1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "code/icBuffer.hpp"
  28 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  29 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  30 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  31 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  32 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  35 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  36 #include "gc_implementation/g1/g1EvacFailure.hpp"
  37 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  38 #include "gc_implementation/g1/g1Log.hpp"
  39 #include "gc_implementation/g1/g1MarkSweep.hpp"
  40 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  41 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  42 #include "gc_implementation/g1/g1StringDedup.hpp"
  43 #include "gc_implementation/g1/g1YCTypes.hpp"
  44 #include "gc_implementation/g1/heapRegion.inline.hpp"
  45 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  46 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  47 #include "gc_implementation/g1/vm_operations_g1.hpp"
  48 #include "gc_implementation/shared/gcHeapSummary.hpp"
  49 #include "gc_implementation/shared/gcTimer.hpp"
  50 #include "gc_implementation/shared/gcTrace.hpp"
  51 #include "gc_implementation/shared/gcTraceTime.hpp"
  52 #include "gc_implementation/shared/isGCActiveMark.hpp"
  53 #include "memory/gcLocker.inline.hpp"
  54 #include "memory/generationSpec.hpp"
  55 #include "memory/iterator.hpp"
  56 #include "memory/referenceProcessor.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/oop.pcgc.inline.hpp"
  59 #include "runtime/vmThread.hpp"
  60 #include "utilities/ticks.hpp"
  61 
  62 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  63 
  64 // turn it on so that the contents of the young list (scan-only /
  65 // to-be-collected) are printed at "strategic" points before / during
  66 // / after the collection --- this is useful for debugging
  67 #define YOUNG_LIST_VERBOSE 0
  68 // CURRENT STATUS
  69 // This file is under construction.  Search for "FIXME".
  70 
  71 // INVARIANTS/NOTES
  72 //
  73 // All allocation activity covered by the G1CollectedHeap interface is
  74 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  75 // and allocate_new_tlab, which are the "entry" points to the
  76 // allocation code from the rest of the JVM.  (Note that this does not
  77 // apply to TLAB allocation, which is not part of this interface: it
  78 // is done by clients of this interface.)
  79 
  80 // Notes on implementation of parallelism in different tasks.
  81 //
  82 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  83 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  84 // It does use run_task() which sets _n_workers in the task.
  85 // G1ParTask executes g1_process_strong_roots() ->
  86 // SharedHeap::process_strong_roots() which calls eventually to
  87 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  88 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  89 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  90 //
  91 
  92 // Local to this file.
  93 
  94 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  95   SuspendibleThreadSet* _sts;
  96   G1RemSet* _g1rs;
  97   ConcurrentG1Refine* _cg1r;
  98   bool _concurrent;
  99 public:
 100   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
 101                               G1RemSet* g1rs,
 102                               ConcurrentG1Refine* cg1r) :
 103     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
 104   {}
 105   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 106     bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
 107     // This path is executed by the concurrent refine or mutator threads,
 108     // concurrently, and so we do not care if card_ptr contains references
 109     // that point into the collection set.
 110     assert(!oops_into_cset, "should be");
 111 
 112     if (_concurrent && _sts->should_yield()) {
 113       // Caller will actually yield.
 114       return false;
 115     }
 116     // Otherwise, we finished successfully; return true.
 117     return true;
 118   }
 119   void set_concurrent(bool b) { _concurrent = b; }
 120 };
 121 
 122 
 123 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 124   int _calls;
 125   G1CollectedHeap* _g1h;
 126   CardTableModRefBS* _ctbs;
 127   int _histo[256];
 128 public:
 129   ClearLoggedCardTableEntryClosure() :
 130     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set())
 131   {
 132     for (int i = 0; i < 256; i++) _histo[i] = 0;
 133   }
 134   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 135     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 136       _calls++;
 137       unsigned char* ujb = (unsigned char*)card_ptr;
 138       int ind = (int)(*ujb);
 139       _histo[ind]++;
 140       *card_ptr = -1;
 141     }
 142     return true;
 143   }
 144   int calls() { return _calls; }
 145   void print_histo() {
 146     gclog_or_tty->print_cr("Card table value histogram:");
 147     for (int i = 0; i < 256; i++) {
 148       if (_histo[i] != 0) {
 149         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 150       }
 151     }
 152   }
 153 };
 154 
 155 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 156   int _calls;
 157   G1CollectedHeap* _g1h;
 158   CardTableModRefBS* _ctbs;
 159 public:
 160   RedirtyLoggedCardTableEntryClosure() :
 161     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set()) {}
 162 
 163   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 164     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 165       _calls++;
 166       *card_ptr = 0;
 167     }
 168     return true;
 169   }
 170   int calls() { return _calls; }
 171 };
 172 
 173 YoungList::YoungList(G1CollectedHeap* g1h) :
 174     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 175     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 176   guarantee(check_list_empty(false), "just making sure...");
 177 }
 178 
 179 void YoungList::push_region(HeapRegion *hr) {
 180   assert(!hr->is_young(), "should not already be young");
 181   assert(hr->get_next_young_region() == NULL, "cause it should!");
 182 
 183   hr->set_next_young_region(_head);
 184   _head = hr;
 185 
 186   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 187   ++_length;
 188 }
 189 
 190 void YoungList::add_survivor_region(HeapRegion* hr) {
 191   assert(hr->is_survivor(), "should be flagged as survivor region");
 192   assert(hr->get_next_young_region() == NULL, "cause it should!");
 193 
 194   hr->set_next_young_region(_survivor_head);
 195   if (_survivor_head == NULL) {
 196     _survivor_tail = hr;
 197   }
 198   _survivor_head = hr;
 199   ++_survivor_length;
 200 }
 201 
 202 void YoungList::empty_list(HeapRegion* list) {
 203   while (list != NULL) {
 204     HeapRegion* next = list->get_next_young_region();
 205     list->set_next_young_region(NULL);
 206     list->uninstall_surv_rate_group();
 207     list->set_not_young();
 208     list = next;
 209   }
 210 }
 211 
 212 void YoungList::empty_list() {
 213   assert(check_list_well_formed(), "young list should be well formed");
 214 
 215   empty_list(_head);
 216   _head = NULL;
 217   _length = 0;
 218 
 219   empty_list(_survivor_head);
 220   _survivor_head = NULL;
 221   _survivor_tail = NULL;
 222   _survivor_length = 0;
 223 
 224   _last_sampled_rs_lengths = 0;
 225 
 226   assert(check_list_empty(false), "just making sure...");
 227 }
 228 
 229 bool YoungList::check_list_well_formed() {
 230   bool ret = true;
 231 
 232   uint length = 0;
 233   HeapRegion* curr = _head;
 234   HeapRegion* last = NULL;
 235   while (curr != NULL) {
 236     if (!curr->is_young()) {
 237       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 238                              "incorrectly tagged (y: %d, surv: %d)",
 239                              curr->bottom(), curr->end(),
 240                              curr->is_young(), curr->is_survivor());
 241       ret = false;
 242     }
 243     ++length;
 244     last = curr;
 245     curr = curr->get_next_young_region();
 246   }
 247   ret = ret && (length == _length);
 248 
 249   if (!ret) {
 250     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 251     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 252                            length, _length);
 253   }
 254 
 255   return ret;
 256 }
 257 
 258 bool YoungList::check_list_empty(bool check_sample) {
 259   bool ret = true;
 260 
 261   if (_length != 0) {
 262     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 263                   _length);
 264     ret = false;
 265   }
 266   if (check_sample && _last_sampled_rs_lengths != 0) {
 267     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 268     ret = false;
 269   }
 270   if (_head != NULL) {
 271     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 272     ret = false;
 273   }
 274   if (!ret) {
 275     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 276   }
 277 
 278   return ret;
 279 }
 280 
 281 void
 282 YoungList::rs_length_sampling_init() {
 283   _sampled_rs_lengths = 0;
 284   _curr               = _head;
 285 }
 286 
 287 bool
 288 YoungList::rs_length_sampling_more() {
 289   return _curr != NULL;
 290 }
 291 
 292 void
 293 YoungList::rs_length_sampling_next() {
 294   assert( _curr != NULL, "invariant" );
 295   size_t rs_length = _curr->rem_set()->occupied();
 296 
 297   _sampled_rs_lengths += rs_length;
 298 
 299   // The current region may not yet have been added to the
 300   // incremental collection set (it gets added when it is
 301   // retired as the current allocation region).
 302   if (_curr->in_collection_set()) {
 303     // Update the collection set policy information for this region
 304     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 305   }
 306 
 307   _curr = _curr->get_next_young_region();
 308   if (_curr == NULL) {
 309     _last_sampled_rs_lengths = _sampled_rs_lengths;
 310     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 311   }
 312 }
 313 
 314 void
 315 YoungList::reset_auxilary_lists() {
 316   guarantee( is_empty(), "young list should be empty" );
 317   assert(check_list_well_formed(), "young list should be well formed");
 318 
 319   // Add survivor regions to SurvRateGroup.
 320   _g1h->g1_policy()->note_start_adding_survivor_regions();
 321   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 322 
 323   int young_index_in_cset = 0;
 324   for (HeapRegion* curr = _survivor_head;
 325        curr != NULL;
 326        curr = curr->get_next_young_region()) {
 327     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 328 
 329     // The region is a non-empty survivor so let's add it to
 330     // the incremental collection set for the next evacuation
 331     // pause.
 332     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 333     young_index_in_cset += 1;
 334   }
 335   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 336   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 337 
 338   _head   = _survivor_head;
 339   _length = _survivor_length;
 340   if (_survivor_head != NULL) {
 341     assert(_survivor_tail != NULL, "cause it shouldn't be");
 342     assert(_survivor_length > 0, "invariant");
 343     _survivor_tail->set_next_young_region(NULL);
 344   }
 345 
 346   // Don't clear the survivor list handles until the start of
 347   // the next evacuation pause - we need it in order to re-tag
 348   // the survivor regions from this evacuation pause as 'young'
 349   // at the start of the next.
 350 
 351   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 352 
 353   assert(check_list_well_formed(), "young list should be well formed");
 354 }
 355 
 356 void YoungList::print() {
 357   HeapRegion* lists[] = {_head,   _survivor_head};
 358   const char* names[] = {"YOUNG", "SURVIVOR"};
 359 
 360   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 361     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 362     HeapRegion *curr = lists[list];
 363     if (curr == NULL)
 364       gclog_or_tty->print_cr("  empty");
 365     while (curr != NULL) {
 366       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 367                              HR_FORMAT_PARAMS(curr),
 368                              curr->prev_top_at_mark_start(),
 369                              curr->next_top_at_mark_start(),
 370                              curr->age_in_surv_rate_group_cond());
 371       curr = curr->get_next_young_region();
 372     }
 373   }
 374 
 375   gclog_or_tty->print_cr("");
 376 }
 377 
 378 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 379 {
 380   // Claim the right to put the region on the dirty cards region list
 381   // by installing a self pointer.
 382   HeapRegion* next = hr->get_next_dirty_cards_region();
 383   if (next == NULL) {
 384     HeapRegion* res = (HeapRegion*)
 385       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 386                           NULL);
 387     if (res == NULL) {
 388       HeapRegion* head;
 389       do {
 390         // Put the region to the dirty cards region list.
 391         head = _dirty_cards_region_list;
 392         next = (HeapRegion*)
 393           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 394         if (next == head) {
 395           assert(hr->get_next_dirty_cards_region() == hr,
 396                  "hr->get_next_dirty_cards_region() != hr");
 397           if (next == NULL) {
 398             // The last region in the list points to itself.
 399             hr->set_next_dirty_cards_region(hr);
 400           } else {
 401             hr->set_next_dirty_cards_region(next);
 402           }
 403         }
 404       } while (next != head);
 405     }
 406   }
 407 }
 408 
 409 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 410 {
 411   HeapRegion* head;
 412   HeapRegion* hr;
 413   do {
 414     head = _dirty_cards_region_list;
 415     if (head == NULL) {
 416       return NULL;
 417     }
 418     HeapRegion* new_head = head->get_next_dirty_cards_region();
 419     if (head == new_head) {
 420       // The last region.
 421       new_head = NULL;
 422     }
 423     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 424                                           head);
 425   } while (hr != head);
 426   assert(hr != NULL, "invariant");
 427   hr->set_next_dirty_cards_region(NULL);
 428   return hr;
 429 }
 430 
 431 void G1CollectedHeap::stop_conc_gc_threads() {
 432   _cg1r->stop();
 433   _cmThread->stop();
 434 }
 435 
 436 #ifdef ASSERT
 437 // A region is added to the collection set as it is retired
 438 // so an address p can point to a region which will be in the
 439 // collection set but has not yet been retired.  This method
 440 // therefore is only accurate during a GC pause after all
 441 // regions have been retired.  It is used for debugging
 442 // to check if an nmethod has references to objects that can
 443 // be move during a partial collection.  Though it can be
 444 // inaccurate, it is sufficient for G1 because the conservative
 445 // implementation of is_scavengable() for G1 will indicate that
 446 // all nmethods must be scanned during a partial collection.
 447 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 448   HeapRegion* hr = heap_region_containing(p);
 449   return hr != NULL && hr->in_collection_set();
 450 }
 451 #endif
 452 
 453 // Returns true if the reference points to an object that
 454 // can move in an incremental collection.
 455 bool G1CollectedHeap::is_scavengable(const void* p) {
 456   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 457   G1CollectorPolicy* g1p = g1h->g1_policy();
 458   HeapRegion* hr = heap_region_containing(p);
 459   if (hr == NULL) {
 460      // null
 461      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 462      return false;
 463   } else {
 464     return !hr->isHumongous();
 465   }
 466 }
 467 
 468 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 469   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 470   CardTableModRefBS* ct_bs = g1_barrier_set();
 471 
 472   // Count the dirty cards at the start.
 473   CountNonCleanMemRegionClosure count1(this);
 474   ct_bs->mod_card_iterate(&count1);
 475   int orig_count = count1.n();
 476 
 477   // First clear the logged cards.
 478   ClearLoggedCardTableEntryClosure clear;
 479   dcqs.set_closure(&clear);
 480   dcqs.apply_closure_to_all_completed_buffers();
 481   dcqs.iterate_closure_all_threads(false);
 482   clear.print_histo();
 483 
 484   // Now ensure that there's no dirty cards.
 485   CountNonCleanMemRegionClosure count2(this);
 486   ct_bs->mod_card_iterate(&count2);
 487   if (count2.n() != 0) {
 488     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 489                            count2.n(), orig_count);
 490   }
 491   guarantee(count2.n() == 0, "Card table should be clean.");
 492 
 493   RedirtyLoggedCardTableEntryClosure redirty;
 494   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 495   dcqs.apply_closure_to_all_completed_buffers();
 496   dcqs.iterate_closure_all_threads(false);
 497   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 498                          clear.calls(), orig_count);
 499   guarantee(redirty.calls() == clear.calls(),
 500             "Or else mechanism is broken.");
 501 
 502   CountNonCleanMemRegionClosure count3(this);
 503   ct_bs->mod_card_iterate(&count3);
 504   if (count3.n() != orig_count) {
 505     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 506                            orig_count, count3.n());
 507     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 508   }
 509 
 510   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 511 }
 512 
 513 // Private class members.
 514 
 515 G1CollectedHeap* G1CollectedHeap::_g1h;
 516 
 517 // Private methods.
 518 
 519 HeapRegion*
 520 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 521   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 522   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 523     if (!_secondary_free_list.is_empty()) {
 524       if (G1ConcRegionFreeingVerbose) {
 525         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 526                                "secondary_free_list has %u entries",
 527                                _secondary_free_list.length());
 528       }
 529       // It looks as if there are free regions available on the
 530       // secondary_free_list. Let's move them to the free_list and try
 531       // again to allocate from it.
 532       append_secondary_free_list();
 533 
 534       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 535              "empty we should have moved at least one entry to the free_list");
 536       HeapRegion* res = _free_list.remove_region(is_old);
 537       if (G1ConcRegionFreeingVerbose) {
 538         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 539                                "allocated "HR_FORMAT" from secondary_free_list",
 540                                HR_FORMAT_PARAMS(res));
 541       }
 542       return res;
 543     }
 544 
 545     // Wait here until we get notified either when (a) there are no
 546     // more free regions coming or (b) some regions have been moved on
 547     // the secondary_free_list.
 548     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 549   }
 550 
 551   if (G1ConcRegionFreeingVerbose) {
 552     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 553                            "could not allocate from secondary_free_list");
 554   }
 555   return NULL;
 556 }
 557 
 558 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 559   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 560          "the only time we use this to allocate a humongous region is "
 561          "when we are allocating a single humongous region");
 562 
 563   HeapRegion* res;
 564   if (G1StressConcRegionFreeing) {
 565     if (!_secondary_free_list.is_empty()) {
 566       if (G1ConcRegionFreeingVerbose) {
 567         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 568                                "forced to look at the secondary_free_list");
 569       }
 570       res = new_region_try_secondary_free_list(is_old);
 571       if (res != NULL) {
 572         return res;
 573       }
 574     }
 575   }
 576 
 577   res = _free_list.remove_region(is_old);
 578 
 579   if (res == NULL) {
 580     if (G1ConcRegionFreeingVerbose) {
 581       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 582                              "res == NULL, trying the secondary_free_list");
 583     }
 584     res = new_region_try_secondary_free_list(is_old);
 585   }
 586   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 587     // Currently, only attempts to allocate GC alloc regions set
 588     // do_expand to true. So, we should only reach here during a
 589     // safepoint. If this assumption changes we might have to
 590     // reconsider the use of _expand_heap_after_alloc_failure.
 591     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 592 
 593     ergo_verbose1(ErgoHeapSizing,
 594                   "attempt heap expansion",
 595                   ergo_format_reason("region allocation request failed")
 596                   ergo_format_byte("allocation request"),
 597                   word_size * HeapWordSize);
 598     if (expand(word_size * HeapWordSize)) {
 599       // Given that expand() succeeded in expanding the heap, and we
 600       // always expand the heap by an amount aligned to the heap
 601       // region size, the free list should in theory not be empty.
 602       // In either case remove_region() will check for NULL.
 603       res = _free_list.remove_region(is_old);
 604     } else {
 605       _expand_heap_after_alloc_failure = false;
 606     }
 607   }
 608   return res;
 609 }
 610 
 611 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 612                                                         size_t word_size) {
 613   assert(isHumongous(word_size), "word_size should be humongous");
 614   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 615 
 616   uint first = G1_NULL_HRS_INDEX;
 617   if (num_regions == 1) {
 618     // Only one region to allocate, no need to go through the slower
 619     // path. The caller will attempt the expansion if this fails, so
 620     // let's not try to expand here too.
 621     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 622     if (hr != NULL) {
 623       first = hr->hrs_index();
 624     } else {
 625       first = G1_NULL_HRS_INDEX;
 626     }
 627   } else {
 628     // We can't allocate humongous regions while cleanupComplete() is
 629     // running, since some of the regions we find to be empty might not
 630     // yet be added to the free list and it is not straightforward to
 631     // know which list they are on so that we can remove them. Note
 632     // that we only need to do this if we need to allocate more than
 633     // one region to satisfy the current humongous allocation
 634     // request. If we are only allocating one region we use the common
 635     // region allocation code (see above).
 636     wait_while_free_regions_coming();
 637     append_secondary_free_list_if_not_empty_with_lock();
 638 
 639     if (free_regions() >= num_regions) {
 640       first = _hrs.find_contiguous(num_regions);
 641       if (first != G1_NULL_HRS_INDEX) {
 642         for (uint i = first; i < first + num_regions; ++i) {
 643           HeapRegion* hr = region_at(i);
 644           assert(hr->is_empty(), "sanity");
 645           assert(is_on_master_free_list(hr), "sanity");
 646           hr->set_pending_removal(true);
 647         }
 648         _free_list.remove_all_pending(num_regions);
 649       }
 650     }
 651   }
 652   return first;
 653 }
 654 
 655 HeapWord*
 656 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 657                                                            uint num_regions,
 658                                                            size_t word_size) {
 659   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 660   assert(isHumongous(word_size), "word_size should be humongous");
 661   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 662 
 663   // Index of last region in the series + 1.
 664   uint last = first + num_regions;
 665 
 666   // We need to initialize the region(s) we just discovered. This is
 667   // a bit tricky given that it can happen concurrently with
 668   // refinement threads refining cards on these regions and
 669   // potentially wanting to refine the BOT as they are scanning
 670   // those cards (this can happen shortly after a cleanup; see CR
 671   // 6991377). So we have to set up the region(s) carefully and in
 672   // a specific order.
 673 
 674   // The word size sum of all the regions we will allocate.
 675   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 676   assert(word_size <= word_size_sum, "sanity");
 677 
 678   // This will be the "starts humongous" region.
 679   HeapRegion* first_hr = region_at(first);
 680   // The header of the new object will be placed at the bottom of
 681   // the first region.
 682   HeapWord* new_obj = first_hr->bottom();
 683   // This will be the new end of the first region in the series that
 684   // should also match the end of the last region in the series.
 685   HeapWord* new_end = new_obj + word_size_sum;
 686   // This will be the new top of the first region that will reflect
 687   // this allocation.
 688   HeapWord* new_top = new_obj + word_size;
 689 
 690   // First, we need to zero the header of the space that we will be
 691   // allocating. When we update top further down, some refinement
 692   // threads might try to scan the region. By zeroing the header we
 693   // ensure that any thread that will try to scan the region will
 694   // come across the zero klass word and bail out.
 695   //
 696   // NOTE: It would not have been correct to have used
 697   // CollectedHeap::fill_with_object() and make the space look like
 698   // an int array. The thread that is doing the allocation will
 699   // later update the object header to a potentially different array
 700   // type and, for a very short period of time, the klass and length
 701   // fields will be inconsistent. This could cause a refinement
 702   // thread to calculate the object size incorrectly.
 703   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 704 
 705   // We will set up the first region as "starts humongous". This
 706   // will also update the BOT covering all the regions to reflect
 707   // that there is a single object that starts at the bottom of the
 708   // first region.
 709   first_hr->set_startsHumongous(new_top, new_end);
 710 
 711   // Then, if there are any, we will set up the "continues
 712   // humongous" regions.
 713   HeapRegion* hr = NULL;
 714   for (uint i = first + 1; i < last; ++i) {
 715     hr = region_at(i);
 716     hr->set_continuesHumongous(first_hr);
 717   }
 718   // If we have "continues humongous" regions (hr != NULL), then the
 719   // end of the last one should match new_end.
 720   assert(hr == NULL || hr->end() == new_end, "sanity");
 721 
 722   // Up to this point no concurrent thread would have been able to
 723   // do any scanning on any region in this series. All the top
 724   // fields still point to bottom, so the intersection between
 725   // [bottom,top] and [card_start,card_end] will be empty. Before we
 726   // update the top fields, we'll do a storestore to make sure that
 727   // no thread sees the update to top before the zeroing of the
 728   // object header and the BOT initialization.
 729   OrderAccess::storestore();
 730 
 731   // Now that the BOT and the object header have been initialized,
 732   // we can update top of the "starts humongous" region.
 733   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 734          "new_top should be in this region");
 735   first_hr->set_top(new_top);
 736   if (_hr_printer.is_active()) {
 737     HeapWord* bottom = first_hr->bottom();
 738     HeapWord* end = first_hr->orig_end();
 739     if ((first + 1) == last) {
 740       // the series has a single humongous region
 741       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 742     } else {
 743       // the series has more than one humongous regions
 744       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 745     }
 746   }
 747 
 748   // Now, we will update the top fields of the "continues humongous"
 749   // regions. The reason we need to do this is that, otherwise,
 750   // these regions would look empty and this will confuse parts of
 751   // G1. For example, the code that looks for a consecutive number
 752   // of empty regions will consider them empty and try to
 753   // re-allocate them. We can extend is_empty() to also include
 754   // !continuesHumongous(), but it is easier to just update the top
 755   // fields here. The way we set top for all regions (i.e., top ==
 756   // end for all regions but the last one, top == new_top for the
 757   // last one) is actually used when we will free up the humongous
 758   // region in free_humongous_region().
 759   hr = NULL;
 760   for (uint i = first + 1; i < last; ++i) {
 761     hr = region_at(i);
 762     if ((i + 1) == last) {
 763       // last continues humongous region
 764       assert(hr->bottom() < new_top && new_top <= hr->end(),
 765              "new_top should fall on this region");
 766       hr->set_top(new_top);
 767       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 768     } else {
 769       // not last one
 770       assert(new_top > hr->end(), "new_top should be above this region");
 771       hr->set_top(hr->end());
 772       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 773     }
 774   }
 775   // If we have continues humongous regions (hr != NULL), then the
 776   // end of the last one should match new_end and its top should
 777   // match new_top.
 778   assert(hr == NULL ||
 779          (hr->end() == new_end && hr->top() == new_top), "sanity");
 780 
 781   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 782   _summary_bytes_used += first_hr->used();
 783   _humongous_set.add(first_hr);
 784 
 785   return new_obj;
 786 }
 787 
 788 // If could fit into free regions w/o expansion, try.
 789 // Otherwise, if can expand, do so.
 790 // Otherwise, if using ex regions might help, try with ex given back.
 791 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 792   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 793 
 794   verify_region_sets_optional();
 795 
 796   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 797   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 798   uint x_num = expansion_regions();
 799   uint fs = _hrs.free_suffix();
 800   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 801   if (first == G1_NULL_HRS_INDEX) {
 802     // The only thing we can do now is attempt expansion.
 803     if (fs + x_num >= num_regions) {
 804       // If the number of regions we're trying to allocate for this
 805       // object is at most the number of regions in the free suffix,
 806       // then the call to humongous_obj_allocate_find_first() above
 807       // should have succeeded and we wouldn't be here.
 808       //
 809       // We should only be trying to expand when the free suffix is
 810       // not sufficient for the object _and_ we have some expansion
 811       // room available.
 812       assert(num_regions > fs, "earlier allocation should have succeeded");
 813 
 814       ergo_verbose1(ErgoHeapSizing,
 815                     "attempt heap expansion",
 816                     ergo_format_reason("humongous allocation request failed")
 817                     ergo_format_byte("allocation request"),
 818                     word_size * HeapWordSize);
 819       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 820         // Even though the heap was expanded, it might not have
 821         // reached the desired size. So, we cannot assume that the
 822         // allocation will succeed.
 823         first = humongous_obj_allocate_find_first(num_regions, word_size);
 824       }
 825     }
 826   }
 827 
 828   HeapWord* result = NULL;
 829   if (first != G1_NULL_HRS_INDEX) {
 830     result =
 831       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 832     assert(result != NULL, "it should always return a valid result");
 833 
 834     // A successful humongous object allocation changes the used space
 835     // information of the old generation so we need to recalculate the
 836     // sizes and update the jstat counters here.
 837     g1mm()->update_sizes();
 838   }
 839 
 840   verify_region_sets_optional();
 841 
 842   return result;
 843 }
 844 
 845 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 846   assert_heap_not_locked_and_not_at_safepoint();
 847   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 848 
 849   unsigned int dummy_gc_count_before;
 850   int dummy_gclocker_retry_count = 0;
 851   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 852 }
 853 
 854 HeapWord*
 855 G1CollectedHeap::mem_allocate(size_t word_size,
 856                               bool*  gc_overhead_limit_was_exceeded) {
 857   assert_heap_not_locked_and_not_at_safepoint();
 858 
 859   // Loop until the allocation is satisfied, or unsatisfied after GC.
 860   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 861     unsigned int gc_count_before;
 862 
 863     HeapWord* result = NULL;
 864     if (!isHumongous(word_size)) {
 865       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 866     } else {
 867       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 868     }
 869     if (result != NULL) {
 870       return result;
 871     }
 872 
 873     // Create the garbage collection operation...
