter_t _all; region_type_counter_t& young() { return _young; } region_type_counter_t& humonguous() { return _humonguous; } region_type_counter_t& free() { return _free; } region_type_counter_t& other() { return _other; } size_t total_mem_sz() { return _all.mem_size(); } size_t max_mem_sz() { return _max_mem_sz; } size_t occupied() { return _all.occupied(); } HeapRegion* max_mem_sz_region() { return _max_mem_sz_region; } public: HRRSStatsIter() : _max_mem_sz(0), _max_mem_sz_region(NULL), _all(), _young(), _humonguous(), _free(), _other() {} bool doHeapRegion(HeapRegion* r) { size_t mem_sz = r->rem_set()->mem_size(); if (mem_sz > _max_mem_sz) { _max_mem_sz = mem_sz; _max_mem_sz_region = r; } size_t occ = r->rem_set()->occupied(); _all.add(mem_sz, occ); if (r->is_young()) { _young.add(mem_sz, occ); } else if (r->isHumongous()) { _humonguous.add(mem_sz, occ); } else if (r->is_empty()) { _free.add(mem_sz, occ); } else { _other.add(mem_sz, occ); } return false; } void print_summary_on(outputStream* out) { out->print_cr(" Total heap region rem set sizes = "SIZE_FORMAT"K." " Max = "SIZE_FORMAT"K.", total_mem_sz()/K, max_mem_sz()/K); young().print_mem_info_on(out, total_mem_sz(), "Young"); humonguous().print_mem_info_on(out, total_mem_sz(), "Humonguous"); free().print_mem_info_on(out, total_mem_sz(), "Free"); other().print_mem_info_on(out, total_mem_sz(), "Other"); out->print_cr(" Static structures = "SIZE_FORMAT"K," " free_lists = "SIZE_FORMAT"K.", HeapRegionRemSet::static_mem_size() / K, HeapRegionRemSet::fl_mem_size() / K); out->print_cr(" "SIZE_FORMAT" occupied cards represented.", occupied()); young().print_occupied_info_on(out, occupied(), "Young"); humonguous().print_occupied_info_on(out, occupied(), "Humonguous"); free().print_occupied_info_on(out, occupied(), "Free"); other().print_occupied_info_on(out, occupied(), "Other"); HeapRegionRemSet* rem_set = max_mem_sz_region()->rem_set(); out->print_cr(" Max size region = "HR_FORMAT", " "size = "SIZE_FORMAT "K, occupied = "SIZE_FORMAT"K.", HR_FORMAT_PARAMS(max_mem_sz_region()), (rem_set->mem_size() + K - 1)/K, (rem_set->occupied() + K - 1)/K); } }; double calc_percentage(size_t numerator, size_t denominator) { if (denominator != 0) { return (double)numerator / denominator * 100.0; } else { return 0.0f; } } void G1RemSetSummary::print_on(outputStream* out) { out->print_cr("\n Concurrent RS processed "SIZE_FORMAT" cards", num_concurrent_refined_cards()); out->print_cr(" Of %d completed buffers:", num_processed_buf_total()); out->print_cr(" %8d (%5.1f%%) by concurrent RS threads.", num_processed_buf_total(), calc_percentage(num_processed_buf_rs_threads(), num_processed_buf_total())); out->print_cr(" %8d (%5.1f%%) by mutator threads.", num_processed_buf_mutator(), calc_percentage(num_processed_buf_mutator(), num_processed_buf_total())); out->print_cr(" Concurrent RS threads times (s)"); out->print(" "); for (uint i = 0; i < _num_vtimes; i++) { out->print(" %5.2f", rs_thread_vtime(i)); } out->cr(); out->print_cr(" Concurrent sampling threads times (s)"); out->print_cr(" %5.2f", sampling_thread_vtime()); HRRSStatsIter blk; G1CollectedHeap::heap()->heap_region_iterate(&blk); blk.print_summary_on(out); out->print_cr(" Did %d coarsenings.", num_coarsenings()); }