/* * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_implementation/g1/dirtyCardQueue.hpp" #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" #include "gc_implementation/g1/heapRegionRemSet.hpp" #include "runtime/atomic.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/safepoint.hpp" #include "runtime/thread.inline.hpp" #include "utilities/workgroup.hpp" bool DirtyCardQueue::apply_closure(CardTableEntryClosure* cl, bool consume, uint worker_i) { bool res = true; if (_buf != NULL) { res = apply_closure_to_buffer(cl, _buf, _index, _sz, consume, worker_i); if (res && consume) _index = _sz; } return res; } bool DirtyCardQueue::apply_closure_to_buffer(CardTableEntryClosure* cl, void** buf, size_t index, size_t sz, bool consume, uint worker_i) { if (cl == NULL) return true; for (size_t i = index; i < sz; i += oopSize) { int ind = byte_index_to_index((int)i); jbyte* card_ptr = (jbyte*)buf[ind]; if (card_ptr != NULL) { // Set the entry to null, so we don't do it again (via the test // above) if we reconsider this buffer. if (consume) buf[ind] = NULL; if (!cl->do_card_ptr(card_ptr, worker_i)) return false; } } return true; } #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away #pragma warning( disable:4355 ) // 'this' : used in base member initializer list #endif // _MSC_VER DirtyCardQueueSet::DirtyCardQueueSet(bool notify_when_complete) : PtrQueueSet(notify_when_complete), _mut_process_closure(NULL), _shared_dirty_card_queue(this, true /*perm*/), _free_ids(NULL), _processed_buffers_mut(0), _processed_buffers_rs_thread(0) { _all_active = true; } // Determines how many mutator threads can process the buffers in parallel. uint DirtyCardQueueSet::num_par_ids() { return (uint)os::processor_count(); } void DirtyCardQueueSet::initialize(CardTableEntryClosure* cl, Monitor* cbl_mon, Mutex* fl_lock, int process_completed_threshold, int max_completed_queue, Mutex* lock, PtrQueueSet* fl_owner) { _mut_process_closure = cl; PtrQueueSet::initialize(cbl_mon, fl_lock, process_completed_threshold, max_completed_queue, fl_owner); set_buffer_size(G1UpdateBufferSize); _shared_dirty_card_queue.set_lock(lock); _free_ids = new FreeIdSet((int) num_par_ids(), _cbl_mon); } void DirtyCardQueueSet::handle_zero_index_for_thread(JavaThread* t) { t->dirty_card_queue().handle_zero_index(); } void DirtyCardQueueSet::iterate_closure_all_threads(CardTableEntryClosure* cl, bool consume, uint worker_i) { assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint."); for(JavaThread* t = Threads::first(); t; t = t->next()) { bool b = t->dirty_card_queue().apply_closure(cl, consume); guarantee(b, "Should not be interrupted."); } bool b = shared_dirty_card_queue()->apply_closure(cl, consume, worker_i); guarantee(b, "Should not be interrupted."); } bool DirtyCardQueueSet::mut_process_buffer(void** buf) { // Used to determine if we had already claimed a par_id // before entering this method. bool already_claimed = false; // We grab the current JavaThread. JavaThread* thread = JavaThread::current(); // We get the the number of any par_id that this thread // might have already claimed. uint worker_i = thread->get_claimed_par_id(); // If worker_i is not UINT_MAX then the thread has already claimed // a par_id. We make note of it using the already_claimed value if (worker_i != UINT_MAX) { already_claimed = true; } else { // Otherwise we need to claim a par id worker_i = _free_ids->claim_par_id(); // And store the par_id value in the thread thread->set_claimed_par_id(worker_i); } bool b = false; if (worker_i != UINT_MAX) { b = DirtyCardQueue::apply_closure_to_buffer(_mut_process_closure, buf, 0, _sz, true, worker_i); if (b) Atomic::inc(&_processed_buffers_mut); // If we had not claimed an id before entering the method // then we must release the id. if (!already_claimed) { // we release the id _free_ids->release_par_id(worker_i); // and set the claimed_id in the thread to UINT_MAX thread->set_claimed_par_id(UINT_MAX); } } return b; } BufferNode* DirtyCardQueueSet::get_completed_buffer(int stop_at) { BufferNode* nd = NULL; MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); if ((int)_n_completed_buffers <= stop_at) { _process_completed = false; return NULL; } if (_completed_buffers_head != NULL) { nd = _completed_buffers_head; _completed_buffers_head = nd->next(); if (_completed_buffers_head == NULL) _completed_buffers_tail = NULL; _n_completed_buffers--; assert(_n_completed_buffers >= 0, "Invariant"); } debug_only(assert_completed_buffer_list_len_correct_locked()); return nd; } bool DirtyCardQueueSet:: apply_closure_to_completed_buffer_helper(CardTableEntryClosure* cl, uint worker_i, BufferNode* nd) { if (nd != NULL) { void **buf = BufferNode::make_buffer_from_node(nd); size_t index = nd->index(); bool b = DirtyCardQueue::apply_closure_to_buffer(cl, buf, index, _sz, true, worker_i); if (b) { deallocate_buffer(buf); return true; // In normal case, go on to next buffer. } else { enqueue_complete_buffer(buf, index); return false; } } else { return false; } } bool DirtyCardQueueSet::apply_closure_to_completed_buffer(CardTableEntryClosure* cl, uint worker_i, int stop_at, bool during_pause) { assert(!during_pause || stop_at == 0, "Should not leave any completed buffers during a pause"); BufferNode* nd = get_completed_buffer(stop_at); bool res = apply_closure_to_completed_buffer_helper(cl, worker_i, nd); if (res) Atomic::inc(&_processed_buffers_rs_thread); return res; } void DirtyCardQueueSet::apply_closure_to_all_completed_buffers(CardTableEntryClosure* cl) { BufferNode* nd = _completed_buffers_head; while (nd != NULL) { bool b = DirtyCardQueue::apply_closure_to_buffer(cl, BufferNode::make_buffer_from_node(nd), 0, _sz, false); guarantee(b, "Should not stop early."); nd = nd->next(); } } void DirtyCardQueueSet::par_apply_closure_to_all_completed_buffers(CardTableEntryClosure* cl) { BufferNode* nd = _cur_par_buffer_node; while (nd != NULL) { BufferNode* next = (BufferNode*)nd->next(); BufferNode* actual = (BufferNode*)Atomic::cmpxchg_ptr((void*)next, (volatile void*)&_cur_par_buffer_node, (void*)nd); if (actual == nd) { bool b = DirtyCardQueue::apply_closure_to_buffer(cl, BufferNode::make_buffer_from_node(actual), 0, _sz, false); guarantee(b, "Should not stop early."); nd = next; } else { nd = actual; } } } // Deallocates any completed log buffers void DirtyCardQueueSet::clear() { BufferNode* buffers_to_delete = NULL; { MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); while (_completed_buffers_head != NULL) { BufferNode* nd = _completed_buffers_head; _completed_buffers_head = nd->next(); nd->set_next(buffers_to_delete); buffers_to_delete = nd; } _n_completed_buffers = 0; _completed_buffers_tail = NULL; debug_only(assert_completed_buffer_list_len_correct_locked()); } while (buffers_to_delete != NULL) { BufferNode* nd = buffers_to_delete; buffers_to_delete = nd->next(); deallocate_buffer(BufferNode::make_buffer_from_node(nd)); } } void DirtyCardQueueSet::abandon_logs() { assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint."); clear(); // Since abandon is done only at safepoints, we can safely manipulate // these queues. for (JavaThread* t = Threads::first(); t; t = t->next()) { t->dirty_card_queue().reset(); } shared_dirty_card_queue()->reset(); } void DirtyCardQueueSet::concatenate_logs() { // Iterate over all the threads, if we find a partial log add it to // the global list of logs. Temporarily turn off the limit on the number // of outstanding buffers. int save_max_completed_queue = _max_completed_queue; _max_completed_queue = max_jint; assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint."); for (JavaThread* t = Threads::first(); t; t = t->next()) { DirtyCardQueue& dcq = t->dirty_card_queue(); if (dcq.size() != 0) { void **buf = t->dirty_card_queue().get_buf(); // We must NULL out the unused entries, then enqueue. for (size_t i = 0; i < t->dirty_card_queue().get_index(); i += oopSize) { buf[PtrQueue::byte_index_to_index((int)i)] = NULL; } enqueue_complete_buffer(dcq.get_buf(), dcq.get_index()); dcq.reinitialize(); } } if (_shared_dirty_card_queue.size() != 0) { enqueue_complete_buffer(_shared_dirty_card_queue.get_buf(), _shared_dirty_card_queue.get_index()); _shared_dirty_card_queue.reinitialize(); } // Restore the completed buffer queue limit. _max_completed_queue = save_max_completed_queue; }