 874     VM_G1CollectForAllocation op(gc_count_before, word_size);
 875     // ...and get the VM thread to execute it.
 876     VMThread::execute(&op);
 877 
 878     if (op.prologue_succeeded() && op.pause_succeeded()) {
 879       // If the operation was successful we'll return the result even
 880       // if it is NULL. If the allocation attempt failed immediately
 881       // after a Full GC, it's unlikely we'll be able to allocate now.
 882       HeapWord* result = op.result();
 883       if (result != NULL && !isHumongous(word_size)) {
 884         // Allocations that take place on VM operations do not do any
 885         // card dirtying and we have to do it here. We only have to do
 886         // this for non-humongous allocations, though.
 887         dirty_young_block(result, word_size);
 888       }
 889       return result;
 890     } else {
 891       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 892         return NULL;
 893       }
 894       assert(op.result() == NULL,
 895              "the result should be NULL if the VM op did not succeed");
 896     }
 897 
 898     // Give a warning if we seem to be looping forever.
 899     if ((QueuedAllocationWarningCount > 0) &&
 900         (try_count % QueuedAllocationWarningCount == 0)) {
 901       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 902     }
 903   }
 904 
 905   ShouldNotReachHere();
 906   return NULL;
 907 }
 908 
 909 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 910                                            unsigned int *gc_count_before_ret,
 911                                            int* gclocker_retry_count_ret) {
 912   // Make sure you read the note in attempt_allocation_humongous().
 913 
 914   assert_heap_not_locked_and_not_at_safepoint();
 915   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 916          "be called for humongous allocation requests");
 917 
 918   // We should only get here after the first-level allocation attempt
 919   // (attempt_allocation()) failed to allocate.
 920 
 921   // We will loop until a) we manage to successfully perform the
 922   // allocation or b) we successfully schedule a collection which
 923   // fails to perform the allocation. b) is the only case when we'll
 924   // return NULL.
 925   HeapWord* result = NULL;
 926   for (int try_count = 1; /* we'll return */; try_count += 1) {
 927     bool should_try_gc;
 928     unsigned int gc_count_before;
 929 
 930     {
 931       MutexLockerEx x(Heap_lock);
 932 
 933       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 934                                                       false /* bot_updates */);
 935       if (result != NULL) {
 936         return result;
 937       }
 938 
 939       // If we reach here, attempt_allocation_locked() above failed to
 940       // allocate a new region. So the mutator alloc region should be NULL.
 941       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 942 
 943       if (GC_locker::is_active_and_needs_gc()) {
 944         if (g1_policy()->can_expand_young_list()) {
 945           // No need for an ergo verbose message here,
 946           // can_expand_young_list() does this when it returns true.
 947           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 948                                                       false /* bot_updates */);
 949           if (result != NULL) {
 950             return result;
 951           }
 952         }
 953         should_try_gc = false;
 954       } else {
 955         // The GCLocker may not be active but the GCLocker initiated
 956         // GC may not yet have been performed (GCLocker::needs_gc()
 957         // returns true). In this case we do not try this GC and
 958         // wait until the GCLocker initiated GC is performed, and
 959         // then retry the allocation.
 960         if (GC_locker::needs_gc()) {
 961           should_try_gc = false;
 962         } else {
 963           // Read the GC count while still holding the Heap_lock.
 964           gc_count_before = total_collections();
 965           should_try_gc = true;
 966         }
 967       }
 968     }
 969 
 970     if (should_try_gc) {
 971       bool succeeded;
 972       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 973           GCCause::_g1_inc_collection_pause);
 974       if (result != NULL) {
 975         assert(succeeded, "only way to get back a non-NULL result");
 976         return result;
 977       }
 978 
 979       if (succeeded) {
 980         // If we get here we successfully scheduled a collection which
 981         // failed to allocate. No point in trying to allocate
 982         // further. We'll just return NULL.
 983         MutexLockerEx x(Heap_lock);
 984         *gc_count_before_ret = total_collections();
 985         return NULL;
 986       }
 987     } else {
 988       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 989         MutexLockerEx x(Heap_lock);
 990         *gc_count_before_ret = total_collections();
 991         return NULL;
 992       }
 993       // The GCLocker is either active or the GCLocker initiated
 994       // GC has not yet been performed. Stall until it is and
 995       // then retry the allocation.
 996       GC_locker::stall_until_clear();
 997       (*gclocker_retry_count_ret) += 1;
 998     }
 999 
1000     // We can reach here if we were unsuccessful in scheduling a
1001     // collection (because another thread beat us to it) or if we were
1002     // stalled due to the GC locker. In either can we should retry the
1003     // allocation attempt in case another thread successfully
1004     // performed a collection and reclaimed enough space. We do the
1005     // first attempt (without holding the Heap_lock) here and the
1006     // follow-on attempt will be at the start of the next loop
1007     // iteration (after taking the Heap_lock).
1008     result = _mutator_alloc_region.attempt_allocation(word_size,
1009                                                       false /* bot_updates */);
1010     if (result != NULL) {
1011       return result;
1012     }
1013 
1014     // Give a warning if we seem to be looping forever.
1015     if ((QueuedAllocationWarningCount > 0) &&
1016         (try_count % QueuedAllocationWarningCount == 0)) {
1017       warning("G1CollectedHeap::attempt_allocation_slow() "
1018               "retries %d times", try_count);
1019     }
1020   }
1021 
1022   ShouldNotReachHere();
1023   return NULL;
1024 }
1025 
1026 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1027                                           unsigned int * gc_count_before_ret,
1028                                           int* gclocker_retry_count_ret) {
1029   // The structure of this method has a lot of similarities to
1030   // attempt_allocation_slow(). The reason these two were not merged
1031   // into a single one is that such a method would require several "if
1032   // allocation is not humongous do this, otherwise do that"
1033   // conditional paths which would obscure its flow. In fact, an early
1034   // version of this code did use a unified method which was harder to
1035   // follow and, as a result, it had subtle bugs that were hard to
1036   // track down. So keeping these two methods separate allows each to
1037   // be more readable. It will be good to keep these two in sync as
1038   // much as possible.
1039 
1040   assert_heap_not_locked_and_not_at_safepoint();
1041   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1042          "should only be called for humongous allocations");
1043 
1044   // Humongous objects can exhaust the heap quickly, so we should check if we
1045   // need to start a marking cycle at each humongous object allocation. We do
1046   // the check before we do the actual allocation. The reason for doing it
1047   // before the allocation is that we avoid having to keep track of the newly
1048   // allocated memory while we do a GC.
1049   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1050                                            word_size)) {
1051     collect(GCCause::_g1_humongous_allocation);
1052   }
1053 
1054   // We will loop until a) we manage to successfully perform the
1055   // allocation or b) we successfully schedule a collection which
1056   // fails to perform the allocation. b) is the only case when we'll
1057   // return NULL.
1058   HeapWord* result = NULL;
1059   for (int try_count = 1; /* we'll return */; try_count += 1) {
1060     bool should_try_gc;
1061     unsigned int gc_count_before;
1062 
1063     {
1064       MutexLockerEx x(Heap_lock);
1065 
1066       // Given that humongous objects are not allocated in young
1067       // regions, we'll first try to do the allocation without doing a
1068       // collection hoping that there's enough space in the heap.
1069       result = humongous_obj_allocate(word_size);
1070       if (result != NULL) {
1071         return result;
1072       }
1073 
1074       if (GC_locker::is_active_and_needs_gc()) {
1075         should_try_gc = false;
1076       } else {
1077          // The GCLocker may not be active but the GCLocker initiated
1078         // GC may not yet have been performed (GCLocker::needs_gc()
1079         // returns true). In this case we do not try this GC and
1080         // wait until the GCLocker initiated GC is performed, and
1081         // then retry the allocation.
1082         if (GC_locker::needs_gc()) {
1083           should_try_gc = false;
1084         } else {
1085           // Read the GC count while still holding the Heap_lock.
1086           gc_count_before = total_collections();
1087           should_try_gc = true;
1088         }
1089       }
1090     }
1091 
1092     if (should_try_gc) {
1093       // If we failed to allocate the humongous object, we should try to
1094       // do a collection pause (if we're allowed) in case it reclaims
1095       // enough space for the allocation to succeed after the pause.
1096 
1097       bool succeeded;
1098       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1099           GCCause::_g1_humongous_allocation);
1100       if (result != NULL) {
1101         assert(succeeded, "only way to get back a non-NULL result");
1102         return result;
1103       }
1104 
1105       if (succeeded) {
1106         // If we get here we successfully scheduled a collection which
1107         // failed to allocate. No point in trying to allocate
1108         // further. We'll just return NULL.
1109         MutexLockerEx x(Heap_lock);
1110         *gc_count_before_ret = total_collections();
1111         return NULL;
1112       }
1113     } else {
1114       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1115         MutexLockerEx x(Heap_lock);
1116         *gc_count_before_ret = total_collections();
1117         return NULL;
1118       }
1119       // The GCLocker is either active or the GCLocker initiated
1120       // GC has not yet been performed. Stall until it is and
1121       // then retry the allocation.
1122       GC_locker::stall_until_clear();
1123       (*gclocker_retry_count_ret) += 1;
1124     }
1125 
1126     // We can reach here if we were unsuccessful in scheduling a
1127     // collection (because another thread beat us to it) or if we were
1128     // stalled due to the GC locker. In either can we should retry the
1129     // allocation attempt in case another thread successfully
1130     // performed a collection and reclaimed enough space.  Give a
1131     // warning if we seem to be looping forever.
1132 
1133     if ((QueuedAllocationWarningCount > 0) &&
1134         (try_count % QueuedAllocationWarningCount == 0)) {
1135       warning("G1CollectedHeap::attempt_allocation_humongous() "
1136               "retries %d times", try_count);
1137     }
1138   }
1139 
1140   ShouldNotReachHere();
1141   return NULL;
1142 }
1143 
1144 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1145                                        bool expect_null_mutator_alloc_region) {
1146   assert_at_safepoint(true /* should_be_vm_thread */);
1147   assert(_mutator_alloc_region.get() == NULL ||
1148                                              !expect_null_mutator_alloc_region,
1149          "the current alloc region was unexpectedly found to be non-NULL");
1150 
1151   if (!isHumongous(word_size)) {
1152     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1153                                                       false /* bot_updates */);
1154   } else {
1155     HeapWord* result = humongous_obj_allocate(word_size);
1156     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1157       g1_policy()->set_initiate_conc_mark_if_possible();
1158     }
1159     return result;
1160   }
1161 
1162   ShouldNotReachHere();
1163 }
1164 
1165 class PostMCRemSetClearClosure: public HeapRegionClosure {
1166   G1CollectedHeap* _g1h;
1167   ModRefBarrierSet* _mr_bs;
1168 public:
1169   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1170     _g1h(g1h), _mr_bs(mr_bs) {}
1171 
1172   bool doHeapRegion(HeapRegion* r) {
1173     HeapRegionRemSet* hrrs = r->rem_set();
1174 
1175     if (r->continuesHumongous()) {
1176       // We'll assert that the strong code root list and RSet is empty
1177       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1178       assert(hrrs->occupied() == 0, "RSet should be empty");
1179       return false;
1180     }
1181 
1182     _g1h->reset_gc_time_stamps(r);
1183     hrrs->clear();
1184     // You might think here that we could clear just the cards
1185     // corresponding to the used region.  But no: if we leave a dirty card
1186     // in a region we might allocate into, then it would prevent that card
1187     // from being enqueued, and cause it to be missed.
1188     // Re: the performance cost: we shouldn't be doing full GC anyway!
1189     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1190 
1191     return false;
1192   }
1193 };
1194 
1195 void G1CollectedHeap::clear_rsets_post_compaction() {
1196   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1197   heap_region_iterate(&rs_clear);
1198 }
1199 
1200 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1201   G1CollectedHeap*   _g1h;
1202   UpdateRSOopClosure _cl;
1203   int                _worker_i;
1204 public:
1205   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1206     _cl(g1->g1_rem_set(), worker_i),
1207     _worker_i(worker_i),
1208     _g1h(g1)
1209   { }
1210 
1211   bool doHeapRegion(HeapRegion* r) {
1212     if (!r->continuesHumongous()) {
1213       _cl.set_from(r);
1214       r->oop_iterate(&_cl);
1215     }
1216     return false;
1217   }
1218 };
1219 
1220 class ParRebuildRSTask: public AbstractGangTask {
1221   G1CollectedHeap* _g1;
1222 public:
1223   ParRebuildRSTask(G1CollectedHeap* g1)
1224     : AbstractGangTask("ParRebuildRSTask"),
1225       _g1(g1)
1226   { }
1227 
1228   void work(uint worker_id) {
1229     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1230     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1231                                           _g1->workers()->active_workers(),
1232                                          HeapRegion::RebuildRSClaimValue);
1233   }
1234 };
1235 
1236 class PostCompactionPrinterClosure: public HeapRegionClosure {
1237 private:
1238   G1HRPrinter* _hr_printer;
1239 public:
1240   bool doHeapRegion(HeapRegion* hr) {
1241     assert(!hr->is_young(), "not expecting to find young regions");
1242     // We only generate output for non-empty regions.
1243     if (!hr->is_empty()) {
1244       if (!hr->isHumongous()) {
1245         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1246       } else if (hr->startsHumongous()) {
1247         if (hr->region_num() == 1) {
1248           // single humongous region
1249           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1250         } else {
1251           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1252         }
1253       } else {
1254         assert(hr->continuesHumongous(), "only way to get here");
1255         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1256       }
1257     }
1258     return false;
1259   }
1260 
1261   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1262     : _hr_printer(hr_printer) { }
1263 };
1264 
1265 void G1CollectedHeap::print_hrs_post_compaction() {
1266   PostCompactionPrinterClosure cl(hr_printer());
1267   heap_region_iterate(&cl);
1268 }
1269 
1270 bool G1CollectedHeap::do_collection(bool explicit_gc,
1271                                     bool clear_all_soft_refs,
1272                                     size_t word_size) {
1273   assert_at_safepoint(true /* should_be_vm_thread */);
1274 
1275   if (GC_locker::check_active_before_gc()) {
1276     return false;
1277   }
1278 
1279   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1280   gc_timer->register_gc_start();
1281 
1282   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1283   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1284 
1285   SvcGCMarker sgcm(SvcGCMarker::FULL);
1286   ResourceMark rm;
1287 
1288   print_heap_before_gc();
1289   trace_heap_before_gc(gc_tracer);
1290 
1291   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1292 
1293   verify_region_sets_optional();
1294 
1295   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1296                            collector_policy()->should_clear_all_soft_refs();
1297 
1298   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1299 
1300   {
1301     IsGCActiveMark x;
1302 
1303     // Timing
1304     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1305     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1306     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1307 
1308     {
1309       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1310       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1311       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1312 
1313       double start = os::elapsedTime();
1314       g1_policy()->record_full_collection_start();
1315 
1316       // Note: When we have a more flexible GC logging framework that
1317       // allows us to add optional attributes to a GC log record we
1318       // could consider timing and reporting how long we wait in the
1319       // following two methods.
1320       wait_while_free_regions_coming();
1321       // If we start the compaction before the CM threads finish
1322       // scanning the root regions we might trip them over as we'll
1323       // be moving objects / updating references. So let's wait until
1324       // they are done. By telling them to abort, they should complete
1325       // early.
1326       _cm->root_regions()->abort();
1327       _cm->root_regions()->wait_until_scan_finished();
1328       append_secondary_free_list_if_not_empty_with_lock();
1329 
1330       gc_prologue(true);
1331       increment_total_collections(true /* full gc */);
1332       increment_old_marking_cycles_started();
1333 
1334       assert(used() == recalculate_used(), "Should be equal");
1335 
1336       verify_before_gc();
1337 
1338       pre_full_gc_dump(gc_timer);
1339 
1340       COMPILER2_PRESENT(DerivedPointerTable::clear());
1341 
1342       // Disable discovery and empty the discovered lists
1343       // for the CM ref processor.
1344       ref_processor_cm()->disable_discovery();
1345       ref_processor_cm()->abandon_partial_discovery();
1346       ref_processor_cm()->verify_no_references_recorded();
1347 
1348       // Abandon current iterations of concurrent marking and concurrent
1349       // refinement, if any are in progress. We have to do this before
1350       // wait_until_scan_finished() below.
1351       concurrent_mark()->abort();
1352 
1353       // Make sure we'll choose a new allocation region afterwards.
1354       release_mutator_alloc_region();
1355       abandon_gc_alloc_regions();
1356       g1_rem_set()->cleanupHRRS();
1357 
1358       // We should call this after we retire any currently active alloc
1359       // regions so that all the ALLOC / RETIRE events are generated
1360       // before the start GC event.
1361       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1362 
1363       // We may have added regions to the current incremental collection
1364       // set between the last GC or pause and now. We need to clear the
1365       // incremental collection set and then start rebuilding it afresh
1366       // after this full GC.
1367       abandon_collection_set(g1_policy()->inc_cset_head());
1368       g1_policy()->clear_incremental_cset();
1369       g1_policy()->stop_incremental_cset_building();
1370 
1371       tear_down_region_sets(false /* free_list_only */);
1372       g1_policy()->set_gcs_are_young(true);
1373 
1374       // See the comments in g1CollectedHeap.hpp and
1375       // G1CollectedHeap::ref_processing_init() about
1376       // how reference processing currently works in G1.
1377 
1378       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1379       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1380 
1381       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1382       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1383 
1384       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1385       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1386 
1387       // Do collection work
1388       {
1389         HandleMark hm;  // Discard invalid handles created during gc
1390         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1391       }
1392 
1393       assert(free_regions() == 0, "we should not have added any free regions");
1394       rebuild_region_sets(false /* free_list_only */);
1395 
1396       // Enqueue any discovered reference objects that have
1397       // not been removed from the discovered lists.
1398       ref_processor_stw()->enqueue_discovered_references();
1399 
1400       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1401 
1402       MemoryService::track_memory_usage();
1403 
1404       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1405       ref_processor_stw()->verify_no_references_recorded();
1406 
1407       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1408       ClassLoaderDataGraph::purge();
1409       MetaspaceAux::verify_metrics();
1410 
1411       // Note: since we've just done a full GC, concurrent
1412       // marking is no longer active. Therefore we need not
1413       // re-enable reference discovery for the CM ref processor.
1414       // That will be done at the start of the next marking cycle.
1415       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1416       ref_processor_cm()->verify_no_references_recorded();
1417 
1418       reset_gc_time_stamp();
1419       // Since everything potentially moved, we will clear all remembered
1420       // sets, and clear all cards.  Later we will rebuild remembered
1421       // sets. We will also reset the GC time stamps of the regions.
1422       clear_rsets_post_compaction();
1423       check_gc_time_stamps();
1424 
1425       // Resize the heap if necessary.
1426       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1427 
1428       if (_hr_printer.is_active()) {
1429         // We should do this after we potentially resize the heap so
1430         // that all the COMMIT / UNCOMMIT events are generated before
1431         // the end GC event.
1432 
1433         print_hrs_post_compaction();
1434         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1435       }
1436 
1437       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1438       if (hot_card_cache->use_cache()) {
1439         hot_card_cache->reset_card_counts();
1440         hot_card_cache->reset_hot_cache();
1441       }
1442 
1443       // Rebuild remembered sets of all regions.
1444       if (G1CollectedHeap::use_parallel_gc_threads()) {
1445         uint n_workers =
1446           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1447                                                   workers()->active_workers(),
1448                                                   Threads::number_of_non_daemon_threads());
1449         assert(UseDynamicNumberOfGCThreads ||
1450                n_workers == workers()->total_workers(),
1451                "If not dynamic should be using all the  workers");
1452         workers()->set_active_workers(n_workers);
1453         // Set parallel threads in the heap (_n_par_threads) only
1454         // before a parallel phase and always reset it to 0 after
1455         // the phase so that the number of parallel threads does
1456         // no get carried forward to a serial phase where there
1457         // may be code that is "possibly_parallel".
1458         set_par_threads(n_workers);
1459 
1460         ParRebuildRSTask rebuild_rs_task(this);
1461         assert(check_heap_region_claim_values(
1462                HeapRegion::InitialClaimValue), "sanity check");
1463         assert(UseDynamicNumberOfGCThreads ||
1464                workers()->active_workers() == workers()->total_workers(),
1465                "Unless dynamic should use total workers");
1466         // Use the most recent number of  active workers
1467         assert(workers()->active_workers() > 0,
1468                "Active workers not properly set");
1469         set_par_threads(workers()->active_workers());
1470         workers()->run_task(&rebuild_rs_task);
1471         set_par_threads(0);
1472         assert(check_heap_region_claim_values(
1473                HeapRegion::RebuildRSClaimValue), "sanity check");
1474         reset_heap_region_claim_values();
1475       } else {
1476         RebuildRSOutOfRegionClosure rebuild_rs(this);
1477         heap_region_iterate(&rebuild_rs);
1478       }
1479 
1480       // Rebuild the strong code root lists for each region
1481       rebuild_strong_code_roots();
1482 
1483       if (true) { // FIXME
1484         MetaspaceGC::compute_new_size();
1485       }
1486 
1487 #ifdef TRACESPINNING
1488       ParallelTaskTerminator::print_termination_counts();
1489 #endif
1490 
1491       // Discard all rset updates
1492       JavaThread::dirty_card_queue_set().abandon_logs();
1493       assert(!G1DeferredRSUpdate
1494              || (G1DeferredRSUpdate &&
1495                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1496 
1497       _young_list->reset_sampled_info();
1498       // At this point there should be no regions in the
1499       // entire heap tagged as young.
1500       assert(check_young_list_empty(true /* check_heap */),
1501              "young list should be empty at this point");
1502 
1503       // Update the number of full collections that have been completed.
1504       increment_old_marking_cycles_completed(false /* concurrent */);
1505 
1506       _hrs.verify_optional();
1507       verify_region_sets_optional();
1508 
1509       verify_after_gc();
1510 
1511       // Start a new incremental collection set for the next pause
1512       assert(g1_policy()->collection_set() == NULL, "must be");
1513       g1_policy()->start_incremental_cset_building();
1514 
1515       clear_cset_fast_test();
1516 
1517       init_mutator_alloc_region();
1518 
1519       double end = os::elapsedTime();
1520       g1_policy()->record_full_collection_end();
1521 
1522       if (G1Log::fine()) {
1523         g1_policy()->print_heap_transition();
1524       }
1525 
1526       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1527       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1528       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1529       // before any GC notifications are raised.
1530       g1mm()->update_sizes();
1531 
1532       gc_epilogue(true);
1533     }
1534 
1535     if (G1Log::finer()) {
1536       g1_policy()->print_detailed_heap_transition(true /* full */);
1537     }
1538 
1539     print_heap_after_gc();
1540     trace_heap_after_gc(gc_tracer);
1541 
1542     post_full_gc_dump(gc_timer);
1543 
1544     gc_timer->register_gc_end();
1545     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1546   }
1547 
1548   return true;
1549 }
1550 
1551 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1552   // do_collection() will return whether it succeeded in performing
1553   // the GC. Currently, there is no facility on the
1554   // do_full_collection() API to notify the caller than the collection
1555   // did not succeed (e.g., because it was locked out by the GC
1556   // locker). So, right now, we'll ignore the return value.
1557   bool dummy = do_collection(true,                /* explicit_gc */
1558                              clear_all_soft_refs,
1559                              0                    /* word_size */);
1560 }
1561 
1562 // This code is mostly copied from TenuredGeneration.
1563 void
1564 G1CollectedHeap::
1565 resize_if_necessary_after_full_collection(size_t word_size) {
1566   // Include the current allocation, if any, and bytes that will be
1567   // pre-allocated to support collections, as "used".
1568   const size_t used_after_gc = used();
1569   const size_t capacity_after_gc = capacity();
1570   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1571 
1572   // This is enforced in arguments.cpp.
1573   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1574          "otherwise the code below doesn't make sense");
1575 
1576   // We don't have floating point command-line arguments
1577   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1578   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1579   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1580   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1581 
1582   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1583   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1584 
1585   // We have to be careful here as these two calculations can overflow
1586   // 32-bit size_t's.
1587   double used_after_gc_d = (double) used_after_gc;
1588   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1589   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1590 
1591   // Let's make sure that they are both under the max heap size, which
1592   // by default will make them fit into a size_t.
1593   double desired_capacity_upper_bound = (double) max_heap_size;
1594   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1595                                     desired_capacity_upper_bound);
1596   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1597                                     desired_capacity_upper_bound);
1598 
1599   // We can now safely turn them into size_t's.
1600   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1601   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1602 
1603   // This assert only makes sense here, before we adjust them
1604   // with respect to the min and max heap size.
1605   assert(minimum_desired_capacity <= maximum_desired_capacity,
1606          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1607                  "maximum_desired_capacity = "SIZE_FORMAT,
1608                  minimum_desired_capacity, maximum_desired_capacity));
1609 
1610   // Should not be greater than the heap max size. No need to adjust
1611   // it with respect to the heap min size as it's a lower bound (i.e.,
1612   // we'll try to make the capacity larger than it, not smaller).
1613   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1614   // Should not be less than the heap min size. No need to adjust it
1615   // with respect to the heap max size as it's an upper bound (i.e.,
1616   // we'll try to make the capacity smaller than it, not greater).
1617   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1618 
1619   if (capacity_after_gc < minimum_desired_capacity) {
1620     // Don't expand unless it's significant
1621     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1622     ergo_verbose4(ErgoHeapSizing,
1623                   "attempt heap expansion",
1624                   ergo_format_reason("capacity lower than "
1625                                      "min desired capacity after Full GC")
1626                   ergo_format_byte("capacity")
1627                   ergo_format_byte("occupancy")
1628                   ergo_format_byte_perc("min desired capacity"),
1629                   capacity_after_gc, used_after_gc,
1630                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1631     expand(expand_bytes);
1632 
1633     // No expansion, now see if we want to shrink
1634   } else if (capacity_after_gc > maximum_desired_capacity) {
1635     // Capacity too large, compute shrinking size
1636     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1637     ergo_verbose4(ErgoHeapSizing,
1638                   "attempt heap shrinking",
1639                   ergo_format_reason("capacity higher than "
1640                                      "max desired capacity after Full GC")
1641                   ergo_format_byte("capacity")
1642                   ergo_format_byte("occupancy")
1643                   ergo_format_byte_perc("max desired capacity"),
1644                   capacity_after_gc, used_after_gc,
1645                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1646     shrink(shrink_bytes);
1647   }
1648 }
1649 
1650 
1651 HeapWord*
1652 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1653                                            bool* succeeded) {
1654   assert_at_safepoint(true /* should_be_vm_thread */);
1655 
1656   *succeeded = true;
1657   // Let's attempt the allocation first.
1658   HeapWord* result =
1659     attempt_allocation_at_safepoint(word_size,
1660                                  false /* expect_null_mutator_alloc_region */);
1661   if (result != NULL) {
1662     assert(*succeeded, "sanity");
1663     return result;
1664   }
1665 
1666   // In a G1 heap, we're supposed to keep allocation from failing by
1667   // incremental pauses.  Therefore, at least for now, we'll favor
1668   // expansion over collection.  (This might change in the future if we can
1669   // do something smarter than full collection to satisfy a failed alloc.)
1670   result = expand_and_allocate(word_size);
1671   if (result != NULL) {
1672     assert(*succeeded, "sanity");
1673     return result;
1674   }
1675 
1676   // Expansion didn't work, we'll try to do a Full GC.
