1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/stringTable.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  35 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  36 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  37 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  38 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  41 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  42 #include "gc_implementation/g1/g1EvacFailure.hpp"
  43 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  44 #include "gc_implementation/g1/g1Log.hpp"
  45 #include "gc_implementation/g1/g1MarkSweep.hpp"
  46 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  47 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  48 #include "gc_implementation/g1/g1StringDedup.hpp"
  49 #include "gc_implementation/g1/g1YCTypes.hpp"
  50 #include "gc_implementation/g1/heapRegion.inline.hpp"
  51 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  52 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  53 #include "gc_implementation/g1/vm_operations_g1.hpp"
  54 #include "gc_implementation/shared/gcHeapSummary.hpp"
  55 #include "gc_implementation/shared/gcTimer.hpp"
  56 #include "gc_implementation/shared/gcTrace.hpp"
  57 #include "gc_implementation/shared/gcTraceTime.hpp"
  58 #include "gc_implementation/shared/isGCActiveMark.hpp"
  59 #include "memory/gcLocker.inline.hpp"
  60 #include "memory/generationSpec.hpp"
  61 #include "memory/iterator.hpp"
  62 #include "memory/referenceProcessor.hpp"
  63 #include "oops/oop.inline.hpp"
  64 #include "oops/oop.pcgc.inline.hpp"
  65 #include "runtime/atomic.inline.hpp"
  66 #include "runtime/prefetch.inline.hpp"
  67 #include "runtime/orderAccess.inline.hpp"
  68 #include "runtime/vmThread.hpp"
  69 #include "utilities/globalDefinitions.hpp"
  70 #include "utilities/ticks.hpp"
  71 
  72 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  73 
  74 // turn it on so that the contents of the young list (scan-only /
  75 // to-be-collected) are printed at "strategic" points before / during
  76 // / after the collection --- this is useful for debugging
  77 #define YOUNG_LIST_VERBOSE 0
  78 // CURRENT STATUS
  79 // This file is under construction.  Search for "FIXME".
  80 
  81 // INVARIANTS/NOTES
  82 //
  83 // All allocation activity covered by the G1CollectedHeap interface is
  84 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  85 // and allocate_new_tlab, which are the "entry" points to the
  86 // allocation code from the rest of the JVM.  (Note that this does not
  87 // apply to TLAB allocation, which is not part of this interface: it
  88 // is done by clients of this interface.)
  89 
  90 // Notes on implementation of parallelism in different tasks.
  91 //
  92 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  93 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  94 // It does use run_task() which sets _n_workers in the task.
  95 // G1ParTask executes g1_process_strong_roots() ->
  96 // SharedHeap::process_strong_roots() which calls eventually to
  97 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  98 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  99 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
 100 //
 101 
 102 // Local to this file.
 103 
 104 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 105   bool _concurrent;
 106 public:
 107   RefineCardTableEntryClosure() : _concurrent(true) { }
 108 
 109   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 110     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 111     // This path is executed by the concurrent refine or mutator threads,
 112     // concurrently, and so we do not care if card_ptr contains references
 113     // that point into the collection set.
 114     assert(!oops_into_cset, "should be");
 115 
 116     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 117       // Caller will actually yield.
 118       return false;
 119     }
 120     // Otherwise, we finished successfully; return true.
 121     return true;
 122   }
 123 
 124   void set_concurrent(bool b) { _concurrent = b; }
 125 };
 126 
 127 
 128 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 129   size_t _num_processed;
 130   CardTableModRefBS* _ctbs;
 131   int _histo[256];
 132 
 133  public:
 134   ClearLoggedCardTableEntryClosure() :
 135     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
 136   {
 137     for (int i = 0; i < 256; i++) _histo[i] = 0;
 138   }
 139 
 140   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 141     unsigned char* ujb = (unsigned char*)card_ptr;
 142     int ind = (int)(*ujb);
 143     _histo[ind]++;
 144 
 145     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
 146     _num_processed++;
 147 
 148     return true;
 149   }
 150 
 151   size_t num_processed() { return _num_processed; }
 152 
 153   void print_histo() {
 154     gclog_or_tty->print_cr("Card table value histogram:");
 155     for (int i = 0; i < 256; i++) {
 156       if (_histo[i] != 0) {
 157         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 158       }
 159     }
 160   }
 161 };
 162 
 163 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 164  private:
 165   size_t _num_processed;
 166 
 167  public:
 168   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 169 
 170   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 171     *card_ptr = CardTableModRefBS::dirty_card_val();
 172     _num_processed++;
 173     return true;
 174   }
 175 
 176   size_t num_processed() const { return _num_processed; }
 177 };
 178 
 179 YoungList::YoungList(G1CollectedHeap* g1h) :
 180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 182   guarantee(check_list_empty(false), "just making sure...");
 183 }
 184 
 185 void YoungList::push_region(HeapRegion *hr) {
 186   assert(!hr->is_young(), "should not already be young");
 187   assert(hr->get_next_young_region() == NULL, "cause it should!");
 188 
 189   hr->set_next_young_region(_head);
 190   _head = hr;
 191 
 192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 193   ++_length;
 194 }
 195 
 196 void YoungList::add_survivor_region(HeapRegion* hr) {
 197   assert(hr->is_survivor(), "should be flagged as survivor region");
 198   assert(hr->get_next_young_region() == NULL, "cause it should!");
 199 
 200   hr->set_next_young_region(_survivor_head);
 201   if (_survivor_head == NULL) {
 202     _survivor_tail = hr;
 203   }
 204   _survivor_head = hr;
 205   ++_survivor_length;
 206 }
 207 
 208 void YoungList::empty_list(HeapRegion* list) {
 209   while (list != NULL) {
 210     HeapRegion* next = list->get_next_young_region();
 211     list->set_next_young_region(NULL);
 212     list->uninstall_surv_rate_group();
 213     list->set_not_young();
 214     list = next;
 215   }
 216 }
 217 
 218 void YoungList::empty_list() {
 219   assert(check_list_well_formed(), "young list should be well formed");
 220 
 221   empty_list(_head);
 222   _head = NULL;
 223   _length = 0;
 224 
 225   empty_list(_survivor_head);
 226   _survivor_head = NULL;
 227   _survivor_tail = NULL;
 228   _survivor_length = 0;
 229 
 230   _last_sampled_rs_lengths = 0;
 231 
 232   assert(check_list_empty(false), "just making sure...");
 233 }
 234 
 235 bool YoungList::check_list_well_formed() {
 236   bool ret = true;
 237 
 238   uint length = 0;
 239   HeapRegion* curr = _head;
 240   HeapRegion* last = NULL;
 241   while (curr != NULL) {
 242     if (!curr->is_young()) {
 243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 244                              "incorrectly tagged (y: %d, surv: %d)",
 245                              curr->bottom(), curr->end(),
 246                              curr->is_young(), curr->is_survivor());
 247       ret = false;
 248     }
 249     ++length;
 250     last = curr;
 251     curr = curr->get_next_young_region();
 252   }
 253   ret = ret && (length == _length);
 254 
 255   if (!ret) {
 256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 258                            length, _length);
 259   }
 260 
 261   return ret;
 262 }
 263 
 264 bool YoungList::check_list_empty(bool check_sample) {
 265   bool ret = true;
 266 
 267   if (_length != 0) {
 268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 269                   _length);
 270     ret = false;
 271   }
 272   if (check_sample && _last_sampled_rs_lengths != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 274     ret = false;
 275   }
 276   if (_head != NULL) {
 277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 278     ret = false;
 279   }
 280   if (!ret) {
 281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 282   }
 283 
 284   return ret;
 285 }
 286 
 287 void
 288 YoungList::rs_length_sampling_init() {
 289   _sampled_rs_lengths = 0;
 290   _curr               = _head;
 291 }
 292 
 293 bool
 294 YoungList::rs_length_sampling_more() {
 295   return _curr != NULL;
 296 }
 297 
 298 void
 299 YoungList::rs_length_sampling_next() {
 300   assert( _curr != NULL, "invariant" );
 301   size_t rs_length = _curr->rem_set()->occupied();
 302 
 303   _sampled_rs_lengths += rs_length;
 304 
 305   // The current region may not yet have been added to the
 306   // incremental collection set (it gets added when it is
 307   // retired as the current allocation region).
 308   if (_curr->in_collection_set()) {
 309     // Update the collection set policy information for this region
 310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 311   }
 312 
 313   _curr = _curr->get_next_young_region();
 314   if (_curr == NULL) {
 315     _last_sampled_rs_lengths = _sampled_rs_lengths;
 316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 317   }
 318 }
 319 
 320 void
 321 YoungList::reset_auxilary_lists() {
 322   guarantee( is_empty(), "young list should be empty" );
 323   assert(check_list_well_formed(), "young list should be well formed");
 324 
 325   // Add survivor regions to SurvRateGroup.
 326   _g1h->g1_policy()->note_start_adding_survivor_regions();
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 328 
 329   int young_index_in_cset = 0;
 330   for (HeapRegion* curr = _survivor_head;
 331        curr != NULL;
 332        curr = curr->get_next_young_region()) {
 333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 334 
 335     // The region is a non-empty survivor so let's add it to
 336     // the incremental collection set for the next evacuation
 337     // pause.
 338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 339     young_index_in_cset += 1;
 340   }
 341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 343 
 344   _head   = _survivor_head;
 345   _length = _survivor_length;
 346   if (_survivor_head != NULL) {
 347     assert(_survivor_tail != NULL, "cause it shouldn't be");
 348     assert(_survivor_length > 0, "invariant");
 349     _survivor_tail->set_next_young_region(NULL);
 350   }
 351 
 352   // Don't clear the survivor list handles until the start of
 353   // the next evacuation pause - we need it in order to re-tag
 354   // the survivor regions from this evacuation pause as 'young'
 355   // at the start of the next.
 356 
 357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 358 
 359   assert(check_list_well_formed(), "young list should be well formed");
 360 }
 361 
 362 void YoungList::print() {
 363   HeapRegion* lists[] = {_head,   _survivor_head};
 364   const char* names[] = {"YOUNG", "SURVIVOR"};
 365 
 366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 368     HeapRegion *curr = lists[list];
 369     if (curr == NULL)
 370       gclog_or_tty->print_cr("  empty");
 371     while (curr != NULL) {
 372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 373                              HR_FORMAT_PARAMS(curr),
 374                              curr->prev_top_at_mark_start(),
 375                              curr->next_top_at_mark_start(),
 376                              curr->age_in_surv_rate_group_cond());
 377       curr = curr->get_next_young_region();
 378     }
 379   }
 380 
 381   gclog_or_tty->cr();
 382 }
 383 
 384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 385 {
 386   // Claim the right to put the region on the dirty cards region list
 387   // by installing a self pointer.
 388   HeapRegion* next = hr->get_next_dirty_cards_region();
 389   if (next == NULL) {
 390     HeapRegion* res = (HeapRegion*)
 391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 392                           NULL);
 393     if (res == NULL) {
 394       HeapRegion* head;
 395       do {
 396         // Put the region to the dirty cards region list.
 397         head = _dirty_cards_region_list;
 398         next = (HeapRegion*)
 399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 400         if (next == head) {
 401           assert(hr->get_next_dirty_cards_region() == hr,
 402                  "hr->get_next_dirty_cards_region() != hr");
 403           if (next == NULL) {
 404             // The last region in the list points to itself.
 405             hr->set_next_dirty_cards_region(hr);
 406           } else {
 407             hr->set_next_dirty_cards_region(next);
 408           }
 409         }
 410       } while (next != head);
 411     }
 412   }
 413 }
 414 
 415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 416 {
 417   HeapRegion* head;
 418   HeapRegion* hr;
 419   do {
 420     head = _dirty_cards_region_list;
 421     if (head == NULL) {
 422       return NULL;
 423     }
 424     HeapRegion* new_head = head->get_next_dirty_cards_region();
 425     if (head == new_head) {
 426       // The last region.
 427       new_head = NULL;
 428     }
 429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 430                                           head);
 431   } while (hr != head);
 432   assert(hr != NULL, "invariant");
 433   hr->set_next_dirty_cards_region(NULL);
 434   return hr;
 435 }
 436 
 437 #ifdef ASSERT
 438 // A region is added to the collection set as it is retired
 439 // so an address p can point to a region which will be in the
 440 // collection set but has not yet been retired.  This method
 441 // therefore is only accurate during a GC pause after all
 442 // regions have been retired.  It is used for debugging
 443 // to check if an nmethod has references to objects that can
 444 // be move during a partial collection.  Though it can be
 445 // inaccurate, it is sufficient for G1 because the conservative
 446 // implementation of is_scavengable() for G1 will indicate that
 447 // all nmethods must be scanned during a partial collection.
 448 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 449   if (p == NULL) {
 450     return false;
 451   }
 452   return heap_region_containing(p)->in_collection_set();
 453 }
 454 #endif
 455 
 456 // Returns true if the reference points to an object that
 457 // can move in an incremental collection.
 458 bool G1CollectedHeap::is_scavengable(const void* p) {
 459   HeapRegion* hr = heap_region_containing(p);
 460   return !hr->isHumongous();
 461 }
 462 
 463 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 464   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 465   CardTableModRefBS* ct_bs = g1_barrier_set();
 466 
 467   // Count the dirty cards at the start.
 468   CountNonCleanMemRegionClosure count1(this);
 469   ct_bs->mod_card_iterate(&count1);
 470   int orig_count = count1.n();
 471 
 472   // First clear the logged cards.
 473   ClearLoggedCardTableEntryClosure clear;
 474   dcqs.apply_closure_to_all_completed_buffers(&clear);
 475   dcqs.iterate_closure_all_threads(&clear, false);
 476   clear.print_histo();
 477 
 478   // Now ensure that there's no dirty cards.
 479   CountNonCleanMemRegionClosure count2(this);
 480   ct_bs->mod_card_iterate(&count2);
 481   if (count2.n() != 0) {
 482     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 483                            count2.n(), orig_count);
 484   }
 485   guarantee(count2.n() == 0, "Card table should be clean.");
 486 
 487   RedirtyLoggedCardTableEntryClosure redirty;
 488   dcqs.apply_closure_to_all_completed_buffers(&redirty);
 489   dcqs.iterate_closure_all_threads(&redirty, false);
 490   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 491                          clear.num_processed(), orig_count);
 492   guarantee(redirty.num_processed() == clear.num_processed(),
 493             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
 494                     redirty.num_processed(), clear.num_processed()));
 495 
 496   CountNonCleanMemRegionClosure count3(this);
 497   ct_bs->mod_card_iterate(&count3);
 498   if (count3.n() != orig_count) {
 499     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 500                            orig_count, count3.n());
 501     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 502   }
 503 }
 504 
 505 // Private class members.
 506 
 507 G1CollectedHeap* G1CollectedHeap::_g1h;
 508 
 509 // Private methods.
 510 
 511 HeapRegion*
 512 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 513   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 514   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 515     if (!_secondary_free_list.is_empty()) {
 516       if (G1ConcRegionFreeingVerbose) {
 517         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 518                                "secondary_free_list has %u entries",
 519                                _secondary_free_list.length());
 520       }
 521       // It looks as if there are free regions available on the
 522       // secondary_free_list. Let's move them to the free_list and try
 523       // again to allocate from it.
 524       append_secondary_free_list();
 525 
 526       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 527              "empty we should have moved at least one entry to the free_list");
 528       HeapRegion* res = _free_list.remove_region(is_old);
 529       if (G1ConcRegionFreeingVerbose) {
 530         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 531                                "allocated "HR_FORMAT" from secondary_free_list",
 532                                HR_FORMAT_PARAMS(res));
 533       }
 534       return res;
 535     }
 536 
 537     // Wait here until we get notified either when (a) there are no
 538     // more free regions coming or (b) some regions have been moved on
 539     // the secondary_free_list.
 540     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 541   }
 542 
 543   if (G1ConcRegionFreeingVerbose) {
 544     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 545                            "could not allocate from secondary_free_list");
 546   }
 547   return NULL;
 548 }
 549 
 550 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 551   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 552          "the only time we use this to allocate a humongous region is "
 553          "when we are allocating a single humongous region");
 554 
 555   HeapRegion* res;
 556   if (G1StressConcRegionFreeing) {
 557     if (!_secondary_free_list.is_empty()) {
 558       if (G1ConcRegionFreeingVerbose) {
 559         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 560                                "forced to look at the secondary_free_list");
 561       }
 562       res = new_region_try_secondary_free_list(is_old);
 563       if (res != NULL) {
 564         return res;
 565       }
 566     }
 567   }
 568 
 569   res = _free_list.remove_region(is_old);
 570 
 571   if (res == NULL) {
 572     if (G1ConcRegionFreeingVerbose) {
 573       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 574                              "res == NULL, trying the secondary_free_list");
 575     }
 576     res = new_region_try_secondary_free_list(is_old);
 577   }
 578   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 579     // Currently, only attempts to allocate GC alloc regions set
 580     // do_expand to true. So, we should only reach here during a
 581     // safepoint. If this assumption changes we might have to
 582     // reconsider the use of _expand_heap_after_alloc_failure.
 583     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 584 
 585     ergo_verbose1(ErgoHeapSizing,
 586                   "attempt heap expansion",
 587                   ergo_format_reason("region allocation request failed")
 588                   ergo_format_byte("allocation request"),
 589                   word_size * HeapWordSize);
 590     if (expand(word_size * HeapWordSize)) {
 591       // Given that expand() succeeded in expanding the heap, and we
 592       // always expand the heap by an amount aligned to the heap
 593       // region size, the free list should in theory not be empty.
 594       // In either case remove_region() will check for NULL.
 595       res = _free_list.remove_region(is_old);
 596     } else {
 597       _expand_heap_after_alloc_failure = false;
 598     }
 599   }
 600   return res;
 601 }
 602 
 603 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 604                                                         size_t word_size) {
 605   assert(isHumongous(word_size), "word_size should be humongous");
 606   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 607 
 608   uint first = G1_NULL_HRS_INDEX;
 609   if (num_regions == 1) {
 610     // Only one region to allocate, no need to go through the slower
 611     // path. The caller will attempt the expansion if this fails, so
 612     // let's not try to expand here too.
 613     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 614     if (hr != NULL) {
 615       first = hr->hrs_index();
 616     } else {
 617       first = G1_NULL_HRS_INDEX;
 618     }
 619   } else {
 620     // We can't allocate humongous regions while cleanupComplete() is
 621     // running, since some of the regions we find to be empty might not
 622     // yet be added to the free list and it is not straightforward to
 623     // know which list they are on so that we can remove them. Note
 624     // that we only need to do this if we need to allocate more than
 625     // one region to satisfy the current humongous allocation
 626     // request. If we are only allocating one region we use the common
 627     // region allocation code (see above).
 628     wait_while_free_regions_coming();
 629     append_secondary_free_list_if_not_empty_with_lock();
 630 
 631     if (free_regions() >= num_regions) {
 632       first = _hrs.find_contiguous(num_regions);
 633       if (first != G1_NULL_HRS_INDEX) {
 634         for (uint i = first; i < first + num_regions; ++i) {
 635           HeapRegion* hr = region_at(i);
 636           assert(hr->is_empty(), "sanity");
 637           assert(is_on_master_free_list(hr), "sanity");
 638           hr->set_pending_removal(true);
 639         }
 640         _free_list.remove_all_pending(num_regions);
 641       }
 642     }
 643   }
 644   return first;
 645 }
 646 
 647 HeapWord*
 648 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 649                                                            uint num_regions,
 650                                                            size_t word_size) {
 651   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 652   assert(isHumongous(word_size), "word_size should be humongous");
 653   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 654 
 655   // Index of last region in the series + 1.
 656   uint last = first + num_regions;
 657 
 658   // We need to initialize the region(s) we just discovered. This is
 659   // a bit tricky given that it can happen concurrently with
 660   // refinement threads refining cards on these regions and
 661   // potentially wanting to refine the BOT as they are scanning
 662   // those cards (this can happen shortly after a cleanup; see CR
 663   // 6991377). So we have to set up the region(s) carefully and in
 664   // a specific order.
 665 
 666   // The word size sum of all the regions we will allocate.
 667   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 668   assert(word_size <= word_size_sum, "sanity");
 669 
 670   // This will be the "starts humongous" region.
 671   HeapRegion* first_hr = region_at(first);
 672   // The header of the new object will be placed at the bottom of
 673   // the first region.
 674   HeapWord* new_obj = first_hr->bottom();
 675   // This will be the new end of the first region in the series that
 676   // should also match the end of the last region in the series.
 677   HeapWord* new_end = new_obj + word_size_sum;
 678   // This will be the new top of the first region that will reflect
 679   // this allocation.
 680   HeapWord* new_top = new_obj + word_size;
 681 
 682   // First, we need to zero the header of the space that we will be
 683   // allocating. When we update top further down, some refinement
 684   // threads might try to scan the region. By zeroing the header we
 685   // ensure that any thread that will try to scan the region will
 686   // come across the zero klass word and bail out.
 687   //
 688   // NOTE: It would not have been correct to have used
 689   // CollectedHeap::fill_with_object() and make the space look like
 690   // an int array. The thread that is doing the allocation will
 691   // later update the object header to a potentially different array
 692   // type and, for a very short period of time, the klass and length
 693   // fields will be inconsistent. This could cause a refinement
 694   // thread to calculate the object size incorrectly.
 695   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 696 
 697   // We will set up the first region as "starts humongous". This
 698   // will also update the BOT covering all the regions to reflect
 699   // that there is a single object that starts at the bottom of the
 700   // first region.
 701   first_hr->set_startsHumongous(new_top, new_end);
 702 
 703   // Then, if there are any, we will set up the "continues
 704   // humongous" regions.
 705   HeapRegion* hr = NULL;
 706   for (uint i = first + 1; i < last; ++i) {
 707     hr = region_at(i);
 708     hr->set_continuesHumongous(first_hr);
 709   }
 710   // If we have "continues humongous" regions (hr != NULL), then the
 711   // end of the last one should match new_end.
 712   assert(hr == NULL || hr->end() == new_end, "sanity");
 713 
 714   // Up to this point no concurrent thread would have been able to
 715   // do any scanning on any region in this series. All the top
 716   // fields still point to bottom, so the intersection between
 717   // [bottom,top] and [card_start,card_end] will be empty. Before we
 718   // update the top fields, we'll do a storestore to make sure that
 719   // no thread sees the update to top before the zeroing of the
 720   // object header and the BOT initialization.
 721   OrderAccess::storestore();
 722 
 723   // Now that the BOT and the object header have been initialized,
 724   // we can update top of the "starts humongous" region.
 725   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 726          "new_top should be in this region");
 727   first_hr->set_top(new_top);
 728   if (_hr_printer.is_active()) {
 729     HeapWord* bottom = first_hr->bottom();
 730     HeapWord* end = first_hr->orig_end();
 731     if ((first + 1) == last) {
 732       // the series has a single humongous region
 733       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 734     } else {
 735       // the series has more than one humongous regions
 736       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 737     }
 738   }
 739 
 740   // Now, we will update the top fields of the "continues humongous"
 741   // regions. The reason we need to do this is that, otherwise,
 742   // these regions would look empty and this will confuse parts of
 743   // G1. For example, the code that looks for a consecutive number
 744   // of empty regions will consider them empty and try to
 745   // re-allocate them. We can extend is_empty() to also include
 746   // !continuesHumongous(), but it is easier to just update the top
 747   // fields here. The way we set top for all regions (i.e., top ==
 748   // end for all regions but the last one, top == new_top for the
 749   // last one) is actually used when we will free up the humongous
 750   // region in free_humongous_region().
 751   hr = NULL;
 752   for (uint i = first + 1; i < last; ++i) {
 753     hr = region_at(i);
 754     if ((i + 1) == last) {
 755       // last continues humongous region
 756       assert(hr->bottom() < new_top && new_top <= hr->end(),
 757              "new_top should fall on this region");
 758       hr->set_top(new_top);
 759       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 760     } else {
 761       // not last one
 762       assert(new_top > hr->end(), "new_top should be above this region");
 763       hr->set_top(hr->end());
 764       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 765     }
 766   }
 767   // If we have continues humongous regions (hr != NULL), then the
 768   // end of the last one should match new_end and its top should
 769   // match new_top.
 770   assert(hr == NULL ||
 771          (hr->end() == new_end && hr->top() == new_top), "sanity");
 772   check_bitmaps("Humongous Region Allocation", first_hr);
 773 
 774   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 775   _summary_bytes_used += first_hr->used();
 776   _humongous_set.add(first_hr);
 777 
 778   return new_obj;
 779 }
 780 
 781 // If could fit into free regions w/o expansion, try.
 782 // Otherwise, if can expand, do so.
 783 // Otherwise, if using ex regions might help, try with ex given back.
 784 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 785   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 786 
 787   verify_region_sets_optional();
 788 
 789   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 790   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 791   uint x_num = expansion_regions();
 792   uint fs = _hrs.free_suffix();
 793   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 794   if (first == G1_NULL_HRS_INDEX) {
 795     // The only thing we can do now is attempt expansion.
 796     if (fs + x_num >= num_regions) {
 797       // If the number of regions we're trying to allocate for this
 798       // object is at most the number of regions in the free suffix,
 799       // then the call to humongous_obj_allocate_find_first() above
 800       // should have succeeded and we wouldn't be here.
 801       //
 802       // We should only be trying to expand when the free suffix is
 803       // not sufficient for the object _and_ we have some expansion
 804       // room available.
 805       assert(num_regions > fs, "earlier allocation should have succeeded");
 806 
 807       ergo_verbose1(ErgoHeapSizing,
 808                     "attempt heap expansion",
 809                     ergo_format_reason("humongous allocation request failed")
 810                     ergo_format_byte("allocation request"),
 811                     word_size * HeapWordSize);
 812       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 813         // Even though the heap was expanded, it might not have
 814         // reached the desired size. So, we cannot assume that the
 815         // allocation will succeed.
 816         first = humongous_obj_allocate_find_first(num_regions, word_size);
 817       }
 818     }
 819   }
 820 
 821   HeapWord* result = NULL;
 822   if (first != G1_NULL_HRS_INDEX) {
 823     result =
 824       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 825     assert(result != NULL, "it should always return a valid result");
 826 
 827     // A successful humongous object allocation changes the used space
 828     // information of the old generation so we need to recalculate the
 829     // sizes and update the jstat counters here.
 830     g1mm()->update_sizes();
 831   }
 832 
 833   verify_region_sets_optional();
 834 
 835   return result;
 836 }
 837 
 838 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 839   assert_heap_not_locked_and_not_at_safepoint();
 840   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 841 
 842   unsigned int dummy_gc_count_before;
 843   int dummy_gclocker_retry_count = 0;
 844   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 845 }
 846 
 847 HeapWord*
 848 G1CollectedHeap::mem_allocate(size_t word_size,
 849                               bool*  gc_overhead_limit_was_exceeded) {
 850   assert_heap_not_locked_and_not_at_safepoint();
 851 
 852   // Loop until the allocation is satisfied, or unsatisfied after GC.
 853   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 854     unsigned int gc_count_before;
 855 
 856     HeapWord* result = NULL;
 857     if (!isHumongous(word_size)) {
 858       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 859     } else {
 860       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 861     }
 862     if (result != NULL) {
 863       return result;
 864     }
 865 
 866     // Create the garbage collection operation...
 867     VM_G1CollectForAllocation op(gc_count_before, word_size);
 868     // ...and get the VM thread to execute it.
 869     VMThread::execute(&op);
 870 
 871     if (op.prologue_succeeded() && op.pause_succeeded()) {
 872       // If the operation was successful we'll return the result even
 873       // if it is NULL. If the allocation attempt failed immediately
 874       // after a Full GC, it's unlikely we'll be able to allocate now.
 875       HeapWord* result = op.result();
 876       if (result != NULL && !isHumongous(word_size)) {
 877         // Allocations that take place on VM operations do not do any
 878         // card dirtying and we have to do it here. We only have to do
 879         // this for non-humongous allocations, though.
