rev 6670 : fast reclaim main patch

   1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.hpp"
  30 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  32 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  33 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  34 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  35 #include "runtime/orderAccess.inline.hpp"
  36 #include "utilities/taskqueue.hpp"
  37 
  38 // Inline functions for G1CollectedHeap
  39 
  40 // Return the region with the given index. It assumes the index is valid.
  41 inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrs.at(index); }
  42 







  43 template <class T>
  44 inline HeapRegion*
  45 G1CollectedHeap::heap_region_containing_raw(const T addr) const {
  46   assert(addr != NULL, "invariant");
  47   assert(_g1_reserved.contains((const void*) addr),
  48       err_msg("Address "PTR_FORMAT" is outside of the heap ranging from ["PTR_FORMAT" to "PTR_FORMAT")",
  49           p2i((void*)addr), p2i(_g1_reserved.start()), p2i(_g1_reserved.end())));
  50   return _hrs.addr_to_region((HeapWord*) addr);
  51 }
  52 
  53 template <class T>
  54 inline HeapRegion*
  55 G1CollectedHeap::heap_region_containing(const T addr) const {
  56   HeapRegion* hr = heap_region_containing_raw(addr);
  57   if (hr->continuesHumongous()) {
  58     return hr->humongous_start_region();
  59   }
  60   return hr;
  61 }
  62 
  63 inline void G1CollectedHeap::reset_gc_time_stamp() {
  64   _gc_time_stamp = 0;
  65   OrderAccess::fence();
  66   // Clear the cached CSet starting regions and time stamps.
  67   // Their validity is dependent on the GC timestamp.
  68   clear_cset_start_regions();
  69 }
  70 
  71 inline void G1CollectedHeap::increment_gc_time_stamp() {
  72   ++_gc_time_stamp;
  73   OrderAccess::fence();
  74 }
  75 
  76 inline void G1CollectedHeap::old_set_remove(HeapRegion* hr) {
  77   _old_set.remove(hr);
  78 }
  79 
  80 inline bool G1CollectedHeap::obj_in_cs(oop obj) {
  81   HeapRegion* r = _hrs.addr_to_region((HeapWord*) obj);
  82   return r != NULL && r->in_collection_set();
  83 }
  84 
  85 inline HeapWord*
  86 G1CollectedHeap::attempt_allocation(size_t word_size,
  87                                     unsigned int* gc_count_before_ret,
  88                                     int* gclocker_retry_count_ret) {
  89   assert_heap_not_locked_and_not_at_safepoint();
  90   assert(!isHumongous(word_size), "attempt_allocation() should not "
  91          "be called for humongous allocation requests");
  92 
  93   HeapWord* result = _mutator_alloc_region.attempt_allocation(word_size,
  94                                                       false /* bot_updates */);
  95   if (result == NULL) {
  96     result = attempt_allocation_slow(word_size,
  97                                      gc_count_before_ret,
  98                                      gclocker_retry_count_ret);
  99   }
 100   assert_heap_not_locked();
 101   if (result != NULL) {
 102     dirty_young_block(result, word_size);
 103   }
 104   return result;
 105 }
 106 
 107 inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t
 108                                                               word_size) {
 109   assert(!isHumongous(word_size),
 110          "we should not be seeing humongous-size allocations in this path");
 111 
 112   HeapWord* result = _survivor_gc_alloc_region.attempt_allocation(word_size,
 113                                                       false /* bot_updates */);
 114   if (result == NULL) {
 115     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
 116     result = _survivor_gc_alloc_region.attempt_allocation_locked(word_size,
 117                                                       false /* bot_updates */);
 118   }
 119   if (result != NULL) {
 120     dirty_young_block(result, word_size);
 121   }
 122   return result;
 123 }
 124 
 125 inline HeapWord* G1CollectedHeap::old_attempt_allocation(size_t word_size) {
 126   assert(!isHumongous(word_size),
 127          "we should not be seeing humongous-size allocations in this path");
 128 
 129   HeapWord* result = _old_gc_alloc_region.attempt_allocation(word_size,
 130                                                        true /* bot_updates */);
 131   if (result == NULL) {
 132     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
 133     result = _old_gc_alloc_region.attempt_allocation_locked(word_size,
 134                                                        true /* bot_updates */);
 135   }
 136   return result;
 137 }
 138 
 139 // It dirties the cards that cover the block so that so that the post
 140 // write barrier never queues anything when updating objects on this
 141 // block. It is assumed (and in fact we assert) that the block
 142 // belongs to a young region.
 143 inline void
 144 G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) {
 145   assert_heap_not_locked();
 146 
 147   // Assign the containing region to containing_hr so that we don't
 148   // have to keep calling heap_region_containing_raw() in the
 149   // asserts below.
 150   DEBUG_ONLY(HeapRegion* containing_hr = heap_region_containing_raw(start);)
 151   assert(word_size > 0, "pre-condition");
 152   assert(containing_hr->is_in(start), "it should contain start");
 153   assert(containing_hr->is_young(), "it should be young");
 154   assert(!containing_hr->isHumongous(), "it should not be humongous");
 155 
 156   HeapWord* end = start + word_size;
 157   assert(containing_hr->is_in(end - 1), "it should also contain end - 1");
 158 
 159   MemRegion mr(start, end);
 160   g1_barrier_set()->g1_mark_as_young(mr);
 161 }
 162 
 163 inline RefToScanQueue* G1CollectedHeap::task_queue(int i) const {
 164   return _task_queues->queue(i);
 165 }
 166 
 167 inline bool G1CollectedHeap::isMarkedPrev(oop obj) const {
 168   return _cm->prevMarkBitMap()->isMarked((HeapWord *)obj);
 169 }
 170 
 171 inline bool G1CollectedHeap::isMarkedNext(oop obj) const {
 172   return _cm->nextMarkBitMap()->isMarked((HeapWord *)obj);
 173 }
 174 
 175 
 176 // This is a fast test on whether a reference points into the
 177 // collection set or not. Assume that the reference
 178 // points into the heap.
 179 inline bool G1CollectedHeap::in_cset_fast_test(oop obj) {
 180   bool ret = _in_cset_fast_test.get_by_address((HeapWord*)obj);
 181   // let's make sure the result is consistent with what the slower
 182   // test returns
 183   assert( ret || !obj_in_cs(obj), "sanity");
 184   assert(!ret ||  obj_in_cs(obj), "sanity");
 185   return ret;
 186 }
 187 