1677   bool gc_succeeded = do_collection(false, /* explicit_gc */
1678                                     false, /* clear_all_soft_refs */
1679                                     word_size);
1680   if (!gc_succeeded) {
1681     *succeeded = false;
1682     return NULL;
1683   }
1684 
1685   // Retry the allocation
1686   result = attempt_allocation_at_safepoint(word_size,
1687                                   true /* expect_null_mutator_alloc_region */);
1688   if (result != NULL) {
1689     assert(*succeeded, "sanity");
1690     return result;
1691   }
1692 
1693   // Then, try a Full GC that will collect all soft references.
1694   gc_succeeded = do_collection(false, /* explicit_gc */
1695                                true,  /* clear_all_soft_refs */
1696                                word_size);
1697   if (!gc_succeeded) {
1698     *succeeded = false;
1699     return NULL;
1700   }
1701 
1702   // Retry the allocation once more
1703   result = attempt_allocation_at_safepoint(word_size,
1704                                   true /* expect_null_mutator_alloc_region */);
1705   if (result != NULL) {
1706     assert(*succeeded, "sanity");
1707     return result;
1708   }
1709 
1710   assert(!collector_policy()->should_clear_all_soft_refs(),
1711          "Flag should have been handled and cleared prior to this point");
1712 
1713   // What else?  We might try synchronous finalization later.  If the total
1714   // space available is large enough for the allocation, then a more
1715   // complete compaction phase than we've tried so far might be
1716   // appropriate.
1717   assert(*succeeded, "sanity");
1718   return NULL;
1719 }
1720 
1721 // Attempting to expand the heap sufficiently
1722 // to support an allocation of the given "word_size".  If
1723 // successful, perform the allocation and return the address of the
1724 // allocated block, or else "NULL".
1725 
1726 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1727   assert_at_safepoint(true /* should_be_vm_thread */);
1728 
1729   verify_region_sets_optional();
1730 
1731   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1732   ergo_verbose1(ErgoHeapSizing,
1733                 "attempt heap expansion",
1734                 ergo_format_reason("allocation request failed")
1735                 ergo_format_byte("allocation request"),
1736                 word_size * HeapWordSize);
1737   if (expand(expand_bytes)) {
1738     _hrs.verify_optional();
1739     verify_region_sets_optional();
1740     return attempt_allocation_at_safepoint(word_size,
1741                                  false /* expect_null_mutator_alloc_region */);
1742   }
1743   return NULL;
1744 }
1745 
1746 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1747                                              HeapWord* new_end) {
1748   assert(old_end != new_end, "don't call this otherwise");
1749   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1750 
1751   // Update the committed mem region.
1752   _g1_committed.set_end(new_end);
1753   // Tell the card table about the update.
1754   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1755   // Tell the BOT about the update.
1756   _bot_shared->resize(_g1_committed.word_size());
1757   // Tell the hot card cache about the update
1758   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1759 }
1760 
1761 bool G1CollectedHeap::expand(size_t expand_bytes) {
1762   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1763   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1764                                        HeapRegion::GrainBytes);
1765   ergo_verbose2(ErgoHeapSizing,
1766                 "expand the heap",
1767                 ergo_format_byte("requested expansion amount")
1768                 ergo_format_byte("attempted expansion amount"),
1769                 expand_bytes, aligned_expand_bytes);
1770 
1771   if (_g1_storage.uncommitted_size() == 0) {
1772     ergo_verbose0(ErgoHeapSizing,
1773                       "did not expand the heap",
1774                       ergo_format_reason("heap already fully expanded"));
1775     return false;
1776   }
1777 
1778   // First commit the memory.
1779   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1780   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1781   if (successful) {
1782     // Then propagate this update to the necessary data structures.
1783     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1784     update_committed_space(old_end, new_end);
1785 
1786     FreeRegionList expansion_list("Local Expansion List");
1787     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1788     assert(mr.start() == old_end, "post-condition");
1789     // mr might be a smaller region than what was requested if
1790     // expand_by() was unable to allocate the HeapRegion instances
1791     assert(mr.end() <= new_end, "post-condition");
1792 
1793     size_t actual_expand_bytes = mr.byte_size();
1794     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1795     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1796            "post-condition");
1797     if (actual_expand_bytes < aligned_expand_bytes) {
1798       // We could not expand _hrs to the desired size. In this case we
1799       // need to shrink the committed space accordingly.
1800       assert(mr.end() < new_end, "invariant");
1801 
1802       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1803       // First uncommit the memory.
1804       _g1_storage.shrink_by(diff_bytes);
1805       // Then propagate this update to the necessary data structures.
1806       update_committed_space(new_end, mr.end());
1807     }
1808     _free_list.add_as_tail(&expansion_list);
1809 
1810     if (_hr_printer.is_active()) {
1811       HeapWord* curr = mr.start();
1812       while (curr < mr.end()) {
1813         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1814         _hr_printer.commit(curr, curr_end);
1815         curr = curr_end;
1816       }
1817       assert(curr == mr.end(), "post-condition");
1818     }
1819     g1_policy()->record_new_heap_size(n_regions());
1820   } else {
1821     ergo_verbose0(ErgoHeapSizing,
1822                   "did not expand the heap",
1823                   ergo_format_reason("heap expansion operation failed"));
1824     // The expansion of the virtual storage space was unsuccessful.
1825     // Let's see if it was because we ran out of swap.
1826     if (G1ExitOnExpansionFailure &&
1827         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1828       // We had head room...
1829       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1830     }
1831   }
1832   return successful;
1833 }
1834 
1835 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1836   size_t aligned_shrink_bytes =
1837     ReservedSpace::page_align_size_down(shrink_bytes);
1838   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1839                                          HeapRegion::GrainBytes);
1840   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1841 
1842   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1843   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1844   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1845 
1846   ergo_verbose3(ErgoHeapSizing,
1847                 "shrink the heap",
1848                 ergo_format_byte("requested shrinking amount")
1849                 ergo_format_byte("aligned shrinking amount")
1850                 ergo_format_byte("attempted shrinking amount"),
1851                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1852   if (num_regions_removed > 0) {
1853     _g1_storage.shrink_by(shrunk_bytes);
1854     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1855 
1856     if (_hr_printer.is_active()) {
1857       HeapWord* curr = old_end;
1858       while (curr > new_end) {
1859         HeapWord* curr_end = curr;
1860         curr -= HeapRegion::GrainWords;
1861         _hr_printer.uncommit(curr, curr_end);
1862       }
1863     }
1864 
1865     _expansion_regions += num_regions_removed;
1866     update_committed_space(old_end, new_end);
1867     HeapRegionRemSet::shrink_heap(n_regions());
1868     g1_policy()->record_new_heap_size(n_regions());
1869   } else {
1870     ergo_verbose0(ErgoHeapSizing,
1871                   "did not shrink the heap",
1872                   ergo_format_reason("heap shrinking operation failed"));
1873   }
1874 }
1875 
1876 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1877   verify_region_sets_optional();
1878 
1879   // We should only reach here at the end of a Full GC which means we
1880   // should not not be holding to any GC alloc regions. The method
1881   // below will make sure of that and do any remaining clean up.
1882   abandon_gc_alloc_regions();
1883 
1884   // Instead of tearing down / rebuilding the free lists here, we
1885   // could instead use the remove_all_pending() method on free_list to
1886   // remove only the ones that we need to remove.
1887   tear_down_region_sets(true /* free_list_only */);
1888   shrink_helper(shrink_bytes);
1889   rebuild_region_sets(true /* free_list_only */);
1890 
1891   _hrs.verify_optional();
1892   verify_region_sets_optional();
1893 }
1894 
1895 // Public methods.
1896 
1897 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1898 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1899 #endif // _MSC_VER
1900 
1901 
1902 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1903   SharedHeap(policy_),
1904   _g1_policy(policy_),
1905   _dirty_card_queue_set(false),
1906   _into_cset_dirty_card_queue_set(false),
1907   _is_alive_closure_cm(this),
1908   _is_alive_closure_stw(this),
1909   _ref_processor_cm(NULL),
1910   _ref_processor_stw(NULL),
1911   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1912   _bot_shared(NULL),
1913   _evac_failure_scan_stack(NULL),
1914   _mark_in_progress(false),
1915   _cg1r(NULL), _summary_bytes_used(0),
1916   _g1mm(NULL),
1917   _refine_cte_cl(NULL),
1918   _full_collection(false),
1919   _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
1920   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1921   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1922   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1923   _free_regions_coming(false),
1924   _young_list(new YoungList(this)),
1925   _gc_time_stamp(0),
1926   _retained_old_gc_alloc_region(NULL),
1927   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1928   _old_plab_stats(OldPLABSize, PLABWeight),
1929   _expand_heap_after_alloc_failure(true),
1930   _surviving_young_words(NULL),
1931   _old_marking_cycles_started(0),
1932   _old_marking_cycles_completed(0),
1933   _concurrent_cycle_started(false),
1934   _in_cset_fast_test(),
1935   _dirty_cards_region_list(NULL),
1936   _worker_cset_start_region(NULL),
1937   _worker_cset_start_region_time_stamp(NULL),
1938   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1939   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1940   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1941   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1942 
1943   _g1h = this;
1944   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1945     vm_exit_during_initialization("Failed necessary allocation.");
1946   }
1947 
1948   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1949 
1950   int n_queues = MAX2((int)ParallelGCThreads, 1);
1951   _task_queues = new RefToScanQueueSet(n_queues);
1952 
1953   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1954   assert(n_rem_sets > 0, "Invariant.");
1955 
1956   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1957   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1958   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1959 
1960   for (int i = 0; i < n_queues; i++) {
1961     RefToScanQueue* q = new RefToScanQueue();
1962     q->initialize();
1963     _task_queues->register_queue(i, q);
1964     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1965   }
1966   clear_cset_start_regions();
1967 
1968   // Initialize the G1EvacuationFailureALot counters and flags.
1969   NOT_PRODUCT(reset_evacuation_should_fail();)
1970 
1971   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1972 }
1973 
1974 jint G1CollectedHeap::initialize() {
1975   CollectedHeap::pre_initialize();
1976   os::enable_vtime();
1977 
1978   G1Log::init();
1979 
1980   // Necessary to satisfy locking discipline assertions.
1981 
1982   MutexLocker x(Heap_lock);
1983 
1984   // We have to initialize the printer before committing the heap, as
1985   // it will be used then.
1986   _hr_printer.set_active(G1PrintHeapRegions);
1987 
1988   // While there are no constraints in the GC code that HeapWordSize
1989   // be any particular value, there are multiple other areas in the
1990   // system which believe this to be true (e.g. oop->object_size in some
1991   // cases incorrectly returns the size in wordSize units rather than
1992   // HeapWordSize).
1993   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1994 
1995   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1996   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1997   size_t heap_alignment = collector_policy()->heap_alignment();
1998 
1999   // Ensure that the sizes are properly aligned.
2000   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2001   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2002   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2003 
2004   _cg1r = new ConcurrentG1Refine(this);
2005 
2006   // Reserve the maximum.
2007 
2008   // When compressed oops are enabled, the preferred heap base
2009   // is calculated by subtracting the requested size from the
2010   // 32Gb boundary and using the result as the base address for
2011   // heap reservation. If the requested size is not aligned to
2012   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2013   // into the ReservedHeapSpace constructor) then the actual
2014   // base of the reserved heap may end up differing from the
2015   // address that was requested (i.e. the preferred heap base).
2016   // If this happens then we could end up using a non-optimal
2017   // compressed oops mode.
2018 
2019   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2020                                                  heap_alignment);
2021 
2022   // It is important to do this in a way such that concurrent readers can't
2023   // temporarily think something is in the heap.  (I've actually seen this
2024   // happen in asserts: DLD.)
2025   _reserved.set_word_size(0);
2026   _reserved.set_start((HeapWord*)heap_rs.base());
2027   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2028 
2029   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2030 
2031   // Create the gen rem set (and barrier set) for the entire reserved region.
2032   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2033   set_barrier_set(rem_set()->bs());
2034   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
2035     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2036     return JNI_ENOMEM;
2037   }
2038 
2039   // Also create a G1 rem set.
2040   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2041 
2042   // Carve out the G1 part of the heap.
2043 
2044   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2045   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2046                            g1_rs.size()/HeapWordSize);
2047 
2048   _g1_storage.initialize(g1_rs, 0);
2049   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2050   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2051                   (HeapWord*) _g1_reserved.end());
2052   assert(_hrs.max_length() == _expansion_regions,
2053          err_msg("max length: %u expansion regions: %u",
2054                  _hrs.max_length(), _expansion_regions));
2055 
2056   // Do later initialization work for concurrent refinement.
2057   _cg1r->init();
2058 
2059   // 6843694 - ensure that the maximum region index can fit
2060   // in the remembered set structures.
2061   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2062   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2063 
2064   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2065   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2066   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2067             "too many cards per region");
2068 
2069   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2070 
2071   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2072                                              heap_word_size(init_byte_size));
2073 
2074   _g1h = this;
2075 
2076   _in_cset_fast_test.initialize(_g1_reserved.start(), _g1_reserved.end(), HeapRegion::GrainBytes);
2077 
2078   // Create the ConcurrentMark data structure and thread.
2079   // (Must do this late, so that "max_regions" is defined.)
2080   _cm = new ConcurrentMark(this, heap_rs);
2081   if (_cm == NULL || !_cm->completed_initialization()) {
2082     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2083     return JNI_ENOMEM;
2084   }
2085   _cmThread = _cm->cmThread();
2086 
2087   // Initialize the from_card cache structure of HeapRegionRemSet.
2088   HeapRegionRemSet::init_heap(max_regions());
2089 
2090   // Now expand into the initial heap size.
2091   if (!expand(init_byte_size)) {
2092     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2093     return JNI_ENOMEM;
2094   }
2095 
2096   // Perform any initialization actions delegated to the policy.
2097   g1_policy()->init();
2098 
2099   _refine_cte_cl =
2100     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2101                                     g1_rem_set(),
2102                                     concurrent_g1_refine());
2103   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2104 
2105   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2106                                                SATB_Q_FL_lock,
2107                                                G1SATBProcessCompletedThreshold,
2108                                                Shared_SATB_Q_lock);
2109 
2110   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2111                                                 DirtyCardQ_FL_lock,
2112                                                 concurrent_g1_refine()->yellow_zone(),
2113                                                 concurrent_g1_refine()->red_zone(),
2114                                                 Shared_DirtyCardQ_lock);
2115 
2116   if (G1DeferredRSUpdate) {
2117     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2118                                       DirtyCardQ_FL_lock,
2119                                       -1, // never trigger processing
2120                                       -1, // no limit on length
2121                                       Shared_DirtyCardQ_lock,
2122                                       &JavaThread::dirty_card_queue_set());
2123   }
2124 
2125   // Initialize the card queue set used to hold cards containing
2126   // references into the collection set.
2127   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2128                                              DirtyCardQ_FL_lock,
2129                                              -1, // never trigger processing
2130                                              -1, // no limit on length
2131                                              Shared_DirtyCardQ_lock,
2132                                              &JavaThread::dirty_card_queue_set());
2133 
2134   // In case we're keeping closure specialization stats, initialize those
2135   // counts and that mechanism.
2136   SpecializationStats::clear();
2137 
2138   // Here we allocate the dummy full region that is required by the
2139   // G1AllocRegion class. If we don't pass an address in the reserved
2140   // space here, lots of asserts fire.
2141 
2142   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2143                                              _g1_reserved.start());
2144   // We'll re-use the same region whether the alloc region will
2145   // require BOT updates or not and, if it doesn't, then a non-young
2146   // region will complain that it cannot support allocations without
2147   // BOT updates. So we'll tag the dummy region as young to avoid that.
2148   dummy_region->set_young();
2149   // Make sure it's full.
2150   dummy_region->set_top(dummy_region->end());
2151   G1AllocRegion::setup(this, dummy_region);
2152 
2153   init_mutator_alloc_region();
2154 
2155   // Do create of the monitoring and management support so that
2156   // values in the heap have been properly initialized.
2157   _g1mm = new G1MonitoringSupport(this);
2158 
2159   G1StringDedup::initialize();
2160 
2161   return JNI_OK;
2162 }
2163 
2164 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2165   return HeapRegion::max_region_size();
2166 }
2167 
2168 void G1CollectedHeap::ref_processing_init() {
2169   // Reference processing in G1 currently works as follows:
2170   //
2171   // * There are two reference processor instances. One is
2172   //   used to record and process discovered references
2173   //   during concurrent marking; the other is used to
2174   //   record and process references during STW pauses
2175   //   (both full and incremental).
2176   // * Both ref processors need to 'span' the entire heap as
2177   //   the regions in the collection set may be dotted around.
2178   //
2179   // * For the concurrent marking ref processor:
2180   //   * Reference discovery is enabled at initial marking.
2181   //   * Reference discovery is disabled and the discovered
2182   //     references processed etc during remarking.
2183   //   * Reference discovery is MT (see below).
2184   //   * Reference discovery requires a barrier (see below).
2185   //   * Reference processing may or may not be MT
2186   //     (depending on the value of ParallelRefProcEnabled
2187   //     and ParallelGCThreads).
2188   //   * A full GC disables reference discovery by the CM
2189   //     ref processor and abandons any entries on it's
2190   //     discovered lists.
2191   //
2192   // * For the STW processor:
2193   //   * Non MT discovery is enabled at the start of a full GC.
2194   //   * Processing and enqueueing during a full GC is non-MT.
2195   //   * During a full GC, references are processed after marking.
2196   //
2197   //   * Discovery (may or may not be MT) is enabled at the start
2198   //     of an incremental evacuation pause.
2199   //   * References are processed near the end of a STW evacuation pause.
2200   //   * For both types of GC:
2201   //     * Discovery is atomic - i.e. not concurrent.
2202   //     * Reference discovery will not need a barrier.
2203 
2204   SharedHeap::ref_processing_init();
2205   MemRegion mr = reserved_region();
2206 
2207   // Concurrent Mark ref processor
2208   _ref_processor_cm =
2209     new ReferenceProcessor(mr,    // span
2210                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2211                                 // mt processing
2212                            (int) ParallelGCThreads,
2213                                 // degree of mt processing
2214                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2215                                 // mt discovery
2216                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2217                                 // degree of mt discovery
2218                            false,
2219                                 // Reference discovery is not atomic
2220                            &_is_alive_closure_cm,
2221                                 // is alive closure
2222                                 // (for efficiency/performance)
2223                            true);
2224                                 // Setting next fields of discovered
2225                                 // lists requires a barrier.
2226 
2227   // STW ref processor
2228   _ref_processor_stw =
2229     new ReferenceProcessor(mr,    // span
2230                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2231                                 // mt processing
2232                            MAX2((int)ParallelGCThreads, 1),
2233                                 // degree of mt processing
2234                            (ParallelGCThreads > 1),
2235                                 // mt discovery
2236                            MAX2((int)ParallelGCThreads, 1),
2237                                 // degree of mt discovery
2238                            true,
2239                                 // Reference discovery is atomic
2240                            &_is_alive_closure_stw,
2241                                 // is alive closure
2242                                 // (for efficiency/performance)
2243                            false);
2244                                 // Setting next fields of discovered
2245                                 // lists does not require a barrier.
2246 }
2247 
2248 size_t G1CollectedHeap::capacity() const {
2249   return _g1_committed.byte_size();
2250 }
2251 
2252 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2253   assert(!hr->continuesHumongous(), "pre-condition");
2254   hr->reset_gc_time_stamp();
2255   if (hr->startsHumongous()) {
2256     uint first_index = hr->hrs_index() + 1;
2257     uint last_index = hr->last_hc_index();
2258     for (uint i = first_index; i < last_index; i += 1) {
2259       HeapRegion* chr = region_at(i);
2260       assert(chr->continuesHumongous(), "sanity");
2261       chr->reset_gc_time_stamp();
2262     }
2263   }
2264 }
2265 
2266 #ifndef PRODUCT
2267 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2268 private:
2269   unsigned _gc_time_stamp;
2270   bool _failures;
2271 
2272 public:
2273   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2274     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2275 
2276   virtual bool doHeapRegion(HeapRegion* hr) {
2277     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2278     if (_gc_time_stamp != region_gc_time_stamp) {
2279       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2280                              "expected %d", HR_FORMAT_PARAMS(hr),
2281                              region_gc_time_stamp, _gc_time_stamp);
2282       _failures = true;
2283     }
2284     return false;
2285   }
2286 
2287   bool failures() { return _failures; }
2288 };
2289 
2290 void G1CollectedHeap::check_gc_time_stamps() {
2291   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2292   heap_region_iterate(&cl);
2293   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2294 }
2295 #endif // PRODUCT
2296 
2297 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2298                                                  DirtyCardQueue* into_cset_dcq,
2299                                                  bool concurrent,
2300                                                  uint worker_i) {
2301   // Clean cards in the hot card cache
2302   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2303   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2304 
2305   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2306   int n_completed_buffers = 0;
2307   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2308     n_completed_buffers++;
2309   }
2310   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2311   dcqs.clear_n_completed_buffers();
2312   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2313 }
2314 
2315 
2316 // Computes the sum of the storage used by the various regions.
2317 
2318 size_t G1CollectedHeap::used() const {
2319   assert(Heap_lock->owner() != NULL,
2320          "Should be owned on this thread's behalf.");
2321   size_t result = _summary_bytes_used;
2322   // Read only once in case it is set to NULL concurrently
2323   HeapRegion* hr = _mutator_alloc_region.get();
2324   if (hr != NULL)
2325     result += hr->used();
2326   return result;
2327 }
2328 
2329 size_t G1CollectedHeap::used_unlocked() const {
2330   size_t result = _summary_bytes_used;
2331   return result;
2332 }
2333 
2334 class SumUsedClosure: public HeapRegionClosure {
2335   size_t _used;
2336 public:
2337   SumUsedClosure() : _used(0) {}
2338   bool doHeapRegion(HeapRegion* r) {
2339     if (!r->continuesHumongous()) {
2340       _used += r->used();
2341     }
2342     return false;
2343   }
2344   size_t result() { return _used; }
2345 };
2346 
2347 size_t G1CollectedHeap::recalculate_used() const {
2348   double recalculate_used_start = os::elapsedTime();
2349 
2350   SumUsedClosure blk;
2351   heap_region_iterate(&blk);
2352 
2353   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2354   return blk.result();
2355 }
2356 
2357 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2358   switch (cause) {
2359     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2360     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2361     case GCCause::_g1_humongous_allocation: return true;
2362     default:                                return false;
2363   }
2364 }
2365 
2366 #ifndef PRODUCT
2367 void G1CollectedHeap::allocate_dummy_regions() {
2368   // Let's fill up most of the region
2369   size_t word_size = HeapRegion::GrainWords - 1024;
2370   // And as a result the region we'll allocate will be humongous.
2371   guarantee(isHumongous(word_size), "sanity");
2372 
2373   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2374     // Let's use the existing mechanism for the allocation
2375     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2376     if (dummy_obj != NULL) {
2377       MemRegion mr(dummy_obj, word_size);
2378       CollectedHeap::fill_with_object(mr);
2379     } else {
2380       // If we can't allocate once, we probably cannot allocate
2381       // again. Let's get out of the loop.
2382       break;
2383     }
2384   }
2385 }
2386 #endif // !PRODUCT
2387 
2388 void G1CollectedHeap::increment_old_marking_cycles_started() {
2389   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2390     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2391     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2392     _old_marking_cycles_started, _old_marking_cycles_completed));
2393 
2394   _old_marking_cycles_started++;
2395 }
2396 
2397 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2398   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2399 
2400   // We assume that if concurrent == true, then the caller is a
2401   // concurrent thread that was joined the Suspendible Thread
2402   // Set. If there's ever a cheap way to check this, we should add an
2403   // assert here.
2404 
2405   // Given that this method is called at the end of a Full GC or of a
2406   // concurrent cycle, and those can be nested (i.e., a Full GC can
2407   // interrupt a concurrent cycle), the number of full collections
2408   // completed should be either one (in the case where there was no
2409   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2410   // behind the number of full collections started.
2411 
2412   // This is the case for the inner caller, i.e. a Full GC.
2413   assert(concurrent ||
2414          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2415          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2416          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2417                  "is inconsistent with _old_marking_cycles_completed = %u",
2418                  _old_marking_cycles_started, _old_marking_cycles_completed));
2419 
2420   // This is the case for the outer caller, i.e. the concurrent cycle.
2421   assert(!concurrent ||
2422          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2423          err_msg("for outer caller (concurrent cycle): "
2424                  "_old_marking_cycles_started = %u "
2425                  "is inconsistent with _old_marking_cycles_completed = %u",
2426                  _old_marking_cycles_started, _old_marking_cycles_completed));
2427 
2428   _old_marking_cycles_completed += 1;
2429 
2430   // We need to clear the "in_progress" flag in the CM thread before
2431   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2432   // is set) so that if a waiter requests another System.gc() it doesn't
2433   // incorrectly see that a marking cycle is still in progress.
2434   if (concurrent) {
2435     _cmThread->clear_in_progress();
2436   }
2437 
2438   // This notify_all() will ensure that a thread that called
2439   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2440   // and it's waiting for a full GC to finish will be woken up. It is
2441   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2442   FullGCCount_lock->notify_all();
2443 }
2444 
2445 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2446   _concurrent_cycle_started = true;
2447   _gc_timer_cm->register_gc_start(start_time);
2448 
2449   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2450   trace_heap_before_gc(_gc_tracer_cm);
2451 }
2452 
2453 void G1CollectedHeap::register_concurrent_cycle_end() {
2454   if (_concurrent_cycle_started) {
2455     if (_cm->has_aborted()) {
2456       _gc_tracer_cm->report_concurrent_mode_failure();
2457     }
2458 
2459     _gc_timer_cm->register_gc_end();
2460     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2461 
2462     _concurrent_cycle_started = false;
2463   }
2464 }
2465 
2466 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2467   if (_concurrent_cycle_started) {
2468     trace_heap_after_gc(_gc_tracer_cm);
2469   }
2470 }
2471 
2472 G1YCType G1CollectedHeap::yc_type() {
2473   bool is_young = g1_policy()->gcs_are_young();
2474   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2475   bool is_during_mark = mark_in_progress();
2476 
2477   if (is_initial_mark) {
2478     return InitialMark;
2479   } else if (is_during_mark) {
2480     return DuringMark;
2481   } else if (is_young) {
2482     return Normal;
2483   } else {
2484     return Mixed;
2485   }
2486 }
2487 
2488 void G1CollectedHeap::collect(GCCause::Cause cause) {
2489   assert_heap_not_locked();
2490 
2491   unsigned int gc_count_before;
2492   unsigned int old_marking_count_before;
2493   bool retry_gc;
2494 
2495   do {
2496     retry_gc = false;
2497 
2498     {
2499       MutexLocker ml(Heap_lock);
2500 
2501       // Read the GC count while holding the Heap_lock
2502       gc_count_before = total_collections();
2503       old_marking_count_before = _old_marking_cycles_started;
2504     }
2505 
2506     if (should_do_concurrent_full_gc(cause)) {
2507       // Schedule an initial-mark evacuation pause that will start a
2508       // concurrent cycle. We're setting word_size to 0 which means that
2509       // we are not requesting a post-GC allocation.
2510       VM_G1IncCollectionPause op(gc_count_before,
2511                                  0,     /* word_size */
2512                                  true,  /* should_initiate_conc_mark */
2513                                  g1_policy()->max_pause_time_ms(),
2514                                  cause);
2515 
2516       VMThread::execute(&op);
2517       if (!op.pause_succeeded()) {
2518         if (old_marking_count_before == _old_marking_cycles_started) {
2519           retry_gc = op.should_retry_gc();
2520         } else {
2521           // A Full GC happened while we were trying to schedule the
2522           // initial-mark GC. No point in starting a new cycle given
2523           // that the whole heap was collected anyway.