 880         dirty_young_block(result, word_size);
 881       }
 882       return result;
 883     } else {
 884       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 885         return NULL;
 886       }
 887       assert(op.result() == NULL,
 888              "the result should be NULL if the VM op did not succeed");
 889     }
 890 
 891     // Give a warning if we seem to be looping forever.
 892     if ((QueuedAllocationWarningCount > 0) &&
 893         (try_count % QueuedAllocationWarningCount == 0)) {
 894       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 895     }
 896   }
 897 
 898   ShouldNotReachHere();
 899   return NULL;
 900 }
 901 
 902 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 903                                            unsigned int *gc_count_before_ret,
 904                                            int* gclocker_retry_count_ret) {
 905   // Make sure you read the note in attempt_allocation_humongous().
 906 
 907   assert_heap_not_locked_and_not_at_safepoint();
 908   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 909          "be called for humongous allocation requests");
 910 
 911   // We should only get here after the first-level allocation attempt
 912   // (attempt_allocation()) failed to allocate.
 913 
 914   // We will loop until a) we manage to successfully perform the
 915   // allocation or b) we successfully schedule a collection which
 916   // fails to perform the allocation. b) is the only case when we'll
 917   // return NULL.
 918   HeapWord* result = NULL;
 919   for (int try_count = 1; /* we'll return */; try_count += 1) {
 920     bool should_try_gc;
 921     unsigned int gc_count_before;
 922 
 923     {
 924       MutexLockerEx x(Heap_lock);
 925 
 926       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 927                                                       false /* bot_updates */);
 928       if (result != NULL) {
 929         return result;
 930       }
 931 
 932       // If we reach here, attempt_allocation_locked() above failed to
 933       // allocate a new region. So the mutator alloc region should be NULL.
 934       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 935 
 936       if (GC_locker::is_active_and_needs_gc()) {
 937         if (g1_policy()->can_expand_young_list()) {
 938           // No need for an ergo verbose message here,
 939           // can_expand_young_list() does this when it returns true.
 940           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 941                                                       false /* bot_updates */);
 942           if (result != NULL) {
 943             return result;
 944           }
 945         }
 946         should_try_gc = false;
 947       } else {
 948         // The GCLocker may not be active but the GCLocker initiated
 949         // GC may not yet have been performed (GCLocker::needs_gc()
 950         // returns true). In this case we do not try this GC and
 951         // wait until the GCLocker initiated GC is performed, and
 952         // then retry the allocation.
 953         if (GC_locker::needs_gc()) {
 954           should_try_gc = false;
 955         } else {
 956           // Read the GC count while still holding the Heap_lock.
 957           gc_count_before = total_collections();
 958           should_try_gc = true;
 959         }
 960       }
 961     }
 962 
 963     if (should_try_gc) {
 964       bool succeeded;
 965       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 966           GCCause::_g1_inc_collection_pause);
 967       if (result != NULL) {
 968         assert(succeeded, "only way to get back a non-NULL result");
 969         return result;
 970       }
 971 
 972       if (succeeded) {
 973         // If we get here we successfully scheduled a collection which
 974         // failed to allocate. No point in trying to allocate
 975         // further. We'll just return NULL.
 976         MutexLockerEx x(Heap_lock);
 977         *gc_count_before_ret = total_collections();
 978         return NULL;
 979       }
 980     } else {
 981       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 982         MutexLockerEx x(Heap_lock);
 983         *gc_count_before_ret = total_collections();
 984         return NULL;
 985       }
 986       // The GCLocker is either active or the GCLocker initiated
 987       // GC has not yet been performed. Stall until it is and
 988       // then retry the allocation.
 989       GC_locker::stall_until_clear();
 990       (*gclocker_retry_count_ret) += 1;
 991     }
 992 
 993     // We can reach here if we were unsuccessful in scheduling a
 994     // collection (because another thread beat us to it) or if we were
 995     // stalled due to the GC locker. In either can we should retry the
 996     // allocation attempt in case another thread successfully
 997     // performed a collection and reclaimed enough space. We do the
 998     // first attempt (without holding the Heap_lock) here and the
 999     // follow-on attempt will be at the start of the next loop
1000     // iteration (after taking the Heap_lock).
1001     result = _mutator_alloc_region.attempt_allocation(word_size,
1002                                                       false /* bot_updates */);
1003     if (result != NULL) {
1004       return result;
1005     }
1006 
1007     // Give a warning if we seem to be looping forever.
1008     if ((QueuedAllocationWarningCount > 0) &&
1009         (try_count % QueuedAllocationWarningCount == 0)) {
1010       warning("G1CollectedHeap::attempt_allocation_slow() "
1011               "retries %d times", try_count);
1012     }
1013   }
1014 
1015   ShouldNotReachHere();
1016   return NULL;
1017 }
1018 
1019 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1020                                           unsigned int * gc_count_before_ret,
1021                                           int* gclocker_retry_count_ret) {
1022   // The structure of this method has a lot of similarities to
1023   // attempt_allocation_slow(). The reason these two were not merged
1024   // into a single one is that such a method would require several "if
1025   // allocation is not humongous do this, otherwise do that"
1026   // conditional paths which would obscure its flow. In fact, an early
1027   // version of this code did use a unified method which was harder to
1028   // follow and, as a result, it had subtle bugs that were hard to
1029   // track down. So keeping these two methods separate allows each to
1030   // be more readable. It will be good to keep these two in sync as
1031   // much as possible.
1032 
1033   assert_heap_not_locked_and_not_at_safepoint();
1034   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1035          "should only be called for humongous allocations");
1036 
1037   // Humongous objects can exhaust the heap quickly, so we should check if we
1038   // need to start a marking cycle at each humongous object allocation. We do
1039   // the check before we do the actual allocation. The reason for doing it
1040   // before the allocation is that we avoid having to keep track of the newly
1041   // allocated memory while we do a GC.
1042   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1043                                            word_size)) {
1044     collect(GCCause::_g1_humongous_allocation);
1045   }
1046 
1047   // We will loop until a) we manage to successfully perform the
1048   // allocation or b) we successfully schedule a collection which
1049   // fails to perform the allocation. b) is the only case when we'll
1050   // return NULL.
1051   HeapWord* result = NULL;
1052   for (int try_count = 1; /* we'll return */; try_count += 1) {
1053     bool should_try_gc;
1054     unsigned int gc_count_before;
1055 
1056     {
1057       MutexLockerEx x(Heap_lock);
1058 
1059       // Given that humongous objects are not allocated in young
1060       // regions, we'll first try to do the allocation without doing a
1061       // collection hoping that there's enough space in the heap.
1062       result = humongous_obj_allocate(word_size);
1063       if (result != NULL) {
1064         return result;
1065       }
1066 
1067       if (GC_locker::is_active_and_needs_gc()) {
1068         should_try_gc = false;
1069       } else {
1070          // The GCLocker may not be active but the GCLocker initiated
1071         // GC may not yet have been performed (GCLocker::needs_gc()
1072         // returns true). In this case we do not try this GC and
1073         // wait until the GCLocker initiated GC is performed, and
1074         // then retry the allocation.
1075         if (GC_locker::needs_gc()) {
1076           should_try_gc = false;
1077         } else {
1078           // Read the GC count while still holding the Heap_lock.
1079           gc_count_before = total_collections();
1080           should_try_gc = true;
1081         }
1082       }
1083     }
1084 
1085     if (should_try_gc) {
1086       // If we failed to allocate the humongous object, we should try to
1087       // do a collection pause (if we're allowed) in case it reclaims
1088       // enough space for the allocation to succeed after the pause.
1089 
1090       bool succeeded;
1091       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1092           GCCause::_g1_humongous_allocation);
1093       if (result != NULL) {
1094         assert(succeeded, "only way to get back a non-NULL result");
1095         return result;
1096       }
1097 
1098       if (succeeded) {
1099         // If we get here we successfully scheduled a collection which
1100         // failed to allocate. No point in trying to allocate
1101         // further. We'll just return NULL.
1102         MutexLockerEx x(Heap_lock);
1103         *gc_count_before_ret = total_collections();
1104         return NULL;
1105       }
1106     } else {
1107       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1108         MutexLockerEx x(Heap_lock);
1109         *gc_count_before_ret = total_collections();
1110         return NULL;
1111       }
1112       // The GCLocker is either active or the GCLocker initiated
1113       // GC has not yet been performed. Stall until it is and
1114       // then retry the allocation.
1115       GC_locker::stall_until_clear();
1116       (*gclocker_retry_count_ret) += 1;
1117     }
1118 
1119     // We can reach here if we were unsuccessful in scheduling a
1120     // collection (because another thread beat us to it) or if we were
1121     // stalled due to the GC locker. In either can we should retry the
1122     // allocation attempt in case another thread successfully
1123     // performed a collection and reclaimed enough space.  Give a
1124     // warning if we seem to be looping forever.
1125 
1126     if ((QueuedAllocationWarningCount > 0) &&
1127         (try_count % QueuedAllocationWarningCount == 0)) {
1128       warning("G1CollectedHeap::attempt_allocation_humongous() "
1129               "retries %d times", try_count);
1130     }
1131   }
1132 
1133   ShouldNotReachHere();
1134   return NULL;
1135 }
1136 
1137 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1138                                        bool expect_null_mutator_alloc_region) {
1139   assert_at_safepoint(true /* should_be_vm_thread */);
1140   assert(_mutator_alloc_region.get() == NULL ||
1141                                              !expect_null_mutator_alloc_region,
1142          "the current alloc region was unexpectedly found to be non-NULL");
1143 
1144   if (!isHumongous(word_size)) {
1145     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1146                                                       false /* bot_updates */);
1147   } else {
1148     HeapWord* result = humongous_obj_allocate(word_size);
1149     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1150       g1_policy()->set_initiate_conc_mark_if_possible();
1151     }
1152     return result;
1153   }
1154 
1155   ShouldNotReachHere();
1156 }
1157 
1158 class PostMCRemSetClearClosure: public HeapRegionClosure {
1159   G1CollectedHeap* _g1h;
1160   ModRefBarrierSet* _mr_bs;
1161 public:
1162   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1163     _g1h(g1h), _mr_bs(mr_bs) {}
1164 
1165   bool doHeapRegion(HeapRegion* r) {
1166     HeapRegionRemSet* hrrs = r->rem_set();
1167 
1168     if (r->continuesHumongous()) {
1169       // We'll assert that the strong code root list and RSet is empty
1170       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1171       assert(hrrs->occupied() == 0, "RSet should be empty");
1172       return false;
1173     }
1174 
1175     _g1h->reset_gc_time_stamps(r);
1176     hrrs->clear();
1177     // You might think here that we could clear just the cards
1178     // corresponding to the used region.  But no: if we leave a dirty card
1179     // in a region we might allocate into, then it would prevent that card
1180     // from being enqueued, and cause it to be missed.
1181     // Re: the performance cost: we shouldn't be doing full GC anyway!
1182     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1183 
1184     return false;
1185   }
1186 };
1187 
1188 void G1CollectedHeap::clear_rsets_post_compaction() {
1189   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1190   heap_region_iterate(&rs_clear);
1191 }
1192 
1193 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1194   G1CollectedHeap*   _g1h;
1195   UpdateRSOopClosure _cl;
1196   int                _worker_i;
1197 public:
1198   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1199     _cl(g1->g1_rem_set(), worker_i),
1200     _worker_i(worker_i),
1201     _g1h(g1)
1202   { }
1203 
1204   bool doHeapRegion(HeapRegion* r) {
1205     if (!r->continuesHumongous()) {
1206       _cl.set_from(r);
1207       r->oop_iterate(&_cl);
1208     }
1209     return false;
1210   }
1211 };
1212 
1213 class ParRebuildRSTask: public AbstractGangTask {
1214   G1CollectedHeap* _g1;
1215 public:
1216   ParRebuildRSTask(G1CollectedHeap* g1)
1217     : AbstractGangTask("ParRebuildRSTask"),
1218       _g1(g1)
1219   { }
1220 
1221   void work(uint worker_id) {
1222     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1223     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1224                                           _g1->workers()->active_workers(),
1225                                          HeapRegion::RebuildRSClaimValue);
1226   }
1227 };
1228 
1229 class PostCompactionPrinterClosure: public HeapRegionClosure {
1230 private:
1231   G1HRPrinter* _hr_printer;
1232 public:
1233   bool doHeapRegion(HeapRegion* hr) {
1234     assert(!hr->is_young(), "not expecting to find young regions");
1235     // We only generate output for non-empty regions.
1236     if (!hr->is_empty()) {
1237       if (!hr->isHumongous()) {
1238         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1239       } else if (hr->startsHumongous()) {
1240         if (hr->region_num() == 1) {
1241           // single humongous region
1242           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1243         } else {
1244           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1245         }
1246       } else {
1247         assert(hr->continuesHumongous(), "only way to get here");
1248         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1249       }
1250     }
1251     return false;
1252   }
1253 
1254   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1255     : _hr_printer(hr_printer) { }
1256 };
1257 
1258 void G1CollectedHeap::print_hrs_post_compaction() {
1259   PostCompactionPrinterClosure cl(hr_printer());
1260   heap_region_iterate(&cl);
1261 }
1262 
1263 bool G1CollectedHeap::do_collection(bool explicit_gc,
1264                                     bool clear_all_soft_refs,
1265                                     size_t word_size) {
1266   assert_at_safepoint(true /* should_be_vm_thread */);
1267 
1268   if (GC_locker::check_active_before_gc()) {
1269     return false;
1270   }
1271 
1272   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1273   gc_timer->register_gc_start();
1274 
1275   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1276   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1277 
1278   SvcGCMarker sgcm(SvcGCMarker::FULL);
1279   ResourceMark rm;
1280 
1281   print_heap_before_gc();
1282   trace_heap_before_gc(gc_tracer);
1283 
1284   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1285 
1286   verify_region_sets_optional();
1287 
1288   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1289                            collector_policy()->should_clear_all_soft_refs();
1290 
1291   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1292 
1293   {
1294     IsGCActiveMark x;
1295 
1296     // Timing
1297     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1298     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1299     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1300 
1301     {
1302       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1303       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1304       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1305 
1306       double start = os::elapsedTime();
1307       g1_policy()->record_full_collection_start();
1308 
1309       // Note: When we have a more flexible GC logging framework that
1310       // allows us to add optional attributes to a GC log record we
1311       // could consider timing and reporting how long we wait in the
1312       // following two methods.
1313       wait_while_free_regions_coming();
1314       // If we start the compaction before the CM threads finish
1315       // scanning the root regions we might trip them over as we'll
1316       // be moving objects / updating references. So let's wait until
1317       // they are done. By telling them to abort, they should complete
1318       // early.
1319       _cm->root_regions()->abort();
1320       _cm->root_regions()->wait_until_scan_finished();
1321       append_secondary_free_list_if_not_empty_with_lock();
1322 
1323       gc_prologue(true);
1324       increment_total_collections(true /* full gc */);
1325       increment_old_marking_cycles_started();
1326 
1327       assert(used() == recalculate_used(), "Should be equal");
1328 
1329       verify_before_gc();
1330 
1331       check_bitmaps("Full GC Start");
1332       pre_full_gc_dump(gc_timer);
1333 
1334       COMPILER2_PRESENT(DerivedPointerTable::clear());
1335 
1336       // Disable discovery and empty the discovered lists
1337       // for the CM ref processor.
1338       ref_processor_cm()->disable_discovery();
1339       ref_processor_cm()->abandon_partial_discovery();
1340       ref_processor_cm()->verify_no_references_recorded();
1341 
1342       // Abandon current iterations of concurrent marking and concurrent
1343       // refinement, if any are in progress. We have to do this before
1344       // wait_until_scan_finished() below.
1345       concurrent_mark()->abort();
1346 
1347       // Make sure we'll choose a new allocation region afterwards.
1348       release_mutator_alloc_region();
1349       abandon_gc_alloc_regions();
1350       g1_rem_set()->cleanupHRRS();
1351 
1352       // We should call this after we retire any currently active alloc
1353       // regions so that all the ALLOC / RETIRE events are generated
1354       // before the start GC event.
1355       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1356 
1357       // We may have added regions to the current incremental collection
1358       // set between the last GC or pause and now. We need to clear the
1359       // incremental collection set and then start rebuilding it afresh
1360       // after this full GC.
1361       abandon_collection_set(g1_policy()->inc_cset_head());
1362       g1_policy()->clear_incremental_cset();
1363       g1_policy()->stop_incremental_cset_building();
1364 
1365       tear_down_region_sets(false /* free_list_only */);
1366       g1_policy()->set_gcs_are_young(true);
1367 
1368       // See the comments in g1CollectedHeap.hpp and
1369       // G1CollectedHeap::ref_processing_init() about
1370       // how reference processing currently works in G1.
1371 
1372       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1373       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1374 
1375       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1376       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1377 
1378       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1379       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1380 
1381       // Do collection work
1382       {
1383         HandleMark hm;  // Discard invalid handles created during gc
1384         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1385       }
1386 
1387       assert(free_regions() == 0, "we should not have added any free regions");
1388       rebuild_region_sets(false /* free_list_only */);
1389 
1390       // Enqueue any discovered reference objects that have
1391       // not been removed from the discovered lists.
1392       ref_processor_stw()->enqueue_discovered_references();
1393 
1394       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1395 
1396       MemoryService::track_memory_usage();
1397 
1398       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1399       ref_processor_stw()->verify_no_references_recorded();
1400 
1401       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1402       ClassLoaderDataGraph::purge();
1403       MetaspaceAux::verify_metrics();
1404 
1405       // Note: since we've just done a full GC, concurrent
1406       // marking is no longer active. Therefore we need not
1407       // re-enable reference discovery for the CM ref processor.
1408       // That will be done at the start of the next marking cycle.
1409       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1410       ref_processor_cm()->verify_no_references_recorded();
1411 
1412       reset_gc_time_stamp();
1413       // Since everything potentially moved, we will clear all remembered
1414       // sets, and clear all cards.  Later we will rebuild remembered
1415       // sets. We will also reset the GC time stamps of the regions.
1416       clear_rsets_post_compaction();
1417       check_gc_time_stamps();
1418 
1419       // Resize the heap if necessary.
1420       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1421 
1422       if (_hr_printer.is_active()) {
1423         // We should do this after we potentially resize the heap so
1424         // that all the COMMIT / UNCOMMIT events are generated before
1425         // the end GC event.
1426 
1427         print_hrs_post_compaction();
1428         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1429       }
1430 
1431       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1432       if (hot_card_cache->use_cache()) {
1433         hot_card_cache->reset_card_counts();
1434         hot_card_cache->reset_hot_cache();
1435       }
1436 
1437       // Rebuild remembered sets of all regions.
1438       if (G1CollectedHeap::use_parallel_gc_threads()) {
1439         uint n_workers =
1440           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1441                                                   workers()->active_workers(),
1442                                                   Threads::number_of_non_daemon_threads());
1443         assert(UseDynamicNumberOfGCThreads ||
1444                n_workers == workers()->total_workers(),
1445                "If not dynamic should be using all the  workers");
1446         workers()->set_active_workers(n_workers);
1447         // Set parallel threads in the heap (_n_par_threads) only
1448         // before a parallel phase and always reset it to 0 after
1449         // the phase so that the number of parallel threads does
1450         // no get carried forward to a serial phase where there
1451         // may be code that is "possibly_parallel".
1452         set_par_threads(n_workers);
1453 
1454         ParRebuildRSTask rebuild_rs_task(this);
1455         assert(check_heap_region_claim_values(
1456                HeapRegion::InitialClaimValue), "sanity check");
1457         assert(UseDynamicNumberOfGCThreads ||
1458                workers()->active_workers() == workers()->total_workers(),
1459                "Unless dynamic should use total workers");
1460         // Use the most recent number of  active workers
1461         assert(workers()->active_workers() > 0,
1462                "Active workers not properly set");
1463         set_par_threads(workers()->active_workers());
1464         workers()->run_task(&rebuild_rs_task);
1465         set_par_threads(0);
1466         assert(check_heap_region_claim_values(
1467                HeapRegion::RebuildRSClaimValue), "sanity check");
1468         reset_heap_region_claim_values();
1469       } else {
1470         RebuildRSOutOfRegionClosure rebuild_rs(this);
1471         heap_region_iterate(&rebuild_rs);
1472       }
1473 
1474       // Rebuild the strong code root lists for each region
1475       rebuild_strong_code_roots();
1476 
1477       if (true) { // FIXME
1478         MetaspaceGC::compute_new_size();
1479       }
1480 
1481 #ifdef TRACESPINNING
1482       ParallelTaskTerminator::print_termination_counts();
1483 #endif
1484 
1485       // Discard all rset updates
1486       JavaThread::dirty_card_queue_set().abandon_logs();
1487       assert(!G1DeferredRSUpdate
1488              || (G1DeferredRSUpdate &&
1489                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1490 
1491       _young_list->reset_sampled_info();
1492       // At this point there should be no regions in the
1493       // entire heap tagged as young.
1494       assert(check_young_list_empty(true /* check_heap */),
1495              "young list should be empty at this point");
1496 
1497       // Update the number of full collections that have been completed.
1498       increment_old_marking_cycles_completed(false /* concurrent */);
1499 
1500       _hrs.verify_optional();
1501       verify_region_sets_optional();
1502 
1503       verify_after_gc();
1504 
1505       // Clear the previous marking bitmap, if needed for bitmap verification.
1506       // Note we cannot do this when we clear the next marking bitmap in
1507       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1508       // objects marked during a full GC against the previous bitmap.
1509       // But we need to clear it before calling check_bitmaps below since
1510       // the full GC has compacted objects and updated TAMS but not updated
1511       // the prev bitmap.
1512       if (G1VerifyBitmaps) {
1513         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1514       }
1515       check_bitmaps("Full GC End");
1516 
1517       // Start a new incremental collection set for the next pause
1518       assert(g1_policy()->collection_set() == NULL, "must be");
1519       g1_policy()->start_incremental_cset_building();
1520 
1521       clear_cset_fast_test();
1522 
1523       init_mutator_alloc_region();
1524 
1525       double end = os::elapsedTime();
1526       g1_policy()->record_full_collection_end();
1527 
1528       if (G1Log::fine()) {
1529         g1_policy()->print_heap_transition();
1530       }
1531 
1532       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1533       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1534       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1535       // before any GC notifications are raised.
1536       g1mm()->update_sizes();
1537 
1538       gc_epilogue(true);
1539     }
1540 
1541     if (G1Log::finer()) {
1542       g1_policy()->print_detailed_heap_transition(true /* full */);
1543     }
1544 
1545     print_heap_after_gc();
1546     trace_heap_after_gc(gc_tracer);
1547 
1548     post_full_gc_dump(gc_timer);
1549 
1550     gc_timer->register_gc_end();
1551     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1552   }
1553 
1554   return true;
1555 }
1556 
1557 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1558   // do_collection() will return whether it succeeded in performing
1559   // the GC. Currently, there is no facility on the
1560   // do_full_collection() API to notify the caller than the collection
1561   // did not succeed (e.g., because it was locked out by the GC
1562   // locker). So, right now, we'll ignore the return value.
1563   bool dummy = do_collection(true,                /* explicit_gc */
1564                              clear_all_soft_refs,
1565                              0                    /* word_size */);
1566 }
1567 
1568 // This code is mostly copied from TenuredGeneration.
1569 void
1570 G1CollectedHeap::
1571 resize_if_necessary_after_full_collection(size_t word_size) {
1572   // Include the current allocation, if any, and bytes that will be
1573   // pre-allocated to support collections, as "used".
1574   const size_t used_after_gc = used();
1575   const size_t capacity_after_gc = capacity();
1576   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1577 
1578   // This is enforced in arguments.cpp.
1579   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1580          "otherwise the code below doesn't make sense");
1581 
1582   // We don't have floating point command-line arguments
1583   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1584   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1585   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1586   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1587 
1588   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1589   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1590 
1591   // We have to be careful here as these two calculations can overflow
1592   // 32-bit size_t's.
1593   double used_after_gc_d = (double) used_after_gc;
1594   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1595   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1596 
1597   // Let's make sure that they are both under the max heap size, which
1598   // by default will make them fit into a size_t.
1599   double desired_capacity_upper_bound = (double) max_heap_size;
1600   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1601                                     desired_capacity_upper_bound);
1602   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1603                                     desired_capacity_upper_bound);
1604 
1605   // We can now safely turn them into size_t's.
1606   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1607   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1608 
1609   // This assert only makes sense here, before we adjust them
1610   // with respect to the min and max heap size.
1611   assert(minimum_desired_capacity <= maximum_desired_capacity,
1612          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1613                  "maximum_desired_capacity = "SIZE_FORMAT,
1614                  minimum_desired_capacity, maximum_desired_capacity));
1615 
1616   // Should not be greater than the heap max size. No need to adjust
1617   // it with respect to the heap min size as it's a lower bound (i.e.,
1618   // we'll try to make the capacity larger than it, not smaller).
1619   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1620   // Should not be less than the heap min size. No need to adjust it
1621   // with respect to the heap max size as it's an upper bound (i.e.,
1622   // we'll try to make the capacity smaller than it, not greater).
1623   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1624 
1625   if (capacity_after_gc < minimum_desired_capacity) {
1626     // Don't expand unless it's significant
1627     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1628     ergo_verbose4(ErgoHeapSizing,
1629                   "attempt heap expansion",
1630                   ergo_format_reason("capacity lower than "
1631                                      "min desired capacity after Full GC")
1632                   ergo_format_byte("capacity")
1633                   ergo_format_byte("occupancy")
1634                   ergo_format_byte_perc("min desired capacity"),
1635                   capacity_after_gc, used_after_gc,
1636                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1637     expand(expand_bytes);
1638 
1639     // No expansion, now see if we want to shrink
1640   } else if (capacity_after_gc > maximum_desired_capacity) {
1641     // Capacity too large, compute shrinking size
1642     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1643     ergo_verbose4(ErgoHeapSizing,
1644                   "attempt heap shrinking",
1645                   ergo_format_reason("capacity higher than "
1646                                      "max desired capacity after Full GC")
1647                   ergo_format_byte("capacity")
1648                   ergo_format_byte("occupancy")
1649                   ergo_format_byte_perc("max desired capacity"),
1650                   capacity_after_gc, used_after_gc,
1651                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1652     shrink(shrink_bytes);
1653   }
1654 }
1655 
1656 
1657 HeapWord*
1658 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1659                                            bool* succeeded) {
1660   assert_at_safepoint(true /* should_be_vm_thread */);
1661 
1662   *succeeded = true;
1663   // Let's attempt the allocation first.
1664   HeapWord* result =
1665     attempt_allocation_at_safepoint(word_size,
1666                                  false /* expect_null_mutator_alloc_region */);
1667   if (result != NULL) {
1668     assert(*succeeded, "sanity");
1669     return result;
1670   }
1671 
1672   // In a G1 heap, we're supposed to keep allocation from failing by
1673   // incremental pauses.  Therefore, at least for now, we'll favor
1674   // expansion over collection.  (This might change in the future if we can
1675   // do something smarter than full collection to satisfy a failed alloc.)
1676   result = expand_and_allocate(word_size);
1677   if (result != NULL) {
1678     assert(*succeeded, "sanity");
1679     return result;
1680   }
1681 
1682   // Expansion didn't work, we'll try to do a Full GC.
1683   bool gc_succeeded = do_collection(false, /* explicit_gc */
1684                                     false, /* clear_all_soft_refs */
1685                                     word_size);
1686   if (!gc_succeeded) {
1687     *succeeded = false;
1688     return NULL;
1689   }
1690 
1691   // Retry the allocation
1692   result = attempt_allocation_at_safepoint(word_size,
1693                                   true /* expect_null_mutator_alloc_region */);
1694   if (result != NULL) {
1695     assert(*succeeded, "sanity");
1696     return result;
1697   }
1698 
1699   // Then, try a Full GC that will collect all soft references.