 188 #ifndef PRODUCT
 189 // Support for G1EvacuationFailureALot
 190 
 191 inline bool
 192 G1CollectedHeap::evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 193                                                      bool during_initial_mark,
 194                                                      bool during_marking) {
 195   bool res = false;
 196   if (during_marking) {
 197     res |= G1EvacuationFailureALotDuringConcMark;
 198   }
 199   if (during_initial_mark) {
 200     res |= G1EvacuationFailureALotDuringInitialMark;
 201   }
 202   if (gcs_are_young) {
 203     res |= G1EvacuationFailureALotDuringYoungGC;
 204   } else {
 205     // GCs are mixed
 206     res |= G1EvacuationFailureALotDuringMixedGC;
 207   }
 208   return res;
 209 }
 210 
 211 inline void
 212 G1CollectedHeap::set_evacuation_failure_alot_for_current_gc() {
 213   if (G1EvacuationFailureALot) {
 214     // Note we can't assert that _evacuation_failure_alot_for_current_gc
 215     // is clear here. It may have been set during a previous GC but that GC
 216     // did not copy enough objects (i.e. G1EvacuationFailureALotCount) to
 217     // trigger an evacuation failure and clear the flags and and counts.
 218 
 219     // Check if we have gone over the interval.
 220     const size_t gc_num = total_collections();
 221     const size_t elapsed_gcs = gc_num - _evacuation_failure_alot_gc_number;
 222 
 223     _evacuation_failure_alot_for_current_gc = (elapsed_gcs >= G1EvacuationFailureALotInterval);
 224 
 225     // Now check if G1EvacuationFailureALot is enabled for the current GC type.
 226     const bool gcs_are_young = g1_policy()->gcs_are_young();
 227     const bool during_im = g1_policy()->during_initial_mark_pause();
 228     const bool during_marking = mark_in_progress();
 229 
 230     _evacuation_failure_alot_for_current_gc &=
 231       evacuation_failure_alot_for_gc_type(gcs_are_young,
 232                                           during_im,
 233                                           during_marking);
 234   }
 235 }
 236 
 237 inline bool
 238 G1CollectedHeap::evacuation_should_fail() {
 239   if (!G1EvacuationFailureALot || !_evacuation_failure_alot_for_current_gc) {
 240     return false;
 241   }
 242   // G1EvacuationFailureALot is in effect for current GC
 243   // Access to _evacuation_failure_alot_count is not atomic;
 244   // the value does not have to be exact.
 245   if (++_evacuation_failure_alot_count < G1EvacuationFailureALotCount) {
 246     return false;
 247   }
 248   _evacuation_failure_alot_count = 0;
 249   return true;
 250 }
 251 
 252 inline void G1CollectedHeap::reset_evacuation_should_fail() {
 253   if (G1EvacuationFailureALot) {
 254     _evacuation_failure_alot_gc_number = total_collections();
 255     _evacuation_failure_alot_count = 0;
 256     _evacuation_failure_alot_for_current_gc = false;
 257   }
 258 }
 259 #endif  // #ifndef PRODUCT
 260 
 261 inline bool G1CollectedHeap::is_in_young(const oop obj) {
 262   if (obj == NULL) {
 263     return false;
 264   }
 265   return heap_region_containing(obj)->is_young();
 266 }
 267 
 268 // We don't need barriers for initializing stores to objects
 269 // in the young gen: for the SATB pre-barrier, there is no
 270 // pre-value that needs to be remembered; for the remembered-set
 271 // update logging post-barrier, we don't maintain remembered set
 272 // information for young gen objects.
 273 inline bool G1CollectedHeap::can_elide_initializing_store_barrier(oop new_obj) {
 274   return is_in_young(new_obj);
 275 }
 276 
 277 inline bool G1CollectedHeap::is_obj_dead(const oop obj) const {
 278   if (obj == NULL) {
 279     return false;
 280   }
 281   return is_obj_dead(obj, heap_region_containing(obj));
 282 }
 283 
 284 inline bool G1CollectedHeap::is_obj_ill(const oop obj) const {
 285   if (obj == NULL) {
 286     return false;
 287   }
 288   return is_obj_ill(obj, heap_region_containing(obj));
 289 }
 290 


















 291 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
--- EOF ---