2524         }
2525 
2526         if (retry_gc) {
2527           if (GC_locker::is_active_and_needs_gc()) {
2528             GC_locker::stall_until_clear();
2529           }
2530         }
2531       }
2532     } else {
2533       if (cause == GCCause::_gc_locker
2534           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2535 
2536         // Schedule a standard evacuation pause. We're setting word_size
2537         // to 0 which means that we are not requesting a post-GC allocation.
2538         VM_G1IncCollectionPause op(gc_count_before,
2539                                    0,     /* word_size */
2540                                    false, /* should_initiate_conc_mark */
2541                                    g1_policy()->max_pause_time_ms(),
2542                                    cause);
2543         VMThread::execute(&op);
2544       } else {
2545         // Schedule a Full GC.
2546         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2547         VMThread::execute(&op);
2548       }
2549     }
2550   } while (retry_gc);
2551 }
2552 
2553 bool G1CollectedHeap::is_in(const void* p) const {
2554   if (_g1_committed.contains(p)) {
2555     // Given that we know that p is in the committed space,
2556     // heap_region_containing_raw() should successfully
2557     // return the containing region.
2558     HeapRegion* hr = heap_region_containing_raw(p);
2559     return hr->is_in(p);
2560   } else {
2561     return false;
2562   }
2563 }
2564 
2565 // Iteration functions.
2566 
2567 // Iterates an OopClosure over all ref-containing fields of objects
2568 // within a HeapRegion.
2569 
2570 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2571   MemRegion _mr;
2572   ExtendedOopClosure* _cl;
2573 public:
2574   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2575     : _mr(mr), _cl(cl) {}
2576   bool doHeapRegion(HeapRegion* r) {
2577     if (!r->continuesHumongous()) {
2578       r->oop_iterate(_cl);
2579     }
2580     return false;
2581   }
2582 };
2583 
2584 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2585   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2586   heap_region_iterate(&blk);
2587 }
2588 
2589 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2590   IterateOopClosureRegionClosure blk(mr, cl);
2591   heap_region_iterate(&blk);
2592 }
2593 
2594 // Iterates an ObjectClosure over all objects within a HeapRegion.
2595 
2596 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2597   ObjectClosure* _cl;
2598 public:
2599   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2600   bool doHeapRegion(HeapRegion* r) {
2601     if (! r->continuesHumongous()) {
2602       r->object_iterate(_cl);
2603     }
2604     return false;
2605   }
2606 };
2607 
2608 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2609   IterateObjectClosureRegionClosure blk(cl);
2610   heap_region_iterate(&blk);
2611 }
2612 
2613 // Calls a SpaceClosure on a HeapRegion.
2614 
2615 class SpaceClosureRegionClosure: public HeapRegionClosure {
2616   SpaceClosure* _cl;
2617 public:
2618   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2619   bool doHeapRegion(HeapRegion* r) {
2620     _cl->do_space(r);
2621     return false;
2622   }
2623 };
2624 
2625 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2626   SpaceClosureRegionClosure blk(cl);
2627   heap_region_iterate(&blk);
2628 }
2629 
2630 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2631   _hrs.iterate(cl);
2632 }
2633 
2634 void
2635 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2636                                                  uint worker_id,
2637                                                  uint no_of_par_workers,
2638                                                  jint claim_value) {
2639   const uint regions = n_regions();
2640   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2641                              no_of_par_workers :
2642                              1);
2643   assert(UseDynamicNumberOfGCThreads ||
2644          no_of_par_workers == workers()->total_workers(),
2645          "Non dynamic should use fixed number of workers");
2646   // try to spread out the starting points of the workers
2647   const HeapRegion* start_hr =
2648                         start_region_for_worker(worker_id, no_of_par_workers);
2649   const uint start_index = start_hr->hrs_index();
2650 
2651   // each worker will actually look at all regions
2652   for (uint count = 0; count < regions; ++count) {
2653     const uint index = (start_index + count) % regions;
2654     assert(0 <= index && index < regions, "sanity");
2655     HeapRegion* r = region_at(index);
2656     // we'll ignore "continues humongous" regions (we'll process them
2657     // when we come across their corresponding "start humongous"
2658     // region) and regions already claimed
2659     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2660       continue;
2661     }
2662     // OK, try to claim it
2663     if (r->claimHeapRegion(claim_value)) {
2664       // success!
2665       assert(!r->continuesHumongous(), "sanity");
2666       if (r->startsHumongous()) {
2667         // If the region is "starts humongous" we'll iterate over its
2668         // "continues humongous" first; in fact we'll do them
2669         // first. The order is important. In on case, calling the
2670         // closure on the "starts humongous" region might de-allocate
2671         // and clear all its "continues humongous" regions and, as a
2672         // result, we might end up processing them twice. So, we'll do
2673         // them first (notice: most closures will ignore them anyway) and
2674         // then we'll do the "starts humongous" region.
2675         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2676           HeapRegion* chr = region_at(ch_index);
2677 
2678           // if the region has already been claimed or it's not
2679           // "continues humongous" we're done
2680           if (chr->claim_value() == claim_value ||
2681               !chr->continuesHumongous()) {
2682             break;
2683           }
2684 
2685           // No one should have claimed it directly. We can given
2686           // that we claimed its "starts humongous" region.
2687           assert(chr->claim_value() != claim_value, "sanity");
2688           assert(chr->humongous_start_region() == r, "sanity");
2689 
2690           if (chr->claimHeapRegion(claim_value)) {
2691             // we should always be able to claim it; no one else should
2692             // be trying to claim this region
2693 
2694             bool res2 = cl->doHeapRegion(chr);
2695             assert(!res2, "Should not abort");
2696 
2697             // Right now, this holds (i.e., no closure that actually
2698             // does something with "continues humongous" regions
2699             // clears them). We might have to weaken it in the future,
2700             // but let's leave these two asserts here for extra safety.
2701             assert(chr->continuesHumongous(), "should still be the case");
2702             assert(chr->humongous_start_region() == r, "sanity");
2703           } else {
2704             guarantee(false, "we should not reach here");
2705           }
2706         }
2707       }
2708 
2709       assert(!r->continuesHumongous(), "sanity");
2710       bool res = cl->doHeapRegion(r);
2711       assert(!res, "Should not abort");
2712     }
2713   }
2714 }
2715 
2716 class ResetClaimValuesClosure: public HeapRegionClosure {
2717 public:
2718   bool doHeapRegion(HeapRegion* r) {
2719     r->set_claim_value(HeapRegion::InitialClaimValue);
2720     return false;
2721   }
2722 };
2723 
2724 void G1CollectedHeap::reset_heap_region_claim_values() {
2725   ResetClaimValuesClosure blk;
2726   heap_region_iterate(&blk);
2727 }
2728 
2729 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2730   ResetClaimValuesClosure blk;
2731   collection_set_iterate(&blk);
2732 }
2733 
2734 #ifdef ASSERT
2735 // This checks whether all regions in the heap have the correct claim
2736 // value. I also piggy-backed on this a check to ensure that the
2737 // humongous_start_region() information on "continues humongous"
2738 // regions is correct.
2739 
2740 class CheckClaimValuesClosure : public HeapRegionClosure {
2741 private:
2742   jint _claim_value;
2743   uint _failures;
2744   HeapRegion* _sh_region;
2745 
2746 public:
2747   CheckClaimValuesClosure(jint claim_value) :
2748     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2749   bool doHeapRegion(HeapRegion* r) {
2750     if (r->claim_value() != _claim_value) {
2751       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2752                              "claim value = %d, should be %d",
2753                              HR_FORMAT_PARAMS(r),
2754                              r->claim_value(), _claim_value);
2755       ++_failures;
2756     }
2757     if (!r->isHumongous()) {
2758       _sh_region = NULL;
2759     } else if (r->startsHumongous()) {
2760       _sh_region = r;
2761     } else if (r->continuesHumongous()) {
2762       if (r->humongous_start_region() != _sh_region) {
2763         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2764                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2765                                HR_FORMAT_PARAMS(r),
2766                                r->humongous_start_region(),
2767                                _sh_region);
2768         ++_failures;
2769       }
2770     }
2771     return false;
2772   }
2773   uint failures() { return _failures; }
2774 };
2775 
2776 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2777   CheckClaimValuesClosure cl(claim_value);
2778   heap_region_iterate(&cl);
2779   return cl.failures() == 0;
2780 }
2781 
2782 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2783 private:
2784   jint _claim_value;
2785   uint _failures;
2786 
2787 public:
2788   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2789     _claim_value(claim_value), _failures(0) { }
2790 
2791   uint failures() { return _failures; }
2792 
2793   bool doHeapRegion(HeapRegion* hr) {
2794     assert(hr->in_collection_set(), "how?");
2795     assert(!hr->isHumongous(), "H-region in CSet");
2796     if (hr->claim_value() != _claim_value) {
2797       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2798                              "claim value = %d, should be %d",
2799                              HR_FORMAT_PARAMS(hr),
2800                              hr->claim_value(), _claim_value);
2801       _failures += 1;
2802     }
2803     return false;
2804   }
2805 };
2806 
2807 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2808   CheckClaimValuesInCSetHRClosure cl(claim_value);
2809   collection_set_iterate(&cl);
2810   return cl.failures() == 0;
2811 }
2812 #endif // ASSERT
2813 
2814 // Clear the cached CSet starting regions and (more importantly)
2815 // the time stamps. Called when we reset the GC time stamp.
2816 void G1CollectedHeap::clear_cset_start_regions() {
2817   assert(_worker_cset_start_region != NULL, "sanity");
2818   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2819 
2820   int n_queues = MAX2((int)ParallelGCThreads, 1);
2821   for (int i = 0; i < n_queues; i++) {
2822     _worker_cset_start_region[i] = NULL;
2823     _worker_cset_start_region_time_stamp[i] = 0;
2824   }
2825 }
2826 
2827 // Given the id of a worker, obtain or calculate a suitable
2828 // starting region for iterating over the current collection set.
2829 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2830   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2831 
2832   HeapRegion* result = NULL;
2833   unsigned gc_time_stamp = get_gc_time_stamp();
2834 
2835   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2836     // Cached starting region for current worker was set
2837     // during the current pause - so it's valid.
2838     // Note: the cached starting heap region may be NULL
2839     // (when the collection set is empty).
2840     result = _worker_cset_start_region[worker_i];
2841     assert(result == NULL || result->in_collection_set(), "sanity");
2842     return result;
2843   }
2844 
2845   // The cached entry was not valid so let's calculate
2846   // a suitable starting heap region for this worker.
2847 
2848   // We want the parallel threads to start their collection
2849   // set iteration at different collection set regions to
2850   // avoid contention.
2851   // If we have:
2852   //          n collection set regions
2853   //          p threads
2854   // Then thread t will start at region floor ((t * n) / p)
2855 
2856   result = g1_policy()->collection_set();
2857   if (G1CollectedHeap::use_parallel_gc_threads()) {
2858     uint cs_size = g1_policy()->cset_region_length();
2859     uint active_workers = workers()->active_workers();
2860     assert(UseDynamicNumberOfGCThreads ||
2861              active_workers == workers()->total_workers(),
2862              "Unless dynamic should use total workers");
2863 
2864     uint end_ind   = (cs_size * worker_i) / active_workers;
2865     uint start_ind = 0;
2866 
2867     if (worker_i > 0 &&
2868         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2869       // Previous workers starting region is valid
2870       // so let's iterate from there
2871       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2872       result = _worker_cset_start_region[worker_i - 1];
2873     }
2874 
2875     for (uint i = start_ind; i < end_ind; i++) {
2876       result = result->next_in_collection_set();
2877     }
2878   }
2879 
2880   // Note: the calculated starting heap region may be NULL
2881   // (when the collection set is empty).
2882   assert(result == NULL || result->in_collection_set(), "sanity");
2883   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2884          "should be updated only once per pause");
2885   _worker_cset_start_region[worker_i] = result;
2886   OrderAccess::storestore();
2887   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2888   return result;
2889 }
2890 
2891 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2892                                                      uint no_of_par_workers) {
2893   uint worker_num =
2894            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2895   assert(UseDynamicNumberOfGCThreads ||
2896          no_of_par_workers == workers()->total_workers(),
2897          "Non dynamic should use fixed number of workers");
2898   const uint start_index = n_regions() * worker_i / worker_num;
2899   return region_at(start_index);
2900 }
2901 
2902 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2903   HeapRegion* r = g1_policy()->collection_set();
2904   while (r != NULL) {
2905     HeapRegion* next = r->next_in_collection_set();
2906     if (cl->doHeapRegion(r)) {
2907       cl->incomplete();
2908       return;
2909     }
2910     r = next;
2911   }
2912 }
2913 
2914 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2915                                                   HeapRegionClosure *cl) {
2916   if (r == NULL) {
2917     // The CSet is empty so there's nothing to do.
2918     return;
2919   }
2920 
2921   assert(r->in_collection_set(),
2922          "Start region must be a member of the collection set.");
2923   HeapRegion* cur = r;
2924   while (cur != NULL) {
2925     HeapRegion* next = cur->next_in_collection_set();
2926     if (cl->doHeapRegion(cur) && false) {
2927       cl->incomplete();
2928       return;
2929     }
2930     cur = next;
2931   }
2932   cur = g1_policy()->collection_set();
2933   while (cur != r) {
2934     HeapRegion* next = cur->next_in_collection_set();
2935     if (cl->doHeapRegion(cur) && false) {
2936       cl->incomplete();
2937       return;
2938     }
2939     cur = next;
2940   }
2941 }
2942 
2943 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2944   return n_regions() > 0 ? region_at(0) : NULL;
2945 }
2946 
2947 
2948 Space* G1CollectedHeap::space_containing(const void* addr) const {
2949   Space* res = heap_region_containing(addr);
2950   return res;
2951 }
2952 
2953 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2954   Space* sp = space_containing(addr);
2955   if (sp != NULL) {
2956     return sp->block_start(addr);
2957   }
2958   return NULL;
2959 }
2960 
2961 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2962   Space* sp = space_containing(addr);
2963   assert(sp != NULL, "block_size of address outside of heap");
2964   return sp->block_size(addr);
2965 }
2966 
2967 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2968   Space* sp = space_containing(addr);
2969   return sp->block_is_obj(addr);
2970 }
2971 
2972 bool G1CollectedHeap::supports_tlab_allocation() const {
2973   return true;
2974 }
2975 
2976 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2977   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2978 }
2979 
2980 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2981   return young_list()->eden_used_bytes();
2982 }
2983 
2984 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2985 // must be smaller than the humongous object limit.
2986 size_t G1CollectedHeap::max_tlab_size() const {
2987   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2988 }
2989 
2990 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2991   // Return the remaining space in the cur alloc region, but not less than
2992   // the min TLAB size.
2993 
2994   // Also, this value can be at most the humongous object threshold,
2995   // since we can't allow tlabs to grow big enough to accommodate
2996   // humongous objects.
2997 
2998   HeapRegion* hr = _mutator_alloc_region.get();
2999   size_t max_tlab = max_tlab_size() * wordSize;
3000   if (hr == NULL) {
3001     return max_tlab;
3002   } else {
3003     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
3004   }
3005 }
3006 
3007 size_t G1CollectedHeap::max_capacity() const {
3008   return _g1_reserved.byte_size();
3009 }
3010 
3011 jlong G1CollectedHeap::millis_since_last_gc() {
3012   // assert(false, "NYI");
3013   return 0;
3014 }
3015 
3016 void G1CollectedHeap::prepare_for_verify() {
3017   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3018     ensure_parsability(false);
3019   }
3020   g1_rem_set()->prepare_for_verify();
3021 }
3022 
3023 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3024                                               VerifyOption vo) {
3025   switch (vo) {
3026   case VerifyOption_G1UsePrevMarking:
3027     return hr->obj_allocated_since_prev_marking(obj);
3028   case VerifyOption_G1UseNextMarking:
3029     return hr->obj_allocated_since_next_marking(obj);
3030   case VerifyOption_G1UseMarkWord:
3031     return false;
3032   default:
3033     ShouldNotReachHere();
3034   }
3035   return false; // keep some compilers happy
3036 }
3037 
3038 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3039   switch (vo) {
3040   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3041   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3042   case VerifyOption_G1UseMarkWord:    return NULL;
3043   default:                            ShouldNotReachHere();
3044   }
3045   return NULL; // keep some compilers happy
3046 }
3047 
3048 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3049   switch (vo) {
3050   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3051   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3052   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3053   default:                            ShouldNotReachHere();
3054   }
3055   return false; // keep some compilers happy
3056 }
3057 
3058 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3059   switch (vo) {
3060   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3061   case VerifyOption_G1UseNextMarking: return "NTAMS";
3062   case VerifyOption_G1UseMarkWord:    return "NONE";
3063   default:                            ShouldNotReachHere();
3064   }
3065   return NULL; // keep some compilers happy
3066 }
3067 
3068 class VerifyRootsClosure: public OopClosure {
3069 private:
3070   G1CollectedHeap* _g1h;
3071   VerifyOption     _vo;
3072   bool             _failures;
3073 public:
3074   // _vo == UsePrevMarking -> use "prev" marking information,
3075   // _vo == UseNextMarking -> use "next" marking information,
3076   // _vo == UseMarkWord    -> use mark word from object header.
3077   VerifyRootsClosure(VerifyOption vo) :
3078     _g1h(G1CollectedHeap::heap()),
3079     _vo(vo),
3080     _failures(false) { }
3081 
3082   bool failures() { return _failures; }
3083 
3084   template <class T> void do_oop_nv(T* p) {
3085     T heap_oop = oopDesc::load_heap_oop(p);
3086     if (!oopDesc::is_null(heap_oop)) {
3087       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3088       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3089         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3090                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3091         if (_vo == VerifyOption_G1UseMarkWord) {
3092           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3093         }
3094         obj->print_on(gclog_or_tty);
3095         _failures = true;
3096       }
3097     }
3098   }
3099 
3100   void do_oop(oop* p)       { do_oop_nv(p); }
3101   void do_oop(narrowOop* p) { do_oop_nv(p); }
3102 };
3103 
3104 class G1VerifyCodeRootOopClosure: public OopClosure {
3105   G1CollectedHeap* _g1h;
3106   OopClosure* _root_cl;
3107   nmethod* _nm;
3108   VerifyOption _vo;
3109   bool _failures;
3110 
3111   template <class T> void do_oop_work(T* p) {
3112     // First verify that this root is live
3113     _root_cl->do_oop(p);
3114 
3115     if (!G1VerifyHeapRegionCodeRoots) {
3116       // We're not verifying the code roots attached to heap region.
3117       return;
3118     }
3119 
3120     // Don't check the code roots during marking verification in a full GC
3121     if (_vo == VerifyOption_G1UseMarkWord) {
3122       return;
3123     }
3124 
3125     // Now verify that the current nmethod (which contains p) is
3126     // in the code root list of the heap region containing the
3127     // object referenced by p.
3128 
3129     T heap_oop = oopDesc::load_heap_oop(p);
3130     if (!oopDesc::is_null(heap_oop)) {
3131       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3132 
3133       // Now fetch the region containing the object
3134       HeapRegion* hr = _g1h->heap_region_containing(obj);
3135       HeapRegionRemSet* hrrs = hr->rem_set();
3136       // Verify that the strong code root list for this region
3137       // contains the nmethod
3138       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3139         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3140                               "from nmethod "PTR_FORMAT" not in strong "
3141                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3142                               p, _nm, hr->bottom(), hr->end());
3143         _failures = true;
3144       }
3145     }
3146   }
3147 
3148 public:
3149   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3150     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3151 
3152   void do_oop(oop* p) { do_oop_work(p); }
3153   void do_oop(narrowOop* p) { do_oop_work(p); }
3154 
3155   void set_nmethod(nmethod* nm) { _nm = nm; }
3156   bool failures() { return _failures; }
3157 };
3158 
3159 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3160   G1VerifyCodeRootOopClosure* _oop_cl;
3161 
3162 public:
3163   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3164     _oop_cl(oop_cl) {}
3165 
3166   void do_code_blob(CodeBlob* cb) {
3167     nmethod* nm = cb->as_nmethod_or_null();
3168     if (nm != NULL) {
3169       _oop_cl->set_nmethod(nm);
3170       nm->oops_do(_oop_cl);
3171     }
3172   }
3173 };
3174 
3175 class YoungRefCounterClosure : public OopClosure {
3176   G1CollectedHeap* _g1h;
3177   int              _count;
3178  public:
3179   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3180   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3181   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3182 
3183   int count() { return _count; }
3184   void reset_count() { _count = 0; };
3185 };
3186 
3187 class VerifyKlassClosure: public KlassClosure {
3188   YoungRefCounterClosure _young_ref_counter_closure;
3189   OopClosure *_oop_closure;
3190  public:
3191   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3192   void do_klass(Klass* k) {
3193     k->oops_do(_oop_closure);
3194 
3195     _young_ref_counter_closure.reset_count();
3196     k->oops_do(&_young_ref_counter_closure);
3197     if (_young_ref_counter_closure.count() > 0) {
3198       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3199     }
3200   }
3201 };
3202 
3203 class VerifyLivenessOopClosure: public OopClosure {
3204   G1CollectedHeap* _g1h;
3205   VerifyOption _vo;
3206 public:
3207   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3208     _g1h(g1h), _vo(vo)
3209   { }
3210   void do_oop(narrowOop *p) { do_oop_work(p); }
3211   void do_oop(      oop *p) { do_oop_work(p); }
3212 
3213   template <class T> void do_oop_work(T *p) {
3214     oop obj = oopDesc::load_decode_heap_oop(p);
3215     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3216               "Dead object referenced by a not dead object");
3217   }
3218 };
3219 
3220 class VerifyObjsInRegionClosure: public ObjectClosure {
3221 private:
3222   G1CollectedHeap* _g1h;
3223   size_t _live_bytes;
3224   HeapRegion *_hr;
3225   VerifyOption _vo;
3226 public:
3227   // _vo == UsePrevMarking -> use "prev" marking information,
3228   // _vo == UseNextMarking -> use "next" marking information,
3229   // _vo == UseMarkWord    -> use mark word from object header.
3230   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3231     : _live_bytes(0), _hr(hr), _vo(vo) {
3232     _g1h = G1CollectedHeap::heap();
3233   }
3234   void do_object(oop o) {
3235     VerifyLivenessOopClosure isLive(_g1h, _vo);
3236     assert(o != NULL, "Huh?");
3237     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3238       // If the object is alive according to the mark word,
3239       // then verify that the marking information agrees.
3240       // Note we can't verify the contra-positive of the
3241       // above: if the object is dead (according to the mark
3242       // word), it may not be marked, or may have been marked
3243       // but has since became dead, or may have been allocated
3244       // since the last marking.
3245       if (_vo == VerifyOption_G1UseMarkWord) {
3246         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3247       }
3248 
3249       o->oop_iterate_no_header(&isLive);
3250       if (!_hr->obj_allocated_since_prev_marking(o)) {
3251         size_t obj_size = o->size();    // Make sure we don't overflow
3252         _live_bytes += (obj_size * HeapWordSize);
3253       }
3254     }
3255   }
3256   size_t live_bytes() { return _live_bytes; }
3257 };
3258 
3259 class PrintObjsInRegionClosure : public ObjectClosure {
3260   HeapRegion *_hr;
3261   G1CollectedHeap *_g1;
3262 public:
3263   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3264     _g1 = G1CollectedHeap::heap();
3265   };
3266 
3267   void do_object(oop o) {
3268     if (o != NULL) {
3269       HeapWord *start = (HeapWord *) o;
3270       size_t word_sz = o->size();
3271       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3272                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3273                           (void*) o, word_sz,
3274                           _g1->isMarkedPrev(o),
3275                           _g1->isMarkedNext(o),
3276                           _hr->obj_allocated_since_prev_marking(o));
3277       HeapWord *end = start + word_sz;
3278       HeapWord *cur;
3279       int *val;
3280       for (cur = start; cur < end; cur++) {
3281         val = (int *) cur;
3282         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
3283       }
3284     }
3285   }
3286 };
3287 
3288 class VerifyRegionClosure: public HeapRegionClosure {
3289 private:
3290   bool             _par;
3291   VerifyOption     _vo;
3292   bool             _failures;
3293 public:
3294   // _vo == UsePrevMarking -> use "prev" marking information,
3295   // _vo == UseNextMarking -> use "next" marking information,
3296   // _vo == UseMarkWord    -> use mark word from object header.
3297   VerifyRegionClosure(bool par, VerifyOption vo)
3298     : _par(par),
3299       _vo(vo),
3300       _failures(false) {}
3301 
3302   bool failures() {
3303     return _failures;
3304   }
3305 
3306   bool doHeapRegion(HeapRegion* r) {
3307     if (!r->continuesHumongous()) {
3308       bool failures = false;
3309       r->verify(_vo, &failures);
3310       if (failures) {
3311         _failures = true;
3312       } else {
3313         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3314         r->object_iterate(&not_dead_yet_cl);
3315         if (_vo != VerifyOption_G1UseNextMarking) {
3316           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3317             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3318                                    "max_live_bytes "SIZE_FORMAT" "
3319                                    "< calculated "SIZE_FORMAT,
3320                                    r->bottom(), r->end(),
3321                                    r->max_live_bytes(),
3322                                  not_dead_yet_cl.live_bytes());
3323             _failures = true;
3324           }
3325         } else {
3326           // When vo == UseNextMarking we cannot currently do a sanity
3327           // check on the live bytes as the calculation has not been
3328           // finalized yet.
3329         }
3330       }
3331     }
3332     return false; // stop the region iteration if we hit a failure
3333   }
3334 };
3335 
3336 // This is the task used for parallel verification of the heap regions
3337 
3338 class G1ParVerifyTask: public AbstractGangTask {
3339 private:
3340   G1CollectedHeap* _g1h;
3341   VerifyOption     _vo;
3342   bool             _failures;
3343 
3344 public:
3345   // _vo == UsePrevMarking -> use "prev" marking information,
3346   // _vo == UseNextMarking -> use "next" marking information,
3347   // _vo == UseMarkWord    -> use mark word from object header.
3348   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3349     AbstractGangTask("Parallel verify task"),
3350     _g1h(g1h),
3351     _vo(vo),
3352     _failures(false) { }
3353 
3354   bool failures() {
3355     return _failures;
3356   }
3357 
3358   void work(uint worker_id) {
3359     HandleMark hm;
3360     VerifyRegionClosure blk(true, _vo);
3361     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3362                                           _g1h->workers()->active_workers(),
3363                                           HeapRegion::ParVerifyClaimValue);
3364     if (blk.failures()) {
3365       _failures = true;
3366     }
3367   }
3368 };
3369 
3370 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3371   if (SafepointSynchronize::is_at_safepoint()) {
3372     assert(Thread::current()->is_VM_thread(),
3373            "Expected to be executed serially by the VM thread at this point");
3374 
3375     if (!silent) { gclog_or_tty->print("Roots "); }
3376     VerifyRootsClosure rootsCl(vo);
3377     VerifyKlassClosure klassCl(this, &rootsCl);
3378 
3379     // We apply the relevant closures to all the oops in the
3380     // system dictionary, class loader data graph and the string table.
3381     // Don't verify the code cache here, since it's verified below.
3382     const int so = SO_AllClasses | SO_Strings;
3383 
3384     // Need cleared claim bits for the strong roots processing
3385     ClassLoaderDataGraph::clear_claimed_marks();
3386 
3387     process_strong_roots(true,      // activate StrongRootsScope
3388                          ScanningOption(so),  // roots scanning options
3389                          &rootsCl,
3390                          &klassCl
3391                          );
3392 
3393     // Verify the nmethods in the code cache.