1700   gc_succeeded = do_collection(false, /* explicit_gc */
1701                                true,  /* clear_all_soft_refs */
1702                                word_size);
1703   if (!gc_succeeded) {
1704     *succeeded = false;
1705     return NULL;
1706   }
1707 
1708   // Retry the allocation once more
1709   result = attempt_allocation_at_safepoint(word_size,
1710                                   true /* expect_null_mutator_alloc_region */);
1711   if (result != NULL) {
1712     assert(*succeeded, "sanity");
1713     return result;
1714   }
1715 
1716   assert(!collector_policy()->should_clear_all_soft_refs(),
1717          "Flag should have been handled and cleared prior to this point");
1718 
1719   // What else?  We might try synchronous finalization later.  If the total
1720   // space available is large enough for the allocation, then a more
1721   // complete compaction phase than we've tried so far might be
1722   // appropriate.
1723   assert(*succeeded, "sanity");
1724   return NULL;
1725 }
1726 
1727 // Attempting to expand the heap sufficiently
1728 // to support an allocation of the given "word_size".  If
1729 // successful, perform the allocation and return the address of the
1730 // allocated block, or else "NULL".
1731 
1732 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1733   assert_at_safepoint(true /* should_be_vm_thread */);
1734 
1735   verify_region_sets_optional();
1736 
1737   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1738   ergo_verbose1(ErgoHeapSizing,
1739                 "attempt heap expansion",
1740                 ergo_format_reason("allocation request failed")
1741                 ergo_format_byte("allocation request"),
1742                 word_size * HeapWordSize);
1743   if (expand(expand_bytes)) {
1744     _hrs.verify_optional();
1745     verify_region_sets_optional();
1746     return attempt_allocation_at_safepoint(word_size,
1747                                  false /* expect_null_mutator_alloc_region */);
1748   }
1749   return NULL;
1750 }
1751 
1752 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1753                                              HeapWord* new_end) {
1754   assert(old_end != new_end, "don't call this otherwise");
1755   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1756 
1757   // Update the committed mem region.
1758   _g1_committed.set_end(new_end);
1759   // Tell the card table about the update.
1760   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1761   // Tell the BOT about the update.
1762   _bot_shared->resize(_g1_committed.word_size());
1763   // Tell the hot card cache about the update
1764   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1765 }
1766 
1767 bool G1CollectedHeap::expand(size_t expand_bytes) {
1768   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1769   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1770                                        HeapRegion::GrainBytes);
1771   ergo_verbose2(ErgoHeapSizing,
1772                 "expand the heap",
1773                 ergo_format_byte("requested expansion amount")
1774                 ergo_format_byte("attempted expansion amount"),
1775                 expand_bytes, aligned_expand_bytes);
1776 
1777   if (_g1_storage.uncommitted_size() == 0) {
1778     ergo_verbose0(ErgoHeapSizing,
1779                       "did not expand the heap",
1780                       ergo_format_reason("heap already fully expanded"));
1781     return false;
1782   }
1783 
1784   // First commit the memory.
1785   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1786   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1787   if (successful) {
1788     // Then propagate this update to the necessary data structures.
1789     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1790     update_committed_space(old_end, new_end);
1791 
1792     FreeRegionList expansion_list("Local Expansion List");
1793     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1794     assert(mr.start() == old_end, "post-condition");
1795     // mr might be a smaller region than what was requested if
1796     // expand_by() was unable to allocate the HeapRegion instances
1797     assert(mr.end() <= new_end, "post-condition");
1798 
1799     size_t actual_expand_bytes = mr.byte_size();
1800     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1801     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1802            "post-condition");
1803     if (actual_expand_bytes < aligned_expand_bytes) {
1804       // We could not expand _hrs to the desired size. In this case we
1805       // need to shrink the committed space accordingly.
1806       assert(mr.end() < new_end, "invariant");
1807 
1808       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1809       // First uncommit the memory.
1810       _g1_storage.shrink_by(diff_bytes);
1811       // Then propagate this update to the necessary data structures.
1812       update_committed_space(new_end, mr.end());
1813     }
1814     _free_list.add_as_tail(&expansion_list);
1815 
1816     if (_hr_printer.is_active()) {
1817       HeapWord* curr = mr.start();
1818       while (curr < mr.end()) {
1819         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1820         _hr_printer.commit(curr, curr_end);
1821         curr = curr_end;
1822       }
1823       assert(curr == mr.end(), "post-condition");
1824     }
1825     g1_policy()->record_new_heap_size(n_regions());
1826   } else {
1827     ergo_verbose0(ErgoHeapSizing,
1828                   "did not expand the heap",
1829                   ergo_format_reason("heap expansion operation failed"));
1830     // The expansion of the virtual storage space was unsuccessful.
1831     // Let's see if it was because we ran out of swap.
1832     if (G1ExitOnExpansionFailure &&
1833         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1834       // We had head room...
1835       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1836     }
1837   }
1838   return successful;
1839 }
1840 
1841 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1842   size_t aligned_shrink_bytes =
1843     ReservedSpace::page_align_size_down(shrink_bytes);
1844   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1845                                          HeapRegion::GrainBytes);
1846   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1847 
1848   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1849   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1850   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1851 
1852   ergo_verbose3(ErgoHeapSizing,
1853                 "shrink the heap",
1854                 ergo_format_byte("requested shrinking amount")
1855                 ergo_format_byte("aligned shrinking amount")
1856                 ergo_format_byte("attempted shrinking amount"),
1857                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1858   if (num_regions_removed > 0) {
1859     _g1_storage.shrink_by(shrunk_bytes);
1860     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1861 
1862     if (_hr_printer.is_active()) {
1863       HeapWord* curr = old_end;
1864       while (curr > new_end) {
1865         HeapWord* curr_end = curr;
1866         curr -= HeapRegion::GrainWords;
1867         _hr_printer.uncommit(curr, curr_end);
1868       }
1869     }
1870 
1871     _expansion_regions += num_regions_removed;
1872     update_committed_space(old_end, new_end);
1873     HeapRegionRemSet::shrink_heap(n_regions());
1874     g1_policy()->record_new_heap_size(n_regions());
1875   } else {
1876     ergo_verbose0(ErgoHeapSizing,
1877                   "did not shrink the heap",
1878                   ergo_format_reason("heap shrinking operation failed"));
1879   }
1880 }
1881 
1882 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1883   verify_region_sets_optional();
1884 
1885   // We should only reach here at the end of a Full GC which means we
1886   // should not not be holding to any GC alloc regions. The method
1887   // below will make sure of that and do any remaining clean up.
1888   abandon_gc_alloc_regions();
1889 
1890   // Instead of tearing down / rebuilding the free lists here, we
1891   // could instead use the remove_all_pending() method on free_list to
1892   // remove only the ones that we need to remove.
1893   tear_down_region_sets(true /* free_list_only */);
1894   shrink_helper(shrink_bytes);
1895   rebuild_region_sets(true /* free_list_only */);
1896 
1897   _hrs.verify_optional();
1898   verify_region_sets_optional();
1899 }
1900 
1901 // Public methods.
1902 
1903 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1904 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1905 #endif // _MSC_VER
1906 
1907 
1908 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1909   SharedHeap(policy_),
1910   _g1_policy(policy_),
1911   _dirty_card_queue_set(false),
1912   _into_cset_dirty_card_queue_set(false),
1913   _is_alive_closure_cm(this),
1914   _is_alive_closure_stw(this),
1915   _ref_processor_cm(NULL),
1916   _ref_processor_stw(NULL),
1917   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1918   _bot_shared(NULL),
1919   _evac_failure_scan_stack(NULL),
1920   _mark_in_progress(false),
1921   _cg1r(NULL), _summary_bytes_used(0),
1922   _g1mm(NULL),
1923   _refine_cte_cl(NULL),
1924   _full_collection(false),
1925   _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
1926   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1927   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1928   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1929   _free_regions_coming(false),
1930   _young_list(new YoungList(this)),
1931   _gc_time_stamp(0),
1932   _retained_old_gc_alloc_region(NULL),
1933   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1934   _old_plab_stats(OldPLABSize, PLABWeight),
1935   _expand_heap_after_alloc_failure(true),
1936   _surviving_young_words(NULL),
1937   _old_marking_cycles_started(0),
1938   _old_marking_cycles_completed(0),
1939   _concurrent_cycle_started(false),
1940   _in_cset_fast_test(),
1941   _dirty_cards_region_list(NULL),
1942   _worker_cset_start_region(NULL),
1943   _worker_cset_start_region_time_stamp(NULL),
1944   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1945   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1946   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1947   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1948 
1949   _g1h = this;
1950   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1951     vm_exit_during_initialization("Failed necessary allocation.");
1952   }
1953 
1954   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1955 
1956   int n_queues = MAX2((int)ParallelGCThreads, 1);
1957   _task_queues = new RefToScanQueueSet(n_queues);
1958 
1959   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1960   assert(n_rem_sets > 0, "Invariant.");
1961 
1962   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1963   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1964   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1965 
1966   for (int i = 0; i < n_queues; i++) {
1967     RefToScanQueue* q = new RefToScanQueue();
1968     q->initialize();
1969     _task_queues->register_queue(i, q);
1970     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1971   }
1972   clear_cset_start_regions();
1973 
1974   // Initialize the G1EvacuationFailureALot counters and flags.
1975   NOT_PRODUCT(reset_evacuation_should_fail();)
1976 
1977   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1978 }
1979 
1980 jint G1CollectedHeap::initialize() {
1981   CollectedHeap::pre_initialize();
1982   os::enable_vtime();
1983 
1984   G1Log::init();
1985 
1986   // Necessary to satisfy locking discipline assertions.
1987 
1988   MutexLocker x(Heap_lock);
1989 
1990   // We have to initialize the printer before committing the heap, as
1991   // it will be used then.
1992   _hr_printer.set_active(G1PrintHeapRegions);
1993 
1994   // While there are no constraints in the GC code that HeapWordSize
1995   // be any particular value, there are multiple other areas in the
1996   // system which believe this to be true (e.g. oop->object_size in some
1997   // cases incorrectly returns the size in wordSize units rather than
1998   // HeapWordSize).
1999   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2000 
2001   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2002   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2003   size_t heap_alignment = collector_policy()->heap_alignment();
2004 
2005   // Ensure that the sizes are properly aligned.
2006   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2007   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2008   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2009 
2010   _refine_cte_cl = new RefineCardTableEntryClosure();
2011 
2012   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2013 
2014   // Reserve the maximum.
2015 
2016   // When compressed oops are enabled, the preferred heap base
2017   // is calculated by subtracting the requested size from the
2018   // 32Gb boundary and using the result as the base address for
2019   // heap reservation. If the requested size is not aligned to
2020   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2021   // into the ReservedHeapSpace constructor) then the actual
2022   // base of the reserved heap may end up differing from the
2023   // address that was requested (i.e. the preferred heap base).
2024   // If this happens then we could end up using a non-optimal
2025   // compressed oops mode.
2026 
2027   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2028                                                  heap_alignment);
2029 
2030   // It is important to do this in a way such that concurrent readers can't
2031   // temporarily think something is in the heap.  (I've actually seen this
2032   // happen in asserts: DLD.)
2033   _reserved.set_word_size(0);
2034   _reserved.set_start((HeapWord*)heap_rs.base());
2035   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2036 
2037   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2038 
2039   // Create the gen rem set (and barrier set) for the entire reserved region.
2040   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2041   set_barrier_set(rem_set()->bs());
2042   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
2043     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2044     return JNI_ENOMEM;
2045   }
2046 
2047   // Also create a G1 rem set.
2048   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2049 
2050   // Carve out the G1 part of the heap.
2051 
2052   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2053   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2054                            g1_rs.size()/HeapWordSize);
2055 
2056   _g1_storage.initialize(g1_rs, 0);
2057   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2058   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2059                   (HeapWord*) _g1_reserved.end());
2060   assert(_hrs.max_length() == _expansion_regions,
2061          err_msg("max length: %u expansion regions: %u",
2062                  _hrs.max_length(), _expansion_regions));
2063 
2064   // Do later initialization work for concurrent refinement.
2065   _cg1r->init();
2066 
2067   // 6843694 - ensure that the maximum region index can fit
2068   // in the remembered set structures.
2069   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2070   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2071 
2072   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2073   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2074   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2075             "too many cards per region");
2076 
2077   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2078 
2079   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2080                                              heap_word_size(init_byte_size));
2081 
2082   _g1h = this;
2083 
2084   _in_cset_fast_test.initialize(_g1_reserved.start(), _g1_reserved.end(), HeapRegion::GrainBytes);
2085 
2086   // Create the ConcurrentMark data structure and thread.
2087   // (Must do this late, so that "max_regions" is defined.)
2088   _cm = new ConcurrentMark(this, heap_rs);
2089   if (_cm == NULL || !_cm->completed_initialization()) {
2090     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2091     return JNI_ENOMEM;
2092   }
2093   _cmThread = _cm->cmThread();
2094 
2095   // Initialize the from_card cache structure of HeapRegionRemSet.
2096   HeapRegionRemSet::init_heap(max_regions());
2097 
2098   // Now expand into the initial heap size.
2099   if (!expand(init_byte_size)) {
2100     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2101     return JNI_ENOMEM;
2102   }
2103 
2104   // Perform any initialization actions delegated to the policy.
2105   g1_policy()->init();
2106 
2107   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2108                                                SATB_Q_FL_lock,
2109                                                G1SATBProcessCompletedThreshold,
2110                                                Shared_SATB_Q_lock);
2111 
2112   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2113                                                 DirtyCardQ_CBL_mon,
2114                                                 DirtyCardQ_FL_lock,
2115                                                 concurrent_g1_refine()->yellow_zone(),
2116                                                 concurrent_g1_refine()->red_zone(),
2117                                                 Shared_DirtyCardQ_lock);
2118 
2119   if (G1DeferredRSUpdate) {
2120     dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2121                                       DirtyCardQ_CBL_mon,
2122                                       DirtyCardQ_FL_lock,
2123                                       -1, // never trigger processing
2124                                       -1, // no limit on length
2125                                       Shared_DirtyCardQ_lock,
2126                                       &JavaThread::dirty_card_queue_set());
2127   }
2128 
2129   // Initialize the card queue set used to hold cards containing
2130   // references into the collection set.
2131   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2132                                              DirtyCardQ_CBL_mon,
2133                                              DirtyCardQ_FL_lock,
2134                                              -1, // never trigger processing
2135                                              -1, // no limit on length
2136                                              Shared_DirtyCardQ_lock,
2137                                              &JavaThread::dirty_card_queue_set());
2138 
2139   // In case we're keeping closure specialization stats, initialize those
2140   // counts and that mechanism.
2141   SpecializationStats::clear();
2142 
2143   // Here we allocate the dummy full region that is required by the
2144   // G1AllocRegion class. If we don't pass an address in the reserved
2145   // space here, lots of asserts fire.
2146 
2147   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2148                                              _g1_reserved.start());
2149   // We'll re-use the same region whether the alloc region will
2150   // require BOT updates or not and, if it doesn't, then a non-young
2151   // region will complain that it cannot support allocations without
2152   // BOT updates. So we'll tag the dummy region as young to avoid that.
2153   dummy_region->set_young();
2154   // Make sure it's full.
2155   dummy_region->set_top(dummy_region->end());
2156   G1AllocRegion::setup(this, dummy_region);
2157 
2158   init_mutator_alloc_region();
2159 
2160   // Do create of the monitoring and management support so that
2161   // values in the heap have been properly initialized.
2162   _g1mm = new G1MonitoringSupport(this);
2163 
2164   G1StringDedup::initialize();
2165 
2166   return JNI_OK;
2167 }
2168 
2169 void G1CollectedHeap::stop() {
2170   // Stop all concurrent threads. We do this to make sure these threads
2171   // do not continue to execute and access resources (e.g. gclog_or_tty)
2172   // that are destroyed during shutdown.
2173   _cg1r->stop();
2174   _cmThread->stop();
2175   if (G1StringDedup::is_enabled()) {
2176     G1StringDedup::stop();
2177   }
2178 }
2179 
2180 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2181   return HeapRegion::max_region_size();
2182 }
2183 
2184 void G1CollectedHeap::ref_processing_init() {
2185   // Reference processing in G1 currently works as follows:
2186   //
2187   // * There are two reference processor instances. One is
2188   //   used to record and process discovered references
2189   //   during concurrent marking; the other is used to
2190   //   record and process references during STW pauses
2191   //   (both full and incremental).
2192   // * Both ref processors need to 'span' the entire heap as
2193   //   the regions in the collection set may be dotted around.
2194   //
2195   // * For the concurrent marking ref processor:
2196   //   * Reference discovery is enabled at initial marking.
2197   //   * Reference discovery is disabled and the discovered
2198   //     references processed etc during remarking.
2199   //   * Reference discovery is MT (see below).
2200   //   * Reference discovery requires a barrier (see below).
2201   //   * Reference processing may or may not be MT
2202   //     (depending on the value of ParallelRefProcEnabled
2203   //     and ParallelGCThreads).
2204   //   * A full GC disables reference discovery by the CM
2205   //     ref processor and abandons any entries on it's
2206   //     discovered lists.
2207   //
2208   // * For the STW processor:
2209   //   * Non MT discovery is enabled at the start of a full GC.
2210   //   * Processing and enqueueing during a full GC is non-MT.
2211   //   * During a full GC, references are processed after marking.
2212   //
2213   //   * Discovery (may or may not be MT) is enabled at the start
2214   //     of an incremental evacuation pause.
2215   //   * References are processed near the end of a STW evacuation pause.
2216   //   * For both types of GC:
2217   //     * Discovery is atomic - i.e. not concurrent.
2218   //     * Reference discovery will not need a barrier.
2219 
2220   SharedHeap::ref_processing_init();
2221   MemRegion mr = reserved_region();
2222 
2223   // Concurrent Mark ref processor
2224   _ref_processor_cm =
2225     new ReferenceProcessor(mr,    // span
2226                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2227                                 // mt processing
2228                            (int) ParallelGCThreads,
2229                                 // degree of mt processing
2230                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2231                                 // mt discovery
2232                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2233                                 // degree of mt discovery
2234                            false,
2235                                 // Reference discovery is not atomic
2236                            &_is_alive_closure_cm);
2237                                 // is alive closure
2238                                 // (for efficiency/performance)
2239 
2240   // STW ref processor
2241   _ref_processor_stw =
2242     new ReferenceProcessor(mr,    // span
2243                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2244                                 // mt processing
2245                            MAX2((int)ParallelGCThreads, 1),
2246                                 // degree of mt processing
2247                            (ParallelGCThreads > 1),
2248                                 // mt discovery
2249                            MAX2((int)ParallelGCThreads, 1),
2250                                 // degree of mt discovery
2251                            true,
2252                                 // Reference discovery is atomic
2253                            &_is_alive_closure_stw);
2254                                 // is alive closure
2255                                 // (for efficiency/performance)
2256 }
2257 
2258 size_t G1CollectedHeap::capacity() const {
2259   return _g1_committed.byte_size();
2260 }
2261 
2262 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2263   assert(!hr->continuesHumongous(), "pre-condition");
2264   hr->reset_gc_time_stamp();
2265   if (hr->startsHumongous()) {
2266     uint first_index = hr->hrs_index() + 1;
2267     uint last_index = hr->last_hc_index();
2268     for (uint i = first_index; i < last_index; i += 1) {
2269       HeapRegion* chr = region_at(i);
2270       assert(chr->continuesHumongous(), "sanity");
2271       chr->reset_gc_time_stamp();
2272     }
2273   }
2274 }
2275 
2276 #ifndef PRODUCT
2277 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2278 private:
2279   unsigned _gc_time_stamp;
2280   bool _failures;
2281 
2282 public:
2283   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2284     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2285 
2286   virtual bool doHeapRegion(HeapRegion* hr) {
2287     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2288     if (_gc_time_stamp != region_gc_time_stamp) {
2289       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2290                              "expected %d", HR_FORMAT_PARAMS(hr),
2291                              region_gc_time_stamp, _gc_time_stamp);
2292       _failures = true;
2293     }
2294     return false;
2295   }
2296 
2297   bool failures() { return _failures; }
2298 };
2299 
2300 void G1CollectedHeap::check_gc_time_stamps() {
2301   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2302   heap_region_iterate(&cl);
2303   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2304 }
2305 #endif // PRODUCT
2306 
2307 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2308                                                  DirtyCardQueue* into_cset_dcq,
2309                                                  bool concurrent,
2310                                                  uint worker_i) {
2311   // Clean cards in the hot card cache
2312   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2313   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2314 
2315   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2316   int n_completed_buffers = 0;
2317   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2318     n_completed_buffers++;
2319   }
2320   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2321   dcqs.clear_n_completed_buffers();
2322   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2323 }
2324 
2325 
2326 // Computes the sum of the storage used by the various regions.
2327 
2328 size_t G1CollectedHeap::used() const {
2329   assert(Heap_lock->owner() != NULL,
2330          "Should be owned on this thread's behalf.");
2331   size_t result = _summary_bytes_used;
2332   // Read only once in case it is set to NULL concurrently
2333   HeapRegion* hr = _mutator_alloc_region.get();
2334   if (hr != NULL)
2335     result += hr->used();
2336   return result;
2337 }
2338 
2339 size_t G1CollectedHeap::used_unlocked() const {
2340   size_t result = _summary_bytes_used;
2341   return result;
2342 }
2343 
2344 class SumUsedClosure: public HeapRegionClosure {
2345   size_t _used;
2346 public:
2347   SumUsedClosure() : _used(0) {}
2348   bool doHeapRegion(HeapRegion* r) {
2349     if (!r->continuesHumongous()) {
2350       _used += r->used();
2351     }
2352     return false;
2353   }
2354   size_t result() { return _used; }
2355 };
2356 
2357 size_t G1CollectedHeap::recalculate_used() const {
2358   double recalculate_used_start = os::elapsedTime();
2359 
2360   SumUsedClosure blk;
2361   heap_region_iterate(&blk);
2362 
2363   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2364   return blk.result();
2365 }
2366 
2367 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2368   switch (cause) {
2369     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2370     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2371     case GCCause::_g1_humongous_allocation: return true;
2372     default:                                return false;
2373   }
2374 }
2375 
2376 #ifndef PRODUCT
2377 void G1CollectedHeap::allocate_dummy_regions() {
2378   // Let's fill up most of the region
2379   size_t word_size = HeapRegion::GrainWords - 1024;
2380   // And as a result the region we'll allocate will be humongous.
2381   guarantee(isHumongous(word_size), "sanity");
2382 
2383   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2384     // Let's use the existing mechanism for the allocation
2385     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2386     if (dummy_obj != NULL) {
2387       MemRegion mr(dummy_obj, word_size);
2388       CollectedHeap::fill_with_object(mr);
2389     } else {
2390       // If we can't allocate once, we probably cannot allocate
2391       // again. Let's get out of the loop.
2392       break;
2393     }
2394   }
2395 }
2396 #endif // !PRODUCT
2397 
2398 void G1CollectedHeap::increment_old_marking_cycles_started() {
2399   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2400     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2401     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2402     _old_marking_cycles_started, _old_marking_cycles_completed));
2403 
2404   _old_marking_cycles_started++;
2405 }
2406 
2407 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2408   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2409 
2410   // We assume that if concurrent == true, then the caller is a
2411   // concurrent thread that was joined the Suspendible Thread
2412   // Set. If there's ever a cheap way to check this, we should add an
2413   // assert here.
2414 
2415   // Given that this method is called at the end of a Full GC or of a
2416   // concurrent cycle, and those can be nested (i.e., a Full GC can
2417   // interrupt a concurrent cycle), the number of full collections
2418   // completed should be either one (in the case where there was no
2419   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2420   // behind the number of full collections started.
2421 
2422   // This is the case for the inner caller, i.e. a Full GC.
2423   assert(concurrent ||
2424          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2425          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2426          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2427                  "is inconsistent with _old_marking_cycles_completed = %u",
2428                  _old_marking_cycles_started, _old_marking_cycles_completed));
2429 
2430   // This is the case for the outer caller, i.e. the concurrent cycle.
2431   assert(!concurrent ||
2432          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2433          err_msg("for outer caller (concurrent cycle): "
2434                  "_old_marking_cycles_started = %u "
2435                  "is inconsistent with _old_marking_cycles_completed = %u",
2436                  _old_marking_cycles_started, _old_marking_cycles_completed));
2437 
2438   _old_marking_cycles_completed += 1;
2439 
2440   // We need to clear the "in_progress" flag in the CM thread before
2441   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2442   // is set) so that if a waiter requests another System.gc() it doesn't
2443   // incorrectly see that a marking cycle is still in progress.
2444   if (concurrent) {
2445     _cmThread->clear_in_progress();
2446   }
2447 
2448   // This notify_all() will ensure that a thread that called
2449   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2450   // and it's waiting for a full GC to finish will be woken up. It is
2451   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2452   FullGCCount_lock->notify_all();
2453 }
2454 
2455 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2456   _concurrent_cycle_started = true;
2457   _gc_timer_cm->register_gc_start(start_time);
2458 
2459   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2460   trace_heap_before_gc(_gc_tracer_cm);
2461 }
2462 
2463 void G1CollectedHeap::register_concurrent_cycle_end() {
2464   if (_concurrent_cycle_started) {
2465     if (_cm->has_aborted()) {
2466       _gc_tracer_cm->report_concurrent_mode_failure();
2467     }
2468 
2469     _gc_timer_cm->register_gc_end();
2470     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2471 
2472     _concurrent_cycle_started = false;
2473   }
2474 }
2475 
2476 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2477   if (_concurrent_cycle_started) {
2478     trace_heap_after_gc(_gc_tracer_cm);
2479   }
2480 }
2481 
2482 G1YCType G1CollectedHeap::yc_type() {
2483   bool is_young = g1_policy()->gcs_are_young();
2484   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2485   bool is_during_mark = mark_in_progress();
2486 
2487   if (is_initial_mark) {
2488     return InitialMark;
2489   } else if (is_during_mark) {
2490     return DuringMark;
2491   } else if (is_young) {
2492     return Normal;
2493   } else {
2494     return Mixed;
2495   }
2496 }
2497 
2498 void G1CollectedHeap::collect(GCCause::Cause cause) {
2499   assert_heap_not_locked();
2500 
2501   unsigned int gc_count_before;
2502   unsigned int old_marking_count_before;
2503   bool retry_gc;
2504 
2505   do {
2506     retry_gc = false;
2507 
2508     {
2509       MutexLocker ml(Heap_lock);
2510 
2511       // Read the GC count while holding the Heap_lock
2512       gc_count_before = total_collections();
2513       old_marking_count_before = _old_marking_cycles_started;
2514     }
2515 
2516     if (should_do_concurrent_full_gc(cause)) {
2517       // Schedule an initial-mark evacuation pause that will start a
2518       // concurrent cycle. We're setting word_size to 0 which means that
2519       // we are not requesting a post-GC allocation.
2520       VM_G1IncCollectionPause op(gc_count_before,
2521                                  0,     /* word_size */
2522                                  true,  /* should_initiate_conc_mark */
2523                                  g1_policy()->max_pause_time_ms(),
2524                                  cause);
2525 
2526       VMThread::execute(&op);
2527       if (!op.pause_succeeded()) {
2528         if (old_marking_count_before == _old_marking_cycles_started) {
2529           retry_gc = op.should_retry_gc();
2530         } else {
2531           // A Full GC happened while we were trying to schedule the
2532           // initial-mark GC. No point in starting a new cycle given
2533           // that the whole heap was collected anyway.
2534         }
2535 
2536         if (retry_gc) {
2537           if (GC_locker::is_active_and_needs_gc()) {
2538             GC_locker::stall_until_clear();
2539           }
2540         }
2541       }
2542     } else {
2543       if (cause == GCCause::_gc_locker
2544           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2545 
2546         // Schedule a standard evacuation pause. We're setting word_size
2547         // to 0 which means that we are not requesting a post-GC allocation.
