/* * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" #include "gc_implementation/g1/g1OopClosures.inline.hpp" #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp" #include "oops/oop.inline.hpp" #include "oops/oop.pcgc.inline.hpp" #include "runtime/prefetch.inline.hpp" #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away #pragma warning( disable:4355 ) // 'this' : used in base member initializer list #endif // _MSC_VER G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp) : _g1h(g1h), _refs(g1h->task_queue(queue_num)), _dcq(&g1h->dirty_card_queue_set()), _ct_bs(g1h->g1_barrier_set()), _g1_rem(g1h->g1_rem_set()), _hash_seed(17), _queue_num(queue_num), _term_attempts(0), _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)), _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)), _age_table(false), _scanner(g1h, this, rp), _strong_roots_time(0), _term_time(0), _alloc_buffer_waste(0), _undo_waste(0) { // we allocate G1YoungSurvRateNumRegions plus one entries, since // we "sacrifice" entry 0 to keep track of surviving bytes for // non-young regions (where the age is -1) // We also add a few elements at the beginning and at the end in // an attempt to eliminate cache contention uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length(); uint array_length = PADDING_ELEM_NUM + real_length + PADDING_ELEM_NUM; _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC); if (_surviving_young_words_base == NULL) vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR, "Not enough space for young surv histo."); _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM; memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t)); _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer; _alloc_buffers[GCAllocForTenured] = &_tenured_alloc_buffer; _start = os::elapsedTime(); } G1ParScanThreadState::~G1ParScanThreadState() { retire_alloc_buffers(); FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC); } void G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st) { st->print_raw_cr("GC Termination Stats"); st->print_raw_cr(" elapsed --strong roots-- -------termination-------" " ------waste (KiB)------"); st->print_raw_cr("thr ms ms % ms % attempts" " total alloc undo"); st->print_raw_cr("--- --------- --------- ------ --------- ------ --------" " ------- ------- -------"); } void G1ParScanThreadState::print_termination_stats(int i, outputStream* const st) const { const double elapsed_ms = elapsed_time() * 1000.0; const double s_roots_ms = strong_roots_time() * 1000.0; const double term_ms = term_time() * 1000.0; st->print_cr("%3d %9.2f %9.2f %6.2f " "%9.2f %6.2f " SIZE_FORMAT_W(8) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7), i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms, term_ms, term_ms * 100 / elapsed_ms, term_attempts(), (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K, alloc_buffer_waste() * HeapWordSize / K, undo_waste() * HeapWordSize / K); } #ifdef ASSERT bool G1ParScanThreadState::verify_ref(narrowOop* ref) const { assert(ref != NULL, "invariant"); assert(UseCompressedOops, "sanity"); assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, p2i(ref))); oop p = oopDesc::load_decode_heap_oop(ref); assert(_g1h->is_in_g1_reserved(p), err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p))); return true; } bool G1ParScanThreadState::verify_ref(oop* ref) const { assert(ref != NULL, "invariant"); if (has_partial_array_mask(ref)) { // Must be in the collection set--it's already been copied. oop p = clear_partial_array_mask(ref); assert(_g1h->obj_in_cs(p), err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p))); } else { oop p = oopDesc::load_decode_heap_oop(ref); assert(_g1h->is_in_g1_reserved(p), err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p))); } return true; } bool G1ParScanThreadState::verify_task(StarTask ref) const { if (ref.is_narrow()) { return verify_ref((narrowOop*) ref); } else { return verify_ref((oop*) ref); } } #endif // ASSERT void G1ParScanThreadState::trim_queue() { assert(_evac_failure_cl != NULL, "not set"); StarTask ref; do { // Drain the overflow stack first, so other threads can steal. while (_refs->pop_overflow(ref)) { dispatch_reference(ref); } while (_refs->pop_local(ref)) { dispatch_reference(ref); } } while (!