3394     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3395     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3396     CodeCache::blobs_do(&blobsCl);
3397 
3398     bool failures = rootsCl.failures() || codeRootsCl.failures();
3399 
3400     if (vo != VerifyOption_G1UseMarkWord) {
3401       // If we're verifying during a full GC then the region sets
3402       // will have been torn down at the start of the GC. Therefore
3403       // verifying the region sets will fail. So we only verify
3404       // the region sets when not in a full GC.
3405       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3406       verify_region_sets();
3407     }
3408 
3409     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3410     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3411       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3412              "sanity check");
3413 
3414       G1ParVerifyTask task(this, vo);
3415       assert(UseDynamicNumberOfGCThreads ||
3416         workers()->active_workers() == workers()->total_workers(),
3417         "If not dynamic should be using all the workers");
3418       int n_workers = workers()->active_workers();
3419       set_par_threads(n_workers);
3420       workers()->run_task(&task);
3421       set_par_threads(0);
3422       if (task.failures()) {
3423         failures = true;
3424       }
3425 
3426       // Checks that the expected amount of parallel work was done.
3427       // The implication is that n_workers is > 0.
3428       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3429              "sanity check");
3430 
3431       reset_heap_region_claim_values();
3432 
3433       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3434              "sanity check");
3435     } else {
3436       VerifyRegionClosure blk(false, vo);
3437       heap_region_iterate(&blk);
3438       if (blk.failures()) {
3439         failures = true;
3440       }
3441     }
3442     if (!silent) gclog_or_tty->print("RemSet ");
3443     rem_set()->verify();
3444 
3445     if (G1StringDedup::is_enabled()) {
3446       if (!silent) gclog_or_tty->print("StrDedup ");
3447       G1StringDedup::verify();
3448     }
3449 
3450     if (failures) {
3451       gclog_or_tty->print_cr("Heap:");
3452       // It helps to have the per-region information in the output to
3453       // help us track down what went wrong. This is why we call
3454       // print_extended_on() instead of print_on().
3455       print_extended_on(gclog_or_tty);
3456       gclog_or_tty->print_cr("");
3457 #ifndef PRODUCT
3458       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3459         concurrent_mark()->print_reachable("at-verification-failure",
3460                                            vo, false /* all */);
3461       }
3462 #endif
3463       gclog_or_tty->flush();
3464     }
3465     guarantee(!failures, "there should not have been any failures");
3466   } else {
3467     if (!silent) {
3468       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3469       if (G1StringDedup::is_enabled()) {
3470         gclog_or_tty->print(", StrDedup");
3471       }
3472       gclog_or_tty->print(") ");
3473     }
3474   }
3475 }
3476 
3477 void G1CollectedHeap::verify(bool silent) {
3478   verify(silent, VerifyOption_G1UsePrevMarking);
3479 }
3480 
3481 double G1CollectedHeap::verify(bool guard, const char* msg) {
3482   double verify_time_ms = 0.0;
3483 
3484   if (guard && total_collections() >= VerifyGCStartAt) {
3485     double verify_start = os::elapsedTime();
3486     HandleMark hm;  // Discard invalid handles created during verification
3487     prepare_for_verify();
3488     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3489     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3490   }
3491 
3492   return verify_time_ms;
3493 }
3494 
3495 void G1CollectedHeap::verify_before_gc() {
3496   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3497   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3498 }
3499 
3500 void G1CollectedHeap::verify_after_gc() {
3501   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3502   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3503 }
3504 
3505 class PrintRegionClosure: public HeapRegionClosure {
3506   outputStream* _st;
3507 public:
3508   PrintRegionClosure(outputStream* st) : _st(st) {}
3509   bool doHeapRegion(HeapRegion* r) {
3510     r->print_on(_st);
3511     return false;
3512   }
3513 };
3514 
3515 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3516                                        const HeapRegion* hr,
3517                                        const VerifyOption vo) const {
3518   switch (vo) {
3519   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3520   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3521   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3522   default:                            ShouldNotReachHere();
3523   }
3524   return false; // keep some compilers happy
3525 }
3526 
3527 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3528                                        const VerifyOption vo) const {
3529   switch (vo) {
3530   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3531   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3532   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3533   default:                            ShouldNotReachHere();
3534   }
3535   return false; // keep some compilers happy
3536 }
3537 
3538 void G1CollectedHeap::print_on(outputStream* st) const {
3539   st->print(" %-20s", "garbage-first heap");
3540   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3541             capacity()/K, used_unlocked()/K);
3542   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3543             _g1_storage.low_boundary(),
3544             _g1_storage.high(),
3545             _g1_storage.high_boundary());
3546   st->cr();
3547   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3548   uint young_regions = _young_list->length();
3549   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3550             (size_t) young_regions * HeapRegion::GrainBytes / K);
3551   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3552   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3553             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3554   st->cr();
3555   MetaspaceAux::print_on(st);
3556 }
3557 
3558 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3559   print_on(st);
3560 
3561   // Print the per-region information.
3562   st->cr();
3563   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3564                "HS=humongous(starts), HC=humongous(continues), "
3565                "CS=collection set, F=free, TS=gc time stamp, "
3566                "PTAMS=previous top-at-mark-start, "
3567                "NTAMS=next top-at-mark-start)");
3568   PrintRegionClosure blk(st);
3569   heap_region_iterate(&blk);
3570 }
3571 
3572 void G1CollectedHeap::print_on_error(outputStream* st) const {
3573   this->CollectedHeap::print_on_error(st);
3574 
3575   if (_cm != NULL) {
3576     st->cr();
3577     _cm->print_on_error(st);
3578   }
3579 }
3580 
3581 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3582   if (G1CollectedHeap::use_parallel_gc_threads()) {
3583     workers()->print_worker_threads_on(st);
3584   }
3585   _cmThread->print_on(st);
3586   st->cr();
3587   _cm->print_worker_threads_on(st);
3588   _cg1r->print_worker_threads_on(st);
3589   if (G1StringDedup::is_enabled()) {
3590     G1StringDedup::print_worker_threads_on(st);
3591   }
3592 }
3593 
3594 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3595   if (G1CollectedHeap::use_parallel_gc_threads()) {
3596     workers()->threads_do(tc);
3597   }
3598   tc->do_thread(_cmThread);
3599   _cg1r->threads_do(tc);
3600   if (G1StringDedup::is_enabled()) {
3601     G1StringDedup::threads_do(tc);
3602   }
3603 }
3604 
3605 void G1CollectedHeap::print_tracing_info() const {
3606   // We'll overload this to mean "trace GC pause statistics."
3607   if (TraceGen0Time || TraceGen1Time) {
3608     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3609     // to that.
3610     g1_policy()->print_tracing_info();
3611   }
3612   if (G1SummarizeRSetStats) {
3613     g1_rem_set()->print_summary_info();
3614   }
3615   if (G1SummarizeConcMark) {
3616     concurrent_mark()->print_summary_info();
3617   }
3618   g1_policy()->print_yg_surv_rate_info();
3619   SpecializationStats::print();
3620 }
3621 
3622 #ifndef PRODUCT
3623 // Helpful for debugging RSet issues.
3624 
3625 class PrintRSetsClosure : public HeapRegionClosure {
3626 private:
3627   const char* _msg;
3628   size_t _occupied_sum;
3629 
3630 public:
3631   bool doHeapRegion(HeapRegion* r) {
3632     HeapRegionRemSet* hrrs = r->rem_set();
3633     size_t occupied = hrrs->occupied();
3634     _occupied_sum += occupied;
3635 
3636     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3637                            HR_FORMAT_PARAMS(r));
3638     if (occupied == 0) {
3639       gclog_or_tty->print_cr("  RSet is empty");
3640     } else {
3641       hrrs->print();
3642     }
3643     gclog_or_tty->print_cr("----------");
3644     return false;
3645   }
3646 
3647   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3648     gclog_or_tty->cr();
3649     gclog_or_tty->print_cr("========================================");
3650     gclog_or_tty->print_cr(msg);
3651     gclog_or_tty->cr();
3652   }
3653 
3654   ~PrintRSetsClosure() {
3655     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3656     gclog_or_tty->print_cr("========================================");
3657     gclog_or_tty->cr();
3658   }
3659 };
3660 
3661 void G1CollectedHeap::print_cset_rsets() {
3662   PrintRSetsClosure cl("Printing CSet RSets");
3663   collection_set_iterate(&cl);
3664 }
3665 
3666 void G1CollectedHeap::print_all_rsets() {
3667   PrintRSetsClosure cl("Printing All RSets");;
3668   heap_region_iterate(&cl);
3669 }
3670 #endif // PRODUCT
3671 
3672 G1CollectedHeap* G1CollectedHeap::heap() {
3673   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3674          "not a garbage-first heap");
3675   return _g1h;
3676 }
3677 
3678 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3679   // always_do_update_barrier = false;
3680   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3681   // Fill TLAB's and such
3682   accumulate_statistics_all_tlabs();
3683   ensure_parsability(true);
3684 
3685   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3686       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3687     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3688   }
3689 }
3690 
3691 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3692 
3693   if (G1SummarizeRSetStats &&
3694       (G1SummarizeRSetStatsPeriod > 0) &&
3695       // we are at the end of the GC. Total collections has already been increased.
3696       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3697     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3698   }
3699 
3700   // FIXME: what is this about?
3701   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3702   // is set.
3703   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3704                         "derived pointer present"));
3705   // always_do_update_barrier = true;
3706 
3707   resize_all_tlabs();
3708 
3709   // We have just completed a GC. Update the soft reference
3710   // policy with the new heap occupancy
3711   Universe::update_heap_info_at_gc();
3712 }
3713 
3714 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3715                                                unsigned int gc_count_before,
3716                                                bool* succeeded,
3717                                                GCCause::Cause gc_cause) {
3718   assert_heap_not_locked_and_not_at_safepoint();
3719   g1_policy()->record_stop_world_start();
3720   VM_G1IncCollectionPause op(gc_count_before,
3721                              word_size,
3722                              false, /* should_initiate_conc_mark */
3723                              g1_policy()->max_pause_time_ms(),
3724                              gc_cause);
3725   VMThread::execute(&op);
3726 
3727   HeapWord* result = op.result();
3728   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3729   assert(result == NULL || ret_succeeded,
3730          "the result should be NULL if the VM did not succeed");
3731   *succeeded = ret_succeeded;
3732 
3733   assert_heap_not_locked();
3734   return result;
3735 }
3736 
3737 void
3738 G1CollectedHeap::doConcurrentMark() {
3739   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3740   if (!_cmThread->in_progress()) {
3741     _cmThread->set_started();
3742     CGC_lock->notify();
3743   }
3744 }
3745 
3746 size_t G1CollectedHeap::pending_card_num() {
3747   size_t extra_cards = 0;
3748   JavaThread *curr = Threads::first();
3749   while (curr != NULL) {
3750     DirtyCardQueue& dcq = curr->dirty_card_queue();
3751     extra_cards += dcq.size();
3752     curr = curr->next();
3753   }
3754   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3755   size_t buffer_size = dcqs.buffer_size();
3756   size_t buffer_num = dcqs.completed_buffers_num();
3757 
3758   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3759   // in bytes - not the number of 'entries'. We need to convert
3760   // into a number of cards.
3761   return (buffer_size * buffer_num + extra_cards) / oopSize;
3762 }
3763 
3764 size_t G1CollectedHeap::cards_scanned() {
3765   return g1_rem_set()->cardsScanned();
3766 }
3767 
3768 void
3769 G1CollectedHeap::setup_surviving_young_words() {
3770   assert(_surviving_young_words == NULL, "pre-condition");
3771   uint array_length = g1_policy()->young_cset_region_length();
3772   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3773   if (_surviving_young_words == NULL) {
3774     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3775                           "Not enough space for young surv words summary.");
3776   }
3777   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3778 #ifdef ASSERT
3779   for (uint i = 0;  i < array_length; ++i) {
3780     assert( _surviving_young_words[i] == 0, "memset above" );
3781   }
3782 #endif // !ASSERT
3783 }
3784 
3785 void
3786 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3787   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3788   uint array_length = g1_policy()->young_cset_region_length();
3789   for (uint i = 0; i < array_length; ++i) {
3790     _surviving_young_words[i] += surv_young_words[i];
3791   }
3792 }
3793 
3794 void
3795 G1CollectedHeap::cleanup_surviving_young_words() {
3796   guarantee( _surviving_young_words != NULL, "pre-condition" );
3797   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3798   _surviving_young_words = NULL;
3799 }
3800 
3801 #ifdef ASSERT
3802 class VerifyCSetClosure: public HeapRegionClosure {
3803 public:
3804   bool doHeapRegion(HeapRegion* hr) {
3805     // Here we check that the CSet region's RSet is ready for parallel
3806     // iteration. The fields that we'll verify are only manipulated
3807     // when the region is part of a CSet and is collected. Afterwards,
3808     // we reset these fields when we clear the region's RSet (when the
3809     // region is freed) so they are ready when the region is
3810     // re-allocated. The only exception to this is if there's an
3811     // evacuation failure and instead of freeing the region we leave
3812     // it in the heap. In that case, we reset these fields during
3813     // evacuation failure handling.
3814     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3815 
3816     // Here's a good place to add any other checks we'd like to
3817     // perform on CSet regions.
3818     return false;
3819   }
3820 };
3821 #endif // ASSERT
3822 
3823 #if TASKQUEUE_STATS
3824 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3825   st->print_raw_cr("GC Task Stats");
3826   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3827   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3828 }
3829 
3830 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3831   print_taskqueue_stats_hdr(st);
3832 
3833   TaskQueueStats totals;
3834   const int n = workers() != NULL ? workers()->total_workers() : 1;
3835   for (int i = 0; i < n; ++i) {
3836     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3837     totals += task_queue(i)->stats;
3838   }
3839   st->print_raw("tot "); totals.print(st); st->cr();
3840 
3841   DEBUG_ONLY(totals.verify());
3842 }
3843 
3844 void G1CollectedHeap::reset_taskqueue_stats() {
3845   const int n = workers() != NULL ? workers()->total_workers() : 1;
3846   for (int i = 0; i < n; ++i) {
3847     task_queue(i)->stats.reset();
3848   }
3849 }
3850 #endif // TASKQUEUE_STATS
3851 
3852 void G1CollectedHeap::log_gc_header() {
3853   if (!G1Log::fine()) {
3854     return;
3855   }
3856 
3857   gclog_or_tty->date_stamp(PrintGCDateStamps);
3858   gclog_or_tty->stamp(PrintGCTimeStamps);
3859 
3860   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3861     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3862     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3863 
3864   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3865 }
3866 
3867 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3868   if (!G1Log::fine()) {
3869     return;
3870   }
3871 
3872   if (G1Log::finer()) {
3873     if (evacuation_failed()) {
3874       gclog_or_tty->print(" (to-space exhausted)");
3875     }
3876     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3877     g1_policy()->phase_times()->note_gc_end();
3878     g1_policy()->phase_times()->print(pause_time_sec);
3879     g1_policy()->print_detailed_heap_transition();
3880   } else {
3881     if (evacuation_failed()) {
3882       gclog_or_tty->print("--");
3883     }
3884     g1_policy()->print_heap_transition();
3885     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3886   }
3887   gclog_or_tty->flush();
3888 }
3889 
3890 bool
3891 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3892   assert_at_safepoint(true /* should_be_vm_thread */);
3893   guarantee(!is_gc_active(), "collection is not reentrant");
3894 
3895   if (GC_locker::check_active_before_gc()) {
3896     return false;
3897   }
3898 
3899   _gc_timer_stw->register_gc_start();
3900 
3901   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3902 
3903   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3904   ResourceMark rm;
3905 
3906   print_heap_before_gc();
3907   trace_heap_before_gc(_gc_tracer_stw);
3908 
3909   verify_region_sets_optional();
3910   verify_dirty_young_regions();
3911 
3912   // This call will decide whether this pause is an initial-mark
3913   // pause. If it is, during_initial_mark_pause() will return true
3914   // for the duration of this pause.
3915   g1_policy()->decide_on_conc_mark_initiation();
3916 
3917   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3918   assert(!g1_policy()->during_initial_mark_pause() ||
3919           g1_policy()->gcs_are_young(), "sanity");
3920 
3921   // We also do not allow mixed GCs during marking.
3922   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3923 
3924   // Record whether this pause is an initial mark. When the current
3925   // thread has completed its logging output and it's safe to signal
3926   // the CM thread, the flag's value in the policy has been reset.
3927   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3928 
3929   // Inner scope for scope based logging, timers, and stats collection
3930   {
3931     EvacuationInfo evacuation_info;
3932 
3933     if (g1_policy()->during_initial_mark_pause()) {
3934       // We are about to start a marking cycle, so we increment the
3935       // full collection counter.
3936       increment_old_marking_cycles_started();
3937       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3938     }
3939 
3940     _gc_tracer_stw->report_yc_type(yc_type());
3941 
3942     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3943 
3944     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3945                                 workers()->active_workers() : 1);
3946     double pause_start_sec = os::elapsedTime();
3947     g1_policy()->phase_times()->note_gc_start(active_workers);
3948     log_gc_header();
3949 
3950     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3951     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3952 
3953     // If the secondary_free_list is not empty, append it to the
3954     // free_list. No need to wait for the cleanup operation to finish;
3955     // the region allocation code will check the secondary_free_list
3956     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3957     // set, skip this step so that the region allocation code has to
3958     // get entries from the secondary_free_list.
3959     if (!G1StressConcRegionFreeing) {
3960       append_secondary_free_list_if_not_empty_with_lock();
3961     }
3962 
3963     assert(check_young_list_well_formed(), "young list should be well formed");
3964     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3965            "sanity check");
3966 
3967     // Don't dynamically change the number of GC threads this early.  A value of
3968     // 0 is used to indicate serial work.  When parallel work is done,
3969     // it will be set.
3970 
3971     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3972       IsGCActiveMark x;
3973 
3974       gc_prologue(false);
3975       increment_total_collections(false /* full gc */);
3976       increment_gc_time_stamp();
3977 
3978       verify_before_gc();
3979 
3980       COMPILER2_PRESENT(DerivedPointerTable::clear());
3981 
3982       // Please see comment in g1CollectedHeap.hpp and
3983       // G1CollectedHeap::ref_processing_init() to see how
3984       // reference processing currently works in G1.
3985 
3986       // Enable discovery in the STW reference processor
3987       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3988                                             true /*verify_no_refs*/);
3989 
3990       {
3991         // We want to temporarily turn off discovery by the
3992         // CM ref processor, if necessary, and turn it back on
3993         // on again later if we do. Using a scoped
3994         // NoRefDiscovery object will do this.
3995         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3996 
3997         // Forget the current alloc region (we might even choose it to be part
3998         // of the collection set!).
3999         release_mutator_alloc_region();
4000 
4001         // We should call this after we retire the mutator alloc
4002         // region(s) so that all the ALLOC / RETIRE events are generated
4003         // before the start GC event.
4004         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4005 
4006         // This timing is only used by the ergonomics to handle our pause target.
4007         // It is unclear why this should not include the full pause. We will
4008         // investigate this in CR 7178365.
4009         //
4010         // Preserving the old comment here if that helps the investigation:
4011         //
4012         // The elapsed time induced by the start time below deliberately elides
4013         // the possible verification above.
4014         double sample_start_time_sec = os::elapsedTime();
4015 
4016 #if YOUNG_LIST_VERBOSE
4017         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4018         _young_list->print();
4019         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4020 #endif // YOUNG_LIST_VERBOSE
4021 
4022         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4023 
4024         double scan_wait_start = os::elapsedTime();
4025         // We have to wait until the CM threads finish scanning the
4026         // root regions as it's the only way to ensure that all the
4027         // objects on them have been correctly scanned before we start
4028         // moving them during the GC.
4029         bool waited = _cm->root_regions()->wait_until_scan_finished();
4030         double wait_time_ms = 0.0;
4031         if (waited) {
4032           double scan_wait_end = os::elapsedTime();
4033           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4034         }
4035         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4036 
4037 #if YOUNG_LIST_VERBOSE
4038         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4039         _young_list->print();
4040 #endif // YOUNG_LIST_VERBOSE
4041 
4042         if (g1_policy()->during_initial_mark_pause()) {
4043           concurrent_mark()->checkpointRootsInitialPre();
4044         }
4045 
4046 #if YOUNG_LIST_VERBOSE
4047         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4048         _young_list->print();
4049         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4050 #endif // YOUNG_LIST_VERBOSE
4051 
4052         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4053 
4054         _cm->note_start_of_gc();
4055         // We should not verify the per-thread SATB buffers given that
4056         // we have not filtered them yet (we'll do so during the
4057         // GC). We also call this after finalize_cset() to
4058         // ensure that the CSet has been finalized.
4059         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4060                                  true  /* verify_enqueued_buffers */,
4061                                  false /* verify_thread_buffers */,
4062                                  true  /* verify_fingers */);
4063 
4064         if (_hr_printer.is_active()) {
4065           HeapRegion* hr = g1_policy()->collection_set();
4066           while (hr != NULL) {
4067             G1HRPrinter::RegionType type;
4068             if (!hr->is_young()) {
4069               type = G1HRPrinter::Old;
4070             } else if (hr->is_survivor()) {
4071               type = G1HRPrinter::Survivor;
4072             } else {
4073               type = G1HRPrinter::Eden;
4074             }
4075             _hr_printer.cset(hr);
4076             hr = hr->next_in_collection_set();
4077           }
4078         }
4079 
4080 #ifdef ASSERT
4081         VerifyCSetClosure cl;
4082         collection_set_iterate(&cl);
4083 #endif // ASSERT
4084 
4085         setup_surviving_young_words();
4086 
4087         // Initialize the GC alloc regions.
4088         init_gc_alloc_regions(evacuation_info);
4089 
4090         // Actually do the work...
4091         evacuate_collection_set(evacuation_info);
4092 
4093         // We do this to mainly verify the per-thread SATB buffers
4094         // (which have been filtered by now) since we didn't verify
4095         // them earlier. No point in re-checking the stacks / enqueued
4096         // buffers given that the CSet has not changed since last time
4097         // we checked.
4098         _cm->verify_no_cset_oops(false /* verify_stacks */,
4099                                  false /* verify_enqueued_buffers */,
4100                                  true  /* verify_thread_buffers */,
4101                                  true  /* verify_fingers */);
4102 
4103         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4104         g1_policy()->clear_collection_set();
4105 
4106         cleanup_surviving_young_words();
4107 
4108         // Start a new incremental collection set for the next pause.
4109         g1_policy()->start_incremental_cset_building();
4110 
4111         clear_cset_fast_test();
4112 
4113         _young_list->reset_sampled_info();
4114 
4115         // Don't check the whole heap at this point as the
4116         // GC alloc regions from this pause have been tagged
4117         // as survivors and moved on to the survivor list.
4118         // Survivor regions will fail the !is_young() check.
4119         assert(check_young_list_empty(false /* check_heap */),
4120           "young list should be empty");
4121 
4122 #if YOUNG_LIST_VERBOSE
4123         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4124         _young_list->print();
4125 #endif // YOUNG_LIST_VERBOSE
4126 
4127         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4128                                              _young_list->first_survivor_region(),
4129                                              _young_list->last_survivor_region());
4130 
4131         _young_list->reset_auxilary_lists();
4132 
4133         if (evacuation_failed()) {
4134           _summary_bytes_used = recalculate_used();
4135           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4136           for (uint i = 0; i < n_queues; i++) {
4137             if (_evacuation_failed_info_array[i].has_failed()) {
4138               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4139             }
4140           }
4141         } else {
4142           // The "used" of the the collection set have already been subtracted
4143           // when they were freed.  Add in the bytes evacuated.
4144           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4145         }
4146 
4147         if (g1_policy()->during_initial_mark_pause()) {
4148           // We have to do this before we notify the CM threads that
4149           // they can start working to make sure that all the
4150           // appropriate initialization is done on the CM object.
4151           concurrent_mark()->checkpointRootsInitialPost();
4152           set_marking_started();
4153           // Note that we don't actually trigger the CM thread at
4154           // this point. We do that later when we're sure that
4155           // the current thread has completed its logging output.
4156         }
4157 
4158         allocate_dummy_regions();
4159 
4160 #if YOUNG_LIST_VERBOSE
4161         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4162         _young_list->print();
4163         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4164 #endif // YOUNG_LIST_VERBOSE
4165 
4166         init_mutator_alloc_region();
4167 
4168         {
4169           size_t expand_bytes = g1_policy()->expansion_amount();
4170           if (expand_bytes > 0) {
4171             size_t bytes_before = capacity();
4172             // No need for an ergo verbose message here,
4173             // expansion_amount() does this when it returns a value > 0.
4174             if (!expand(expand_bytes)) {
4175               // We failed to expand the heap so let's verify that
4176               // committed/uncommitted amount match the backing store
4177               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4178               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4179             }
4180           }
4181         }
4182 
4183         // We redo the verification but now wrt to the new CSet which
4184         // has just got initialized after the previous CSet was freed.
4185         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4186                                  true  /* verify_enqueued_buffers */,
4187                                  true  /* verify_thread_buffers */,
4188                                  true  /* verify_fingers */);
4189         _cm->note_end_of_gc();
4190 
4191         // This timing is only used by the ergonomics to handle our pause target.
4192         // It is unclear why this should not include the full pause. We will
4193         // investigate this in CR 7178365.
4194         double sample_end_time_sec = os::elapsedTime();
4195         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4196         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4197 
4198         MemoryService::track_memory_usage();
4199 
4200         // In prepare_for_verify() below we'll need to scan the deferred
4201         // update buffers to bring the RSets up-to-date if
4202         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4203         // the update buffers we'll probably need to scan cards on the
4204         // regions we just allocated to (i.e., the GC alloc
4205         // regions). However, during the last GC we called
4206         // set_saved_mark() on all the GC alloc regions, so card
4207         // scanning might skip the [saved_mark_word()...top()] area of
4208         // those regions (i.e., the area we allocated objects into
4209         // during the last GC). But it shouldn't. Given that
4210         // saved_mark_word() is conditional on whether the GC time stamp
4211         // on the region is current or not, by incrementing the GC time
4212         // stamp here we invalidate all the GC time stamps on all the
4213         // regions and saved_mark_word() will simply return top() for
4214         // all the regions. This is a nicer way of ensuring this rather
4215         // than iterating over the regions and fixing them. In fact, the
4216         // GC time stamp increment here also ensures that
4217         // saved_mark_word() will return top() between pauses, i.e.,
4218         // during concurrent refinement. So we don't need the
4219         // is_gc_active() check to decided which top to use when
4220         // scanning cards (see CR 7039627).
4221         increment_gc_time_stamp();
4222 
4223         verify_after_gc();
4224 
4225         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4226         ref_processor_stw()->verify_no_references_recorded();
4227 
4228         // CM reference discovery will be re-enabled if necessary.
4229       }
4230 
4231       // We should do this after we potentially expand the heap so
4232       // that all the COMMIT events are generated before the end GC
4233       // event, and after we retire the GC alloc regions so that all
4234       // RETIRE events are generated before the end GC event.
4235       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4236 
4237       if (mark_in_progress()) {
4238         concurrent_mark()->update_g1_committed();
4239       }
4240 
4241 #ifdef TRACESPINNING
4242       ParallelTaskTerminator::print_termination_counts();
4243 #endif
4244 
4245       gc_epilogue(false);
4246     }
4247 
4248     // Print the remainder of the GC log output.
4249     log_gc_footer(os::elapsedTime() - pause_start_sec);
4250 
4251     // It is not yet to safe to tell the concurrent mark to
4252     // start as we have some optional output below. We don't want the
4253     // output from the concurrent mark thread interfering with this
4254     // logging output either.