2548         VM_G1IncCollectionPause op(gc_count_before,
2549                                    0,     /* word_size */
2550                                    false, /* should_initiate_conc_mark */
2551                                    g1_policy()->max_pause_time_ms(),
2552                                    cause);
2553         VMThread::execute(&op);
2554       } else {
2555         // Schedule a Full GC.
2556         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2557         VMThread::execute(&op);
2558       }
2559     }
2560   } while (retry_gc);
2561 }
2562 
2563 bool G1CollectedHeap::is_in(const void* p) const {
2564   if (_g1_committed.contains(p)) {
2565     // Given that we know that p is in the committed space,
2566     // heap_region_containing_raw() should successfully
2567     // return the containing region.
2568     HeapRegion* hr = heap_region_containing_raw(p);
2569     return hr->is_in(p);
2570   } else {
2571     return false;
2572   }
2573 }
2574 
2575 // Iteration functions.
2576 
2577 // Iterates an OopClosure over all ref-containing fields of objects
2578 // within a HeapRegion.
2579 
2580 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2581   MemRegion _mr;
2582   ExtendedOopClosure* _cl;
2583 public:
2584   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2585     : _mr(mr), _cl(cl) {}
2586   bool doHeapRegion(HeapRegion* r) {
2587     if (!r->continuesHumongous()) {
2588       r->oop_iterate(_cl);
2589     }
2590     return false;
2591   }
2592 };
2593 
2594 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2595   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2596   heap_region_iterate(&blk);
2597 }
2598 
2599 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2600   IterateOopClosureRegionClosure blk(mr, cl);
2601   heap_region_iterate(&blk);
2602 }
2603 
2604 // Iterates an ObjectClosure over all objects within a HeapRegion.
2605 
2606 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2607   ObjectClosure* _cl;
2608 public:
2609   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2610   bool doHeapRegion(HeapRegion* r) {
2611     if (! r->continuesHumongous()) {
2612       r->object_iterate(_cl);
2613     }
2614     return false;
2615   }
2616 };
2617 
2618 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2619   IterateObjectClosureRegionClosure blk(cl);
2620   heap_region_iterate(&blk);
2621 }
2622 
2623 // Calls a SpaceClosure on a HeapRegion.
2624 
2625 class SpaceClosureRegionClosure: public HeapRegionClosure {
2626   SpaceClosure* _cl;
2627 public:
2628   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2629   bool doHeapRegion(HeapRegion* r) {
2630     _cl->do_space(r);
2631     return false;
2632   }
2633 };
2634 
2635 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2636   SpaceClosureRegionClosure blk(cl);
2637   heap_region_iterate(&blk);
2638 }
2639 
2640 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2641   _hrs.iterate(cl);
2642 }
2643 
2644 void
2645 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2646                                                  uint worker_id,
2647                                                  uint no_of_par_workers,
2648                                                  jint claim_value) {
2649   const uint regions = n_regions();
2650   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2651                              no_of_par_workers :
2652                              1);
2653   assert(UseDynamicNumberOfGCThreads ||
2654          no_of_par_workers == workers()->total_workers(),
2655          "Non dynamic should use fixed number of workers");
2656   // try to spread out the starting points of the workers
2657   const HeapRegion* start_hr =
2658                         start_region_for_worker(worker_id, no_of_par_workers);
2659   const uint start_index = start_hr->hrs_index();
2660 
2661   // each worker will actually look at all regions
2662   for (uint count = 0; count < regions; ++count) {
2663     const uint index = (start_index + count) % regions;
2664     assert(0 <= index && index < regions, "sanity");
2665     HeapRegion* r = region_at(index);
2666     // we'll ignore "continues humongous" regions (we'll process them
2667     // when we come across their corresponding "start humongous"
2668     // region) and regions already claimed
2669     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2670       continue;
2671     }
2672     // OK, try to claim it
2673     if (r->claimHeapRegion(claim_value)) {
2674       // success!
2675       assert(!r->continuesHumongous(), "sanity");
2676       if (r->startsHumongous()) {
2677         // If the region is "starts humongous" we'll iterate over its
2678         // "continues humongous" first; in fact we'll do them
2679         // first. The order is important. In on case, calling the
2680         // closure on the "starts humongous" region might de-allocate
2681         // and clear all its "continues humongous" regions and, as a
2682         // result, we might end up processing them twice. So, we'll do
2683         // them first (notice: most closures will ignore them anyway) and
2684         // then we'll do the "starts humongous" region.
2685         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2686           HeapRegion* chr = region_at(ch_index);
2687 
2688           // if the region has already been claimed or it's not
2689           // "continues humongous" we're done
2690           if (chr->claim_value() == claim_value ||
2691               !chr->continuesHumongous()) {
2692             break;
2693           }
2694 
2695           // No one should have claimed it directly. We can given
2696           // that we claimed its "starts humongous" region.
2697           assert(chr->claim_value() != claim_value, "sanity");
2698           assert(chr->humongous_start_region() == r, "sanity");
2699 
2700           if (chr->claimHeapRegion(claim_value)) {
2701             // we should always be able to claim it; no one else should
2702             // be trying to claim this region
2703 
2704             bool res2 = cl->doHeapRegion(chr);
2705             assert(!res2, "Should not abort");
2706 
2707             // Right now, this holds (i.e., no closure that actually
2708             // does something with "continues humongous" regions
2709             // clears them). We might have to weaken it in the future,
2710             // but let's leave these two asserts here for extra safety.
2711             assert(chr->continuesHumongous(), "should still be the case");
2712             assert(chr->humongous_start_region() == r, "sanity");
2713           } else {
2714             guarantee(false, "we should not reach here");
2715           }
2716         }
2717       }
2718 
2719       assert(!r->continuesHumongous(), "sanity");
2720       bool res = cl->doHeapRegion(r);
2721       assert(!res, "Should not abort");
2722     }
2723   }
2724 }
2725 
2726 class ResetClaimValuesClosure: public HeapRegionClosure {
2727 public:
2728   bool doHeapRegion(HeapRegion* r) {
2729     r->set_claim_value(HeapRegion::InitialClaimValue);
2730     return false;
2731   }
2732 };
2733 
2734 void G1CollectedHeap::reset_heap_region_claim_values() {
2735   ResetClaimValuesClosure blk;
2736   heap_region_iterate(&blk);
2737 }
2738 
2739 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2740   ResetClaimValuesClosure blk;
2741   collection_set_iterate(&blk);
2742 }
2743 
2744 #ifdef ASSERT
2745 // This checks whether all regions in the heap have the correct claim
2746 // value. I also piggy-backed on this a check to ensure that the
2747 // humongous_start_region() information on "continues humongous"
2748 // regions is correct.
2749 
2750 class CheckClaimValuesClosure : public HeapRegionClosure {
2751 private:
2752   jint _claim_value;
2753   uint _failures;
2754   HeapRegion* _sh_region;
2755 
2756 public:
2757   CheckClaimValuesClosure(jint claim_value) :
2758     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2759   bool doHeapRegion(HeapRegion* r) {
2760     if (r->claim_value() != _claim_value) {
2761       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2762                              "claim value = %d, should be %d",
2763                              HR_FORMAT_PARAMS(r),
2764                              r->claim_value(), _claim_value);
2765       ++_failures;
2766     }
2767     if (!r->isHumongous()) {
2768       _sh_region = NULL;
2769     } else if (r->startsHumongous()) {
2770       _sh_region = r;
2771     } else if (r->continuesHumongous()) {
2772       if (r->humongous_start_region() != _sh_region) {
2773         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2774                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2775                                HR_FORMAT_PARAMS(r),
2776                                r->humongous_start_region(),
2777                                _sh_region);
2778         ++_failures;
2779       }
2780     }
2781     return false;
2782   }
2783   uint failures() { return _failures; }
2784 };
2785 
2786 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2787   CheckClaimValuesClosure cl(claim_value);
2788   heap_region_iterate(&cl);
2789   return cl.failures() == 0;
2790 }
2791 
2792 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2793 private:
2794   jint _claim_value;
2795   uint _failures;
2796 
2797 public:
2798   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2799     _claim_value(claim_value), _failures(0) { }
2800 
2801   uint failures() { return _failures; }
2802 
2803   bool doHeapRegion(HeapRegion* hr) {
2804     assert(hr->in_collection_set(), "how?");
2805     assert(!hr->isHumongous(), "H-region in CSet");
2806     if (hr->claim_value() != _claim_value) {
2807       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2808                              "claim value = %d, should be %d",
2809                              HR_FORMAT_PARAMS(hr),
2810                              hr->claim_value(), _claim_value);
2811       _failures += 1;
2812     }
2813     return false;
2814   }
2815 };
2816 
2817 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2818   CheckClaimValuesInCSetHRClosure cl(claim_value);
2819   collection_set_iterate(&cl);
2820   return cl.failures() == 0;
2821 }
2822 #endif // ASSERT
2823 
2824 // Clear the cached CSet starting regions and (more importantly)
2825 // the time stamps. Called when we reset the GC time stamp.
2826 void G1CollectedHeap::clear_cset_start_regions() {
2827   assert(_worker_cset_start_region != NULL, "sanity");
2828   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2829 
2830   int n_queues = MAX2((int)ParallelGCThreads, 1);
2831   for (int i = 0; i < n_queues; i++) {
2832     _worker_cset_start_region[i] = NULL;
2833     _worker_cset_start_region_time_stamp[i] = 0;
2834   }
2835 }
2836 
2837 // Given the id of a worker, obtain or calculate a suitable
2838 // starting region for iterating over the current collection set.
2839 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2840   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2841 
2842   HeapRegion* result = NULL;
2843   unsigned gc_time_stamp = get_gc_time_stamp();
2844 
2845   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2846     // Cached starting region for current worker was set
2847     // during the current pause - so it's valid.
2848     // Note: the cached starting heap region may be NULL
2849     // (when the collection set is empty).
2850     result = _worker_cset_start_region[worker_i];
2851     assert(result == NULL || result->in_collection_set(), "sanity");
2852     return result;
2853   }
2854 
2855   // The cached entry was not valid so let's calculate
2856   // a suitable starting heap region for this worker.
2857 
2858   // We want the parallel threads to start their collection
2859   // set iteration at different collection set regions to
2860   // avoid contention.
2861   // If we have:
2862   //          n collection set regions
2863   //          p threads
2864   // Then thread t will start at region floor ((t * n) / p)
2865 
2866   result = g1_policy()->collection_set();
2867   if (G1CollectedHeap::use_parallel_gc_threads()) {
2868     uint cs_size = g1_policy()->cset_region_length();
2869     uint active_workers = workers()->active_workers();
2870     assert(UseDynamicNumberOfGCThreads ||
2871              active_workers == workers()->total_workers(),
2872              "Unless dynamic should use total workers");
2873 
2874     uint end_ind   = (cs_size * worker_i) / active_workers;
2875     uint start_ind = 0;
2876 
2877     if (worker_i > 0 &&
2878         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2879       // Previous workers starting region is valid
2880       // so let's iterate from there
2881       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2882       result = _worker_cset_start_region[worker_i - 1];
2883     }
2884 
2885     for (uint i = start_ind; i < end_ind; i++) {
2886       result = result->next_in_collection_set();
2887     }
2888   }
2889 
2890   // Note: the calculated starting heap region may be NULL
2891   // (when the collection set is empty).
2892   assert(result == NULL || result->in_collection_set(), "sanity");
2893   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2894          "should be updated only once per pause");
2895   _worker_cset_start_region[worker_i] = result;
2896   OrderAccess::storestore();
2897   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2898   return result;
2899 }
2900 
2901 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2902                                                      uint no_of_par_workers) {
2903   uint worker_num =
2904            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2905   assert(UseDynamicNumberOfGCThreads ||
2906          no_of_par_workers == workers()->total_workers(),
2907          "Non dynamic should use fixed number of workers");
2908   const uint start_index = n_regions() * worker_i / worker_num;
2909   return region_at(start_index);
2910 }
2911 
2912 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2913   HeapRegion* r = g1_policy()->collection_set();
2914   while (r != NULL) {
2915     HeapRegion* next = r->next_in_collection_set();
2916     if (cl->doHeapRegion(r)) {
2917       cl->incomplete();
2918       return;
2919     }
2920     r = next;
2921   }
2922 }
2923 
2924 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2925                                                   HeapRegionClosure *cl) {
2926   if (r == NULL) {
2927     // The CSet is empty so there's nothing to do.
2928     return;
2929   }
2930 
2931   assert(r->in_collection_set(),
2932          "Start region must be a member of the collection set.");
2933   HeapRegion* cur = r;
2934   while (cur != NULL) {
2935     HeapRegion* next = cur->next_in_collection_set();
2936     if (cl->doHeapRegion(cur) && false) {
2937       cl->incomplete();
2938       return;
2939     }
2940     cur = next;
2941   }
2942   cur = g1_policy()->collection_set();
2943   while (cur != r) {
2944     HeapRegion* next = cur->next_in_collection_set();
2945     if (cl->doHeapRegion(cur) && false) {
2946       cl->incomplete();
2947       return;
2948     }
2949     cur = next;
2950   }
2951 }
2952 
2953 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2954   return n_regions() > 0 ? region_at(0) : NULL;
2955 }
2956 
2957 
2958 Space* G1CollectedHeap::space_containing(const void* addr) const {
2959   return heap_region_containing(addr);
2960 }
2961 
2962 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2963   Space* sp = space_containing(addr);
2964   return sp->block_start(addr);
2965 }
2966 
2967 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2968   Space* sp = space_containing(addr);
2969   return sp->block_size(addr);
2970 }
2971 
2972 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2973   Space* sp = space_containing(addr);
2974   return sp->block_is_obj(addr);
2975 }
2976 
2977 bool G1CollectedHeap::supports_tlab_allocation() const {
2978   return true;
2979 }
2980 
2981 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2982   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2983 }
2984 
2985 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2986   return young_list()->eden_used_bytes();
2987 }
2988 
2989 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2990 // must be smaller than the humongous object limit.
2991 size_t G1CollectedHeap::max_tlab_size() const {
2992   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2993 }
2994 
2995 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2996   // Return the remaining space in the cur alloc region, but not less than
2997   // the min TLAB size.
2998 
2999   // Also, this value can be at most the humongous object threshold,
3000   // since we can't allow tlabs to grow big enough to accommodate
3001   // humongous objects.
3002 
3003   HeapRegion* hr = _mutator_alloc_region.get();
3004   size_t max_tlab = max_tlab_size() * wordSize;
3005   if (hr == NULL) {
3006     return max_tlab;
3007   } else {
3008     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
3009   }
3010 }
3011 
3012 size_t G1CollectedHeap::max_capacity() const {
3013   return _g1_reserved.byte_size();
3014 }
3015 
3016 jlong G1CollectedHeap::millis_since_last_gc() {
3017   // assert(false, "NYI");
3018   return 0;
3019 }
3020 
3021 void G1CollectedHeap::prepare_for_verify() {
3022   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3023     ensure_parsability(false);
3024   }
3025   g1_rem_set()->prepare_for_verify();
3026 }
3027 
3028 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3029                                               VerifyOption vo) {
3030   switch (vo) {
3031   case VerifyOption_G1UsePrevMarking:
3032     return hr->obj_allocated_since_prev_marking(obj);
3033   case VerifyOption_G1UseNextMarking:
3034     return hr->obj_allocated_since_next_marking(obj);
3035   case VerifyOption_G1UseMarkWord:
3036     return false;
3037   default:
3038     ShouldNotReachHere();
3039   }
3040   return false; // keep some compilers happy
3041 }
3042 
3043 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3044   switch (vo) {
3045   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3046   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3047   case VerifyOption_G1UseMarkWord:    return NULL;
3048   default:                            ShouldNotReachHere();
3049   }
3050   return NULL; // keep some compilers happy
3051 }
3052 
3053 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3054   switch (vo) {
3055   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3056   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3057   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3058   default:                            ShouldNotReachHere();
3059   }
3060   return false; // keep some compilers happy
3061 }
3062 
3063 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3064   switch (vo) {
3065   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3066   case VerifyOption_G1UseNextMarking: return "NTAMS";
3067   case VerifyOption_G1UseMarkWord:    return "NONE";
3068   default:                            ShouldNotReachHere();
3069   }
3070   return NULL; // keep some compilers happy
3071 }
3072 
3073 class VerifyRootsClosure: public OopClosure {
3074 private:
3075   G1CollectedHeap* _g1h;
3076   VerifyOption     _vo;
3077   bool             _failures;
3078 public:
3079   // _vo == UsePrevMarking -> use "prev" marking information,
3080   // _vo == UseNextMarking -> use "next" marking information,
3081   // _vo == UseMarkWord    -> use mark word from object header.
3082   VerifyRootsClosure(VerifyOption vo) :
3083     _g1h(G1CollectedHeap::heap()),
3084     _vo(vo),
3085     _failures(false) { }
3086 
3087   bool failures() { return _failures; }
3088 
3089   template <class T> void do_oop_nv(T* p) {
3090     T heap_oop = oopDesc::load_heap_oop(p);
3091     if (!oopDesc::is_null(heap_oop)) {
3092       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3093       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3094         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3095                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3096         if (_vo == VerifyOption_G1UseMarkWord) {
3097           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3098         }
3099         obj->print_on(gclog_or_tty);
3100         _failures = true;
3101       }
3102     }
3103   }
3104 
3105   void do_oop(oop* p)       { do_oop_nv(p); }
3106   void do_oop(narrowOop* p) { do_oop_nv(p); }
3107 };
3108 
3109 class G1VerifyCodeRootOopClosure: public OopClosure {
3110   G1CollectedHeap* _g1h;
3111   OopClosure* _root_cl;
3112   nmethod* _nm;
3113   VerifyOption _vo;
3114   bool _failures;
3115 
3116   template <class T> void do_oop_work(T* p) {
3117     // First verify that this root is live
3118     _root_cl->do_oop(p);
3119 
3120     if (!G1VerifyHeapRegionCodeRoots) {
3121       // We're not verifying the code roots attached to heap region.
3122       return;
3123     }
3124 
3125     // Don't check the code roots during marking verification in a full GC
3126     if (_vo == VerifyOption_G1UseMarkWord) {
3127       return;
3128     }
3129 
3130     // Now verify that the current nmethod (which contains p) is
3131     // in the code root list of the heap region containing the
3132     // object referenced by p.
3133 
3134     T heap_oop = oopDesc::load_heap_oop(p);
3135     if (!oopDesc::is_null(heap_oop)) {
3136       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3137 
3138       // Now fetch the region containing the object
3139       HeapRegion* hr = _g1h->heap_region_containing(obj);
3140       HeapRegionRemSet* hrrs = hr->rem_set();
3141       // Verify that the strong code root list for this region
3142       // contains the nmethod
3143       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3144         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3145                               "from nmethod "PTR_FORMAT" not in strong "
3146                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3147                               p, _nm, hr->bottom(), hr->end());
3148         _failures = true;
3149       }
3150     }
3151   }
3152 
3153 public:
3154   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3155     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3156 
3157   void do_oop(oop* p) { do_oop_work(p); }
3158   void do_oop(narrowOop* p) { do_oop_work(p); }
3159 
3160   void set_nmethod(nmethod* nm) { _nm = nm; }
3161   bool failures() { return _failures; }
3162 };
3163 
3164 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3165   G1VerifyCodeRootOopClosure* _oop_cl;
3166 
3167 public:
3168   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3169     _oop_cl(oop_cl) {}
3170 
3171   void do_code_blob(CodeBlob* cb) {
3172     nmethod* nm = cb->as_nmethod_or_null();
3173     if (nm != NULL) {
3174       _oop_cl->set_nmethod(nm);
3175       nm->oops_do(_oop_cl);
3176     }
3177   }
3178 };
3179 
3180 class YoungRefCounterClosure : public OopClosure {
3181   G1CollectedHeap* _g1h;
3182   int              _count;
3183  public:
3184   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3185   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3186   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3187 
3188   int count() { return _count; }
3189   void reset_count() { _count = 0; };
3190 };
3191 
3192 class VerifyKlassClosure: public KlassClosure {
3193   YoungRefCounterClosure _young_ref_counter_closure;
3194   OopClosure *_oop_closure;
3195  public:
3196   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3197   void do_klass(Klass* k) {
3198     k->oops_do(_oop_closure);
3199 
3200     _young_ref_counter_closure.reset_count();
3201     k->oops_do(&_young_ref_counter_closure);
3202     if (_young_ref_counter_closure.count() > 0) {
3203       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
3204     }
3205   }
3206 };
3207 
3208 class VerifyLivenessOopClosure: public OopClosure {
3209   G1CollectedHeap* _g1h;
3210   VerifyOption _vo;
3211 public:
3212   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3213     _g1h(g1h), _vo(vo)
3214   { }
3215   void do_oop(narrowOop *p) { do_oop_work(p); }
3216   void do_oop(      oop *p) { do_oop_work(p); }
3217 
3218   template <class T> void do_oop_work(T *p) {
3219     oop obj = oopDesc::load_decode_heap_oop(p);
3220     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3221               "Dead object referenced by a not dead object");
3222   }
3223 };
3224 
3225 class VerifyObjsInRegionClosure: public ObjectClosure {
3226 private:
3227   G1CollectedHeap* _g1h;
3228   size_t _live_bytes;
3229   HeapRegion *_hr;
3230   VerifyOption _vo;
3231 public:
3232   // _vo == UsePrevMarking -> use "prev" marking information,
3233   // _vo == UseNextMarking -> use "next" marking information,
3234   // _vo == UseMarkWord    -> use mark word from object header.
3235   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3236     : _live_bytes(0), _hr(hr), _vo(vo) {
3237     _g1h = G1CollectedHeap::heap();
3238   }
3239   void do_object(oop o) {
3240     VerifyLivenessOopClosure isLive(_g1h, _vo);
3241     assert(o != NULL, "Huh?");
3242     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3243       // If the object is alive according to the mark word,
3244       // then verify that the marking information agrees.
3245       // Note we can't verify the contra-positive of the
3246       // above: if the object is dead (according to the mark
3247       // word), it may not be marked, or may have been marked
3248       // but has since became dead, or may have been allocated
3249       // since the last marking.
3250       if (_vo == VerifyOption_G1UseMarkWord) {
3251         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3252       }
3253 
3254       o->oop_iterate_no_header(&isLive);
3255       if (!_hr->obj_allocated_since_prev_marking(o)) {
3256         size_t obj_size = o->size();    // Make sure we don't overflow
3257         _live_bytes += (obj_size * HeapWordSize);
3258       }
3259     }
3260   }
3261   size_t live_bytes() { return _live_bytes; }
3262 };
3263 
3264 class PrintObjsInRegionClosure : public ObjectClosure {
3265   HeapRegion *_hr;
3266   G1CollectedHeap *_g1;
3267 public:
3268   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3269     _g1 = G1CollectedHeap::heap();
3270   };
3271 
3272   void do_object(oop o) {
3273     if (o != NULL) {
3274       HeapWord *start = (HeapWord *) o;
3275       size_t word_sz = o->size();
3276       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3277                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3278                           (void*) o, word_sz,
3279                           _g1->isMarkedPrev(o),
3280                           _g1->isMarkedNext(o),
3281                           _hr->obj_allocated_since_prev_marking(o));
3282       HeapWord *end = start + word_sz;
3283       HeapWord *cur;
3284       int *val;
3285       for (cur = start; cur < end; cur++) {
3286         val = (int *) cur;
3287         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
3288       }
3289     }
3290   }
3291 };
3292 
3293 class VerifyRegionClosure: public HeapRegionClosure {
3294 private:
3295   bool             _par;
3296   VerifyOption     _vo;
3297   bool             _failures;
3298 public:
3299   // _vo == UsePrevMarking -> use "prev" marking information,
3300   // _vo == UseNextMarking -> use "next" marking information,
3301   // _vo == UseMarkWord    -> use mark word from object header.
3302   VerifyRegionClosure(bool par, VerifyOption vo)
3303     : _par(par),
3304       _vo(vo),
3305       _failures(false) {}
3306 
3307   bool failures() {
3308     return _failures;
3309   }
3310 
3311   bool doHeapRegion(HeapRegion* r) {
3312     if (!r->continuesHumongous()) {
3313       bool failures = false;
3314       r->verify(_vo, &failures);
3315       if (failures) {
3316         _failures = true;
3317       } else {
3318         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3319         r->object_iterate(&not_dead_yet_cl);
3320         if (_vo != VerifyOption_G1UseNextMarking) {
3321           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3322             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3323                                    "max_live_bytes "SIZE_FORMAT" "
3324                                    "< calculated "SIZE_FORMAT,
3325                                    r->bottom(), r->end(),
3326                                    r->max_live_bytes(),
3327                                  not_dead_yet_cl.live_bytes());
3328             _failures = true;
3329           }
3330         } else {
3331           // When vo == UseNextMarking we cannot currently do a sanity
3332           // check on the live bytes as the calculation has not been
3333           // finalized yet.
3334         }
3335       }
3336     }
3337     return false; // stop the region iteration if we hit a failure
3338   }
3339 };
3340 
3341 // This is the task used for parallel verification of the heap regions
3342 
3343 class G1ParVerifyTask: public AbstractGangTask {
3344 private:
3345   G1CollectedHeap* _g1h;
3346   VerifyOption     _vo;
3347   bool             _failures;
3348 
3349 public:
3350   // _vo == UsePrevMarking -> use "prev" marking information,
3351   // _vo == UseNextMarking -> use "next" marking information,
3352   // _vo == UseMarkWord    -> use mark word from object header.
3353   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3354     AbstractGangTask("Parallel verify task"),
3355     _g1h(g1h),
3356     _vo(vo),
3357     _failures(false) { }
3358 
3359   bool failures() {
3360     return _failures;
3361   }
3362 
3363   void work(uint worker_id) {
3364     HandleMark hm;
3365     VerifyRegionClosure blk(true, _vo);
3366     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3367                                           _g1h->workers()->active_workers(),
3368                                           HeapRegion::ParVerifyClaimValue);
3369     if (blk.failures()) {
3370       _failures = true;
3371     }
3372   }
3373 };
3374 
3375 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3376   if (SafepointSynchronize::is_at_safepoint()) {
3377     assert(Thread::current()->is_VM_thread(),
3378            "Expected to be executed serially by the VM thread at this point");
3379 
3380     if (!silent) { gclog_or_tty->print("Roots "); }
3381     VerifyRootsClosure rootsCl(vo);
3382     VerifyKlassClosure klassCl(this, &rootsCl);
3383 
3384     // We apply the relevant closures to all the oops in the
3385     // system dictionary, class loader data graph and the string table.
3386     // Don't verify the code cache here, since it's verified below.
3387     const int so = SO_AllClasses | SO_Strings;
3388 
3389     // Need cleared claim bits for the strong roots processing
3390     ClassLoaderDataGraph::clear_claimed_marks();
3391 
3392     process_strong_roots(true,      // activate StrongRootsScope
3393                          ScanningOption(so),  // roots scanning options
3394                          &rootsCl,
3395                          &klassCl
3396                          );
3397 
3398     // Verify the nmethods in the code cache.
3399     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3400     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3401     CodeCache::blobs_do(&blobsCl);
3402 
3403     bool failures = rootsCl.failures() || codeRootsCl.failures();
3404 
3405     if (vo != VerifyOption_G1UseMarkWord) {
3406       // If we're verifying during a full GC then the region sets
3407       // will have been torn down at the start of the GC. Therefore
3408       // verifying the region sets will fail. So we only verify
3409       // the region sets when not in a full GC.
3410       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3411       verify_region_sets();
3412     }
3413 
3414     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3415     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3416       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3417              "sanity check");
3418 
3419       G1ParVerifyTask task(this, vo);
3420       assert(UseDynamicNumberOfGCThreads ||
3421         workers()->active_workers() == workers()->total_workers(),
3422         "If not dynamic should be using all the workers");
3423       int n_workers = workers()->active_workers();
3424       set_par_threads(n_workers);
3425       workers()->run_task(&task);
3426       set_par_threads(0);
3427       if (task.failures()) {
3428         failures = true;
3429       }
3430 
3431       // Checks that the expected amount of parallel work was done.