_refs->is_empty()); } oop G1ParScanThreadState::copy_to_survivor_space(oop const old) { size_t word_sz = old->size(); HeapRegion* from_region = _g1h->heap_region_containing_raw(old); // +1 to make the -1 indexes valid... int young_index = from_region->young_index_in_cset()+1; assert( (from_region->is_young() && young_index > 0) || (!from_region->is_young() && young_index == 0), "invariant" ); G1CollectorPolicy* g1p = _g1h->g1_policy(); markOop m = old->mark(); int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age() : m->age(); GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age, word_sz); HeapWord* obj_ptr = allocate(alloc_purpose, word_sz); #ifndef PRODUCT // Should this evacuation fail? if (_g1h->evacuation_should_fail()) { if (obj_ptr != NULL) { undo_allocation(alloc_purpose, obj_ptr, word_sz); obj_ptr = NULL; } } #endif // !PRODUCT if (obj_ptr == NULL) { // This will either forward-to-self, or detect that someone else has // installed a forwarding pointer. return _g1h->handle_evacuation_failure_par(this, old); } oop obj = oop(obj_ptr); // We're going to allocate linearly, so might as well prefetch ahead. Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); oop forward_ptr = old->forward_to_atomic(obj); if (forward_ptr == NULL) { Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz); // alloc_purpose is just a hint to allocate() above, recheck the type of region // we actually allocated from and update alloc_purpose accordingly HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr); alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured; if (g1p->track_object_age(alloc_purpose)) { // We could simply do obj->incr_age(). However, this causes a // performance issue. obj->incr_age() will first check whether // the object has a displaced mark by checking its mark word; // getting the mark word from the new location of the object // stalls. So, given that we already have the mark word and we // are about to install it anyway, it's better to increase the // age on the mark word, when the object does not have a // displaced mark word. We're not expecting many objects to have // a displaced marked word, so that case is not optimized // further (it could be...) and we simply call obj->incr_age(). if (m->has_displaced_mark_helper()) { // in this case, we have to install the mark word first, // otherwise obj looks to be forwarded (the old mark word, // which contains the forward pointer, was copied) obj->set_mark(m); obj->incr_age(); } else { m = m->incr_age(); obj->set_mark(m); } age_table()->add(obj, word_sz); } else { obj->set_mark(m); } if (G1StringDedup::is_enabled()) { G1StringDedup::enqueue_from_evacuation(from_region->is_young(), to_region->is_young(), queue_num(), obj); } size_t* surv_young_words = surviving_young_words(); surv_young_words[young_index] += word_sz; if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) { // We keep track of the next start index in the length field of // the to-space object. The actual length can be found in the // length field of the from-space object. arrayOop(obj)->set_length(0); oop* old_p = set_partial_array_mask(old); push_on_queue(old_p); } else { // No point in using the slower heap_region_containing() method, // given that we know obj is in the heap. _scanner.set_region(_g1h->heap_region_containing_raw(obj)); obj->oop_iterate_backwards(&_scanner); } } else { undo_allocation(alloc_purpose, obj_ptr, word_sz); obj = forward_ptr; } return obj; } HeapWord* G1ParScanThreadState::allocate_slow(GCAllocPurpose purpose, size_t word_sz) { HeapWord* obj = NULL; size_t gclab_word_size = _g1h->desired_plab_sz(purpose); if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) { G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose); add_to_alloc_buffer_waste(alloc_buf->words_remaining()); alloc_buf->retire(false /* end_of_gc */, false /* retain */); HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size); if (buf == NULL) { return NULL; // Let caller handle allocation failure. } // Otherwise. alloc_buf->set_word_size(gclab_word_size); alloc_buf->set_buf(buf); obj = alloc_buf->allocate(word_sz); assert(obj != NULL, "buffer was definitely big enough..."); } else { obj = _g1h->par_allocate_during_gc(purpose, word_sz); } return obj; } void G1ParScanThreadState::undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) { if (alloc_buffer(purpose)->contains(obj)) { assert(alloc_buffer(purpose)->contains(obj + word_sz - 1), "should contain whole object"); alloc_buffer(purpose)->undo_allocation(obj, word_sz); } else { CollectedHeap::fill_with_object(obj, word_sz); add_to_undo_waste(word_sz); } } HeapWord* G1ParScanThreadState::allocate(GCAllocPurpose purpose, size_t word_sz) { HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz); if (obj != NULL) { return obj; } return allocate_slow(purpose, word_sz); } void G1ParScanThreadState::retire_alloc_buffers() { for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { size_t waste = _alloc_buffers[ap]->words_remaining(); add_to_alloc_buffer_waste(waste); _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap), true /* end_of_gc */, false /* retain */); } }