4255 
4256     _hrs.verify_optional();
4257     verify_region_sets_optional();
4258 
4259     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4260     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4261 
4262     print_heap_after_gc();
4263     trace_heap_after_gc(_gc_tracer_stw);
4264 
4265     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4266     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4267     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4268     // before any GC notifications are raised.
4269     g1mm()->update_sizes();
4270 
4271     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4272     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4273     _gc_timer_stw->register_gc_end();
4274     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4275   }
4276   // It should now be safe to tell the concurrent mark thread to start
4277   // without its logging output interfering with the logging output
4278   // that came from the pause.
4279 
4280   if (should_start_conc_mark) {
4281     // CAUTION: after the doConcurrentMark() call below,
4282     // the concurrent marking thread(s) could be running
4283     // concurrently with us. Make sure that anything after
4284     // this point does not assume that we are the only GC thread
4285     // running. Note: of course, the actual marking work will
4286     // not start until the safepoint itself is released in
4287     // ConcurrentGCThread::safepoint_desynchronize().
4288     doConcurrentMark();
4289   }
4290 
4291   return true;
4292 }
4293 
4294 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4295 {
4296   size_t gclab_word_size;
4297   switch (purpose) {
4298     case GCAllocForSurvived:
4299       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4300       break;
4301     case GCAllocForTenured:
4302       gclab_word_size = _old_plab_stats.desired_plab_sz();
4303       break;
4304     default:
4305       assert(false, "unknown GCAllocPurpose");
4306       gclab_word_size = _old_plab_stats.desired_plab_sz();
4307       break;
4308   }
4309 
4310   // Prevent humongous PLAB sizes for two reasons:
4311   // * PLABs are allocated using a similar paths as oops, but should
4312   //   never be in a humongous region
4313   // * Allowing humongous PLABs needlessly churns the region free lists
4314   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4315 }
4316 
4317 void G1CollectedHeap::init_mutator_alloc_region() {
4318   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4319   _mutator_alloc_region.init();
4320 }
4321 
4322 void G1CollectedHeap::release_mutator_alloc_region() {
4323   _mutator_alloc_region.release();
4324   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4325 }
4326 
4327 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4328   assert_at_safepoint(true /* should_be_vm_thread */);
4329 
4330   _survivor_gc_alloc_region.init();
4331   _old_gc_alloc_region.init();
4332   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4333   _retained_old_gc_alloc_region = NULL;
4334 
4335   // We will discard the current GC alloc region if:
4336   // a) it's in the collection set (it can happen!),
4337   // b) it's already full (no point in using it),
4338   // c) it's empty (this means that it was emptied during
4339   // a cleanup and it should be on the free list now), or
4340   // d) it's humongous (this means that it was emptied
4341   // during a cleanup and was added to the free list, but
4342   // has been subsequently used to allocate a humongous
4343   // object that may be less than the region size).
4344   if (retained_region != NULL &&
4345       !retained_region->in_collection_set() &&
4346       !(retained_region->top() == retained_region->end()) &&
4347       !retained_region->is_empty() &&
4348       !retained_region->isHumongous()) {
4349     retained_region->set_saved_mark();
4350     // The retained region was added to the old region set when it was
4351     // retired. We have to remove it now, since we don't allow regions
4352     // we allocate to in the region sets. We'll re-add it later, when
4353     // it's retired again.
4354     _old_set.remove(retained_region);
4355     bool during_im = g1_policy()->during_initial_mark_pause();
4356     retained_region->note_start_of_copying(during_im);
4357     _old_gc_alloc_region.set(retained_region);
4358     _hr_printer.reuse(retained_region);
4359     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4360   }
4361 }
4362 
4363 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4364   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4365                                          _old_gc_alloc_region.count());
4366   _survivor_gc_alloc_region.release();
4367   // If we have an old GC alloc region to release, we'll save it in
4368   // _retained_old_gc_alloc_region. If we don't
4369   // _retained_old_gc_alloc_region will become NULL. This is what we
4370   // want either way so no reason to check explicitly for either
4371   // condition.
4372   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4373 
4374   if (ResizePLAB) {
4375     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4376     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4377   }
4378 }
4379 
4380 void G1CollectedHeap::abandon_gc_alloc_regions() {
4381   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4382   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4383   _retained_old_gc_alloc_region = NULL;
4384 }
4385 
4386 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4387   _drain_in_progress = false;
4388   set_evac_failure_closure(cl);
4389   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4390 }
4391 
4392 void G1CollectedHeap::finalize_for_evac_failure() {
4393   assert(_evac_failure_scan_stack != NULL &&
4394          _evac_failure_scan_stack->length() == 0,
4395          "Postcondition");
4396   assert(!_drain_in_progress, "Postcondition");
4397   delete _evac_failure_scan_stack;
4398   _evac_failure_scan_stack = NULL;
4399 }
4400 
4401 void G1CollectedHeap::remove_self_forwarding_pointers() {
4402   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4403 
4404   double remove_self_forwards_start = os::elapsedTime();
4405 
4406   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4407 
4408   if (G1CollectedHeap::use_parallel_gc_threads()) {
4409     set_par_threads();
4410     workers()->run_task(&rsfp_task);
4411     set_par_threads(0);
4412   } else {
4413     rsfp_task.work(0);
4414   }
4415 
4416   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4417 
4418   // Reset the claim values in the regions in the collection set.
4419   reset_cset_heap_region_claim_values();
4420 
4421   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4422 
4423   // Now restore saved marks, if any.
4424   assert(_objs_with_preserved_marks.size() ==
4425             _preserved_marks_of_objs.size(), "Both or none.");
4426   while (!_objs_with_preserved_marks.is_empty()) {
4427     oop obj = _objs_with_preserved_marks.pop();
4428     markOop m = _preserved_marks_of_objs.pop();
4429     obj->set_mark(m);
4430   }
4431   _objs_with_preserved_marks.clear(true);
4432   _preserved_marks_of_objs.clear(true);
4433 
4434   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4435 }
4436 
4437 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4438   _evac_failure_scan_stack->push(obj);
4439 }
4440 
4441 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4442   assert(_evac_failure_scan_stack != NULL, "precondition");
4443 
4444   while (_evac_failure_scan_stack->length() > 0) {
4445      oop obj = _evac_failure_scan_stack->pop();
4446      _evac_failure_closure->set_region(heap_region_containing(obj));
4447      obj->oop_iterate_backwards(_evac_failure_closure);
4448   }
4449 }
4450 
4451 oop
4452 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4453                                                oop old) {
4454   assert(obj_in_cs(old),
4455          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4456                  (HeapWord*) old));
4457   markOop m = old->mark();
4458   oop forward_ptr = old->forward_to_atomic(old);
4459   if (forward_ptr == NULL) {
4460     // Forward-to-self succeeded.
4461     assert(_par_scan_state != NULL, "par scan state");
4462     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4463     uint queue_num = _par_scan_state->queue_num();
4464 
4465     _evacuation_failed = true;
4466     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4467     if (_evac_failure_closure != cl) {
4468       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4469       assert(!_drain_in_progress,
4470              "Should only be true while someone holds the lock.");
4471       // Set the global evac-failure closure to the current thread's.
4472       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4473       set_evac_failure_closure(cl);
4474       // Now do the common part.
4475       handle_evacuation_failure_common(old, m);
4476       // Reset to NULL.
4477       set_evac_failure_closure(NULL);
4478     } else {
4479       // The lock is already held, and this is recursive.
4480       assert(_drain_in_progress, "This should only be the recursive case.");
4481       handle_evacuation_failure_common(old, m);
4482     }
4483     return old;
4484   } else {
4485     // Forward-to-self failed. Either someone else managed to allocate
4486     // space for this object (old != forward_ptr) or they beat us in
4487     // self-forwarding it (old == forward_ptr).
4488     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4489            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4490                    "should not be in the CSet",
4491                    (HeapWord*) old, (HeapWord*) forward_ptr));
4492     return forward_ptr;
4493   }
4494 }
4495 
4496 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4497   preserve_mark_if_necessary(old, m);
4498 
4499   HeapRegion* r = heap_region_containing(old);
4500   if (!r->evacuation_failed()) {
4501     r->set_evacuation_failed(true);
4502     _hr_printer.evac_failure(r);
4503   }
4504 
4505   push_on_evac_failure_scan_stack(old);
4506 
4507   if (!_drain_in_progress) {
4508     // prevent recursion in copy_to_survivor_space()
4509     _drain_in_progress = true;
4510     drain_evac_failure_scan_stack();
4511     _drain_in_progress = false;
4512   }
4513 }
4514 
4515 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4516   assert(evacuation_failed(), "Oversaving!");
4517   // We want to call the "for_promotion_failure" version only in the
4518   // case of a promotion failure.
4519   if (m->must_be_preserved_for_promotion_failure(obj)) {
4520     _objs_with_preserved_marks.push(obj);
4521     _preserved_marks_of_objs.push(m);
4522   }
4523 }
4524 
4525 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4526                                                   size_t word_size) {
4527   if (purpose == GCAllocForSurvived) {
4528     HeapWord* result = survivor_attempt_allocation(word_size);
4529     if (result != NULL) {
4530       return result;
4531     } else {
4532       // Let's try to allocate in the old gen in case we can fit the
4533       // object there.
4534       return old_attempt_allocation(word_size);
4535     }
4536   } else {
4537     assert(purpose ==  GCAllocForTenured, "sanity");
4538     HeapWord* result = old_attempt_allocation(word_size);
4539     if (result != NULL) {
4540       return result;
4541     } else {
4542       // Let's try to allocate in the survivors in case we can fit the
4543       // object there.
4544       return survivor_attempt_allocation(word_size);
4545     }
4546   }
4547 
4548   ShouldNotReachHere();
4549   // Trying to keep some compilers happy.
4550   return NULL;
4551 }
4552 
4553 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4554   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4555 
4556 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
4557   : _g1h(g1h),
4558     _refs(g1h->task_queue(queue_num)),
4559     _dcq(&g1h->dirty_card_queue_set()),
4560     _ct_bs(g1h->g1_barrier_set()),
4561     _g1_rem(g1h->g1_rem_set()),
4562     _hash_seed(17), _queue_num(queue_num),
4563     _term_attempts(0),
4564     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4565     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4566     _age_table(false), _scanner(g1h, this, rp),
4567     _strong_roots_time(0), _term_time(0),
4568     _alloc_buffer_waste(0), _undo_waste(0) {
4569   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4570   // we "sacrifice" entry 0 to keep track of surviving bytes for
4571   // non-young regions (where the age is -1)
4572   // We also add a few elements at the beginning and at the end in
4573   // an attempt to eliminate cache contention
4574   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4575   uint array_length = PADDING_ELEM_NUM +
4576                       real_length +
4577                       PADDING_ELEM_NUM;
4578   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4579   if (_surviving_young_words_base == NULL)
4580     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4581                           "Not enough space for young surv histo.");
4582   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4583   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4584 
4585   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4586   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4587 
4588   _start = os::elapsedTime();
4589 }
4590 
4591 void
4592 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4593 {
4594   st->print_raw_cr("GC Termination Stats");
4595   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4596                    " ------waste (KiB)------");
4597   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4598                    "  total   alloc    undo");
4599   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4600                    " ------- ------- -------");
4601 }
4602 
4603 void
4604 G1ParScanThreadState::print_termination_stats(int i,
4605                                               outputStream* const st) const
4606 {
4607   const double elapsed_ms = elapsed_time() * 1000.0;
4608   const double s_roots_ms = strong_roots_time() * 1000.0;
4609   const double term_ms    = term_time() * 1000.0;
4610   st->print_cr("%3d %9.2f %9.2f %6.2f "
4611                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4612                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4613                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4614                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4615                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4616                alloc_buffer_waste() * HeapWordSize / K,
4617                undo_waste() * HeapWordSize / K);
4618 }
4619 
4620 #ifdef ASSERT
4621 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4622   assert(ref != NULL, "invariant");
4623   assert(UseCompressedOops, "sanity");
4624   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4625   oop p = oopDesc::load_decode_heap_oop(ref);
4626   assert(_g1h->is_in_g1_reserved(p),
4627          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4628   return true;
4629 }
4630 
4631 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4632   assert(ref != NULL, "invariant");
4633   if (has_partial_array_mask(ref)) {
4634     // Must be in the collection set--it's already been copied.
4635     oop p = clear_partial_array_mask(ref);
4636     assert(_g1h->obj_in_cs(p),
4637            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4638   } else {
4639     oop p = oopDesc::load_decode_heap_oop(ref);
4640     assert(_g1h->is_in_g1_reserved(p),
4641            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4642   }
4643   return true;
4644 }
4645 
4646 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4647   if (ref.is_narrow()) {
4648     return verify_ref((narrowOop*) ref);
4649   } else {
4650     return verify_ref((oop*) ref);
4651   }
4652 }
4653 #endif // ASSERT
4654 
4655 void G1ParScanThreadState::trim_queue() {
4656   assert(_evac_failure_cl != NULL, "not set");
4657 
4658   StarTask ref;
4659   do {
4660     // Drain the overflow stack first, so other threads can steal.
4661     while (refs()->pop_overflow(ref)) {
4662       deal_with_reference(ref);
4663     }
4664 
4665     while (refs()->pop_local(ref)) {
4666       deal_with_reference(ref);
4667     }
4668   } while (!refs()->is_empty());
4669 }
4670 
4671 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4672                                      G1ParScanThreadState* par_scan_state) :
4673   _g1(g1), _par_scan_state(par_scan_state),
4674   _worker_id(par_scan_state->queue_num()) { }
4675 
4676 void G1ParCopyHelper::mark_object(oop obj) {
4677 #ifdef ASSERT
4678   HeapRegion* hr = _g1->heap_region_containing(obj);
4679   assert(hr != NULL, "sanity");
4680   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4681 #endif // ASSERT
4682 
4683   // We know that the object is not moving so it's safe to read its size.
4684   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4685 }
4686 
4687 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4688 #ifdef ASSERT
4689   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4690   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4691   assert(from_obj != to_obj, "should not be self-forwarded");
4692 
4693   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4694   assert(from_hr != NULL, "sanity");
4695   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4696 
4697   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4698   assert(to_hr != NULL, "sanity");
4699   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4700 #endif // ASSERT
4701 
4702   // The object might be in the process of being copied by another
4703   // worker so we cannot trust that its to-space image is
4704   // well-formed. So we have to read its size from its from-space
4705   // image which we know should not be changing.
4706   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4707 }
4708 
4709 oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
4710   size_t word_sz = old->size();
4711   HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
4712   // +1 to make the -1 indexes valid...
4713   int       young_index = from_region->young_index_in_cset()+1;
4714   assert( (from_region->is_young() && young_index >  0) ||
4715          (!from_region->is_young() && young_index == 0), "invariant" );
4716   G1CollectorPolicy* g1p = _g1h->g1_policy();
4717   markOop m = old->mark();
4718   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4719                                            : m->age();
4720   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4721                                                              word_sz);
4722   HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
4723 #ifndef PRODUCT
4724   // Should this evacuation fail?
4725   if (_g1h->evacuation_should_fail()) {
4726     if (obj_ptr != NULL) {
4727       undo_allocation(alloc_purpose, obj_ptr, word_sz);
4728       obj_ptr = NULL;
4729     }
4730   }
4731 #endif // !PRODUCT
4732 
4733   if (obj_ptr == NULL) {
4734     // This will either forward-to-self, or detect that someone else has
4735     // installed a forwarding pointer.
4736     return _g1h->handle_evacuation_failure_par(this, old);
4737   }
4738 
4739   oop obj = oop(obj_ptr);
4740 
4741   // We're going to allocate linearly, so might as well prefetch ahead.
4742   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4743 
4744   oop forward_ptr = old->forward_to_atomic(obj);
4745   if (forward_ptr == NULL) {
4746     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4747 
4748     // alloc_purpose is just a hint to allocate() above, recheck the type of region
4749     // we actually allocated from and update alloc_purpose accordingly
4750     HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
4751     alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;
4752 
4753     if (g1p->track_object_age(alloc_purpose)) {
4754       // We could simply do obj->incr_age(). However, this causes a
4755       // performance issue. obj->incr_age() will first check whether
4756       // the object has a displaced mark by checking its mark word;
4757       // getting the mark word from the new location of the object
4758       // stalls. So, given that we already have the mark word and we
4759       // are about to install it anyway, it's better to increase the
4760       // age on the mark word, when the object does not have a
4761       // displaced mark word. We're not expecting many objects to have
4762       // a displaced marked word, so that case is not optimized
4763       // further (it could be...) and we simply call obj->incr_age().
4764 
4765       if (m->has_displaced_mark_helper()) {
4766         // in this case, we have to install the mark word first,
4767         // otherwise obj looks to be forwarded (the old mark word,
4768         // which contains the forward pointer, was copied)
4769         obj->set_mark(m);
4770         obj->incr_age();
4771       } else {
4772         m = m->incr_age();
4773         obj->set_mark(m);
4774       }
4775       age_table()->add(obj, word_sz);
4776     } else {
4777       obj->set_mark(m);
4778     }
4779 
4780     if (G1StringDedup::is_enabled()) {
4781       G1StringDedup::enqueue_from_evacuation(from_region->is_young(),
4782                                              to_region->is_young(),
4783                                              queue_num(),
4784                                              obj);
4785     }
4786 
4787     size_t* surv_young_words = surviving_young_words();
4788     surv_young_words[young_index] += word_sz;
4789 
4790     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4791       // We keep track of the next start index in the length field of
4792       // the to-space object. The actual length can be found in the
4793       // length field of the from-space object.
4794       arrayOop(obj)->set_length(0);
4795       oop* old_p = set_partial_array_mask(old);
4796       push_on_queue(old_p);
4797     } else {
4798       // No point in using the slower heap_region_containing() method,
4799       // given that we know obj is in the heap.
4800       _scanner.set_region(_g1h->heap_region_containing_raw(obj));
4801       obj->oop_iterate_backwards(&_scanner);
4802     }
4803   } else {
4804     undo_allocation(alloc_purpose, obj_ptr, word_sz);
4805     obj = forward_ptr;
4806   }
4807   return obj;
4808 }
4809 
4810 template <class T>
4811 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4812   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4813     _scanned_klass->record_modified_oops();
4814   }
4815 }
4816 
4817 template <G1Barrier barrier, bool do_mark_object>
4818 template <class T>
4819 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4820   T heap_oop = oopDesc::load_heap_oop(p);
4821 
4822   if (oopDesc::is_null(heap_oop)) {
4823     return;
4824   }
4825 
4826   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4827 
4828   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4829 
4830   if (_g1->in_cset_fast_test(obj)) {
4831     oop forwardee;
4832     if (obj->is_forwarded()) {
4833       forwardee = obj->forwardee();
4834     } else {
4835       forwardee = _par_scan_state->copy_to_survivor_space(obj);
4836     }
4837     assert(forwardee != NULL, "forwardee should not be NULL");
4838     oopDesc::encode_store_heap_oop(p, forwardee);
4839     if (do_mark_object && forwardee != obj) {
4840       // If the object is self-forwarded we don't need to explicitly
4841       // mark it, the evacuation failure protocol will do so.
4842       mark_forwarded_object(obj, forwardee);
4843     }
4844 
4845     if (barrier == G1BarrierKlass) {
4846       do_klass_barrier(p, forwardee);
4847     }
4848   } else {
4849     // The object is not in collection set. If we're a root scanning
4850     // closure during an initial mark pause (i.e. do_mark_object will
4851     // be true) then attempt to mark the object.
4852     if (do_mark_object) {
4853       mark_object(obj);
4854     }
4855   }
4856 
4857   if (barrier == G1BarrierEvac) {
4858     _par_scan_state->update_rs(_from, p, _worker_id);
4859   }
4860 }
4861 
4862 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
4863 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4864 
4865 class G1ParEvacuateFollowersClosure : public VoidClosure {
4866 protected:
4867   G1CollectedHeap*              _g1h;
4868   G1ParScanThreadState*         _par_scan_state;
4869   RefToScanQueueSet*            _queues;
4870   ParallelTaskTerminator*       _terminator;
4871 
4872   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4873   RefToScanQueueSet*      queues()         { return _queues; }
4874   ParallelTaskTerminator* terminator()     { return _terminator; }
4875 
4876 public:
4877   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4878                                 G1ParScanThreadState* par_scan_state,
4879                                 RefToScanQueueSet* queues,
4880                                 ParallelTaskTerminator* terminator)
4881     : _g1h(g1h), _par_scan_state(par_scan_state),
4882       _queues(queues), _terminator(terminator) {}
4883 
4884   void do_void();
4885 
4886 private:
4887   inline bool offer_termination();
4888 };
4889 
4890 bool G1ParEvacuateFollowersClosure::offer_termination() {
4891   G1ParScanThreadState* const pss = par_scan_state();
4892   pss->start_term_time();
4893   const bool res = terminator()->offer_termination();
4894   pss->end_term_time();
4895   return res;
4896 }
4897 
4898 void G1ParEvacuateFollowersClosure::do_void() {
4899   StarTask stolen_task;
4900   G1ParScanThreadState* const pss = par_scan_state();
4901   pss->trim_queue();
4902 
4903   do {
4904     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4905       assert(pss->verify_task(stolen_task), "sanity");
4906       if (stolen_task.is_narrow()) {
4907         pss->deal_with_reference((narrowOop*) stolen_task);
4908       } else {
4909         pss->deal_with_reference((oop*) stolen_task);
4910       }
4911 
4912       // We've just processed a reference and we might have made
4913       // available new entries on the queues. So we have to make sure
4914       // we drain the queues as necessary.
4915       pss->trim_queue();
4916     }
4917   } while (!offer_termination());
4918 
4919   pss->retire_alloc_buffers();
4920 }
4921 
4922 class G1KlassScanClosure : public KlassClosure {
4923  G1ParCopyHelper* _closure;
4924  bool             _process_only_dirty;
4925  int              _count;
4926  public:
4927   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4928       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4929   void do_klass(Klass* klass) {
4930     // If the klass has not been dirtied we know that there's
4931     // no references into  the young gen and we can skip it.
4932    if (!_process_only_dirty || klass->has_modified_oops()) {
4933       // Clean the klass since we're going to scavenge all the metadata.
4934       klass->clear_modified_oops();
4935 
4936       // Tell the closure that this klass is the Klass to scavenge
4937       // and is the one to dirty if oops are left pointing into the young gen.
4938       _closure->set_scanned_klass(klass);
4939 
4940       klass->oops_do(_closure);
4941 
4942       _closure->set_scanned_klass(NULL);
4943     }
4944     _count++;
4945   }
4946 };
4947 
4948 class G1ParTask : public AbstractGangTask {
4949 protected:
4950   G1CollectedHeap*       _g1h;
4951   RefToScanQueueSet      *_queues;
4952   ParallelTaskTerminator _terminator;
4953   uint _n_workers;
4954 
4955   Mutex _stats_lock;
4956   Mutex* stats_lock() { return &_stats_lock; }
4957 
4958   size_t getNCards() {
4959     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4960       / G1BlockOffsetSharedArray::N_bytes;
4961   }
4962 
4963 public:
4964   G1ParTask(G1CollectedHeap* g1h,
4965             RefToScanQueueSet *task_queues)
4966     : AbstractGangTask("G1 collection"),
4967       _g1h(g1h),
4968       _queues(task_queues),
4969       _terminator(0, _queues),
4970       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4971   {}
4972 
4973   RefToScanQueueSet* queues() { return _queues; }
4974 
4975   RefToScanQueue *work_queue(int i) {
4976     return queues()->queue(i);
4977   }
4978 
4979   ParallelTaskTerminator* terminator() { return &_terminator; }
4980 
4981   virtual void set_for_termination(int active_workers) {
4982     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4983     // in the young space (_par_seq_tasks) in the G1 heap
4984     // for SequentialSubTasksDone.
4985     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4986     // both of which need setting by set_n_termination().
4987     _g1h->SharedHeap::set_n_termination(active_workers);
4988     _g1h->set_n_termination(active_workers);
4989     terminator()->reset_for_reuse(active_workers);
4990     _n_workers = active_workers;
4991   }
4992 
4993   void work(uint worker_id) {
4994     if (worker_id >= _n_workers) return;  // no work needed this round
4995 
4996     double start_time_ms = os::elapsedTime() * 1000.0;
4997     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4998 
4999     {
5000       ResourceMark rm;
5001       HandleMark   hm;
5002 
5003       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5004 
5005       G1ParScanThreadState            pss(_g1h, worker_id, rp);
5006       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5007 
5008       pss.set_evac_failure_closure(&evac_failure_cl);
5009 
5010       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5011       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5012 
5013       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5014       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
5015 
5016       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
5017       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
5018       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5019 
5020       OopClosure*                    scan_root_cl = &only_scan_root_cl;
5021       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5022 
5023       if (_g1h->g1_policy()->during_initial_mark_pause()) {
5024         // We also need to mark copied objects.
5025         scan_root_cl = &scan_mark_root_cl;
5026         scan_klasses_cl = &scan_mark_klasses_cl_s;
5027       }
5028 
5029       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5030 
5031       // Don't scan the scavengable methods in the code cache as part
5032       // of strong root scanning. The code roots that point into a
5033       // region in the collection set are scanned when we scan the
5034       // region's RSet.
5035       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5036 
5037       pss.start_strong_roots();
5038       _g1h->g1_process_strong_roots(/* is scavenging */ true,
5039                                     SharedHeap::ScanningOption(so),
5040                                     scan_root_cl,
5041                                     &push_heap_rs_cl,
5042                                     scan_klasses_cl,
5043                                     worker_id);
5044       pss.end_strong_roots();
5045 
5046       {
5047         double start = os::elapsedTime();
5048         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
5049         evac.do_void();
5050         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
5051         double term_ms = pss.term_time()*1000.0;
5052         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5053         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5054       }
5055       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
5056       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
5057 
5058       if (ParallelGCVerbose) {
5059         MutexLocker x(stats_lock());
5060         pss.print_termination_stats(worker_id);
5061       }
5062 
5063       assert(pss.refs()->is_empty(), "should be empty");
5064 
5065       // Close the inner scope so that the ResourceMark and HandleMark
5066       // destructors are executed here and are included as part of the
5067       // "GC Worker Time".
5068     }
5069 
5070     double end_time_ms = os::elapsedTime() * 1000.0;
5071     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5072   }
5073 };
5074 
5075 // *** Common G1 Evacuation Stuff
5076 
5077 // This method is run in a GC worker.
5078 
5079 void
5080 G1CollectedHeap::
5081 g1_process_strong_roots(bool is_scavenging,
5082                         ScanningOption so,
5083                         OopClosure* scan_non_heap_roots,
5084                         OopsInHeapRegionClosure* scan_rs,
5085                         G1KlassScanClosure* scan_klasses,
5086                         uint worker_i) {
5087 
5088   // First scan the strong roots
5089   double ext_roots_start = os::elapsedTime();
5090   double closure_app_time_sec = 0.0;
5091 
5092   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5093 
5094   process_strong_roots(false, // no scoping; this is parallel code
5095                        so,
5096                        &buf_scan_non_heap_roots,
5097                        scan_klasses
5098                        );
5099 
5100   // Now the CM ref_processor roots.
5101   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5102     // We need to treat the discovered reference lists of the
5103     // concurrent mark ref processor as roots and keep entries
5104     // (which are added by the marking threads) on them live
5105     // until they can be processed at the end of marking.
5106     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5107   }
5108 
5109   // Finish up any enqueued closure apps (attributed as object copy time).
5110   buf_scan_non_heap_roots.done();
5111 
5112   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5113 
5114   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5115 
5116   double ext_root_time_ms =
5117     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5118 
5119   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5120 
5121   // During conc marking we have to filter the per-thread SATB buffers
5122   // to make sure we remove any oops into the CSet (which will show up
5123   // as implicitly live).