3432       // The implication is that n_workers is > 0.
3433       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3434              "sanity check");
3435 
3436       reset_heap_region_claim_values();
3437 
3438       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3439              "sanity check");
3440     } else {
3441       VerifyRegionClosure blk(false, vo);
3442       heap_region_iterate(&blk);
3443       if (blk.failures()) {
3444         failures = true;
3445       }
3446     }
3447     if (!silent) gclog_or_tty->print("RemSet ");
3448     rem_set()->verify();
3449 
3450     if (G1StringDedup::is_enabled()) {
3451       if (!silent) gclog_or_tty->print("StrDedup ");
3452       G1StringDedup::verify();
3453     }
3454 
3455     if (failures) {
3456       gclog_or_tty->print_cr("Heap:");
3457       // It helps to have the per-region information in the output to
3458       // help us track down what went wrong. This is why we call
3459       // print_extended_on() instead of print_on().
3460       print_extended_on(gclog_or_tty);
3461       gclog_or_tty->cr();
3462 #ifndef PRODUCT
3463       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3464         concurrent_mark()->print_reachable("at-verification-failure",
3465                                            vo, false /* all */);
3466       }
3467 #endif
3468       gclog_or_tty->flush();
3469     }
3470     guarantee(!failures, "there should not have been any failures");
3471   } else {
3472     if (!silent) {
3473       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3474       if (G1StringDedup::is_enabled()) {
3475         gclog_or_tty->print(", StrDedup");
3476       }
3477       gclog_or_tty->print(") ");
3478     }
3479   }
3480 }
3481 
3482 void G1CollectedHeap::verify(bool silent) {
3483   verify(silent, VerifyOption_G1UsePrevMarking);
3484 }
3485 
3486 double G1CollectedHeap::verify(bool guard, const char* msg) {
3487   double verify_time_ms = 0.0;
3488 
3489   if (guard && total_collections() >= VerifyGCStartAt) {
3490     double verify_start = os::elapsedTime();
3491     HandleMark hm;  // Discard invalid handles created during verification
3492     prepare_for_verify();
3493     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3494     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3495   }
3496 
3497   return verify_time_ms;
3498 }
3499 
3500 void G1CollectedHeap::verify_before_gc() {
3501   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3502   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3503 }
3504 
3505 void G1CollectedHeap::verify_after_gc() {
3506   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3507   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3508 }
3509 
3510 class PrintRegionClosure: public HeapRegionClosure {
3511   outputStream* _st;
3512 public:
3513   PrintRegionClosure(outputStream* st) : _st(st) {}
3514   bool doHeapRegion(HeapRegion* r) {
3515     r->print_on(_st);
3516     return false;
3517   }
3518 };
3519 
3520 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3521                                        const HeapRegion* hr,
3522                                        const VerifyOption vo) const {
3523   switch (vo) {
3524   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3525   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3526   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3527   default:                            ShouldNotReachHere();
3528   }
3529   return false; // keep some compilers happy
3530 }
3531 
3532 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3533                                        const VerifyOption vo) const {
3534   switch (vo) {
3535   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3536   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3537   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3538   default:                            ShouldNotReachHere();
3539   }
3540   return false; // keep some compilers happy
3541 }
3542 
3543 void G1CollectedHeap::print_on(outputStream* st) const {
3544   st->print(" %-20s", "garbage-first heap");
3545   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3546             capacity()/K, used_unlocked()/K);
3547   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3548             _g1_storage.low_boundary(),
3549             _g1_storage.high(),
3550             _g1_storage.high_boundary());
3551   st->cr();
3552   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3553   uint young_regions = _young_list->length();
3554   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3555             (size_t) young_regions * HeapRegion::GrainBytes / K);
3556   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3557   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3558             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3559   st->cr();
3560   MetaspaceAux::print_on(st);
3561 }
3562 
3563 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3564   print_on(st);
3565 
3566   // Print the per-region information.
3567   st->cr();
3568   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3569                "HS=humongous(starts), HC=humongous(continues), "
3570                "CS=collection set, F=free, TS=gc time stamp, "
3571                "PTAMS=previous top-at-mark-start, "
3572                "NTAMS=next top-at-mark-start)");
3573   PrintRegionClosure blk(st);
3574   heap_region_iterate(&blk);
3575 }
3576 
3577 void G1CollectedHeap::print_on_error(outputStream* st) const {
3578   this->CollectedHeap::print_on_error(st);
3579 
3580   if (_cm != NULL) {
3581     st->cr();
3582     _cm->print_on_error(st);
3583   }
3584 }
3585 
3586 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3587   if (G1CollectedHeap::use_parallel_gc_threads()) {
3588     workers()->print_worker_threads_on(st);
3589   }
3590   _cmThread->print_on(st);
3591   st->cr();
3592   _cm->print_worker_threads_on(st);
3593   _cg1r->print_worker_threads_on(st);
3594   if (G1StringDedup::is_enabled()) {
3595     G1StringDedup::print_worker_threads_on(st);
3596   }
3597 }
3598 
3599 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3600   if (G1CollectedHeap::use_parallel_gc_threads()) {
3601     workers()->threads_do(tc);
3602   }
3603   tc->do_thread(_cmThread);
3604   _cg1r->threads_do(tc);
3605   if (G1StringDedup::is_enabled()) {
3606     G1StringDedup::threads_do(tc);
3607   }
3608 }
3609 
3610 void G1CollectedHeap::print_tracing_info() const {
3611   // We'll overload this to mean "trace GC pause statistics."
3612   if (TraceYoungGenTime || TraceOldGenTime) {
3613     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3614     // to that.
3615     g1_policy()->print_tracing_info();
3616   }
3617   if (G1SummarizeRSetStats) {
3618     g1_rem_set()->print_summary_info();
3619   }
3620   if (G1SummarizeConcMark) {
3621     concurrent_mark()->print_summary_info();
3622   }
3623   g1_policy()->print_yg_surv_rate_info();
3624   SpecializationStats::print();
3625 }
3626 
3627 #ifndef PRODUCT
3628 // Helpful for debugging RSet issues.
3629 
3630 class PrintRSetsClosure : public HeapRegionClosure {
3631 private:
3632   const char* _msg;
3633   size_t _occupied_sum;
3634 
3635 public:
3636   bool doHeapRegion(HeapRegion* r) {
3637     HeapRegionRemSet* hrrs = r->rem_set();
3638     size_t occupied = hrrs->occupied();
3639     _occupied_sum += occupied;
3640 
3641     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3642                            HR_FORMAT_PARAMS(r));
3643     if (occupied == 0) {
3644       gclog_or_tty->print_cr("  RSet is empty");
3645     } else {
3646       hrrs->print();
3647     }
3648     gclog_or_tty->print_cr("----------");
3649     return false;
3650   }
3651 
3652   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3653     gclog_or_tty->cr();
3654     gclog_or_tty->print_cr("========================================");
3655     gclog_or_tty->print_cr("%s", msg);
3656     gclog_or_tty->cr();
3657   }
3658 
3659   ~PrintRSetsClosure() {
3660     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3661     gclog_or_tty->print_cr("========================================");
3662     gclog_or_tty->cr();
3663   }
3664 };
3665 
3666 void G1CollectedHeap::print_cset_rsets() {
3667   PrintRSetsClosure cl("Printing CSet RSets");
3668   collection_set_iterate(&cl);
3669 }
3670 
3671 void G1CollectedHeap::print_all_rsets() {
3672   PrintRSetsClosure cl("Printing All RSets");;
3673   heap_region_iterate(&cl);
3674 }
3675 #endif // PRODUCT
3676 
3677 G1CollectedHeap* G1CollectedHeap::heap() {
3678   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3679          "not a garbage-first heap");
3680   return _g1h;
3681 }
3682 
3683 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3684   // always_do_update_barrier = false;
3685   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3686   // Fill TLAB's and such
3687   accumulate_statistics_all_tlabs();
3688   ensure_parsability(true);
3689 
3690   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3691       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3692     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3693   }
3694 }
3695 
3696 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3697 
3698   if (G1SummarizeRSetStats &&
3699       (G1SummarizeRSetStatsPeriod > 0) &&
3700       // we are at the end of the GC. Total collections has already been increased.
3701       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3702     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3703   }
3704 
3705   // FIXME: what is this about?
3706   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3707   // is set.
3708   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3709                         "derived pointer present"));
3710   // always_do_update_barrier = true;
3711 
3712   resize_all_tlabs();
3713 
3714   // We have just completed a GC. Update the soft reference
3715   // policy with the new heap occupancy
3716   Universe::update_heap_info_at_gc();
3717 }
3718 
3719 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3720                                                unsigned int gc_count_before,
3721                                                bool* succeeded,
3722                                                GCCause::Cause gc_cause) {
3723   assert_heap_not_locked_and_not_at_safepoint();
3724   g1_policy()->record_stop_world_start();
3725   VM_G1IncCollectionPause op(gc_count_before,
3726                              word_size,
3727                              false, /* should_initiate_conc_mark */
3728                              g1_policy()->max_pause_time_ms(),
3729                              gc_cause);
3730   VMThread::execute(&op);
3731 
3732   HeapWord* result = op.result();
3733   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3734   assert(result == NULL || ret_succeeded,
3735          "the result should be NULL if the VM did not succeed");
3736   *succeeded = ret_succeeded;
3737 
3738   assert_heap_not_locked();
3739   return result;
3740 }
3741 
3742 void
3743 G1CollectedHeap::doConcurrentMark() {
3744   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3745   if (!_cmThread->in_progress()) {
3746     _cmThread->set_started();
3747     CGC_lock->notify();
3748   }
3749 }
3750 
3751 size_t G1CollectedHeap::pending_card_num() {
3752   size_t extra_cards = 0;
3753   JavaThread *curr = Threads::first();
3754   while (curr != NULL) {
3755     DirtyCardQueue& dcq = curr->dirty_card_queue();
3756     extra_cards += dcq.size();
3757     curr = curr->next();
3758   }
3759   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3760   size_t buffer_size = dcqs.buffer_size();
3761   size_t buffer_num = dcqs.completed_buffers_num();
3762 
3763   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3764   // in bytes - not the number of 'entries'. We need to convert
3765   // into a number of cards.
3766   return (buffer_size * buffer_num + extra_cards) / oopSize;
3767 }
3768 
3769 size_t G1CollectedHeap::cards_scanned() {
3770   return g1_rem_set()->cardsScanned();
3771 }
3772 
3773 void
3774 G1CollectedHeap::setup_surviving_young_words() {
3775   assert(_surviving_young_words == NULL, "pre-condition");
3776   uint array_length = g1_policy()->young_cset_region_length();
3777   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3778   if (_surviving_young_words == NULL) {
3779     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3780                           "Not enough space for young surv words summary.");
3781   }
3782   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3783 #ifdef ASSERT
3784   for (uint i = 0;  i < array_length; ++i) {
3785     assert( _surviving_young_words[i] == 0, "memset above" );
3786   }
3787 #endif // !ASSERT
3788 }
3789 
3790 void
3791 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3792   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3793   uint array_length = g1_policy()->young_cset_region_length();
3794   for (uint i = 0; i < array_length; ++i) {
3795     _surviving_young_words[i] += surv_young_words[i];
3796   }
3797 }
3798 
3799 void
3800 G1CollectedHeap::cleanup_surviving_young_words() {
3801   guarantee( _surviving_young_words != NULL, "pre-condition" );
3802   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3803   _surviving_young_words = NULL;
3804 }
3805 
3806 #ifdef ASSERT
3807 class VerifyCSetClosure: public HeapRegionClosure {
3808 public:
3809   bool doHeapRegion(HeapRegion* hr) {
3810     // Here we check that the CSet region's RSet is ready for parallel
3811     // iteration. The fields that we'll verify are only manipulated
3812     // when the region is part of a CSet and is collected. Afterwards,
3813     // we reset these fields when we clear the region's RSet (when the
3814     // region is freed) so they are ready when the region is
3815     // re-allocated. The only exception to this is if there's an
3816     // evacuation failure and instead of freeing the region we leave
3817     // it in the heap. In that case, we reset these fields during
3818     // evacuation failure handling.
3819     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3820 
3821     // Here's a good place to add any other checks we'd like to
3822     // perform on CSet regions.
3823     return false;
3824   }
3825 };
3826 #endif // ASSERT
3827 
3828 #if TASKQUEUE_STATS
3829 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3830   st->print_raw_cr("GC Task Stats");
3831   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3832   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3833 }
3834 
3835 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3836   print_taskqueue_stats_hdr(st);
3837 
3838   TaskQueueStats totals;
3839   const int n = workers() != NULL ? workers()->total_workers() : 1;
3840   for (int i = 0; i < n; ++i) {
3841     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3842     totals += task_queue(i)->stats;
3843   }
3844   st->print_raw("tot "); totals.print(st); st->cr();
3845 
3846   DEBUG_ONLY(totals.verify());
3847 }
3848 
3849 void G1CollectedHeap::reset_taskqueue_stats() {
3850   const int n = workers() != NULL ? workers()->total_workers() : 1;
3851   for (int i = 0; i < n; ++i) {
3852     task_queue(i)->stats.reset();
3853   }
3854 }
3855 #endif // TASKQUEUE_STATS
3856 
3857 void G1CollectedHeap::log_gc_header() {
3858   if (!G1Log::fine()) {
3859     return;
3860   }
3861 
3862   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3863 
3864   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3865     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3866     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3867 
3868   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3869 }
3870 
3871 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3872   if (!G1Log::fine()) {
3873     return;
3874   }
3875 
3876   if (G1Log::finer()) {
3877     if (evacuation_failed()) {
3878       gclog_or_tty->print(" (to-space exhausted)");
3879     }
3880     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3881     g1_policy()->phase_times()->note_gc_end();
3882     g1_policy()->phase_times()->print(pause_time_sec);
3883     g1_policy()->print_detailed_heap_transition();
3884   } else {
3885     if (evacuation_failed()) {
3886       gclog_or_tty->print("--");
3887     }
3888     g1_policy()->print_heap_transition();
3889     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3890   }
3891   gclog_or_tty->flush();
3892 }
3893 
3894 bool
3895 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3896   assert_at_safepoint(true /* should_be_vm_thread */);
3897   guarantee(!is_gc_active(), "collection is not reentrant");
3898 
3899   if (GC_locker::check_active_before_gc()) {
3900     return false;
3901   }
3902 
3903   _gc_timer_stw->register_gc_start();
3904 
3905   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3906 
3907   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3908   ResourceMark rm;
3909 
3910   print_heap_before_gc();
3911   trace_heap_before_gc(_gc_tracer_stw);
3912 
3913   verify_region_sets_optional();
3914   verify_dirty_young_regions();
3915 
3916   // This call will decide whether this pause is an initial-mark
3917   // pause. If it is, during_initial_mark_pause() will return true
3918   // for the duration of this pause.
3919   g1_policy()->decide_on_conc_mark_initiation();
3920 
3921   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3922   assert(!g1_policy()->during_initial_mark_pause() ||
3923           g1_policy()->gcs_are_young(), "sanity");
3924 
3925   // We also do not allow mixed GCs during marking.
3926   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3927 
3928   // Record whether this pause is an initial mark. When the current
3929   // thread has completed its logging output and it's safe to signal
3930   // the CM thread, the flag's value in the policy has been reset.
3931   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3932 
3933   // Inner scope for scope based logging, timers, and stats collection
3934   {
3935     EvacuationInfo evacuation_info;
3936 
3937     if (g1_policy()->during_initial_mark_pause()) {
3938       // We are about to start a marking cycle, so we increment the
3939       // full collection counter.
3940       increment_old_marking_cycles_started();
3941       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3942     }
3943 
3944     _gc_tracer_stw->report_yc_type(yc_type());
3945 
3946     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3947 
3948     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3949                                 workers()->active_workers() : 1);
3950     double pause_start_sec = os::elapsedTime();
3951     g1_policy()->phase_times()->note_gc_start(active_workers);
3952     log_gc_header();
3953 
3954     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3955     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3956 
3957     // If the secondary_free_list is not empty, append it to the
3958     // free_list. No need to wait for the cleanup operation to finish;
3959     // the region allocation code will check the secondary_free_list
3960     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3961     // set, skip this step so that the region allocation code has to
3962     // get entries from the secondary_free_list.
3963     if (!G1StressConcRegionFreeing) {
3964       append_secondary_free_list_if_not_empty_with_lock();
3965     }
3966 
3967     assert(check_young_list_well_formed(), "young list should be well formed");
3968     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3969            "sanity check");
3970 
3971     // Don't dynamically change the number of GC threads this early.  A value of
3972     // 0 is used to indicate serial work.  When parallel work is done,
3973     // it will be set.
3974 
3975     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3976       IsGCActiveMark x;
3977 
3978       gc_prologue(false);
3979       increment_total_collections(false /* full gc */);
3980       increment_gc_time_stamp();
3981 
3982       verify_before_gc();
3983       check_bitmaps("GC Start");
3984 
3985       COMPILER2_PRESENT(DerivedPointerTable::clear());
3986 
3987       // Please see comment in g1CollectedHeap.hpp and
3988       // G1CollectedHeap::ref_processing_init() to see how
3989       // reference processing currently works in G1.
3990 
3991       // Enable discovery in the STW reference processor
3992       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3993                                             true /*verify_no_refs*/);
3994 
3995       {
3996         // We want to temporarily turn off discovery by the
3997         // CM ref processor, if necessary, and turn it back on
3998         // on again later if we do. Using a scoped
3999         // NoRefDiscovery object will do this.
4000         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4001 
4002         // Forget the current alloc region (we might even choose it to be part
4003         // of the collection set!).
4004         release_mutator_alloc_region();
4005 
4006         // We should call this after we retire the mutator alloc
4007         // region(s) so that all the ALLOC / RETIRE events are generated
4008         // before the start GC event.
4009         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4010 
4011         // This timing is only used by the ergonomics to handle our pause target.
4012         // It is unclear why this should not include the full pause. We will
4013         // investigate this in CR 7178365.
4014         //
4015         // Preserving the old comment here if that helps the investigation:
4016         //
4017         // The elapsed time induced by the start time below deliberately elides
4018         // the possible verification above.
4019         double sample_start_time_sec = os::elapsedTime();
4020 
4021 #if YOUNG_LIST_VERBOSE
4022         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4023         _young_list->print();
4024         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4025 #endif // YOUNG_LIST_VERBOSE
4026 
4027         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4028 
4029         double scan_wait_start = os::elapsedTime();
4030         // We have to wait until the CM threads finish scanning the
4031         // root regions as it's the only way to ensure that all the
4032         // objects on them have been correctly scanned before we start
4033         // moving them during the GC.
4034         bool waited = _cm->root_regions()->wait_until_scan_finished();
4035         double wait_time_ms = 0.0;
4036         if (waited) {
4037           double scan_wait_end = os::elapsedTime();
4038           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4039         }
4040         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4041 
4042 #if YOUNG_LIST_VERBOSE
4043         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4044         _young_list->print();
4045 #endif // YOUNG_LIST_VERBOSE
4046 
4047         if (g1_policy()->during_initial_mark_pause()) {
4048           concurrent_mark()->checkpointRootsInitialPre();
4049         }
4050 
4051 #if YOUNG_LIST_VERBOSE
4052         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4053         _young_list->print();
4054         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4055 #endif // YOUNG_LIST_VERBOSE
4056 
4057         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4058 
4059         _cm->note_start_of_gc();
4060         // We should not verify the per-thread SATB buffers given that
4061         // we have not filtered them yet (we'll do so during the
4062         // GC). We also call this after finalize_cset() to
4063         // ensure that the CSet has been finalized.
4064         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4065                                  true  /* verify_enqueued_buffers */,
4066                                  false /* verify_thread_buffers */,
4067                                  true  /* verify_fingers */);
4068 
4069         if (_hr_printer.is_active()) {
4070           HeapRegion* hr = g1_policy()->collection_set();
4071           while (hr != NULL) {
4072             G1HRPrinter::RegionType type;
4073             if (!hr->is_young()) {
4074               type = G1HRPrinter::Old;
4075             } else if (hr->is_survivor()) {
4076               type = G1HRPrinter::Survivor;
4077             } else {
4078               type = G1HRPrinter::Eden;
4079             }
4080             _hr_printer.cset(hr);
4081             hr = hr->next_in_collection_set();
4082           }
4083         }
4084 
4085 #ifdef ASSERT
4086         VerifyCSetClosure cl;
4087         collection_set_iterate(&cl);
4088 #endif // ASSERT
4089 
4090         setup_surviving_young_words();
4091 
4092         // Initialize the GC alloc regions.
4093         init_gc_alloc_regions(evacuation_info);
4094 
4095         // Actually do the work...
4096         evacuate_collection_set(evacuation_info);
4097 
4098         // We do this to mainly verify the per-thread SATB buffers
4099         // (which have been filtered by now) since we didn't verify
4100         // them earlier. No point in re-checking the stacks / enqueued
4101         // buffers given that the CSet has not changed since last time
4102         // we checked.
4103         _cm->verify_no_cset_oops(false /* verify_stacks */,
4104                                  false /* verify_enqueued_buffers */,
4105                                  true  /* verify_thread_buffers */,
4106                                  true  /* verify_fingers */);
4107 
4108         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4109         g1_policy()->clear_collection_set();
4110 
4111         cleanup_surviving_young_words();
4112 
4113         // Start a new incremental collection set for the next pause.
4114         g1_policy()->start_incremental_cset_building();
4115 
4116         clear_cset_fast_test();
4117 
4118         _young_list->reset_sampled_info();
4119 
4120         // Don't check the whole heap at this point as the
4121         // GC alloc regions from this pause have been tagged
4122         // as survivors and moved on to the survivor list.
4123         // Survivor regions will fail the !is_young() check.
4124         assert(check_young_list_empty(false /* check_heap */),
4125           "young list should be empty");
4126 
4127 #if YOUNG_LIST_VERBOSE
4128         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4129         _young_list->print();
4130 #endif // YOUNG_LIST_VERBOSE
4131 
4132         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4133                                              _young_list->first_survivor_region(),
4134                                              _young_list->last_survivor_region());
4135 
4136         _young_list->reset_auxilary_lists();
4137 
4138         if (evacuation_failed()) {
4139           _summary_bytes_used = recalculate_used();
4140           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4141           for (uint i = 0; i < n_queues; i++) {
4142             if (_evacuation_failed_info_array[i].has_failed()) {
4143               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4144             }
4145           }
4146         } else {
4147           // The "used" of the the collection set have already been subtracted
4148           // when they were freed.  Add in the bytes evacuated.
4149           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4150         }
4151 
4152         if (g1_policy()->during_initial_mark_pause()) {
4153           // We have to do this before we notify the CM threads that
4154           // they can start working to make sure that all the
4155           // appropriate initialization is done on the CM object.
4156           concurrent_mark()->checkpointRootsInitialPost();
4157           set_marking_started();
4158           // Note that we don't actually trigger the CM thread at
4159           // this point. We do that later when we're sure that
4160           // the current thread has completed its logging output.
4161         }
4162 
4163         allocate_dummy_regions();
4164 
4165 #if YOUNG_LIST_VERBOSE
4166         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4167         _young_list->print();
4168         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4169 #endif // YOUNG_LIST_VERBOSE
4170 
4171         init_mutator_alloc_region();
4172 
4173         {
4174           size_t expand_bytes = g1_policy()->expansion_amount();
4175           if (expand_bytes > 0) {
4176             size_t bytes_before = capacity();
4177             // No need for an ergo verbose message here,
4178             // expansion_amount() does this when it returns a value > 0.
4179             if (!expand(expand_bytes)) {
4180               // We failed to expand the heap so let's verify that
4181               // committed/uncommitted amount match the backing store
4182               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4183               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4184             }
4185           }
4186         }
4187 
4188         // We redo the verification but now wrt to the new CSet which
4189         // has just got initialized after the previous CSet was freed.
4190         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4191                                  true  /* verify_enqueued_buffers */,
4192                                  true  /* verify_thread_buffers */,
4193                                  true  /* verify_fingers */);
4194         _cm->note_end_of_gc();
4195 
4196         // This timing is only used by the ergonomics to handle our pause target.
4197         // It is unclear why this should not include the full pause. We will
4198         // investigate this in CR 7178365.
4199         double sample_end_time_sec = os::elapsedTime();
4200         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4201         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4202 
4203         MemoryService::track_memory_usage();
4204 
4205         // In prepare_for_verify() below we'll need to scan the deferred
4206         // update buffers to bring the RSets up-to-date if
4207         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4208         // the update buffers we'll probably need to scan cards on the
4209         // regions we just allocated to (i.e., the GC alloc
4210         // regions). However, during the last GC we called
4211         // set_saved_mark() on all the GC alloc regions, so card
4212         // scanning might skip the [saved_mark_word()...top()] area of
4213         // those regions (i.e., the area we allocated objects into
4214         // during the last GC). But it shouldn't. Given that
4215         // saved_mark_word() is conditional on whether the GC time stamp
4216         // on the region is current or not, by incrementing the GC time
4217         // stamp here we invalidate all the GC time stamps on all the
4218         // regions and saved_mark_word() will simply return top() for
4219         // all the regions. This is a nicer way of ensuring this rather
4220         // than iterating over the regions and fixing them. In fact, the
4221         // GC time stamp increment here also ensures that
4222         // saved_mark_word() will return top() between pauses, i.e.,
4223         // during concurrent refinement. So we don't need the
4224         // is_gc_active() check to decided which top to use when
4225         // scanning cards (see CR 7039627).
4226         increment_gc_time_stamp();
4227 
4228         verify_after_gc();
4229         check_bitmaps("GC End");
4230 
4231         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4232         ref_processor_stw()->verify_no_references_recorded();
4233 
4234         // CM reference discovery will be re-enabled if necessary.
4235       }
4236 
4237       // We should do this after we potentially expand the heap so
4238       // that all the COMMIT events are generated before the end GC
4239       // event, and after we retire the GC alloc regions so that all
4240       // RETIRE events are generated before the end GC event.
4241       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4242 
4243       if (mark_in_progress()) {
4244         concurrent_mark()->update_g1_committed();
4245       }
4246 
4247 #ifdef TRACESPINNING
4248       ParallelTaskTerminator::print_termination_counts();
4249 #endif
4250 
4251       gc_epilogue(false);
4252     }
4253 
4254     // Print the remainder of the GC log output.
4255     log_gc_footer(os::elapsedTime() - pause_start_sec);
4256 
4257     // It is not yet to safe to tell the concurrent mark to
4258     // start as we have some optional output below. We don't want the
4259     // output from the concurrent mark thread interfering with this
4260     // logging output either.
4261 
4262     _hrs.verify_optional();
4263     verify_region_sets_optional();
4264 
4265     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4266     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4267 
4268     print_heap_after_gc();
4269     trace_heap_after_gc(_gc_tracer_stw);
4270 
4271     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4272     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4273     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4274     // before any GC notifications are raised.
4275     g1mm()->update_sizes();
4276 
4277     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4278     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4279     _gc_timer_stw->register_gc_end();
4280     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4281   }
4282   // It should now be safe to tell the concurrent mark thread to start
4283   // without its logging output interfering with the logging output
4284   // that came from the pause.
4285 
4286   if (should_start_conc_mark) {
4287     // CAUTION: after the doConcurrentMark() call below,
4288     // the concurrent marking thread(s) could be running
4289     // concurrently with us. Make sure that anything after
4290     // this point does not assume that we are the only GC thread
4291     // running. Note: of course, the actual marking work will
4292     // not start until the safepoint itself is released in
4293     // SuspendibleThreadSet::desynchronize().
4294     doConcurrentMark();
4295   }
4296 
4297   return true;
4298 }
4299 
4300 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4301 {
4302   size_t gclab_word_size;
4303   switch (purpose) {
4304     case GCAllocForSurvived:
4305       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4306       break;
4307     case GCAllocForTenured:
4308       gclab_word_size = _old_plab_stats.desired_plab_sz();
4309       break;
4310     default:
4311       assert(false, "unknown GCAllocPurpose");
4312       gclab_word_size = _old_plab_stats.desired_plab_sz();
4313       break;
4314   }
4315 
4316   // Prevent humongous PLAB sizes for two reasons:
4317   // * PLABs are allocated using a similar paths as oops, but should
4318   //   never be in a humongous region
4319   // * Allowing humongous PLABs needlessly churns the region free lists
4320   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4321 }
4322 
4323 void G1CollectedHeap::init_mutator_alloc_region() {
4324   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4325   _mutator_alloc_region.init();
4326 }
4327 
4328 void G1CollectedHeap::release_mutator_alloc_region() {
4329   _mutator_alloc_region.release();
4330   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4331 }
4332 
4333 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4334   assert_at_safepoint(true /* should_be_vm_thread */);
4335 
4336   _survivor_gc_alloc_region.init();
4337   _old_gc_alloc_region.init();
4338   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4339   _retained_old_gc_alloc_region = NULL;
4340 
4341   // We will discard the current GC alloc region if:
4342   // a) it's in the collection set (it can happen!),
4343   // b) it's already full (no point in using it),
4344   // c) it's empty (this means that it was emptied during
4345   // a cleanup and it should be on the free list now), or
4346   // d) it's humongous (this means that it was emptied
4347   // during a cleanup and was added to the free list, but
4348   // has been subsequently used to allocate a humongous
4349   // object that may be less than the region size).
4350   if (retained_region != NULL &&
4351       !retained_region->in_collection_set() &&
4352       !(retained_region->top() == retained_region->end()) &&
4353       !retained_region->is_empty() &&
4354       !retained_region->isHumongous()) {
4355     retained_region->set_saved_mark();
4356     // The retained region was added to the old region set when it was
4357     // retired. We have to remove it now, since we don't allow regions
4358     // we allocate to in the region sets. We'll re-add it later, when
4359     // it's retired again.
4360     _old_set.remove(retained_region);
4361     bool during_im = g1_policy()->during_initial_mark_pause();
4362     retained_region->note_start_of_copying(during_im);
4363     _old_gc_alloc_region.set(retained_region);
4364     _hr_printer.reuse(retained_region);
4365     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4366   }
4367 }
4368 
4369 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4370   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4371                                          _old_gc_alloc_region.count());
4372   _survivor_gc_alloc_region.release();
4373   // If we have an old GC alloc region to release, we'll save it in
4374   // _retained_old_gc_alloc_region. If we don't
4375   // _retained_old_gc_alloc_region will become NULL. This is what we
4376   // want either way so no reason to check explicitly for either
4377   // condition.
4378   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4379 
4380   if (ResizePLAB) {
4381     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4382     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4383   }
4384 }
4385 
4386 void G1CollectedHeap::abandon_gc_alloc_regions() {
4387   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4388   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4389   _retained_old_gc_alloc_region = NULL;
4390 }
4391 
4392 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4393   _drain_in_progress = false;
4394   set_evac_failure_closure(cl);
4395   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4396 }
4397 
4398 void G1CollectedHeap::finalize_for_evac_failure() {
4399   assert(_evac_failure_scan_stack != NULL &&
4400          _evac_failure_scan_stack->length() == 0,
4401          "Postcondition");
4402   assert(!_drain_in_progress, "Postcondition");
4403   delete _evac_failure_scan_stack;
4404   _evac_failure_scan_stack = NULL;
4405 }
4406 
4407 void G1CollectedHeap::remove_self_forwarding_pointers() {
4408   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4409 
4410   double remove_self_forwards_start = os::elapsedTime();
4411 
4412   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4413 
4414   if (G1CollectedHeap::use_parallel_gc_threads()) {
4415     set_par_threads();
4416     workers()->run_task(&rsfp_task);
4417     set_par_threads(0);
4418   } else {
4419     rsfp_task.work(0);
4420   }
4421 
4422   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4423 
4424   // Reset the claim values in the regions in the collection set.
4425   reset_cset_heap_region_claim_values();
4426 
4427   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4428 
4429   // Now restore saved marks, if any.
4430   assert(_objs_with_preserved_marks.size() ==
4431             _preserved_marks_of_objs.size(), "Both or none.");
4432   while (!_objs_with_preserved_marks.is_empty()) {
4433     oop obj = _objs_with_preserved_marks.pop();
4434     markOop m = _preserved_marks_of_objs.pop();
4435     obj->set_mark(m);
4436   }
4437   _objs_with_preserved_marks.clear(true);
4438   _preserved_marks_of_objs.clear(true);
4439 
4440   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4441 }
4442 
4443 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4444   _evac_failure_scan_stack->push(obj);
4445 }
4446 
4447 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4448   assert(_evac_failure_scan_stack != NULL, "precondition");
4449 
4450   while (_evac_failure_scan_stack->length() > 0) {
4451      oop obj = _evac_failure_scan_stack->pop();
4452      _evac_failure_closure->set_region(heap_region_containing(obj));
4453      obj->oop_iterate_backwards(_evac_failure_closure);
4454   }
4455 }
4456 
4457 oop
4458 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4459                                                oop old) {
4460   assert(obj_in_cs(old),
4461          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4462                  (HeapWord*) old));
4463   markOop m = old->mark();
4464   oop forward_ptr = old->forward_to_atomic(old);
4465   if (forward_ptr == NULL) {
4466     // Forward-to-self succeeded.
4467     assert(_par_scan_state != NULL, "par scan state");
4468     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4469     uint queue_num = _par_scan_state->queue_num();
4470 
4471     _evacuation_failed = true;
4472     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4473     if (_evac_failure_closure != cl) {
4474       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4475       assert(!_drain_in_progress,
4476              "Should only be true while someone holds the lock.");
4477       // Set the global evac-failure closure to the current thread's.
4478       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4479       set_evac_failure_closure(cl);
4480       // Now do the common part.
4481       handle_evacuation_failure_common(old, m);
4482       // Reset to NULL.
4483       set_evac_failure_closure(NULL);
4484     } else {
4485       // The lock is already held, and this is recursive.
4486       assert(_drain_in_progress, "This should only be the recursive case.");
4487       handle_evacuation_failure_common(old, m);
4488     }
4489     return old;
4490   } else {
4491     // Forward-to-self failed. Either someone else managed to allocate
4492     // space for this object (old != forward_ptr) or they beat us in
4493     // self-forwarding it (old == forward_ptr).
4494     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4495            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4496                    "should not be in the CSet",
4497                    (HeapWord*) old, (HeapWord*) forward_ptr));
4498     return forward_ptr;
4499   }
4500 }
4501 
4502 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4503   preserve_mark_if_necessary(old, m);
4504 
4505   HeapRegion* r = heap_region_containing(old);
4506   if (!r->evacuation_failed()) {
4507     r->set_evacuation_failed(true);
4508     _hr_printer.evac_failure(r);
4509   }
4510 
4511   push_on_evac_failure_scan_stack(old);
4512 
4513   if (!_drain_in_progress) {
4514     // prevent recursion in copy_to_survivor_space()
4515     _drain_in_progress = true;
4516     drain_evac_failure_scan_stack();
4517     _drain_in_progress = false;
4518   }
4519 }
4520 
4521 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4522   assert(evacuation_failed(), "Oversaving!");
4523   // We want to call the "for_promotion_failure" version only in the
4524   // case of a promotion failure.
4525   if (m->must_be_preserved_for_promotion_failure(obj)) {
4526     _objs_with_preserved_marks.push(obj);
4527     _preserved_marks_of_objs.push(m);
4528   }
4529 }
4530 
4531 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4532                                                   size_t word_size) {
4533   if (purpose == GCAllocForSurvived) {
4534     HeapWord* result = survivor_attempt_allocation(word_size);
4535     if (result != NULL) {
4536       return result;
4537     } else {
4538       // Let's try to allocate in the old gen in case we can fit the
4539       // object there.
4540       return old_attempt_allocation(word_size);
4541     }
4542   } else {
4543     assert(purpose ==  GCAllocForTenured, "sanity");
4544     HeapWord* result = old_attempt_allocation(word_size);
4545     if (result != NULL) {
4546       return result;
4547     } else {
4548       // Let's try to allocate in the survivors in case we can fit the
4549       // object there.
4550       return survivor_attempt_allocation(word_size);
4551     }
4552   }
4553 
4554   ShouldNotReachHere();
4555   // Trying to keep some compilers happy.
4556   return NULL;
4557 }
4558 
4559 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4560   ParGCAllocBuffer(gclab_word_size), _retired(true) { }
4561 
4562 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
4563   : _g1h(g1h),
4564     _refs(g1h->task_queue(queue_num)),
4565     _dcq(&g1h->dirty_card_queue_set()),
4566     _ct_bs(g1h->g1_barrier_set()),
4567     _g1_rem(g1h->g1_rem_set()),
4568     _hash_seed(17), _queue_num(queue_num),
4569     _term_attempts(0),
4570     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4571     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4572     _age_table(false), _scanner(g1h, this, rp),
4573     _strong_roots_time(0), _term_time(0),
4574     _alloc_buffer_waste(0), _undo_waste(0) {
4575   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4576   // we "sacrifice" entry 0 to keep track of surviving bytes for
4577   // non-young regions (where the age is -1)
4578   // We also add a few elements at the beginning and at the end in
4579   // an attempt to eliminate cache contention
4580   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4581   uint array_length = PADDING_ELEM_NUM +
4582                       real_length +
4583                       PADDING_ELEM_NUM;
4584   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4585   if (_surviving_young_words_base == NULL)
4586     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4587                           "Not enough space for young surv histo.");
4588   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4589   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4590 
4591   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4592   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4593 
4594   _start = os::elapsedTime();
4595 }
4596 
4597 void
4598 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4599 {
4600   st->print_raw_cr("GC Termination Stats");
4601   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4602                    " ------waste (KiB)------");
4603   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4604                    "  total   alloc    undo");
4605   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4606                    " ------- ------- -------");
4607 }
4608 
4609 void
4610 G1ParScanThreadState::print_termination_stats(int i,
4611                                               outputStream* const st) const
4612 {
4613   const double elapsed_ms = elapsed_time() * 1000.0;
4614   const double s_roots_ms = strong_roots_time() * 1000.0;
4615   const double term_ms    = term_time() * 1000.0;
4616   st->print_cr("%3d %9.2f %9.2f %6.2f "
4617                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4618                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4619                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4620                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4621                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4622                alloc_buffer_waste() * HeapWordSize / K,
4623                undo_waste() * HeapWordSize / K);
4624 }
4625 
4626 #ifdef ASSERT
4627 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4628   assert(ref != NULL, "invariant");
4629   assert(UseCompressedOops, "sanity");
4630   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4631   oop p = oopDesc::load_decode_heap_oop(ref);
4632   assert(_g1h->is_in_g1_reserved(p),
4633          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4634   return true;
4635 }
4636 
4637 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4638   assert(ref != NULL, "invariant");
4639   if (has_partial_array_mask(ref)) {
4640     // Must be in the collection set--it's already been copied.
4641     oop p = clear_partial_array_mask(ref);
4642     assert(_g1h->obj_in_cs(p),
4643            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4644   } else {
4645     oop p = oopDesc::load_decode_heap_oop(ref);
4646     assert(_g1h->is_in_g1_reserved(p),
4647            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4648   }
4649   return true;
4650 }
4651 
4652 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4653   if (ref.is_narrow()) {
4654     return verify_ref((narrowOop*) ref);
4655   } else {
4656     return verify_ref((oop*) ref);
4657   }
4658 }
4659 #endif // ASSERT
4660 
4661 void G1ParScanThreadState::trim_queue() {
4662   assert(_evac_failure_cl != NULL, "not set");
4663 
4664   StarTask ref;
4665   do {
4666     // Drain the overflow stack first, so other threads can steal.
4667     while (refs()->pop_overflow(ref)) {
4668       deal_with_reference(ref);
4669     }
4670 
4671     while (refs()->pop_local(ref)) {
4672       deal_with_reference(ref);
4673     }
4674   } while (!refs()->is_empty());
4675 }
4676 
4677 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4678                                      G1ParScanThreadState* par_scan_state) :
4679   _g1(g1), _par_scan_state(par_scan_state),
4680   _worker_id(par_scan_state->queue_num()) { }
4681 
4682 void G1ParCopyHelper::mark_object(oop obj) {
4683   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4684 
4685   // We know that the object is not moving so it's safe to read its size.
4686   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4687 }
4688 
4689 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4690   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4691   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4692   assert(from_obj != to_obj, "should not be self-forwarded");
4693 
4694   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4695   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4696 
4697   // The object might be in the process of being copied by another
4698   // worker so we cannot trust that its to-space image is
4699   // well-formed. So we have to read its size from its from-space
4700   // image which we know should not be changing.
4701   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4702 }
4703 
4704 oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
4705   size_t word_sz = old->size();
4706   HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
4707   // +1 to make the -1 indexes valid...
4708   int       young_index = from_region->young_index_in_cset()+1;
4709   assert( (from_region->is_young() && young_index >  0) ||
4710          (!from_region->is_young() && young_index == 0), "invariant" );
4711   G1CollectorPolicy* g1p = _g1h->g1_policy();
4712   markOop m = old->mark();
4713   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4714                                            : m->age();
4715   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4716                                                              word_sz);
4717   HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
4718 #ifndef PRODUCT
4719   // Should this evacuation fail?
4720   if (_g1h->evacuation_should_fail()) {
4721     if (obj_ptr != NULL) {
4722       undo_allocation(alloc_purpose, obj_ptr, word_sz);
4723       obj_ptr = NULL;
4724     }
4725   }
4726 #endif // !PRODUCT
4727 
4728   if (obj_ptr == NULL) {
4729     // This will either forward-to-self, or detect that someone else has
4730     // installed a forwarding pointer.
4731     return _g1h->handle_evacuation_failure_par(this, old);
4732   }
4733 
4734   oop obj = oop(obj_ptr);
4735 
4736   // We're going to allocate linearly, so might as well prefetch ahead.
4737   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4738 
4739   oop forward_ptr = old->forward_to_atomic(obj);
4740   if (forward_ptr == NULL) {
4741     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4742 
4743     // alloc_purpose is just a hint to allocate() above, recheck the type of region
4744     // we actually allocated from and update alloc_purpose accordingly
4745     HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
4746     alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;
4747 
4748     if (g1p->track_object_age(alloc_purpose)) {
4749       // We could simply do obj->incr_age(). However, this causes a
4750       // performance issue. obj->incr_age() will first check whether
4751       // the object has a displaced mark by checking its mark word;
4752       // getting the mark word from the new location of the object
4753       // stalls. So, given that we already have the mark word and we
4754       // are about to install it anyway, it's better to increase the
4755       // age on the mark word, when the object does not have a
4756       // displaced mark word. We're not expecting many objects to have
4757       // a displaced marked word, so that case is not optimized
4758       // further (it could be...) and we simply call obj->incr_age().
4759 
4760       if (m->has_displaced_mark_helper()) {
4761         // in this case, we have to install the mark word first,
4762         // otherwise obj looks to be forwarded (the old mark word,
4763         // which contains the forward pointer, was copied)
4764         obj->set_mark(m);
4765         obj->incr_age();
4766       } else {
4767         m = m->incr_age();
4768         obj->set_mark(m);
4769       }
4770       age_table()->add(obj, word_sz);
4771     } else {
4772       obj->set_mark(m);
4773     }
4774 
4775     if (G1StringDedup::is_enabled()) {
4776       G1StringDedup::enqueue_from_evacuation(from_region->is_young(),
4777                                              to_region->is_young(),
4778                                              queue_num(),
4779                                              obj);
4780     }
4781 
4782     size_t* surv_young_words = surviving_young_words();
4783     surv_young_words[young_index] += word_sz;
4784 
4785     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4786       // We keep track of the next start index in the length field of
4787       // the to-space object. The actual length can be found in the
4788       // length field of the from-space object.
4789       arrayOop(obj)->set_length(0);
4790       oop* old_p = set_partial_array_mask(old);
4791       push_on_queue(old_p);
4792     } else {
4793       // No point in using the slower heap_region_containing() method,
4794       // given that we know obj is in the heap.
4795       _scanner.set_region(_g1h->heap_region_containing_raw(obj));
4796       obj->oop_iterate_backwards(&_scanner);
4797     }
4798   } else {
4799     undo_allocation(alloc_purpose, obj_ptr, word_sz);
4800     obj = forward_ptr;
4801   }
4802   return obj;
4803 }
4804 
4805 template <class T>
4806 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4807   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4808     _scanned_klass->record_modified_oops();
4809   }
4810 }
4811 
4812 template <G1Barrier barrier, bool do_mark_object>
4813 template <class T>
4814 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4815   T heap_oop = oopDesc::load_heap_oop(p);
4816 
4817   if (oopDesc::is_null(heap_oop)) {
4818     return;
4819   }
4820 
4821   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4822 
4823   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4824 
4825   if (_g1->in_cset_fast_test(obj)) {
4826     oop forwardee;
4827     if (obj->is_forwarded()) {
4828       forwardee = obj->forwardee();
4829     } else {
4830       forwardee = _par_scan_state->copy_to_survivor_space(obj);
4831     }
4832     assert(forwardee != NULL, "forwardee should not be NULL");
4833     oopDesc::encode_store_heap_oop(p, forwardee);
4834     if (do_mark_object && forwardee != obj) {
4835       // If the object is self-forwarded we don't need to explicitly
4836       // mark it, the evacuation failure protocol will do so.
4837       mark_forwarded_object(obj, forwardee);
4838     }
4839 
4840     if (barrier == G1BarrierKlass) {
4841       do_klass_barrier(p, forwardee);
4842     }
4843   } else {
4844     // The object is not in collection set. If we're a root scanning
4845     // closure during an initial mark pause (i.e. do_mark_object will
4846     // be true) then attempt to mark the object.
4847     if (do_mark_object) {
4848       mark_object(obj);
4849     }
4850   }
4851 
4852   if (barrier == G1BarrierEvac) {
4853     _par_scan_state->update_rs(_from, p, _worker_id);
4854   }
4855 }
4856 
4857 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
4858 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4859 
4860 class G1ParEvacuateFollowersClosure : public VoidClosure {
4861 protected:
4862   G1CollectedHeap*              _g1h;
4863   G1ParScanThreadState*         _par_scan_state;
4864   RefToScanQueueSet*            _queues;
4865   ParallelTaskTerminator*       _terminator;
4866 
4867   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4868   RefToScanQueueSet*      queues()         { return _queues; }
4869   ParallelTaskTerminator* terminator()     { return _terminator; }
4870 
4871 public:
4872   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4873                                 G1ParScanThreadState* par_scan_state,
4874                                 RefToScanQueueSet* queues,
4875                                 ParallelTaskTerminator* terminator)
4876     : _g1h(g1h), _par_scan_state(par_scan_state),
4877       _queues(queues), _terminator(terminator) {}
4878 
4879   void do_void();
4880 
4881 private:
4882   inline bool offer_termination();
4883 };
4884 
4885 bool G1ParEvacuateFollowersClosure::offer_termination() {
4886   G1ParScanThreadState* const pss = par_scan_state();
4887   pss->start_term_time();
4888   const bool res = terminator()->offer_termination();
4889   pss->end_term_time();
4890   return res;
4891 }
4892 
4893 void G1ParEvacuateFollowersClosure::do_void() {
4894   StarTask stolen_task;
4895   G1ParScanThreadState* const pss = par_scan_state();
4896   pss->trim_queue();
4897 
4898   do {
4899     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4900       assert(pss->verify_task(stolen_task), "sanity");
4901       if (stolen_task.is_narrow()) {
4902         pss->deal_with_reference((narrowOop*) stolen_task);
4903       } else {
4904         pss->deal_with_reference((oop*) stolen_task);
4905       }
4906 
4907       // We've just processed a reference and we might have made
4908       // available new entries on the queues. So we have to make sure
4909       // we drain the queues as necessary.
4910       pss->trim_queue();
4911     }
4912   } while (!offer_termination());
4913 }
4914 
4915 class G1KlassScanClosure : public KlassClosure {
4916  G1ParCopyHelper* _closure;
4917  bool             _process_only_dirty;
4918  int              _count;
4919  public:
4920   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4921       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4922   void do_klass(Klass* klass) {
4923     // If the klass has not been dirtied we know that there's
4924     // no references into  the young gen and we can skip it.
4925    if (!_process_only_dirty || klass->has_modified_oops()) {
4926       // Clean the klass since we're going to scavenge all the metadata.
4927       klass->clear_modified_oops();
4928 
4929       // Tell the closure that this klass is the Klass to scavenge
4930       // and is the one to dirty if oops are left pointing into the young gen.
4931       _closure->set_scanned_klass(klass);
4932 
4933       klass->oops_do(_closure);
4934 
4935       _closure->set_scanned_klass(NULL);
4936     }
4937     _count++;
4938   }
4939 };
4940 
4941 class G1ParTask : public AbstractGangTask {
4942 protected:
4943   G1CollectedHeap*       _g1h;
4944   RefToScanQueueSet      *_queues;
4945   ParallelTaskTerminator _terminator;
4946   uint _n_workers;
4947 
4948   Mutex _stats_lock;
4949   Mutex* stats_lock() { return &_stats_lock; }
4950 
4951   size_t getNCards() {
4952     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4953       / G1BlockOffsetSharedArray::N_bytes;
4954   }
4955 
4956 public:
4957   G1ParTask(G1CollectedHeap* g1h,
4958             RefToScanQueueSet *task_queues)
4959     : AbstractGangTask("G1 collection"),
4960       _g1h(g1h),
4961       _queues(task_queues),
4962       _terminator(0, _queues),
4963       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4964   {}
4965 
4966   RefToScanQueueSet* queues() { return _queues; }
4967 
4968   RefToScanQueue *work_queue(int i) {
4969     return queues()->queue(i);
4970   }
4971 
4972   ParallelTaskTerminator* terminator() { return &_terminator; }
4973 
4974   virtual void set_for_termination(int active_workers) {
4975     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4976     // in the young space (_par_seq_tasks) in the G1 heap
4977     // for SequentialSubTasksDone.
4978     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4979     // both of which need setting by set_n_termination().
4980     _g1h->SharedHeap::set_n_termination(active_workers);
4981     _g1h->set_n_termination(active_workers);
4982     terminator()->reset_for_reuse(active_workers);
4983     _n_workers = active_workers;
4984   }
4985 
4986   void work(uint worker_id) {
4987     if (worker_id >= _n_workers) return;  // no work needed this round
4988 
4989     double start_time_ms = os::elapsedTime() * 1000.0;
4990     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4991 
4992     {
4993       ResourceMark rm;
4994       HandleMark   hm;
4995 
4996       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4997 
4998       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4999       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5000 
5001       pss.set_evac_failure_closure(&evac_failure_cl);
5002 
5003       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5004       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5005 
5006       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5007       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
5008 
5009       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
5010       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
5011       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5012 
5013       OopClosure*                    scan_root_cl = &only_scan_root_cl;
5014       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5015 
5016       if (_g1h->g1_policy()->during_initial_mark_pause()) {
5017         // We also need to mark copied objects.
5018         scan_root_cl = &scan_mark_root_cl;
5019         scan_klasses_cl = &scan_mark_klasses_cl_s;
5020       }
5021 
5022       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5023 
5024       // Don't scan the scavengable methods in the code cache as part
5025       // of strong root scanning. The code roots that point into a
5026       // region in the collection set are scanned when we scan the
5027       // region's RSet.
5028       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5029 
5030       pss.start_strong_roots();
5031       _g1h->g1_process_strong_roots(/* is scavenging */ true,
5032                                     SharedHeap::ScanningOption(so),
5033                                     scan_root_cl,
5034                                     &push_heap_rs_cl,
5035                                     scan_klasses_cl,
5036                                     worker_id);
5037       pss.end_strong_roots();
5038 
5039       {
5040         double start = os::elapsedTime();
5041         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
5042         evac.do_void();
5043         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
5044         double term_ms = pss.term_time()*1000.0;
5045         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5046         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5047       }
5048       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
5049       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
5050 
5051       if (ParallelGCVerbose) {
5052         MutexLocker x(stats_lock());
5053         pss.print_termination_stats(worker_id);
5054       }
5055 
5056       assert(pss.refs()->is_empty(), "should be empty");
5057 
5058       // Close the inner scope so that the ResourceMark and HandleMark
5059       // destructors are executed here and are included as part of the
5060       // "GC Worker Time".
5061     }
5062 
5063     double end_time_ms = os::elapsedTime() * 1000.0;
5064     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5065   }
5066 };
5067 
5068 // *** Common G1 Evacuation Stuff
5069 
5070 // This method is run in a GC worker.
5071 
5072 void
5073 G1CollectedHeap::
5074 g1_process_strong_roots(bool is_scavenging,
5075                         ScanningOption so,
5076                         OopClosure* scan_non_heap_roots,
5077                         OopsInHeapRegionClosure* scan_rs,
5078                         G1KlassScanClosure* scan_klasses,
5079                         uint worker_i) {
5080 
5081   // First scan the strong roots
5082   double ext_roots_start = os::elapsedTime();
5083   double closure_app_time_sec = 0.0;
5084 
5085   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5086 
5087   process_strong_roots(false, // no scoping; this is parallel code
5088                        so,
5089                        &buf_scan_non_heap_roots,
5090                        scan_klasses
5091                        );
5092 
5093   // Now the CM ref_processor roots.
5094   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5095     // We need to treat the discovered reference lists of the
5096     // concurrent mark ref processor as roots and keep entries
5097     // (which are added by the marking threads) on them live
5098     // until they can be processed at the end of marking.
5099     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5100   }
5101 
5102   // Finish up any enqueued closure apps (attributed as object copy time).
5103   buf_scan_non_heap_roots.done();
5104 
5105   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5106 
5107   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5108 
5109   double ext_root_time_ms =
5110     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5111 
5112   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5113 
5114   // During conc marking we have to filter the per-thread SATB buffers
5115   // to make sure we remove any oops into the CSet (which will show up
5116   // as implicitly live).
5117   double satb_filtering_ms = 0.0;
5118   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5119     if (mark_in_progress()) {
5120       double satb_filter_start = os::elapsedTime();
5121 
5122       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5123 
5124       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5125     }
5126   }
5127   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5128 
5129   // If this is an initial mark pause, and we're not scanning
5130   // the entire code cache, we need to mark the oops in the
5131   // strong code root lists for the regions that are not in
5132   // the collection set.
5133   // Note all threads participate in this set of root tasks.
5134   double mark_strong_code_roots_ms = 0.0;
5135   if (g1_policy()->during_initial_mark_pause() && !(so & SO_AllCodeCache)) {
5136     double mark_strong_roots_start = os::elapsedTime();
5137     mark_strong_code_roots(worker_i);
5138     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
5139   }
5140   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
5141 
5142   // Now scan the complement of the collection set.