5124   double satb_filtering_ms = 0.0;
5125   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5126     if (mark_in_progress()) {
5127       double satb_filter_start = os::elapsedTime();
5128 
5129       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5130 
5131       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5132     }
5133   }
5134   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5135 
5136   // If this is an initial mark pause, and we're not scanning
5137   // the entire code cache, we need to mark the oops in the
5138   // strong code root lists for the regions that are not in
5139   // the collection set.
5140   // Note all threads participate in this set of root tasks.
5141   double mark_strong_code_roots_ms = 0.0;
5142   if (g1_policy()->during_initial_mark_pause() && !(so & SO_AllCodeCache)) {
5143     double mark_strong_roots_start = os::elapsedTime();
5144     mark_strong_code_roots(worker_i);
5145     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
5146   }
5147   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
5148 
5149   // Now scan the complement of the collection set.
5150   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5151   g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5152 
5153   _process_strong_tasks->all_tasks_completed();
5154 }
5155 
5156 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
5157 private:
5158   BoolObjectClosure* _is_alive;
5159   int _initial_string_table_size;
5160   int _initial_symbol_table_size;
5161 
5162   bool  _process_strings;
5163   int _strings_processed;
5164   int _strings_removed;
5165 
5166   bool  _process_symbols;
5167   int _symbols_processed;
5168   int _symbols_removed;
5169 
5170   bool _do_in_parallel;
5171 public:
5172   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
5173     AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
5174     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
5175     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
5176     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
5177 
5178     _initial_string_table_size = StringTable::the_table()->table_size();
5179     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
5180     if (process_strings) {
5181       StringTable::clear_parallel_claimed_index();
5182     }
5183     if (process_symbols) {
5184       SymbolTable::clear_parallel_claimed_index();
5185     }
5186   }
5187 
5188   ~G1StringSymbolTableUnlinkTask() {
5189     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
5190               err_msg("claim value %d after unlink less than initial string table size %d",
5191                       StringTable::parallel_claimed_index(), _initial_string_table_size));
5192     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
5193               err_msg("claim value %d after unlink less than initial symbol table size %d",
5194                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
5195   }
5196 
5197   void work(uint worker_id) {
5198     if (_do_in_parallel) {
5199       int strings_processed = 0;
5200       int strings_removed = 0;
5201       int symbols_processed = 0;
5202       int symbols_removed = 0;
5203       if (_process_strings) {
5204         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
5205         Atomic::add(strings_processed, &_strings_processed);
5206         Atomic::add(strings_removed, &_strings_removed);
5207       }
5208       if (_process_symbols) {
5209         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
5210         Atomic::add(symbols_processed, &_symbols_processed);
5211         Atomic::add(symbols_removed, &_symbols_removed);
5212       }
5213     } else {
5214       if (_process_strings) {
5215         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
5216       }
5217       if (_process_symbols) {
5218         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
5219       }
5220     }
5221   }
5222 
5223   size_t strings_processed() const { return (size_t)_strings_processed; }
5224   size_t strings_removed()   const { return (size_t)_strings_removed; }
5225 
5226   size_t symbols_processed() const { return (size_t)_symbols_processed; }
5227   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
5228 };
5229 
5230 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5231                                                      bool process_strings, bool process_symbols) {
5232   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5233                    _g1h->workers()->active_workers() : 1);
5234 
5235   G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5236   if (G1CollectedHeap::use_parallel_gc_threads()) {
5237     set_par_threads(n_workers);
5238     workers()->run_task(&g1_unlink_task);
5239     set_par_threads(0);
5240   } else {
5241     g1_unlink_task.work(0);
5242   }
5243   if (G1TraceStringSymbolTableScrubbing) {
5244     gclog_or_tty->print_cr("Cleaned string and symbol table, "
5245                            "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
5246                            "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
5247                            g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
5248                            g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
5249   }
5250 
5251   if (G1StringDedup::is_enabled()) {
5252     G1StringDedup::unlink(is_alive);
5253   }
5254 }
5255 
5256 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
5257 public:
5258   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
5259     *card_ptr = CardTableModRefBS::dirty_card_val();
5260     return true;
5261   }
5262 };
5263 
5264 void G1CollectedHeap::redirty_logged_cards() {
5265   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
5266   double redirty_logged_cards_start = os::elapsedTime();
5267 
5268   RedirtyLoggedCardTableEntryFastClosure redirty;
5269   dirty_card_queue_set().set_closure(&redirty);
5270   dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5271 
5272   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5273   dcq.merge_bufferlists(&dirty_card_queue_set());
5274   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5275 
5276   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5277 }
5278 
5279 // Weak Reference Processing support
5280 
5281 // An always "is_alive" closure that is used to preserve referents.
5282 // If the object is non-null then it's alive.  Used in the preservation
5283 // of referent objects that are pointed to by reference objects
5284 // discovered by the CM ref processor.
5285 class G1AlwaysAliveClosure: public BoolObjectClosure {
5286   G1CollectedHeap* _g1;
5287 public:
5288   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5289   bool do_object_b(oop p) {
5290     if (p != NULL) {
5291       return true;
5292     }
5293     return false;
5294   }
5295 };
5296 
5297 bool G1STWIsAliveClosure::do_object_b(oop p) {
5298   // An object is reachable if it is outside the collection set,
5299   // or is inside and copied.
5300   return !_g1->obj_in_cs(p) || p->is_forwarded();
5301 }
5302 
5303 // Non Copying Keep Alive closure
5304 class G1KeepAliveClosure: public OopClosure {
5305   G1CollectedHeap* _g1;
5306 public:
5307   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5308   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5309   void do_oop(      oop* p) {
5310     oop obj = *p;
5311 
5312     if (_g1->obj_in_cs(obj)) {
5313       assert( obj->is_forwarded(), "invariant" );
5314       *p = obj->forwardee();
5315     }
5316   }
5317 };
5318 
5319 // Copying Keep Alive closure - can be called from both
5320 // serial and parallel code as long as different worker
5321 // threads utilize different G1ParScanThreadState instances
5322 // and different queues.
5323 
5324 class G1CopyingKeepAliveClosure: public OopClosure {
5325   G1CollectedHeap*         _g1h;
5326   OopClosure*              _copy_non_heap_obj_cl;
5327   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5328   G1ParScanThreadState*    _par_scan_state;
5329 
5330 public:
5331   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5332                             OopClosure* non_heap_obj_cl,
5333                             OopsInHeapRegionClosure* metadata_obj_cl,
5334                             G1ParScanThreadState* pss):
5335     _g1h(g1h),
5336     _copy_non_heap_obj_cl(non_heap_obj_cl),
5337     _copy_metadata_obj_cl(metadata_obj_cl),
5338     _par_scan_state(pss)
5339   {}
5340 
5341   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5342   virtual void do_oop(      oop* p) { do_oop_work(p); }
5343 
5344   template <class T> void do_oop_work(T* p) {
5345     oop obj = oopDesc::load_decode_heap_oop(p);
5346 
5347     if (_g1h->obj_in_cs(obj)) {
5348       // If the referent object has been forwarded (either copied
5349       // to a new location or to itself in the event of an
5350       // evacuation failure) then we need to update the reference
5351       // field and, if both reference and referent are in the G1
5352       // heap, update the RSet for the referent.
5353       //
5354       // If the referent has not been forwarded then we have to keep
5355       // it alive by policy. Therefore we have copy the referent.
5356       //
5357       // If the reference field is in the G1 heap then we can push
5358       // on the PSS queue. When the queue is drained (after each
5359       // phase of reference processing) the object and it's followers
5360       // will be copied, the reference field set to point to the
5361       // new location, and the RSet updated. Otherwise we need to
5362       // use the the non-heap or metadata closures directly to copy
5363       // the referent object and update the pointer, while avoiding
5364       // updating the RSet.
5365 
5366       if (_g1h->is_in_g1_reserved(p)) {
5367         _par_scan_state->push_on_queue(p);
5368       } else {
5369         assert(!ClassLoaderDataGraph::contains((address)p),
5370                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5371                               PTR_FORMAT, p));
5372           _copy_non_heap_obj_cl->do_oop(p);
5373         }
5374       }
5375     }
5376 };
5377 
5378 // Serial drain queue closure. Called as the 'complete_gc'
5379 // closure for each discovered list in some of the
5380 // reference processing phases.
5381 
5382 class G1STWDrainQueueClosure: public VoidClosure {
5383 protected:
5384   G1CollectedHeap* _g1h;
5385   G1ParScanThreadState* _par_scan_state;
5386 
5387   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5388 
5389 public:
5390   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5391     _g1h(g1h),
5392     _par_scan_state(pss)
5393   { }
5394 
5395   void do_void() {
5396     G1ParScanThreadState* const pss = par_scan_state();
5397     pss->trim_queue();
5398   }
5399 };
5400 
5401 // Parallel Reference Processing closures
5402 
5403 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5404 // processing during G1 evacuation pauses.
5405 
5406 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5407 private:
5408   G1CollectedHeap*   _g1h;
5409   RefToScanQueueSet* _queues;
5410   FlexibleWorkGang*  _workers;
5411   int                _active_workers;
5412 
5413 public:
5414   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5415                         FlexibleWorkGang* workers,
5416                         RefToScanQueueSet *task_queues,
5417                         int n_workers) :
5418     _g1h(g1h),
5419     _queues(task_queues),
5420     _workers(workers),
5421     _active_workers(n_workers)
5422   {
5423     assert(n_workers > 0, "shouldn't call this otherwise");
5424   }
5425 
5426   // Executes the given task using concurrent marking worker threads.
5427   virtual void execute(ProcessTask& task);
5428   virtual void execute(EnqueueTask& task);
5429 };
5430 
5431 // Gang task for possibly parallel reference processing
5432 
5433 class G1STWRefProcTaskProxy: public AbstractGangTask {
5434   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5435   ProcessTask&     _proc_task;
5436   G1CollectedHeap* _g1h;
5437   RefToScanQueueSet *_task_queues;
5438   ParallelTaskTerminator* _terminator;
5439 
5440 public:
5441   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5442                      G1CollectedHeap* g1h,
5443                      RefToScanQueueSet *task_queues,
5444                      ParallelTaskTerminator* terminator) :
5445     AbstractGangTask("Process reference objects in parallel"),
5446     _proc_task(proc_task),
5447     _g1h(g1h),
5448     _task_queues(task_queues),
5449     _terminator(terminator)
5450   {}
5451 
5452   virtual void work(uint worker_id) {
5453     // The reference processing task executed by a single worker.
5454     ResourceMark rm;
5455     HandleMark   hm;
5456 
5457     G1STWIsAliveClosure is_alive(_g1h);
5458 
5459     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5460     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5461 
5462     pss.set_evac_failure_closure(&evac_failure_cl);
5463 
5464     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5465     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5466 
5467     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5468     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5469 
5470     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5471     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5472 
5473     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5474       // We also need to mark copied objects.
5475       copy_non_heap_cl = &copy_mark_non_heap_cl;
5476       copy_metadata_cl = &copy_mark_metadata_cl;
5477     }
5478 
5479     // Keep alive closure.
5480     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5481 
5482     // Complete GC closure
5483     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5484 
5485     // Call the reference processing task's work routine.
5486     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5487 
5488     // Note we cannot assert that the refs array is empty here as not all
5489     // of the processing tasks (specifically phase2 - pp2_work) execute
5490     // the complete_gc closure (which ordinarily would drain the queue) so
5491     // the queue may not be empty.
5492   }
5493 };
5494 
5495 // Driver routine for parallel reference processing.
5496 // Creates an instance of the ref processing gang
5497 // task and has the worker threads execute it.
5498 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5499   assert(_workers != NULL, "Need parallel worker threads.");
5500 
5501   ParallelTaskTerminator terminator(_active_workers, _queues);
5502   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5503 
5504   _g1h->set_par_threads(_active_workers);
5505   _workers->run_task(&proc_task_proxy);
5506   _g1h->set_par_threads(0);
5507 }
5508 
5509 // Gang task for parallel reference enqueueing.
5510 
5511 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5512   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5513   EnqueueTask& _enq_task;
5514 
5515 public:
5516   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5517     AbstractGangTask("Enqueue reference objects in parallel"),
5518     _enq_task(enq_task)
5519   { }
5520 
5521   virtual void work(uint worker_id) {
5522     _enq_task.work(worker_id);
5523   }
5524 };
5525 
5526 // Driver routine for parallel reference enqueueing.
5527 // Creates an instance of the ref enqueueing gang
5528 // task and has the worker threads execute it.
5529 
5530 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5531   assert(_workers != NULL, "Need parallel worker threads.");
5532 
5533   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5534 
5535   _g1h->set_par_threads(_active_workers);
5536   _workers->run_task(&enq_task_proxy);
5537   _g1h->set_par_threads(0);
5538 }
5539 
5540 // End of weak reference support closures
5541 
5542 // Abstract task used to preserve (i.e. copy) any referent objects
5543 // that are in the collection set and are pointed to by reference
5544 // objects discovered by the CM ref processor.
5545 
5546 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5547 protected:
5548   G1CollectedHeap* _g1h;
5549   RefToScanQueueSet      *_queues;
5550   ParallelTaskTerminator _terminator;
5551   uint _n_workers;
5552 
5553 public:
5554   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5555     AbstractGangTask("ParPreserveCMReferents"),
5556     _g1h(g1h),
5557     _queues(task_queues),
5558     _terminator(workers, _queues),
5559     _n_workers(workers)
5560   { }
5561 
5562   void work(uint worker_id) {
5563     ResourceMark rm;
5564     HandleMark   hm;
5565 
5566     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5567     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5568 
5569     pss.set_evac_failure_closure(&evac_failure_cl);
5570 
5571     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5572 
5573 
5574     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5575     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5576 
5577     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5578     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5579 
5580     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5581     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5582 
5583     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5584       // We also need to mark copied objects.
5585       copy_non_heap_cl = &copy_mark_non_heap_cl;
5586       copy_metadata_cl = &copy_mark_metadata_cl;
5587     }
5588 
5589     // Is alive closure
5590     G1AlwaysAliveClosure always_alive(_g1h);
5591 
5592     // Copying keep alive closure. Applied to referent objects that need
5593     // to be copied.
5594     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5595 
5596     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5597 
5598     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5599     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5600 
5601     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5602     // So this must be true - but assert just in case someone decides to
5603     // change the worker ids.
5604     assert(0 <= worker_id && worker_id < limit, "sanity");
5605     assert(!rp->discovery_is_atomic(), "check this code");
5606 
5607     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5608     for (uint idx = worker_id; idx < limit; idx += stride) {
5609       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5610 
5611       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5612       while (iter.has_next()) {
5613         // Since discovery is not atomic for the CM ref processor, we
5614         // can see some null referent objects.
5615         iter.load_ptrs(DEBUG_ONLY(true));
5616         oop ref = iter.obj();
5617 
5618         // This will filter nulls.
5619         if (iter.is_referent_alive()) {
5620           iter.make_referent_alive();
5621         }
5622         iter.move_to_next();
5623       }
5624     }
5625 
5626     // Drain the queue - which may cause stealing
5627     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5628     drain_queue.do_void();
5629     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5630     assert(pss.refs()->is_empty(), "should be");
5631   }
5632 };
5633 
5634 // Weak Reference processing during an evacuation pause (part 1).
5635 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5636   double ref_proc_start = os::elapsedTime();
5637 
5638   ReferenceProcessor* rp = _ref_processor_stw;
5639   assert(rp->discovery_enabled(), "should have been enabled");
5640 
5641   // Any reference objects, in the collection set, that were 'discovered'
5642   // by the CM ref processor should have already been copied (either by
5643   // applying the external root copy closure to the discovered lists, or
5644   // by following an RSet entry).
5645   //
5646   // But some of the referents, that are in the collection set, that these
5647   // reference objects point to may not have been copied: the STW ref
5648   // processor would have seen that the reference object had already
5649   // been 'discovered' and would have skipped discovering the reference,
5650   // but would not have treated the reference object as a regular oop.
5651   // As a result the copy closure would not have been applied to the
5652   // referent object.
5653   //
5654   // We need to explicitly copy these referent objects - the references
5655   // will be processed at the end of remarking.
5656   //
5657   // We also need to do this copying before we process the reference
5658   // objects discovered by the STW ref processor in case one of these
5659   // referents points to another object which is also referenced by an
5660   // object discovered by the STW ref processor.
5661 
5662   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5663            no_of_gc_workers == workers()->active_workers(),
5664            "Need to reset active GC workers");
5665 
5666   set_par_threads(no_of_gc_workers);
5667   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5668                                                  no_of_gc_workers,
5669                                                  _task_queues);
5670 
5671   if (G1CollectedHeap::use_parallel_gc_threads()) {
5672     workers()->run_task(&keep_cm_referents);
5673   } else {
5674     keep_cm_referents.work(0);
5675   }
5676 
5677   set_par_threads(0);
5678 
5679   // Closure to test whether a referent is alive.
5680   G1STWIsAliveClosure is_alive(this);
5681 
5682   // Even when parallel reference processing is enabled, the processing
5683   // of JNI refs is serial and performed serially by the current thread
5684   // rather than by a worker. The following PSS will be used for processing
5685   // JNI refs.
5686 
5687   // Use only a single queue for this PSS.
5688   G1ParScanThreadState            pss(this, 0, NULL);
5689 
5690   // We do not embed a reference processor in the copying/scanning
5691   // closures while we're actually processing the discovered
5692   // reference objects.
5693   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5694 
5695   pss.set_evac_failure_closure(&evac_failure_cl);
5696 
5697   assert(pss.refs()->is_empty(), "pre-condition");
5698 
5699   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5700   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5701 
5702   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5703   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5704 
5705   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5706   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5707 
5708   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5709     // We also need to mark copied objects.
5710     copy_non_heap_cl = &copy_mark_non_heap_cl;
5711     copy_metadata_cl = &copy_mark_metadata_cl;
5712   }
5713 
5714   // Keep alive closure.
5715   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5716 
5717   // Serial Complete GC closure
5718   G1STWDrainQueueClosure drain_queue(this, &pss);
5719 
5720   // Setup the soft refs policy...
5721   rp->setup_policy(false);
5722 
5723   ReferenceProcessorStats stats;
5724   if (!rp->processing_is_mt()) {
5725     // Serial reference processing...
5726     stats = rp->process_discovered_references(&is_alive,
5727                                               &keep_alive,
5728                                               &drain_queue,
5729                                               NULL,
5730                                               _gc_timer_stw);
5731   } else {
5732     // Parallel reference processing
5733     assert(rp->num_q() == no_of_gc_workers, "sanity");
5734     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5735 
5736     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5737     stats = rp->process_discovered_references(&is_alive,
5738                                               &keep_alive,
5739                                               &drain_queue,
5740                                               &par_task_executor,
5741                                               _gc_timer_stw);
5742   }
5743 
5744   _gc_tracer_stw->report_gc_reference_stats(stats);
5745   // We have completed copying any necessary live referent objects
5746   // (that were not copied during the actual pause) so we can
5747   // retire any active alloc buffers
5748   pss.retire_alloc_buffers();
5749   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5750 
5751   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5752   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5753 }
5754 
5755 // Weak Reference processing during an evacuation pause (part 2).
5756 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5757   double ref_enq_start = os::elapsedTime();
5758 
5759   ReferenceProcessor* rp = _ref_processor_stw;
5760   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5761 
5762   // Now enqueue any remaining on the discovered lists on to
5763   // the pending list.
5764   if (!rp->processing_is_mt()) {
5765     // Serial reference processing...
5766     rp->enqueue_discovered_references();
5767   } else {
5768     // Parallel reference enqueueing
5769 
5770     assert(no_of_gc_workers == workers()->active_workers(),
5771            "Need to reset active workers");
5772     assert(rp->num_q() == no_of_gc_workers, "sanity");
5773     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5774 
5775     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5776     rp->enqueue_discovered_references(&par_task_executor);
5777   }
5778 
5779   rp->verify_no_references_recorded();
5780   assert(!rp->discovery_enabled(), "should have been disabled");
5781 
5782   // FIXME
5783   // CM's reference processing also cleans up the string and symbol tables.
5784   // Should we do that here also? We could, but it is a serial operation
5785   // and could significantly increase the pause time.
5786 
5787   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5788   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5789 }
5790 
5791 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5792   _expand_heap_after_alloc_failure = true;
5793   _evacuation_failed = false;
5794 
5795   // Should G1EvacuationFailureALot be in effect for this GC?
5796   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5797 
5798   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5799 
5800   // Disable the hot card cache.
5801   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5802   hot_card_cache->reset_hot_cache_claimed_index();
5803   hot_card_cache->set_use_cache(false);
5804 
5805   uint n_workers;
5806   if (G1CollectedHeap::use_parallel_gc_threads()) {
5807     n_workers =
5808       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5809                                      workers()->active_workers(),
5810                                      Threads::number_of_non_daemon_threads());
5811     assert(UseDynamicNumberOfGCThreads ||
5812            n_workers == workers()->total_workers(),
5813            "If not dynamic should be using all the  workers");
5814     workers()->set_active_workers(n_workers);
5815     set_par_threads(n_workers);
5816   } else {
5817     assert(n_par_threads() == 0,
5818            "Should be the original non-parallel value");
5819     n_workers = 1;
5820   }
5821 
5822   G1ParTask g1_par_task(this, _task_queues);
5823 
5824   init_for_evac_failure(NULL);
5825 
5826   rem_set()->prepare_for_younger_refs_iterate(true);
5827 
5828   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5829   double start_par_time_sec = os::elapsedTime();
5830   double end_par_time_sec;
5831 
5832   {
5833     StrongRootsScope srs(this);
5834 
5835     if (G1CollectedHeap::use_parallel_gc_threads()) {
5836       // The individual threads will set their evac-failure closures.
5837       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5838       // These tasks use ShareHeap::_process_strong_tasks
5839       assert(UseDynamicNumberOfGCThreads ||
5840              workers()->active_workers() == workers()->total_workers(),
5841              "If not dynamic should be using all the  workers");
5842       workers()->run_task(&g1_par_task);
5843     } else {
5844       g1_par_task.set_for_termination(n_workers);
5845       g1_par_task.work(0);
5846     }
5847     end_par_time_sec = os::elapsedTime();
5848 
5849     // Closing the inner scope will execute the destructor
5850     // for the StrongRootsScope object. We record the current
5851     // elapsed time before closing the scope so that time
5852     // taken for the SRS destructor is NOT included in the
5853     // reported parallel time.
5854   }
5855 
5856   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5857   g1_policy()->phase_times()->record_par_time(par_time_ms);
5858 
5859   double code_root_fixup_time_ms =
5860         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5861   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5862 
5863   set_par_threads(0);
5864 
5865   // Process any discovered reference objects - we have
5866   // to do this _before_ we retire the GC alloc regions
5867   // as we may have to copy some 'reachable' referent
5868   // objects (and their reachable sub-graphs) that were
5869   // not copied during the pause.
5870   process_discovered_references(n_workers);
5871 
5872   // Weak root processing.
5873   {
5874     G1STWIsAliveClosure is_alive(this);
5875     G1KeepAliveClosure keep_alive(this);
5876     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5877     if (G1StringDedup::is_enabled()) {
5878       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5879     }
5880   }
5881 
5882   release_gc_alloc_regions(n_workers, evacuation_info);
5883   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5884 
5885   // Reset and re-enable the hot card cache.
5886   // Note the counts for the cards in the regions in the
5887   // collection set are reset when the collection set is freed.
5888   hot_card_cache->reset_hot_cache();
5889   hot_card_cache->set_use_cache(true);
5890 
5891   // Migrate the strong code roots attached to each region in
5892   // the collection set. Ideally we would like to do this
5893   // after we have finished the scanning/evacuation of the
5894   // strong code roots for a particular heap region.
5895   migrate_strong_code_roots();
5896 
5897   purge_code_root_memory();
5898 
5899   if (g1_policy()->during_initial_mark_pause()) {
5900     // Reset the claim values set during marking the strong code roots
5901     reset_heap_region_claim_values();
5902   }
5903 
5904   finalize_for_evac_failure();
5905 
5906   if (evacuation_failed()) {
5907     remove_self_forwarding_pointers();
5908 
5909     // Reset the G1EvacuationFailureALot counters and flags
5910     // Note: the values are reset only when an actual
5911     // evacuation failure occurs.
5912     NOT_PRODUCT(reset_evacuation_should_fail();)
5913   }
5914 
5915   // Enqueue any remaining references remaining on the STW
5916   // reference processor's discovered lists. We need to do
5917   // this after the card table is cleaned (and verified) as
5918   // the act of enqueueing entries on to the pending list
5919   // will log these updates (and dirty their associated
5920   // cards). We need these updates logged to update any
5921   // RSets.
5922   enqueue_discovered_references(n_workers);
5923 
5924   if (G1DeferredRSUpdate) {
5925     redirty_logged_cards();
5926   }
5927   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5928 }
5929 
5930 void G1CollectedHeap::free_region(HeapRegion* hr,
5931                                   FreeRegionList* free_list,
5932                                   bool par,
5933                                   bool locked) {
5934   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5935   assert(!hr->is_empty(), "the region should not be empty");
5936   assert(free_list != NULL, "pre-condition");
5937 
5938   // Clear the card counts for this region.
5939   // Note: we only need to do this if the region is not young
5940   // (since we don't refine cards in young regions).
5941   if (!hr->is_young()) {
5942     _cg1r->hot_card_cache()->reset_card_counts(hr);
5943   }
5944   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5945   free_list->add_ordered(hr);
5946 }
5947 
5948 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5949                                      FreeRegionList* free_list,
5950                                      bool par) {
5951   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5952   assert(free_list != NULL, "pre-condition");
5953 
5954   size_t hr_capacity = hr->capacity();
5955   // We need to read this before we make the region non-humongous,
5956   // otherwise the information will be gone.
5957   uint last_index = hr->last_hc_index();
5958   hr->set_notHumongous();
5959   free_region(hr, free_list, par);
5960 
5961   uint i = hr->hrs_index() + 1;
5962   while (i < last_index) {
5963     HeapRegion* curr_hr = region_at(i);
5964     assert(curr_hr->continuesHumongous(), "invariant");
5965     curr_hr->set_notHumongous();
5966     free_region(curr_hr, free_list, par);
5967     i += 1;
5968   }
5969 }
5970 
5971 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5972                                        const HeapRegionSetCount& humongous_regions_removed) {
5973   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5974     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5975     _old_set.bulk_remove(old_regions_removed);
5976     _humongous_set.bulk_remove(humongous_regions_removed);
5977   }
5978 
5979 }
5980 
5981 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5982   assert(list != NULL, "list can't be null");
5983   if (!list->is_empty()) {
5984     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5985     _free_list.add_ordered(list);
5986   }
5987 }
5988 
5989 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5990   assert(_summary_bytes_used >= bytes,
5991          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
5992                   _summary_bytes_used, bytes));
5993   _summary_bytes_used -= bytes;
5994 }
5995 
5996 class G1ParCleanupCTTask : public AbstractGangTask {
5997   G1SATBCardTableModRefBS* _ct_bs;
5998   G1CollectedHeap* _g1h;
5999   HeapRegion* volatile _su_head;
6000 public:
6001   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6002                      G1CollectedHeap* g1h) :
6003     AbstractGangTask("G1 Par Cleanup CT Task"),
6004     _ct_bs(ct_bs), _g1h(g1h) { }
6005 
6006   void work(uint worker_id) {
6007     HeapRegion* r;
6008     while (r = _g1h->pop_dirty_cards_region()) {
6009       clear_cards(r);
6010     }
6011   }
6012 
6013   void clear_cards(HeapRegion* r) {
6014     // Cards of the survivors should have already been dirtied.