5143   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5144   g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5145 
5146   _process_strong_tasks->all_tasks_completed();
5147 }
5148 
5149 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
5150 private:
5151   BoolObjectClosure* _is_alive;
5152   int _initial_string_table_size;
5153   int _initial_symbol_table_size;
5154 
5155   bool  _process_strings;
5156   int _strings_processed;
5157   int _strings_removed;
5158 
5159   bool  _process_symbols;
5160   int _symbols_processed;
5161   int _symbols_removed;
5162 
5163   bool _do_in_parallel;
5164 public:
5165   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
5166     AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
5167     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
5168     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
5169     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
5170 
5171     _initial_string_table_size = StringTable::the_table()->table_size();
5172     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
5173     if (process_strings) {
5174       StringTable::clear_parallel_claimed_index();
5175     }
5176     if (process_symbols) {
5177       SymbolTable::clear_parallel_claimed_index();
5178     }
5179   }
5180 
5181   ~G1StringSymbolTableUnlinkTask() {
5182     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
5183               err_msg("claim value %d after unlink less than initial string table size %d",
5184                       StringTable::parallel_claimed_index(), _initial_string_table_size));
5185     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
5186               err_msg("claim value %d after unlink less than initial symbol table size %d",
5187                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
5188   }
5189 
5190   void work(uint worker_id) {
5191     if (_do_in_parallel) {
5192       int strings_processed = 0;
5193       int strings_removed = 0;
5194       int symbols_processed = 0;
5195       int symbols_removed = 0;
5196       if (_process_strings) {
5197         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
5198         Atomic::add(strings_processed, &_strings_processed);
5199         Atomic::add(strings_removed, &_strings_removed);
5200       }
5201       if (_process_symbols) {
5202         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
5203         Atomic::add(symbols_processed, &_symbols_processed);
5204         Atomic::add(symbols_removed, &_symbols_removed);
5205       }
5206     } else {
5207       if (_process_strings) {
5208         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
5209       }
5210       if (_process_symbols) {
5211         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
5212       }
5213     }
5214   }
5215 
5216   size_t strings_processed() const { return (size_t)_strings_processed; }
5217   size_t strings_removed()   const { return (size_t)_strings_removed; }
5218 
5219   size_t symbols_processed() const { return (size_t)_symbols_processed; }
5220   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
5221 };
5222 
5223 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5224                                                      bool process_strings, bool process_symbols) {
5225   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5226                    _g1h->workers()->active_workers() : 1);
5227 
5228   G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5229   if (G1CollectedHeap::use_parallel_gc_threads()) {
5230     set_par_threads(n_workers);
5231     workers()->run_task(&g1_unlink_task);
5232     set_par_threads(0);
5233   } else {
5234     g1_unlink_task.work(0);
5235   }
5236   if (G1TraceStringSymbolTableScrubbing) {
5237     gclog_or_tty->print_cr("Cleaned string and symbol table, "
5238                            "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
5239                            "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
5240                            g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
5241                            g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
5242   }
5243 
5244   if (G1StringDedup::is_enabled()) {
5245     G1StringDedup::unlink(is_alive);
5246   }
5247 }
5248 
5249 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5250  private:
5251   DirtyCardQueueSet* _queue;
5252  public:
5253   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5254 
5255   virtual void work(uint worker_id) {
5256     double start_time = os::elapsedTime();
5257 
5258     RedirtyLoggedCardTableEntryClosure cl;
5259     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
5260       _queue->par_apply_closure_to_all_completed_buffers(&cl);
5261     } else {
5262       _queue->apply_closure_to_all_completed_buffers(&cl);
5263     }
5264 
5265     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
5266     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
5267     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
5268   }
5269 };
5270 
5271 void G1CollectedHeap::redirty_logged_cards() {
5272   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
5273   double redirty_logged_cards_start = os::elapsedTime();
5274 
5275   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5276                    _g1h->workers()->active_workers() : 1);
5277 
5278   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5279   dirty_card_queue_set().reset_for_par_iteration();
5280   if (use_parallel_gc_threads()) {
5281     set_par_threads(n_workers);
5282     workers()->run_task(&redirty_task);
5283     set_par_threads(0);
5284   } else {
5285     redirty_task.work(0);
5286   }
5287 
5288   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5289   dcq.merge_bufferlists(&dirty_card_queue_set());
5290   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5291 
5292   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5293 }
5294 
5295 // Weak Reference Processing support
5296 
5297 // An always "is_alive" closure that is used to preserve referents.
5298 // If the object is non-null then it's alive.  Used in the preservation
5299 // of referent objects that are pointed to by reference objects
5300 // discovered by the CM ref processor.
5301 class G1AlwaysAliveClosure: public BoolObjectClosure {
5302   G1CollectedHeap* _g1;
5303 public:
5304   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5305   bool do_object_b(oop p) {
5306     if (p != NULL) {
5307       return true;
5308     }
5309     return false;
5310   }
5311 };
5312 
5313 bool G1STWIsAliveClosure::do_object_b(oop p) {
5314   // An object is reachable if it is outside the collection set,
5315   // or is inside and copied.
5316   return !_g1->obj_in_cs(p) || p->is_forwarded();
5317 }
5318 
5319 // Non Copying Keep Alive closure
5320 class G1KeepAliveClosure: public OopClosure {
5321   G1CollectedHeap* _g1;
5322 public:
5323   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5324   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5325   void do_oop(      oop* p) {
5326     oop obj = *p;
5327 
5328     if (_g1->obj_in_cs(obj)) {
5329       assert( obj->is_forwarded(), "invariant" );
5330       *p = obj->forwardee();
5331     }
5332   }
5333 };
5334 
5335 // Copying Keep Alive closure - can be called from both
5336 // serial and parallel code as long as different worker
5337 // threads utilize different G1ParScanThreadState instances
5338 // and different queues.
5339 
5340 class G1CopyingKeepAliveClosure: public OopClosure {
5341   G1CollectedHeap*         _g1h;
5342   OopClosure*              _copy_non_heap_obj_cl;
5343   G1ParScanThreadState*    _par_scan_state;
5344 
5345 public:
5346   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5347                             OopClosure* non_heap_obj_cl,
5348                             G1ParScanThreadState* pss):
5349     _g1h(g1h),
5350     _copy_non_heap_obj_cl(non_heap_obj_cl),
5351     _par_scan_state(pss)
5352   {}
5353 
5354   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5355   virtual void do_oop(      oop* p) { do_oop_work(p); }
5356 
5357   template <class T> void do_oop_work(T* p) {
5358     oop obj = oopDesc::load_decode_heap_oop(p);
5359 
5360     if (_g1h->obj_in_cs(obj)) {
5361       // If the referent object has been forwarded (either copied
5362       // to a new location or to itself in the event of an
5363       // evacuation failure) then we need to update the reference
5364       // field and, if both reference and referent are in the G1
5365       // heap, update the RSet for the referent.
5366       //
5367       // If the referent has not been forwarded then we have to keep
5368       // it alive by policy. Therefore we have copy the referent.
5369       //
5370       // If the reference field is in the G1 heap then we can push
5371       // on the PSS queue. When the queue is drained (after each
5372       // phase of reference processing) the object and it's followers
5373       // will be copied, the reference field set to point to the
5374       // new location, and the RSet updated. Otherwise we need to
5375       // use the the non-heap or metadata closures directly to copy
5376       // the referent object and update the pointer, while avoiding
5377       // updating the RSet.
5378 
5379       if (_g1h->is_in_g1_reserved(p)) {
5380         _par_scan_state->push_on_queue(p);
5381       } else {
5382         assert(!Metaspace::contains((const void*)p),
5383                err_msg("Unexpectedly found a pointer from metadata: "
5384                               PTR_FORMAT, p));
5385           _copy_non_heap_obj_cl->do_oop(p);
5386         }
5387       }
5388     }
5389 };
5390 
5391 // Serial drain queue closure. Called as the 'complete_gc'
5392 // closure for each discovered list in some of the
5393 // reference processing phases.
5394 
5395 class G1STWDrainQueueClosure: public VoidClosure {
5396 protected:
5397   G1CollectedHeap* _g1h;
5398   G1ParScanThreadState* _par_scan_state;
5399 
5400   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5401 
5402 public:
5403   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5404     _g1h(g1h),
5405     _par_scan_state(pss)
5406   { }
5407 
5408   void do_void() {
5409     G1ParScanThreadState* const pss = par_scan_state();
5410     pss->trim_queue();
5411   }
5412 };
5413 
5414 // Parallel Reference Processing closures
5415 
5416 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5417 // processing during G1 evacuation pauses.
5418 
5419 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5420 private:
5421   G1CollectedHeap*   _g1h;
5422   RefToScanQueueSet* _queues;
5423   FlexibleWorkGang*  _workers;
5424   int                _active_workers;
5425 
5426 public:
5427   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5428                         FlexibleWorkGang* workers,
5429                         RefToScanQueueSet *task_queues,
5430                         int n_workers) :
5431     _g1h(g1h),
5432     _queues(task_queues),
5433     _workers(workers),
5434     _active_workers(n_workers)
5435   {
5436     assert(n_workers > 0, "shouldn't call this otherwise");
5437   }
5438 
5439   // Executes the given task using concurrent marking worker threads.
5440   virtual void execute(ProcessTask& task);
5441   virtual void execute(EnqueueTask& task);
5442 };
5443 
5444 // Gang task for possibly parallel reference processing
5445 
5446 class G1STWRefProcTaskProxy: public AbstractGangTask {
5447   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5448   ProcessTask&     _proc_task;
5449   G1CollectedHeap* _g1h;
5450   RefToScanQueueSet *_task_queues;
5451   ParallelTaskTerminator* _terminator;
5452 
5453 public:
5454   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5455                      G1CollectedHeap* g1h,
5456                      RefToScanQueueSet *task_queues,
5457                      ParallelTaskTerminator* terminator) :
5458     AbstractGangTask("Process reference objects in parallel"),
5459     _proc_task(proc_task),
5460     _g1h(g1h),
5461     _task_queues(task_queues),
5462     _terminator(terminator)
5463   {}
5464 
5465   virtual void work(uint worker_id) {
5466     // The reference processing task executed by a single worker.
5467     ResourceMark rm;
5468     HandleMark   hm;
5469 
5470     G1STWIsAliveClosure is_alive(_g1h);
5471 
5472     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5473     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5474 
5475     pss.set_evac_failure_closure(&evac_failure_cl);
5476 
5477     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5478 
5479     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5480 
5481     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5482 
5483     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5484       // We also need to mark copied objects.
5485       copy_non_heap_cl = &copy_mark_non_heap_cl;
5486     }
5487 
5488     // Keep alive closure.
5489     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5490 
5491     // Complete GC closure
5492     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5493 
5494     // Call the reference processing task's work routine.
5495     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5496 
5497     // Note we cannot assert that the refs array is empty here as not all
5498     // of the processing tasks (specifically phase2 - pp2_work) execute
5499     // the complete_gc closure (which ordinarily would drain the queue) so
5500     // the queue may not be empty.
5501   }
5502 };
5503 
5504 // Driver routine for parallel reference processing.
5505 // Creates an instance of the ref processing gang
5506 // task and has the worker threads execute it.
5507 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5508   assert(_workers != NULL, "Need parallel worker threads.");
5509 
5510   ParallelTaskTerminator terminator(_active_workers, _queues);
5511   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5512 
5513   _g1h->set_par_threads(_active_workers);
5514   _workers->run_task(&proc_task_proxy);
5515   _g1h->set_par_threads(0);
5516 }
5517 
5518 // Gang task for parallel reference enqueueing.
5519 
5520 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5521   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5522   EnqueueTask& _enq_task;
5523 
5524 public:
5525   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5526     AbstractGangTask("Enqueue reference objects in parallel"),
5527     _enq_task(enq_task)
5528   { }
5529 
5530   virtual void work(uint worker_id) {
5531     _enq_task.work(worker_id);
5532   }
5533 };
5534 
5535 // Driver routine for parallel reference enqueueing.
5536 // Creates an instance of the ref enqueueing gang
5537 // task and has the worker threads execute it.
5538 
5539 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5540   assert(_workers != NULL, "Need parallel worker threads.");
5541 
5542   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5543 
5544   _g1h->set_par_threads(_active_workers);
5545   _workers->run_task(&enq_task_proxy);
5546   _g1h->set_par_threads(0);
5547 }
5548 
5549 // End of weak reference support closures
5550 
5551 // Abstract task used to preserve (i.e. copy) any referent objects
5552 // that are in the collection set and are pointed to by reference
5553 // objects discovered by the CM ref processor.
5554 
5555 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5556 protected:
5557   G1CollectedHeap* _g1h;
5558   RefToScanQueueSet      *_queues;
5559   ParallelTaskTerminator _terminator;
5560   uint _n_workers;
5561 
5562 public:
5563   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5564     AbstractGangTask("ParPreserveCMReferents"),
5565     _g1h(g1h),
5566     _queues(task_queues),
5567     _terminator(workers, _queues),
5568     _n_workers(workers)
5569   { }
5570 
5571   void work(uint worker_id) {
5572     ResourceMark rm;
5573     HandleMark   hm;
5574 
5575     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5576     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5577 
5578     pss.set_evac_failure_closure(&evac_failure_cl);
5579 
5580     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5581 
5582 
5583     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5584 
5585     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5586 
5587     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5588 
5589     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5590       // We also need to mark copied objects.
5591       copy_non_heap_cl = &copy_mark_non_heap_cl;
5592     }
5593 
5594     // Is alive closure
5595     G1AlwaysAliveClosure always_alive(_g1h);
5596 
5597     // Copying keep alive closure. Applied to referent objects that need
5598     // to be copied.
5599     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5600 
5601     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5602 
5603     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5604     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5605 
5606     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5607     // So this must be true - but assert just in case someone decides to
5608     // change the worker ids.
5609     assert(0 <= worker_id && worker_id < limit, "sanity");
5610     assert(!rp->discovery_is_atomic(), "check this code");
5611 
5612     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5613     for (uint idx = worker_id; idx < limit; idx += stride) {
5614       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5615 
5616       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5617       while (iter.has_next()) {
5618         // Since discovery is not atomic for the CM ref processor, we
5619         // can see some null referent objects.
5620         iter.load_ptrs(DEBUG_ONLY(true));
5621         oop ref = iter.obj();
5622 
5623         // This will filter nulls.
5624         if (iter.is_referent_alive()) {
5625           iter.make_referent_alive();
5626         }
5627         iter.move_to_next();
5628       }
5629     }
5630 
5631     // Drain the queue - which may cause stealing
5632     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5633     drain_queue.do_void();
5634     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5635     assert(pss.refs()->is_empty(), "should be");
5636   }
5637 };
5638 
5639 // Weak Reference processing during an evacuation pause (part 1).
5640 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5641   double ref_proc_start = os::elapsedTime();
5642 
5643   ReferenceProcessor* rp = _ref_processor_stw;
5644   assert(rp->discovery_enabled(), "should have been enabled");
5645 
5646   // Any reference objects, in the collection set, that were 'discovered'
5647   // by the CM ref processor should have already been copied (either by
5648   // applying the external root copy closure to the discovered lists, or
5649   // by following an RSet entry).
5650   //
5651   // But some of the referents, that are in the collection set, that these
5652   // reference objects point to may not have been copied: the STW ref
5653   // processor would have seen that the reference object had already
5654   // been 'discovered' and would have skipped discovering the reference,
5655   // but would not have treated the reference object as a regular oop.
5656   // As a result the copy closure would not have been applied to the
5657   // referent object.
5658   //
5659   // We need to explicitly copy these referent objects - the references
5660   // will be processed at the end of remarking.
5661   //
5662   // We also need to do this copying before we process the reference
5663   // objects discovered by the STW ref processor in case one of these
5664   // referents points to another object which is also referenced by an
5665   // object discovered by the STW ref processor.
5666 
5667   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5668            no_of_gc_workers == workers()->active_workers(),
5669            "Need to reset active GC workers");
5670 
5671   set_par_threads(no_of_gc_workers);
5672   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5673                                                  no_of_gc_workers,
5674                                                  _task_queues);
5675 
5676   if (G1CollectedHeap::use_parallel_gc_threads()) {
5677     workers()->run_task(&keep_cm_referents);
5678   } else {
5679     keep_cm_referents.work(0);
5680   }
5681 
5682   set_par_threads(0);
5683 
5684   // Closure to test whether a referent is alive.
5685   G1STWIsAliveClosure is_alive(this);
5686 
5687   // Even when parallel reference processing is enabled, the processing
5688   // of JNI refs is serial and performed serially by the current thread
5689   // rather than by a worker. The following PSS will be used for processing
5690   // JNI refs.
5691 
5692   // Use only a single queue for this PSS.
5693   G1ParScanThreadState            pss(this, 0, NULL);
5694 
5695   // We do not embed a reference processor in the copying/scanning
5696   // closures while we're actually processing the discovered
5697   // reference objects.
5698   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5699 
5700   pss.set_evac_failure_closure(&evac_failure_cl);
5701 
5702   assert(pss.refs()->is_empty(), "pre-condition");
5703 
5704   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5705 
5706   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5707 
5708   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5709 
5710   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5711     // We also need to mark copied objects.
5712     copy_non_heap_cl = &copy_mark_non_heap_cl;
5713   }
5714 
5715   // Keep alive closure.
5716   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5717 
5718   // Serial Complete GC closure
5719   G1STWDrainQueueClosure drain_queue(this, &pss);
5720 
5721   // Setup the soft refs policy...
5722   rp->setup_policy(false);
5723 
5724   ReferenceProcessorStats stats;
5725   if (!rp->processing_is_mt()) {
5726     // Serial reference processing...
5727     stats = rp->process_discovered_references(&is_alive,
5728                                               &keep_alive,
5729                                               &drain_queue,
5730                                               NULL,
5731                                               _gc_timer_stw,
5732                                               _gc_tracer_stw->gc_id());
5733   } else {
5734     // Parallel reference processing
5735     assert(rp->num_q() == no_of_gc_workers, "sanity");
5736     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5737 
5738     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5739     stats = rp->process_discovered_references(&is_alive,
5740                                               &keep_alive,
5741                                               &drain_queue,
5742                                               &par_task_executor,
5743                                               _gc_timer_stw,
5744                                               _gc_tracer_stw->gc_id());
5745   }
5746 
5747   _gc_tracer_stw->report_gc_reference_stats(stats);
5748 
5749   // We have completed copying any necessary live referent objects.
5750   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5751 
5752   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5753   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5754 }
5755 
5756 // Weak Reference processing during an evacuation pause (part 2).
5757 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5758   double ref_enq_start = os::elapsedTime();
5759 
5760   ReferenceProcessor* rp = _ref_processor_stw;
5761   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5762 
5763   // Now enqueue any remaining on the discovered lists on to
5764   // the pending list.
5765   if (!rp->processing_is_mt()) {
5766     // Serial reference processing...
5767     rp->enqueue_discovered_references();
5768   } else {
5769     // Parallel reference enqueueing
5770 
5771     assert(no_of_gc_workers == workers()->active_workers(),
5772            "Need to reset active workers");
5773     assert(rp->num_q() == no_of_gc_workers, "sanity");
5774     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5775 
5776     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5777     rp->enqueue_discovered_references(&par_task_executor);
5778   }
5779 
5780   rp->verify_no_references_recorded();
5781   assert(!rp->discovery_enabled(), "should have been disabled");
5782 
5783   // FIXME
5784   // CM's reference processing also cleans up the string and symbol tables.
5785   // Should we do that here also? We could, but it is a serial operation
5786   // and could significantly increase the pause time.
5787 
5788   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5789   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5790 }
5791 
5792 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5793   _expand_heap_after_alloc_failure = true;
5794   _evacuation_failed = false;
5795 
5796   // Should G1EvacuationFailureALot be in effect for this GC?
5797   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5798 
5799   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5800 
5801   // Disable the hot card cache.
5802   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5803   hot_card_cache->reset_hot_cache_claimed_index();
5804   hot_card_cache->set_use_cache(false);
5805 
5806   uint n_workers;
5807   if (G1CollectedHeap::use_parallel_gc_threads()) {
5808     n_workers =
5809       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5810                                      workers()->active_workers(),
5811                                      Threads::number_of_non_daemon_threads());
5812     assert(UseDynamicNumberOfGCThreads ||
5813            n_workers == workers()->total_workers(),
5814            "If not dynamic should be using all the  workers");
5815     workers()->set_active_workers(n_workers);
5816     set_par_threads(n_workers);
5817   } else {
5818     assert(n_par_threads() == 0,
5819            "Should be the original non-parallel value");
5820     n_workers = 1;
5821   }
5822 
5823   G1ParTask g1_par_task(this, _task_queues);
5824 
5825   init_for_evac_failure(NULL);
5826 
5827   rem_set()->prepare_for_younger_refs_iterate(true);
5828 
5829   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5830   double start_par_time_sec = os::elapsedTime();
5831   double end_par_time_sec;
5832 
5833   {
5834     StrongRootsScope srs(this);
5835 
5836     if (G1CollectedHeap::use_parallel_gc_threads()) {
5837       // The individual threads will set their evac-failure closures.
5838       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5839       // These tasks use ShareHeap::_process_strong_tasks
5840       assert(UseDynamicNumberOfGCThreads ||
5841              workers()->active_workers() == workers()->total_workers(),
5842              "If not dynamic should be using all the  workers");
5843       workers()->run_task(&g1_par_task);
5844     } else {
5845       g1_par_task.set_for_termination(n_workers);
5846       g1_par_task.work(0);
5847     }
5848     end_par_time_sec = os::elapsedTime();
5849 
5850     // Closing the inner scope will execute the destructor
5851     // for the StrongRootsScope object. We record the current
5852     // elapsed time before closing the scope so that time
5853     // taken for the SRS destructor is NOT included in the
5854     // reported parallel time.
5855   }
5856 
5857   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5858   g1_policy()->phase_times()->record_par_time(par_time_ms);
5859 
5860   double code_root_fixup_time_ms =
5861         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5862   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5863 
5864   set_par_threads(0);
5865 
5866   // Process any discovered reference objects - we have
5867   // to do this _before_ we retire the GC alloc regions
5868   // as we may have to copy some 'reachable' referent
5869   // objects (and their reachable sub-graphs) that were
5870   // not copied during the pause.
5871   process_discovered_references(n_workers);
5872 
5873   // Weak root processing.
5874   {
5875     G1STWIsAliveClosure is_alive(this);
5876     G1KeepAliveClosure keep_alive(this);
5877     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5878     if (G1StringDedup::is_enabled()) {
5879       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5880     }
5881   }
5882 
5883   release_gc_alloc_regions(n_workers, evacuation_info);
5884   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5885 
5886   // Reset and re-enable the hot card cache.
5887   // Note the counts for the cards in the regions in the
5888   // collection set are reset when the collection set is freed.
5889   hot_card_cache->reset_hot_cache();
5890   hot_card_cache->set_use_cache(true);
5891 
5892   // Migrate the strong code roots attached to each region in
5893   // the collection set. Ideally we would like to do this
5894   // after we have finished the scanning/evacuation of the
5895   // strong code roots for a particular heap region.
5896   migrate_strong_code_roots();
5897 
5898   purge_code_root_memory();
5899 
5900   if (g1_policy()->during_initial_mark_pause()) {
5901     // Reset the claim values set during marking the strong code roots
5902     reset_heap_region_claim_values();
5903   }
5904 
5905   finalize_for_evac_failure();
5906 
5907   if (evacuation_failed()) {
5908     remove_self_forwarding_pointers();
5909 
5910     // Reset the G1EvacuationFailureALot counters and flags
5911     // Note: the values are reset only when an actual
5912     // evacuation failure occurs.
5913     NOT_PRODUCT(reset_evacuation_should_fail();)
5914   }
5915 
5916   // Enqueue any remaining references remaining on the STW
5917   // reference processor's discovered lists. We need to do
5918   // this after the card table is cleaned (and verified) as
5919   // the act of enqueueing entries on to the pending list
5920   // will log these updates (and dirty their associated
5921   // cards). We need these updates logged to update any
5922   // RSets.
5923   enqueue_discovered_references(n_workers);
5924 
5925   if (G1DeferredRSUpdate) {
5926     redirty_logged_cards();
5927   }
5928   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5929 }
5930 
5931 void G1CollectedHeap::free_region(HeapRegion* hr,
5932                                   FreeRegionList* free_list,
5933                                   bool par,
5934                                   bool locked) {
5935   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5936   assert(!hr->is_empty(), "the region should not be empty");
5937   assert(free_list != NULL, "pre-condition");
5938 
5939   if (G1VerifyBitmaps) {
5940     MemRegion mr(hr->bottom(), hr->end());
5941     concurrent_mark()->clearRangePrevBitmap(mr);
5942   }
5943 
5944   // Clear the card counts for this region.
5945   // Note: we only need to do this if the region is not young
5946   // (since we don't refine cards in young regions).
5947   if (!hr->is_young()) {
5948     _cg1r->hot_card_cache()->reset_card_counts(hr);
5949   }
5950   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5951   free_list->add_ordered(hr);
5952 }
5953 
5954 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5955                                      FreeRegionList* free_list,
5956                                      bool par) {
5957   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5958   assert(free_list != NULL, "pre-condition");
5959 
5960   size_t hr_capacity = hr->capacity();
5961   // We need to read this before we make the region non-humongous,
5962   // otherwise the information will be gone.
5963   uint last_index = hr->last_hc_index();
5964   hr->set_notHumongous();
5965   free_region(hr, free_list, par);
5966 
5967   uint i = hr->hrs_index() + 1;
5968   while (i < last_index) {
5969     HeapRegion* curr_hr = region_at(i);
5970     assert(curr_hr->continuesHumongous(), "invariant");
5971     curr_hr->set_notHumongous();
5972     free_region(curr_hr, free_list, par);
5973     i += 1;
5974   }
5975 }
5976 
5977 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5978                                        const HeapRegionSetCount& humongous_regions_removed) {
5979   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5980     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5981     _old_set.bulk_remove(old_regions_removed);
5982     _humongous_set.bulk_remove(humongous_regions_removed);
5983   }
5984 
5985 }
5986 
5987 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5988   assert(list != NULL, "list can't be null");
5989   if (!list->is_empty()) {
5990     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5991     _free_list.add_ordered(list);
5992   }
5993 }
5994 
5995 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5996   assert(_summary_bytes_used >= bytes,
5997          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
5998                   _summary_bytes_used, bytes));
5999   _summary_bytes_used -= bytes;
6000 }
6001 
6002 class G1ParCleanupCTTask : public AbstractGangTask {
6003   G1SATBCardTableModRefBS* _ct_bs;
6004   G1CollectedHeap* _g1h;
6005   HeapRegion* volatile _su_head;
6006 public:
6007   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6008                      G1CollectedHeap* g1h) :
6009     AbstractGangTask("G1 Par Cleanup CT Task"),
6010     _ct_bs(ct_bs), _g1h(g1h) { }
6011 
6012   void work(uint worker_id) {
6013     HeapRegion* r;
6014     while (r = _g1h->pop_dirty_cards_region()) {
6015       clear_cards(r);
6016     }
6017   }
6018 
6019   void clear_cards(HeapRegion* r) {
6020     // Cards of the survivors should have already been dirtied.
6021     if (!r->is_survivor()) {
6022       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6023     }
6024   }
6025 };
6026 
6027 #ifndef PRODUCT
6028 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6029   G1CollectedHeap* _g1h;
6030   G1SATBCardTableModRefBS* _ct_bs;
6031 public:
6032   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6033     : _g1h(g1h), _ct_bs(ct_bs) { }
6034   virtual bool doHeapRegion(HeapRegion* r) {
6035     if (r->is_survivor()) {
6036       _g1h->verify_dirty_region(r);
6037     } else {
6038       _g1h->verify_not_dirty_region(r);
6039     }
6040     return false;
6041   }
6042 };
6043 
6044 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6045   // All of the region should be clean.
6046   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6047   MemRegion mr(hr->bottom(), hr->end());
6048   ct_bs->verify_not_dirty_region(mr);
6049 }
6050 
6051 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6052   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6053   // dirty allocated blocks as they allocate them. The thread that
6054   // retires each region and replaces it with a new one will do a
6055   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6056   // not dirty that area (one less thing to have to do while holding
6057   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6058   // is dirty.
6059   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6060   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6061   if (hr->is_young()) {
6062     ct_bs->verify_g1_young_region(mr);
6063   } else {
6064     ct_bs->verify_dirty_region(mr);
6065   }
6066 }
6067 
6068 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6069   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6070   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6071     verify_dirty_region(hr);
6072   }
6073 }
6074 
6075 void G1CollectedHeap::verify_dirty_young_regions() {
6076   verify_dirty_young_list(_young_list->first_region());
6077 }
6078 
6079 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
6080                                                HeapWord* tams, HeapWord* end) {
6081   guarantee(tams <= end,
6082             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
6083   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
6084   if (result < end) {
6085     gclog_or_tty->cr();
6086     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
6087                            bitmap_name, result);
6088     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
6089                            bitmap_name, tams, end);
6090     return false;
6091   }
6092   return true;
6093 }
6094 
6095 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
6096   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
6097   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
6098 
6099   HeapWord* bottom = hr->bottom();
6100   HeapWord* ptams  = hr->prev_top_at_mark_start();
6101   HeapWord* ntams  = hr->next_top_at_mark_start();
6102   HeapWord* end    = hr->end();
6103 
6104   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
6105 
6106   bool res_n = true;
6107   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
6108   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
6109   // if we happen to be in that state.
6110   if (mark_in_progress() || !_cmThread->in_progress()) {
6111     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
6112   }
6113   if (!res_p || !res_n) {
6114     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
6115                            HR_FORMAT_PARAMS(hr));
6116     gclog_or_tty->print_cr("#### Caller: %s", caller);
6117     return false;
6118   }
6119   return true;
6120 }
6121 
6122 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
6123   if (!G1VerifyBitmaps) return;
6124 
6125   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
6126 }
6127 
6128 class G1VerifyBitmapClosure : public HeapRegionClosure {
6129 private:
6130   const char* _caller;
6131   G1CollectedHeap* _g1h;
6132   bool _failures;
6133 
6134 public:
6135   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
6136     _caller(caller), _g1h(g1h), _failures(false) { }
6137 
6138   bool failures() { return _failures; }
6139 
6140   virtual bool doHeapRegion(HeapRegion* hr) {
6141     if (hr->continuesHumongous()) return false;
6142 
6143     bool result = _g1h->verify_bitmaps(_caller, hr);
6144     if (!result) {
6145       _failures = true;
6146     }
6147     return false;
6148   }
6149 };
6150 
6151 void G1CollectedHeap::check_bitmaps(const char* caller) {
6152   if (!G1VerifyBitmaps) return;
6153 
6154   G1VerifyBitmapClosure cl(caller, this);
6155   heap_region_iterate(&cl);
6156   guarantee(!cl.failures(), "bitmap verification");
6157 }
6158 #endif // PRODUCT
6159 
6160 void G1CollectedHeap::cleanUpCardTable() {
6161   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6162   double start = os::elapsedTime();
6163 
6164   {
6165     // Iterate over the dirty cards region list.
6166     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6167 
6168     if (G1CollectedHeap::use_parallel_gc_threads()) {
6169       set_par_threads();
6170       workers()->run_task(&cleanup_task);
6171       set_par_threads(0);
6172     } else {
6173       while (_dirty_cards_region_list) {
6174         HeapRegion* r = _dirty_cards_region_list;
6175         cleanup_task.clear_cards(r);
6176         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6177         if (_dirty_cards_region_list == r) {
6178           // The last region.
6179           _dirty_cards_region_list = NULL;
6180         }
6181         r->set_next_dirty_cards_region(NULL);
6182       }
6183     }
6184 #ifndef PRODUCT
6185     if (G1VerifyCTCleanup || VerifyAfterGC) {
6186       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6187       heap_region_iterate(&cleanup_verifier);
6188     }
6189 #endif
6190   }
6191 
6192   double elapsed = os::elapsedTime() - start;
6193   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6194 }
6195 
6196 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6197   size_t pre_used = 0;
6198   FreeRegionList local_free_list("Local List for CSet Freeing");
6199 
6200   double young_time_ms     = 0.0;
6201   double non_young_time_ms = 0.0;
6202 
6203   // Since the collection set is a superset of the the young list,
6204   // all we need to do to clear the young list is clear its
6205   // head and length, and unlink any young regions in the code below
6206   _young_list->clear();
6207 
6208   G1CollectorPolicy* policy = g1_policy();
6209 
6210   double start_sec = os::elapsedTime();
6211   bool non_young = true;
6212 
6213   HeapRegion* cur = cs_head;
6214   int age_bound = -1;
6215   size_t rs_lengths = 0;
6216 
6217   while (cur != NULL) {
6218     assert(!is_on_master_free_list(cur), "sanity");
6219     if (non_young) {
6220       if (cur->is_young()) {
6221         double end_sec = os::elapsedTime();
6222         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6223         non_young_time_ms += elapsed_ms;
6224 
6225         start_sec = os::elapsedTime();
6226         non_young = false;
6227       }
6228     } else {
6229       if (!cur->is_young()) {
6230         double end_sec = os::elapsedTime();
6231         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6232         young_time_ms += elapsed_ms;
6233 
6234         start_sec = os::elapsedTime();
6235         non_young = true;
6236       }
6237     }
6238 
6239     rs_lengths += cur->rem_set()->occupied_locked();
6240 
6241     HeapRegion* next = cur->next_in_collection_set();
6242     assert(cur->in_collection_set(), "bad CS");
6243     cur->set_next_in_collection_set(NULL);
6244     cur->set_in_collection_set(false);
6245 
6246     if (cur->is_young()) {
6247       int index = cur->young_index_in_cset();
6248       assert(index != -1, "invariant");
6249       assert((uint) index < policy->young_cset_region_length(), "invariant");
6250       size_t words_survived = _surviving_young_words[index];
6251       cur->record_surv_words_in_group(words_survived);
6252 
6253       // At this point the we have 'popped' cur from the collection set
6254       // (linked via next_in_collection_set()) but it is still in the
6255       // young list (linked via next_young_region()). Clear the
6256       // _next_young_region field.
6257       cur->set_next_young_region(NULL);
6258     } else {
6259       int index = cur->young_index_in_cset();
6260       assert(index == -1, "invariant");
6261     }
6262 
6263     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6264             (!cur->is_young() && cur->young_index_in_cset() == -1),
6265             "invariant" );
6266 
6267     if (!cur->evacuation_failed()) {
6268       MemRegion used_mr = cur->used_region();
6269 
6270       // And the region is empty.
6271       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6272       pre_used += cur->used();
6273       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6274     } else {
6275       cur->uninstall_surv_rate_group();
6276       if (cur->is_young()) {
6277         cur->set_young_index_in_cset(-1);
6278       }
6279       cur->set_not_young();
6280       cur->set_evacuation_failed(false);
6281       // The region is now considered to be old.
6282       _old_set.add(cur);
6283       evacuation_info.increment_collectionset_used_after(cur->used());
6284     }
6285     cur = next;
6286   }
6287 
6288   evacuation_info.set_regions_freed(local_free_list.length());
6289   policy->record_max_rs_lengths(rs_lengths);
6290   policy->cset_regions_freed();
6291 
6292   double end_sec = os::elapsedTime();
6293   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6294 
6295   if (non_young) {
6296     non_young_time_ms += elapsed_ms;
6297   } else {
6298     young_time_ms += elapsed_ms;
6299   }
6300 
6301   prepend_to_freelist(&local_free_list);
6302   decrement_summary_bytes(pre_used);
6303   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6304   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6305 }
6306 
6307 // This routine is similar to the above but does not record
6308 // any policy statistics or update free lists; we are abandoning
6309 // the current incremental collection set in preparation of a
6310 // full collection. After the full GC we will start to build up
6311 // the incremental collection set again.
6312 // This is only called when we're doing a full collection
6313 // and is immediately followed by the tearing down of the young list.
6314 
6315 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6316   HeapRegion* cur = cs_head;
6317 
6318   while (cur != NULL) {
6319     HeapRegion* next = cur->next_in_collection_set();
6320     assert(cur->in_collection_set(), "bad CS");
6321     cur->set_next_in_collection_set(NULL);
6322     cur->set_in_collection_set(false);
6323     cur->set_young_index_in_cset(-1);
6324     cur = next;
6325   }
6326 }
6327 
6328 void G1CollectedHeap::set_free_regions_coming() {
6329   if (G1ConcRegionFreeingVerbose) {
6330     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6331                            "setting free regions coming");
6332   }
6333 
6334   assert(!free_regions_coming(), "pre-condition");
6335   _free_regions_coming = true;
6336 }
6337 
6338 void G1CollectedHeap::reset_free_regions_coming() {
6339   assert(free_regions_coming(), "pre-condition");
6340 
6341   {
6342     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6343     _free_regions_coming = false;
6344     SecondaryFreeList_lock->notify_all();
6345   }
6346 
6347   if (G1ConcRegionFreeingVerbose) {
6348     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6349                            "reset free regions coming");
6350   }
6351 }
6352 
6353 void G1CollectedHeap::wait_while_free_regions_coming() {
6354   // Most of the time we won't have to wait, so let's do a quick test
6355   // first before we take the lock.
6356   if (!free_regions_coming()) {
6357     return;
6358   }
6359 
6360   if (G1ConcRegionFreeingVerbose) {
6361     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6362                            "waiting for free regions");
6363   }
6364 
6365   {
6366     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6367     while (free_regions_coming()) {
6368       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6369     }
6370   }
6371 
6372   if (G1ConcRegionFreeingVerbose) {
6373     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6374                            "done waiting for free regions");
6375   }
6376 }
6377 
6378 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6379   assert(heap_lock_held_for_gc(),
6380               "the heap lock should already be held by or for this thread");
6381   _young_list->push_region(hr);
6382 }
6383 
6384 class NoYoungRegionsClosure: public HeapRegionClosure {
6385 private:
6386   bool _success;
6387 public:
6388   NoYoungRegionsClosure() : _success(true) { }
6389   bool doHeapRegion(HeapRegion* r) {
6390     if (r->is_young()) {
6391       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6392                              r->bottom(), r->end());
6393       _success = false;
6394     }
6395     return false;
6396   }
6397   bool success() { return _success; }
6398 };
6399 
6400 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6401   bool ret = _young_list->check_list_empty(check_sample);
6402 
6403   if (check_heap) {
6404     NoYoungRegionsClosure closure;
6405     heap_region_iterate(&closure);
6406     ret = ret && closure.success();
6407   }
6408 
6409   return ret;
6410 }
6411 
6412 class TearDownRegionSetsClosure : public HeapRegionClosure {
6413 private:
6414   HeapRegionSet *_old_set;
6415 
6416 public:
6417   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6418 
6419   bool doHeapRegion(HeapRegion* r) {
6420     if (r->is_empty()) {
6421       // We ignore empty regions, we'll empty the free list afterwards
6422     } else if (r->is_young()) {
6423       // We ignore young regions, we'll empty the young list afterwards
6424     } else if (r->isHumongous()) {
6425       // We ignore humongous regions, we're not tearing down the
6426       // humongous region set
6427     } else {
6428       // The rest should be old
6429       _old_set->remove(r);
6430     }
6431     return false;
6432   }
6433 
6434   ~TearDownRegionSetsClosure() {
6435     assert(_old_set->is_empty(), "post-condition");
6436   }
6437 };
6438 
6439 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6440   assert_at_safepoint(true /* should_be_vm_thread */);
6441 
6442   if (!free_list_only) {
6443     TearDownRegionSetsClosure cl(&_old_set);
6444     heap_region_iterate(&cl);
6445 
6446     // Note that emptying the _young_list is postponed and instead done as
6447     // the first step when rebuilding the regions sets again. The reason for
6448     // this is that during a full GC string deduplication needs to know if
6449     // a collected region was young or old when the full GC was initiated.
6450   }
6451   _free_list.remove_all();
6452 }
6453 
6454 class RebuildRegionSetsClosure : public HeapRegionClosure {
6455 private:
6456   bool            _free_list_only;
6457   HeapRegionSet*   _old_set;
6458   FreeRegionList* _free_list;
6459   size_t          _total_used;
6460 
6461 public:
6462   RebuildRegionSetsClosure(bool free_list_only,
6463                            HeapRegionSet* old_set, FreeRegionList* free_list) :
6464     _free_list_only(free_list_only),
6465     _old_set(old_set), _free_list(free_list), _total_used(0) {
6466     assert(_free_list->is_empty(), "pre-condition");
6467     if (!free_list_only) {
6468       assert(_old_set->is_empty(), "pre-condition");
6469     }
6470   }
6471 
6472   bool doHeapRegion(HeapRegion* r) {
6473     if (r->continuesHumongous()) {
6474       return false;
6475     }
6476 
6477     if (r->is_empty()) {
6478       // Add free regions to the free list
6479       _free_list->add_as_tail(r);
6480     } else if (!_free_list_only) {
6481       assert(!r->is_young(), "we should not come across young regions");
6482 
6483       if (r->isHumongous()) {
6484         // We ignore humongous regions, we left the humongous set unchanged
6485       } else {
6486         // The rest should be old, add them to the old set
6487         _old_set->add(r);
6488       }
6489       _total_used += r->used();
6490     }
6491 
6492     return false;
6493   }
6494 
6495   size_t total_used() {
6496     return _total_used;
6497   }
6498 };
6499 
6500 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6501   assert_at_safepoint(true /* should_be_vm_thread */);
6502 
6503   if (!free_list_only) {
6504     _young_list->empty_list();
6505   }
6506 
6507   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6508   heap_region_iterate(&cl);
6509 
6510   if (!free_list_only) {
6511     _summary_bytes_used = cl.total_used();
6512   }
6513   assert(_summary_bytes_used == recalculate_used(),
6514          err_msg("inconsistent _summary_bytes_used, "
6515                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6516                  _summary_bytes_used, recalculate_used()));
6517 }
6518 
6519 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6520   _refine_cte_cl->set_concurrent(concurrent);
6521 }
6522 
6523 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6524   HeapRegion* hr = heap_region_containing(p);
6525   return hr->is_in(p);
6526 }
6527 
6528 // Methods for the mutator alloc region
6529 
6530 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6531                                                       bool force) {
6532   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6533   assert(!force || g1_policy()->can_expand_young_list(),
6534          "if force is true we should be able to expand the young list");
6535   bool young_list_full = g1_policy()->is_young_list_full();
6536   if (force || !young_list_full) {
6537     HeapRegion* new_alloc_region = new_region(word_size,
6538                                               false /* is_old */,
6539                                               false /* do_expand */);
6540     if (new_alloc_region != NULL) {
6541       set_region_short_lived_locked(new_alloc_region);
6542       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6543       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6544       return new_alloc_region;
6545     }
6546   }
6547   return NULL;
6548 }
6549 
6550 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6551                                                   size_t allocated_bytes) {
6552   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6553   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6554 
6555   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6556   _summary_bytes_used += allocated_bytes;
6557   _hr_printer.retire(alloc_region);
6558   // We update the eden sizes here, when the region is retired,
6559   // instead of when it's allocated, since this is the point that its
6560   // used space has been recored in _summary_bytes_used.
6561   g1mm()->update_eden_size();
6562 }
6563 
6564 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6565                                                     bool force) {
6566   return _g1h->new_mutator_alloc_region(word_size, force);
6567 }
6568 
6569 void G1CollectedHeap::set_par_threads() {
6570   // Don't change the number of workers.  Use the value previously set
6571   // in the workgroup.
6572   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6573   uint n_workers = workers()->active_workers();
6574   assert(UseDynamicNumberOfGCThreads ||
6575            n_workers == workers()->total_workers(),
6576       "Otherwise should be using the total number of workers");
6577   if (n_workers == 0) {
6578     assert(false, "Should have been set in prior evacuation pause.");
6579     n_workers = ParallelGCThreads;
6580     workers()->set_active_workers(n_workers);
6581   }
6582   set_par_threads(n_workers);
6583 }
6584 
6585 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6586                                        size_t allocated_bytes) {
6587   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6588 }
6589 
6590 // Methods for the GC alloc regions
6591 
6592 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6593                                                  uint count,
6594                                                  GCAllocPurpose ap) {
6595   assert(FreeList_lock->owned_by_self(), "pre-condition");
6596 
6597   if (count < g1_policy()->max_regions(ap)) {
6598     bool survivor = (ap == GCAllocForSurvived);
6599     HeapRegion* new_alloc_region = new_region(word_size,
6600                                               !survivor,
6601                                               true /* do_expand */);
6602     if (new_alloc_region != NULL) {
6603       // We really only need to do this for old regions given that we
6604       // should never scan survivors. But it doesn't hurt to do it
6605       // for survivors too.
6606       new_alloc_region->set_saved_mark();
6607       if (survivor) {
6608         new_alloc_region->set_survivor();
6609         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6610         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6611       } else {
6612         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6613         check_bitmaps("Old Region Allocation", new_alloc_region);
6614       }
6615       bool during_im = g1_policy()->during_initial_mark_pause();
6616       new_alloc_region->note_start_of_copying(during_im);
6617       return new_alloc_region;
6618     } else {
6619       g1_policy()->note_alloc_region_limit_reached(ap);
6620     }
6621   }
6622   return NULL;
6623 }
6624 
6625 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6626                                              size_t allocated_bytes,
6627                                              GCAllocPurpose ap) {
6628   bool during_im = g1_policy()->during_initial_mark_pause();
6629   alloc_region->note_end_of_copying(during_im);
6630   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6631   if (ap == GCAllocForSurvived) {
6632     young_list()->add_survivor_region(alloc_region);
6633   } else {
6634     _old_set.add(alloc_region);
6635   }
6636   _hr_printer.retire(alloc_region);
6637 }
6638 
6639 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6640                                                        bool force) {
6641   assert(!force, "not supported for GC alloc regions");
6642   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6643 }
6644 
6645 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6646                                           size_t allocated_bytes) {
6647   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6648                                GCAllocForSurvived);
6649 }
6650 
6651 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6652                                                   bool force) {
6653   assert(!force, "not supported for GC alloc regions");
6654   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6655 }
6656 
6657 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6658                                      size_t allocated_bytes) {
6659   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6660                                GCAllocForTenured);
6661 }
6662 // Heap region set verification
6663 
6664 class VerifyRegionListsClosure : public HeapRegionClosure {
6665 private:
6666   HeapRegionSet*   _old_set;
6667   HeapRegionSet*   _humongous_set;
6668   FreeRegionList*  _free_list;
6669 
6670 public:
6671   HeapRegionSetCount _old_count;
6672   HeapRegionSetCount _humongous_count;
6673   HeapRegionSetCount _free_count;
6674 
6675   VerifyRegionListsClosure(HeapRegionSet* old_set,
6676                            HeapRegionSet* humongous_set,
6677                            FreeRegionList* free_list) :
6678     _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
6679     _old_count(), _humongous_count(), _free_count(){ }
6680 
6681   bool doHeapRegion(HeapRegion* hr) {
6682     if (hr->continuesHumongous()) {
6683       return false;
6684     }
6685 
6686     if (hr->is_young()) {
6687       // TODO
6688     } else if (hr->startsHumongous()) {
6689       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrs_index()));
6690       _humongous_count.increment(1u, hr->capacity());
6691     } else if (hr->is_empty()) {
6692       assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->hrs_index()));
6693       _free_count.increment(1u, hr->capacity());
6694     } else {
6695       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrs_index()));
6696       _old_count.increment(1u, hr->capacity());
6697     }
6698     return false;
6699   }
6700 
6701   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
6702     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6703     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6704         old_set->total_capacity_bytes(), _old_count.capacity()));
6705 
6706     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6707     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6708         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6709 
6710     guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
6711     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6712         free_list->total_capacity_bytes(), _free_count.capacity()));
6713   }
6714 };
6715 
6716 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6717                                              HeapWord* bottom) {
6718   HeapWord* end = bottom + HeapRegion::GrainWords;
6719   MemRegion mr(bottom, end);
6720   assert(_g1_reserved.contains(mr), "invariant");
6721   // This might return NULL if the allocation fails
6722   return new HeapRegion(hrs_index, _bot_shared, mr);
6723 }
6724 
6725 void G1CollectedHeap::verify_region_sets() {
6726   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6727 
6728   // First, check the explicit lists.
6729   _free_list.verify_list();
6730   {
6731     // Given that a concurrent operation might be adding regions to
6732     // the secondary free list we have to take the lock before
6733     // verifying it.
6734     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6735     _secondary_free_list.verify_list();
6736   }
6737 
6738   // If a concurrent region freeing operation is in progress it will
6739   // be difficult to correctly attributed any free regions we come
6740   // across to the correct free list given that they might belong to
6741   // one of several (free_list, secondary_free_list, any local lists,
6742   // etc.). So, if that's the case we will skip the rest of the
6743   // verification operation. Alternatively, waiting for the concurrent
6744   // operation to complete will have a non-trivial effect on the GC's
6745   // operation (no concurrent operation will last longer than the
6746   // interval between two calls to verification) and it might hide
6747   // any issues that we would like to catch during testing.
6748   if (free_regions_coming()) {
6749     return;
6750   }
6751 
6752   // Make sure we append the secondary_free_list on the free_list so
6753   // that all free regions we will come across can be safely
6754   // attributed to the free_list.
6755   append_secondary_free_list_if_not_empty_with_lock();
6756 
6757   // Finally, make sure that the region accounting in the lists is
6758   // consistent with what we see in the heap.
6759 
6760   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6761   heap_region_iterate(&cl);
6762   cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
6763 }
6764 
6765 // Optimized nmethod scanning
6766 
6767 class RegisterNMethodOopClosure: public OopClosure {
6768   G1CollectedHeap* _g1h;
6769   nmethod* _nm;
6770 
6771   template <class T> void do_oop_work(T* p) {
6772     T heap_oop = oopDesc::load_heap_oop(p);
6773     if (!oopDesc::is_null(heap_oop)) {
6774       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6775       HeapRegion* hr = _g1h->heap_region_containing(obj);
6776       assert(!hr->continuesHumongous(),
6777              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6778                      " starting at "HR_FORMAT,
6779                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6780 
6781       // HeapRegion::add_strong_code_root() avoids adding duplicate
6782       // entries but having duplicates is  OK since we "mark" nmethods
6783       // as visited when we scan the strong code root lists during the GC.
6784       hr->add_strong_code_root(_nm);
6785       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
6786              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
6787                      _nm, HR_FORMAT_PARAMS(hr)));
6788     }
6789   }
6790 
6791 public:
6792   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6793     _g1h(g1h), _nm(nm) {}
6794 
6795   void do_oop(oop* p)       { do_oop_work(p); }
6796   void do_oop(narrowOop* p) { do_oop_work(p); }
6797 };
6798 
6799 class UnregisterNMethodOopClosure: public OopClosure {
6800   G1CollectedHeap* _g1h;
6801   nmethod* _nm;
6802 
6803   template <class T> void do_oop_work(T* p) {
6804     T heap_oop = oopDesc::load_heap_oop(p);
6805     if (!oopDesc::is_null(heap_oop)) {
6806       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6807       HeapRegion* hr = _g1h->heap_region_containing(obj);
6808       assert(!hr->continuesHumongous(),
6809              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6810                      " starting at "HR_FORMAT,
6811                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6812 
6813       hr->remove_strong_code_root(_nm);
6814       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
6815              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
6816                      _nm, HR_FORMAT_PARAMS(hr)));
6817     }
6818   }
6819 
6820 public:
6821   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6822     _g1h(g1h), _nm(nm) {}
6823 
6824   void do_oop(oop* p)       { do_oop_work(p); }
6825   void do_oop(narrowOop* p) { do_oop_work(p); }
6826 };
6827 
6828 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6829   CollectedHeap::register_nmethod(nm);
6830 
6831   guarantee(nm != NULL, "sanity");
6832   RegisterNMethodOopClosure reg_cl(this, nm);
6833   nm->oops_do(&reg_cl);
6834 }
6835 
6836 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6837   CollectedHeap::unregister_nmethod(nm);
6838 
6839   guarantee(nm != NULL, "sanity");
6840   UnregisterNMethodOopClosure reg_cl(this, nm);
6841   nm->oops_do(&reg_cl, true);
6842 }
6843 
6844 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
6845 public:
6846   bool doHeapRegion(HeapRegion *hr) {
6847     assert(!hr->isHumongous(),
6848            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
6849                    HR_FORMAT_PARAMS(hr)));
6850     hr->migrate_strong_code_roots();
6851     return false;
6852   }
6853 };
6854 
6855 void G1CollectedHeap::migrate_strong_code_roots() {
6856   MigrateCodeRootsHeapRegionClosure cl;
6857   double migrate_start = os::elapsedTime();
6858   collection_set_iterate(&cl);
6859   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
6860   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
6861 }
6862 
6863 void G1CollectedHeap::purge_code_root_memory() {
6864   double purge_start = os::elapsedTime();
6865   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
6866   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6867   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6868 }
6869 
6870 // Mark all the code roots that point into regions *not* in the
6871 // collection set.
6872 //
6873 // Note we do not want to use a "marking" CodeBlobToOopClosure while
6874 // walking the the code roots lists of regions not in the collection
6875 // set. Suppose we have an nmethod (M) that points to objects in two
6876 // separate regions - one in the collection set (R1) and one not (R2).
6877 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
6878 // nmethod M when walking the code roots for R1. When we come to scan
6879 // the code roots for R2, we would see that M is already marked and it
6880 // would be skipped and the objects in R2 that are referenced from M
6881 // would not be evacuated.
6882 
6883 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
6884 
6885   class MarkStrongCodeRootOopClosure: public OopClosure {
6886     ConcurrentMark* _cm;
6887     HeapRegion* _hr;
6888     uint _worker_id;
6889 
6890     template <class T> void do_oop_work(T* p) {
6891       T heap_oop = oopDesc::load_heap_oop(p);
6892       if (!oopDesc::is_null(heap_oop)) {
6893         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6894         // Only mark objects in the region (which is assumed
6895         // to be not in the collection set).
6896         if (_hr->is_in(obj)) {
6897           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
6898         }
6899       }
6900     }
6901 
6902   public:
6903     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
6904       _cm(cm), _hr(hr), _worker_id(worker_id) {
6905       assert(!_hr->in_collection_set(), "sanity");
6906     }
6907 
6908     void do_oop(narrowOop* p) { do_oop_work(p); }
6909     void do_oop(oop* p)       { do_oop_work(p); }
6910   };
6911 
6912   MarkStrongCodeRootOopClosure _oop_cl;
6913 
6914 public:
6915   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
6916     _oop_cl(cm, hr, worker_id) {}
6917 
6918   void do_code_blob(CodeBlob* cb) {
6919     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
6920     if (nm != NULL) {
6921       nm->oops_do(&_oop_cl);
6922     }
6923   }
6924 };
6925 
6926 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
6927   G1CollectedHeap* _g1h;
6928   uint _worker_id;
6929 
6930 public:
6931   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
6932     _g1h(g1h), _worker_id(worker_id) {}
6933 
6934   bool doHeapRegion(HeapRegion *hr) {
6935     HeapRegionRemSet* hrrs = hr->rem_set();
6936     if (hr->continuesHumongous()) {
6937       // Code roots should never be attached to a continuation of a humongous region
6938       assert(hrrs->strong_code_roots_list_length() == 0,
6939              err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
6940                      " starting at "HR_FORMAT", but has "SIZE_FORMAT,
6941                      HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
6942                      hrrs->strong_code_roots_list_length()));
6943       return false;
6944     }
6945 
6946     if (hr->in_collection_set()) {
6947       // Don't mark code roots into regions in the collection set here.
6948       // They will be marked when we scan them.
6949       return false;
6950     }
6951 
6952     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
6953     hr->strong_code_roots_do(&cb_cl);
6954     return false;
6955   }
6956 };
6957 
6958 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
6959   MarkStrongCodeRootsHRClosure cl(this, worker_id);
6960   if (G1CollectedHeap::use_parallel_gc_threads()) {
6961     heap_region_par_iterate_chunked(&cl,
6962                                     worker_id,
6963                                     workers()->active_workers(),
6964                                     HeapRegion::ParMarkRootClaimValue);
6965   } else {
6966     heap_region_iterate(&cl);
6967   }
6968 }
6969 
6970 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6971   G1CollectedHeap* _g1h;
6972 
6973 public:
6974   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6975     _g1h(g1h) {}
6976 
6977   void do_code_blob(CodeBlob* cb) {
6978     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6979     if (nm == NULL) {
6980       return;
6981     }
6982 
6983     if (ScavengeRootsInCode) {
6984       _g1h->register_nmethod(nm);
6985     }
6986   }
6987 };
6988 
6989 void G1CollectedHeap::rebuild_strong_code_roots() {
6990   RebuildStrongCodeRootClosure blob_cl(this);
6991   CodeCache::blobs_do(&blob_cl);
6992 }