6015     if (!r->is_survivor()) {
6016       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6017     }
6018   }
6019 };
6020 
6021 #ifndef PRODUCT
6022 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6023   G1CollectedHeap* _g1h;
6024   G1SATBCardTableModRefBS* _ct_bs;
6025 public:
6026   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6027     : _g1h(g1h), _ct_bs(ct_bs) { }
6028   virtual bool doHeapRegion(HeapRegion* r) {
6029     if (r->is_survivor()) {
6030       _g1h->verify_dirty_region(r);
6031     } else {
6032       _g1h->verify_not_dirty_region(r);
6033     }
6034     return false;
6035   }
6036 };
6037 
6038 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6039   // All of the region should be clean.
6040   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6041   MemRegion mr(hr->bottom(), hr->end());
6042   ct_bs->verify_not_dirty_region(mr);
6043 }
6044 
6045 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6046   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6047   // dirty allocated blocks as they allocate them. The thread that
6048   // retires each region and replaces it with a new one will do a
6049   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6050   // not dirty that area (one less thing to have to do while holding
6051   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6052   // is dirty.
6053   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6054   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6055   if (hr->is_young()) {
6056     ct_bs->verify_g1_young_region(mr);
6057   } else {
6058     ct_bs->verify_dirty_region(mr);
6059   }
6060 }
6061 
6062 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6063   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6064   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6065     verify_dirty_region(hr);
6066   }
6067 }
6068 
6069 void G1CollectedHeap::verify_dirty_young_regions() {
6070   verify_dirty_young_list(_young_list->first_region());
6071 }
6072 #endif
6073 
6074 void G1CollectedHeap::cleanUpCardTable() {
6075   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6076   double start = os::elapsedTime();
6077 
6078   {
6079     // Iterate over the dirty cards region list.
6080     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6081 
6082     if (G1CollectedHeap::use_parallel_gc_threads()) {
6083       set_par_threads();
6084       workers()->run_task(&cleanup_task);
6085       set_par_threads(0);
6086     } else {
6087       while (_dirty_cards_region_list) {
6088         HeapRegion* r = _dirty_cards_region_list;
6089         cleanup_task.clear_cards(r);
6090         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6091         if (_dirty_cards_region_list == r) {
6092           // The last region.
6093           _dirty_cards_region_list = NULL;
6094         }
6095         r->set_next_dirty_cards_region(NULL);
6096       }
6097     }
6098 #ifndef PRODUCT
6099     if (G1VerifyCTCleanup || VerifyAfterGC) {
6100       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6101       heap_region_iterate(&cleanup_verifier);
6102     }
6103 #endif
6104   }
6105 
6106   double elapsed = os::elapsedTime() - start;
6107   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6108 }
6109 
6110 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6111   size_t pre_used = 0;
6112   FreeRegionList local_free_list("Local List for CSet Freeing");
6113 
6114   double young_time_ms     = 0.0;
6115   double non_young_time_ms = 0.0;
6116 
6117   // Since the collection set is a superset of the the young list,
6118   // all we need to do to clear the young list is clear its
6119   // head and length, and unlink any young regions in the code below
6120   _young_list->clear();
6121 
6122   G1CollectorPolicy* policy = g1_policy();
6123 
6124   double start_sec = os::elapsedTime();
6125   bool non_young = true;
6126 
6127   HeapRegion* cur = cs_head;
6128   int age_bound = -1;
6129   size_t rs_lengths = 0;
6130 
6131   while (cur != NULL) {
6132     assert(!is_on_master_free_list(cur), "sanity");
6133     if (non_young) {
6134       if (cur->is_young()) {
6135         double end_sec = os::elapsedTime();
6136         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6137         non_young_time_ms += elapsed_ms;
6138 
6139         start_sec = os::elapsedTime();
6140         non_young = false;
6141       }
6142     } else {
6143       if (!cur->is_young()) {
6144         double end_sec = os::elapsedTime();
6145         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6146         young_time_ms += elapsed_ms;
6147 
6148         start_sec = os::elapsedTime();
6149         non_young = true;
6150       }
6151     }
6152 
6153     rs_lengths += cur->rem_set()->occupied_locked();
6154 
6155     HeapRegion* next = cur->next_in_collection_set();
6156     assert(cur->in_collection_set(), "bad CS");
6157     cur->set_next_in_collection_set(NULL);
6158     cur->set_in_collection_set(false);
6159 
6160     if (cur->is_young()) {
6161       int index = cur->young_index_in_cset();
6162       assert(index != -1, "invariant");
6163       assert((uint) index < policy->young_cset_region_length(), "invariant");
6164       size_t words_survived = _surviving_young_words[index];
6165       cur->record_surv_words_in_group(words_survived);
6166 
6167       // At this point the we have 'popped' cur from the collection set
6168       // (linked via next_in_collection_set()) but it is still in the
6169       // young list (linked via next_young_region()). Clear the
6170       // _next_young_region field.
6171       cur->set_next_young_region(NULL);
6172     } else {
6173       int index = cur->young_index_in_cset();
6174       assert(index == -1, "invariant");
6175     }
6176 
6177     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6178             (!cur->is_young() && cur->young_index_in_cset() == -1),
6179             "invariant" );
6180 
6181     if (!cur->evacuation_failed()) {
6182       MemRegion used_mr = cur->used_region();
6183 
6184       // And the region is empty.
6185       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6186       pre_used += cur->used();
6187       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6188     } else {
6189       cur->uninstall_surv_rate_group();
6190       if (cur->is_young()) {
6191         cur->set_young_index_in_cset(-1);
6192       }
6193       cur->set_not_young();
6194       cur->set_evacuation_failed(false);
6195       // The region is now considered to be old.
6196       _old_set.add(cur);
6197       evacuation_info.increment_collectionset_used_after(cur->used());
6198     }
6199     cur = next;
6200   }
6201 
6202   evacuation_info.set_regions_freed(local_free_list.length());
6203   policy->record_max_rs_lengths(rs_lengths);
6204   policy->cset_regions_freed();
6205 
6206   double end_sec = os::elapsedTime();
6207   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6208 
6209   if (non_young) {
6210     non_young_time_ms += elapsed_ms;
6211   } else {
6212     young_time_ms += elapsed_ms;
6213   }
6214 
6215   prepend_to_freelist(&local_free_list);
6216   decrement_summary_bytes(pre_used);
6217   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6218   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6219 }
6220 
6221 // This routine is similar to the above but does not record
6222 // any policy statistics or update free lists; we are abandoning
6223 // the current incremental collection set in preparation of a
6224 // full collection. After the full GC we will start to build up
6225 // the incremental collection set again.
6226 // This is only called when we're doing a full collection
6227 // and is immediately followed by the tearing down of the young list.
6228 
6229 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6230   HeapRegion* cur = cs_head;
6231 
6232   while (cur != NULL) {
6233     HeapRegion* next = cur->next_in_collection_set();
6234     assert(cur->in_collection_set(), "bad CS");
6235     cur->set_next_in_collection_set(NULL);
6236     cur->set_in_collection_set(false);
6237     cur->set_young_index_in_cset(-1);
6238     cur = next;
6239   }
6240 }
6241 
6242 void G1CollectedHeap::set_free_regions_coming() {
6243   if (G1ConcRegionFreeingVerbose) {
6244     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6245                            "setting free regions coming");
6246   }
6247 
6248   assert(!free_regions_coming(), "pre-condition");
6249   _free_regions_coming = true;
6250 }
6251 
6252 void G1CollectedHeap::reset_free_regions_coming() {
6253   assert(free_regions_coming(), "pre-condition");
6254 
6255   {
6256     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6257     _free_regions_coming = false;
6258     SecondaryFreeList_lock->notify_all();
6259   }
6260 
6261   if (G1ConcRegionFreeingVerbose) {
6262     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6263                            "reset free regions coming");
6264   }
6265 }
6266 
6267 void G1CollectedHeap::wait_while_free_regions_coming() {
6268   // Most of the time we won't have to wait, so let's do a quick test
6269   // first before we take the lock.
6270   if (!free_regions_coming()) {
6271     return;
6272   }
6273 
6274   if (G1ConcRegionFreeingVerbose) {
6275     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6276                            "waiting for free regions");
6277   }
6278 
6279   {
6280     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6281     while (free_regions_coming()) {
6282       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6283     }
6284   }
6285 
6286   if (G1ConcRegionFreeingVerbose) {
6287     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6288                            "done waiting for free regions");
6289   }
6290 }
6291 
6292 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6293   assert(heap_lock_held_for_gc(),
6294               "the heap lock should already be held by or for this thread");
6295   _young_list->push_region(hr);
6296 }
6297 
6298 class NoYoungRegionsClosure: public HeapRegionClosure {
6299 private:
6300   bool _success;
6301 public:
6302   NoYoungRegionsClosure() : _success(true) { }
6303   bool doHeapRegion(HeapRegion* r) {
6304     if (r->is_young()) {
6305       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6306                              r->bottom(), r->end());
6307       _success = false;
6308     }
6309     return false;
6310   }
6311   bool success() { return _success; }
6312 };
6313 
6314 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6315   bool ret = _young_list->check_list_empty(check_sample);
6316 
6317   if (check_heap) {
6318     NoYoungRegionsClosure closure;
6319     heap_region_iterate(&closure);
6320     ret = ret && closure.success();
6321   }
6322 
6323   return ret;
6324 }
6325 
6326 class TearDownRegionSetsClosure : public HeapRegionClosure {
6327 private:
6328   HeapRegionSet *_old_set;
6329 
6330 public:
6331   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6332 
6333   bool doHeapRegion(HeapRegion* r) {
6334     if (r->is_empty()) {
6335       // We ignore empty regions, we'll empty the free list afterwards
6336     } else if (r->is_young()) {
6337       // We ignore young regions, we'll empty the young list afterwards
6338     } else if (r->isHumongous()) {
6339       // We ignore humongous regions, we're not tearing down the
6340       // humongous region set
6341     } else {
6342       // The rest should be old
6343       _old_set->remove(r);
6344     }
6345     return false;
6346   }
6347 
6348   ~TearDownRegionSetsClosure() {
6349     assert(_old_set->is_empty(), "post-condition");
6350   }
6351 };
6352 
6353 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6354   assert_at_safepoint(true /* should_be_vm_thread */);
6355 
6356   if (!free_list_only) {
6357     TearDownRegionSetsClosure cl(&_old_set);
6358     heap_region_iterate(&cl);
6359 
6360     // Note that emptying the _young_list is postponed and instead done as
6361     // the first step when rebuilding the regions sets again. The reason for
6362     // this is that during a full GC string deduplication needs to know if
6363     // a collected region was young or old when the full GC was initiated.
6364   }
6365   _free_list.remove_all();
6366 }
6367 
6368 class RebuildRegionSetsClosure : public HeapRegionClosure {
6369 private:
6370   bool            _free_list_only;
6371   HeapRegionSet*   _old_set;
6372   FreeRegionList* _free_list;
6373   size_t          _total_used;
6374 
6375 public:
6376   RebuildRegionSetsClosure(bool free_list_only,
6377                            HeapRegionSet* old_set, FreeRegionList* free_list) :
6378     _free_list_only(free_list_only),
6379     _old_set(old_set), _free_list(free_list), _total_used(0) {
6380     assert(_free_list->is_empty(), "pre-condition");
6381     if (!free_list_only) {
6382       assert(_old_set->is_empty(), "pre-condition");
6383     }
6384   }
6385 
6386   bool doHeapRegion(HeapRegion* r) {
6387     if (r->continuesHumongous()) {
6388       return false;
6389     }
6390 
6391     if (r->is_empty()) {
6392       // Add free regions to the free list
6393       _free_list->add_as_tail(r);
6394     } else if (!_free_list_only) {
6395       assert(!r->is_young(), "we should not come across young regions");
6396 
6397       if (r->isHumongous()) {
6398         // We ignore humongous regions, we left the humongous set unchanged
6399       } else {
6400         // The rest should be old, add them to the old set
6401         _old_set->add(r);
6402       }
6403       _total_used += r->used();
6404     }
6405 
6406     return false;
6407   }
6408 
6409   size_t total_used() {
6410     return _total_used;
6411   }
6412 };
6413 
6414 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6415   assert_at_safepoint(true /* should_be_vm_thread */);
6416 
6417   if (!free_list_only) {
6418     _young_list->empty_list();
6419   }
6420 
6421   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6422   heap_region_iterate(&cl);
6423 
6424   if (!free_list_only) {
6425     _summary_bytes_used = cl.total_used();
6426   }
6427   assert(_summary_bytes_used == recalculate_used(),
6428          err_msg("inconsistent _summary_bytes_used, "
6429                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6430                  _summary_bytes_used, recalculate_used()));
6431 }
6432 
6433 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6434   _refine_cte_cl->set_concurrent(concurrent);
6435 }
6436 
6437 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6438   HeapRegion* hr = heap_region_containing(p);
6439   if (hr == NULL) {
6440     return false;
6441   } else {
6442     return hr->is_in(p);
6443   }
6444 }
6445 
6446 // Methods for the mutator alloc region
6447 
6448 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6449                                                       bool force) {
6450   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6451   assert(!force || g1_policy()->can_expand_young_list(),
6452          "if force is true we should be able to expand the young list");
6453   bool young_list_full = g1_policy()->is_young_list_full();
6454   if (force || !young_list_full) {
6455     HeapRegion* new_alloc_region = new_region(word_size,
6456                                               false /* is_old */,
6457                                               false /* do_expand */);
6458     if (new_alloc_region != NULL) {
6459       set_region_short_lived_locked(new_alloc_region);
6460       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6461       return new_alloc_region;
6462     }
6463   }
6464   return NULL;
6465 }
6466 
6467 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6468                                                   size_t allocated_bytes) {
6469   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6470   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6471 
6472   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6473   _summary_bytes_used += allocated_bytes;
6474   _hr_printer.retire(alloc_region);
6475   // We update the eden sizes here, when the region is retired,
6476   // instead of when it's allocated, since this is the point that its
6477   // used space has been recored in _summary_bytes_used.
6478   g1mm()->update_eden_size();
6479 }
6480 
6481 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6482                                                     bool force) {
6483   return _g1h->new_mutator_alloc_region(word_size, force);
6484 }
6485 
6486 void G1CollectedHeap::set_par_threads() {
6487   // Don't change the number of workers.  Use the value previously set
6488   // in the workgroup.
6489   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6490   uint n_workers = workers()->active_workers();
6491   assert(UseDynamicNumberOfGCThreads ||
6492            n_workers == workers()->total_workers(),
6493       "Otherwise should be using the total number of workers");
6494   if (n_workers == 0) {
6495     assert(false, "Should have been set in prior evacuation pause.");
6496     n_workers = ParallelGCThreads;
6497     workers()->set_active_workers(n_workers);
6498   }
6499   set_par_threads(n_workers);
6500 }
6501 
6502 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6503                                        size_t allocated_bytes) {
6504   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6505 }
6506 
6507 // Methods for the GC alloc regions
6508 
6509 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6510                                                  uint count,
6511                                                  GCAllocPurpose ap) {
6512   assert(FreeList_lock->owned_by_self(), "pre-condition");
6513 
6514   if (count < g1_policy()->max_regions(ap)) {
6515     bool survivor = (ap == GCAllocForSurvived);
6516     HeapRegion* new_alloc_region = new_region(word_size,
6517                                               !survivor,
6518                                               true /* do_expand */);
6519     if (new_alloc_region != NULL) {
6520       // We really only need to do this for old regions given that we
6521       // should never scan survivors. But it doesn't hurt to do it
6522       // for survivors too.
6523       new_alloc_region->set_saved_mark();
6524       if (survivor) {
6525         new_alloc_region->set_survivor();
6526         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6527       } else {
6528         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6529       }
6530       bool during_im = g1_policy()->during_initial_mark_pause();
6531       new_alloc_region->note_start_of_copying(during_im);
6532       return new_alloc_region;
6533     } else {
6534       g1_policy()->note_alloc_region_limit_reached(ap);
6535     }
6536   }
6537   return NULL;
6538 }
6539 
6540 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6541                                              size_t allocated_bytes,
6542                                              GCAllocPurpose ap) {
6543   bool during_im = g1_policy()->during_initial_mark_pause();
6544   alloc_region->note_end_of_copying(during_im);
6545   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6546   if (ap == GCAllocForSurvived) {
6547     young_list()->add_survivor_region(alloc_region);
6548   } else {
6549     _old_set.add(alloc_region);
6550   }
6551   _hr_printer.retire(alloc_region);
6552 }
6553 
6554 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6555                                                        bool force) {
6556   assert(!force, "not supported for GC alloc regions");
6557   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6558 }
6559 
6560 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6561                                           size_t allocated_bytes) {
6562   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6563                                GCAllocForSurvived);
6564 }
6565 
6566 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6567                                                   bool force) {
6568   assert(!force, "not supported for GC alloc regions");
6569   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6570 }
6571 
6572 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6573                                      size_t allocated_bytes) {
6574   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6575                                GCAllocForTenured);
6576 }
6577 // Heap region set verification
6578 
6579 class VerifyRegionListsClosure : public HeapRegionClosure {
6580 private:
6581   HeapRegionSet*   _old_set;
6582   HeapRegionSet*   _humongous_set;
6583   FreeRegionList*  _free_list;
6584 
6585 public:
6586   HeapRegionSetCount _old_count;
6587   HeapRegionSetCount _humongous_count;
6588   HeapRegionSetCount _free_count;
6589 
6590   VerifyRegionListsClosure(HeapRegionSet* old_set,
6591                            HeapRegionSet* humongous_set,
6592                            FreeRegionList* free_list) :
6593     _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
6594     _old_count(), _humongous_count(), _free_count(){ }
6595 
6596   bool doHeapRegion(HeapRegion* hr) {
6597     if (hr->continuesHumongous()) {
6598       return false;
6599     }
6600 
6601     if (hr->is_young()) {
6602       // TODO
6603     } else if (hr->startsHumongous()) {
6604       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrs_index()));
6605       _humongous_count.increment(1u, hr->capacity());
6606     } else if (hr->is_empty()) {
6607       assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->hrs_index()));
6608       _free_count.increment(1u, hr->capacity());
6609     } else {
6610       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrs_index()));
6611       _old_count.increment(1u, hr->capacity());
6612     }
6613     return false;
6614   }
6615 
6616   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
6617     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6618     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6619         old_set->total_capacity_bytes(), _old_count.capacity()));
6620 
6621     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6622     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6623         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6624 
6625     guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
6626     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6627         free_list->total_capacity_bytes(), _free_count.capacity()));
6628   }
6629 };
6630 
6631 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6632                                              HeapWord* bottom) {
6633   HeapWord* end = bottom + HeapRegion::GrainWords;
6634   MemRegion mr(bottom, end);
6635   assert(_g1_reserved.contains(mr), "invariant");
6636   // This might return NULL if the allocation fails
6637   return new HeapRegion(hrs_index, _bot_shared, mr);
6638 }
6639 
6640 void G1CollectedHeap::verify_region_sets() {
6641   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6642 
6643   // First, check the explicit lists.
6644   _free_list.verify_list();
6645   {
6646     // Given that a concurrent operation might be adding regions to
6647     // the secondary free list we have to take the lock before
6648     // verifying it.
6649     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6650     _secondary_free_list.verify_list();
6651   }
6652 
6653   // If a concurrent region freeing operation is in progress it will
6654   // be difficult to correctly attributed any free regions we come
6655   // across to the correct free list given that they might belong to
6656   // one of several (free_list, secondary_free_list, any local lists,
6657   // etc.). So, if that's the case we will skip the rest of the
6658   // verification operation. Alternatively, waiting for the concurrent
6659   // operation to complete will have a non-trivial effect on the GC's
6660   // operation (no concurrent operation will last longer than the
6661   // interval between two calls to verification) and it might hide
6662   // any issues that we would like to catch during testing.
6663   if (free_regions_coming()) {
6664     return;
6665   }
6666 
6667   // Make sure we append the secondary_free_list on the free_list so
6668   // that all free regions we will come across can be safely
6669   // attributed to the free_list.
6670   append_secondary_free_list_if_not_empty_with_lock();
6671 
6672   // Finally, make sure that the region accounting in the lists is
6673   // consistent with what we see in the heap.
6674 
6675   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6676   heap_region_iterate(&cl);
6677   cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
6678 }
6679 
6680 // Optimized nmethod scanning
6681 
6682 class RegisterNMethodOopClosure: public OopClosure {
6683   G1CollectedHeap* _g1h;
6684   nmethod* _nm;
6685 
6686   template <class T> void do_oop_work(T* p) {
6687     T heap_oop = oopDesc::load_heap_oop(p);
6688     if (!oopDesc::is_null(heap_oop)) {
6689       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6690       HeapRegion* hr = _g1h->heap_region_containing(obj);
6691       assert(!hr->continuesHumongous(),
6692              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6693                      " starting at "HR_FORMAT,
6694                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6695 
6696       // HeapRegion::add_strong_code_root() avoids adding duplicate
6697       // entries but having duplicates is  OK since we "mark" nmethods
6698       // as visited when we scan the strong code root lists during the GC.
6699       hr->add_strong_code_root(_nm);
6700       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
6701              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
6702                      _nm, HR_FORMAT_PARAMS(hr)));
6703     }
6704   }
6705 
6706 public:
6707   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6708     _g1h(g1h), _nm(nm) {}
6709 
6710   void do_oop(oop* p)       { do_oop_work(p); }
6711   void do_oop(narrowOop* p) { do_oop_work(p); }
6712 };
6713 
6714 class UnregisterNMethodOopClosure: public OopClosure {
6715   G1CollectedHeap* _g1h;
6716   nmethod* _nm;
6717 
6718   template <class T> void do_oop_work(T* p) {
6719     T heap_oop = oopDesc::load_heap_oop(p);
6720     if (!oopDesc::is_null(heap_oop)) {
6721       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6722       HeapRegion* hr = _g1h->heap_region_containing(obj);
6723       assert(!hr->continuesHumongous(),
6724              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6725                      " starting at "HR_FORMAT,
6726                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6727 
6728       hr->remove_strong_code_root(_nm);
6729       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
6730              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
6731                      _nm, HR_FORMAT_PARAMS(hr)));
6732     }
6733   }
6734 
6735 public:
6736   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6737     _g1h(g1h), _nm(nm) {}
6738 
6739   void do_oop(oop* p)       { do_oop_work(p); }
6740   void do_oop(narrowOop* p) { do_oop_work(p); }
6741 };
6742 
6743 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6744   CollectedHeap::register_nmethod(nm);
6745 
6746   guarantee(nm != NULL, "sanity");
6747   RegisterNMethodOopClosure reg_cl(this, nm);
6748   nm->oops_do(&reg_cl);
6749 }
6750 
6751 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6752   CollectedHeap::unregister_nmethod(nm);
6753 
6754   guarantee(nm != NULL, "sanity");
6755   UnregisterNMethodOopClosure reg_cl(this, nm);
6756   nm->oops_do(&reg_cl, true);
6757 }
6758 
6759 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
6760 public:
6761   bool doHeapRegion(HeapRegion *hr) {
6762     assert(!hr->isHumongous(),
6763            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
6764                    HR_FORMAT_PARAMS(hr)));
6765     hr->migrate_strong_code_roots();
6766     return false;
6767   }
6768 };
6769 
6770 void G1CollectedHeap::migrate_strong_code_roots() {
6771   MigrateCodeRootsHeapRegionClosure cl;
6772   double migrate_start = os::elapsedTime();
6773   collection_set_iterate(&cl);
6774   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
6775   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
6776 }
6777 
6778 void G1CollectedHeap::purge_code_root_memory() {
6779   double purge_start = os::elapsedTime();
6780   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
6781   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6782   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6783 }
6784 
6785 // Mark all the code roots that point into regions *not* in the
6786 // collection set.
6787 //
6788 // Note we do not want to use a "marking" CodeBlobToOopClosure while
6789 // walking the the code roots lists of regions not in the collection
6790 // set. Suppose we have an nmethod (M) that points to objects in two
6791 // separate regions - one in the collection set (R1) and one not (R2).
6792 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
6793 // nmethod M when walking the code roots for R1. When we come to scan
6794 // the code roots for R2, we would see that M is already marked and it
6795 // would be skipped and the objects in R2 that are referenced from M
6796 // would not be evacuated.
6797 
6798 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
6799 
6800   class MarkStrongCodeRootOopClosure: public OopClosure {
6801     ConcurrentMark* _cm;
6802     HeapRegion* _hr;
6803     uint _worker_id;
6804 
6805     template <class T> void do_oop_work(T* p) {
6806       T heap_oop = oopDesc::load_heap_oop(p);
6807       if (!oopDesc::is_null(heap_oop)) {
6808         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6809         // Only mark objects in the region (which is assumed
6810         // to be not in the collection set).
6811         if (_hr->is_in(obj)) {
6812           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
6813         }
6814       }
6815     }
6816 
6817   public:
6818     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
6819       _cm(cm), _hr(hr), _worker_id(worker_id) {
6820       assert(!_hr->in_collection_set(), "sanity");
6821     }
6822 
6823     void do_oop(narrowOop* p) { do_oop_work(p); }
6824     void do_oop(oop* p)       { do_oop_work(p); }
6825   };
6826 
6827   MarkStrongCodeRootOopClosure _oop_cl;
6828 
6829 public:
6830   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
6831     _oop_cl(cm, hr, worker_id) {}
6832 
6833   void do_code_blob(CodeBlob* cb) {
6834     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
6835     if (nm != NULL) {
6836       nm->oops_do(&_oop_cl);
6837     }
6838   }
6839 };
6840 
6841 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
6842   G1CollectedHeap* _g1h;
6843   uint _worker_id;
6844 
6845 public:
6846   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
6847     _g1h(g1h), _worker_id(worker_id) {}
6848 
6849   bool doHeapRegion(HeapRegion *hr) {
6850     HeapRegionRemSet* hrrs = hr->rem_set();
6851     if (hr->continuesHumongous()) {
6852       // Code roots should never be attached to a continuation of a humongous region
6853       assert(hrrs->strong_code_roots_list_length() == 0,
6854              err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
6855                      " starting at "HR_FORMAT", but has "SIZE_FORMAT,
6856                      HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
6857                      hrrs->strong_code_roots_list_length()));
6858       return false;
6859     }
6860 
6861     if (hr->in_collection_set()) {
6862       // Don't mark code roots into regions in the collection set here.
6863       // They will be marked when we scan them.
6864       return false;
6865     }
6866 
6867     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
6868     hr->strong_code_roots_do(&cb_cl);
6869     return false;
6870   }
6871 };
6872 
6873 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
6874   MarkStrongCodeRootsHRClosure cl(this, worker_id);
6875   if (G1CollectedHeap::use_parallel_gc_threads()) {
6876     heap_region_par_iterate_chunked(&cl,
6877                                     worker_id,
6878                                     workers()->active_workers(),
6879                                     HeapRegion::ParMarkRootClaimValue);
6880   } else {
6881     heap_region_iterate(&cl);
6882   }
6883 }
6884 
6885 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6886   G1CollectedHeap* _g1h;
6887 
6888 public:
6889   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6890     _g1h(g1h) {}
6891 
6892   void do_code_blob(CodeBlob* cb) {
6893     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6894     if (nm == NULL) {
6895       return;
6896     }
6897 
6898     if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) {
6899       _g1h->register_nmethod(nm);
6900     }
6901   }
6902 };
6903 
6904 void G1CollectedHeap::rebuild_strong_code_roots() {
6905   RebuildStrongCodeRootClosure blob_cl(this);
6906   CodeCache::blobs_do(&blob_cl);
6907 }