1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/stringTable.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  35 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  36 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  37 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  38 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  41 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  42 #include "gc_implementation/g1/g1EvacFailure.hpp"
  43 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  44 #include "gc_implementation/g1/g1Log.hpp"
  45 #include "gc_implementation/g1/g1MarkSweep.hpp"
  46 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  47 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  48 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  49 #include "gc_implementation/g1/g1StringDedup.hpp"
  50 #include "gc_implementation/g1/g1YCTypes.hpp"
  51 #include "gc_implementation/g1/heapRegion.inline.hpp"
  52 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  53 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  54 #include "gc_implementation/g1/vm_operations_g1.hpp"
  55 #include "gc_implementation/shared/gcHeapSummary.hpp"
  56 #include "gc_implementation/shared/gcTimer.hpp"
  57 #include "gc_implementation/shared/gcTrace.hpp"
  58 #include "gc_implementation/shared/gcTraceTime.hpp"
  59 #include "gc_implementation/shared/isGCActiveMark.hpp"
  60 #include "memory/allocation.hpp"
  61 #include "memory/gcLocker.inline.hpp"
  62 #include "memory/generationSpec.hpp"
  63 #include "memory/iterator.hpp"
  64 #include "memory/referenceProcessor.hpp"
  65 #include "oops/oop.inline.hpp"
  66 #include "oops/oop.pcgc.inline.hpp"
  67 #include "runtime/atomic.inline.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/vmThread.hpp"
  70 #include "utilities/globalDefinitions.hpp"
  71 
  72 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  73 
  74 // turn it on so that the contents of the young list (scan-only /
  75 // to-be-collected) are printed at "strategic" points before / during
  76 // / after the collection --- this is useful for debugging
  77 #define YOUNG_LIST_VERBOSE 0
  78 // CURRENT STATUS
  79 // This file is under construction.  Search for "FIXME".
  80 
  81 // INVARIANTS/NOTES
  82 //
  83 // All allocation activity covered by the G1CollectedHeap interface is
  84 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  85 // and allocate_new_tlab, which are the "entry" points to the
  86 // allocation code from the rest of the JVM.  (Note that this does not
  87 // apply to TLAB allocation, which is not part of this interface: it
  88 // is done by clients of this interface.)
  89 
  90 // Notes on implementation of parallelism in different tasks.
  91 //
  92 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  93 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  94 // It does use run_task() which sets _n_workers in the task.
  95 // G1ParTask executes g1_process_roots() ->
  96 // SharedHeap::process_roots() which calls eventually to
  97 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  98 // SequentialSubTasksDone.  SharedHeap::process_roots() also
  99 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
 100 //
 101 
 102 // Local to this file.
 103 
 104 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 105   bool _concurrent;
 106 public:
 107   RefineCardTableEntryClosure() : _concurrent(true) { }
 108 
 109   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 110     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 111     // This path is executed by the concurrent refine or mutator threads,
 112     // concurrently, and so we do not care if card_ptr contains references
 113     // that point into the collection set.
 114     assert(!oops_into_cset, "should be");
 115 
 116     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 117       // Caller will actually yield.
 118       return false;
 119     }
 120     // Otherwise, we finished successfully; return true.
 121     return true;
 122   }
 123 
 124   void set_concurrent(bool b) { _concurrent = b; }
 125 };
 126 
 127 
 128 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 129   size_t _num_processed;
 130   CardTableModRefBS* _ctbs;
 131   int _histo[256];
 132 
 133  public:
 134   ClearLoggedCardTableEntryClosure() :
 135     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
 136   {
 137     for (int i = 0; i < 256; i++) _histo[i] = 0;
 138   }
 139 
 140   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 141     unsigned char* ujb = (unsigned char*)card_ptr;
 142     int ind = (int)(*ujb);
 143     _histo[ind]++;
 144 
 145     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
 146     _num_processed++;
 147 
 148     return true;
 149   }
 150 
 151   size_t num_processed() { return _num_processed; }
 152 
 153   void print_histo() {
 154     gclog_or_tty->print_cr("Card table value histogram:");
 155     for (int i = 0; i < 256; i++) {
 156       if (_histo[i] != 0) {
 157         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 158       }
 159     }
 160   }
 161 };
 162 
 163 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 164  private:
 165   size_t _num_processed;
 166 
 167  public:
 168   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 169 
 170   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 171     *card_ptr = CardTableModRefBS::dirty_card_val();
 172     _num_processed++;
 173     return true;
 174   }
 175 
 176   size_t num_processed() const { return _num_processed; }
 177 };
 178 
 179 YoungList::YoungList(G1CollectedHeap* g1h) :
 180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 182   guarantee(check_list_empty(false), "just making sure...");
 183 }
 184 
 185 void YoungList::push_region(HeapRegion *hr) {
 186   assert(!hr->is_young(), "should not already be young");
 187   assert(hr->get_next_young_region() == NULL, "cause it should!");
 188 
 189   hr->set_next_young_region(_head);
 190   _head = hr;
 191 
 192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 193   ++_length;
 194 }
 195 
 196 void YoungList::add_survivor_region(HeapRegion* hr) {
 197   assert(hr->is_survivor(), "should be flagged as survivor region");
 198   assert(hr->get_next_young_region() == NULL, "cause it should!");
 199 
 200   hr->set_next_young_region(_survivor_head);
 201   if (_survivor_head == NULL) {
 202     _survivor_tail = hr;
 203   }
 204   _survivor_head = hr;
 205   ++_survivor_length;
 206 }
 207 
 208 void YoungList::empty_list(HeapRegion* list) {
 209   while (list != NULL) {
 210     HeapRegion* next = list->get_next_young_region();
 211     list->set_next_young_region(NULL);
 212     list->uninstall_surv_rate_group();
 213     list->set_not_young();
 214     list = next;
 215   }
 216 }
 217 
 218 void YoungList::empty_list() {
 219   assert(check_list_well_formed(), "young list should be well formed");
 220 
 221   empty_list(_head);
 222   _head = NULL;
 223   _length = 0;
 224 
 225   empty_list(_survivor_head);
 226   _survivor_head = NULL;
 227   _survivor_tail = NULL;
 228   _survivor_length = 0;
 229 
 230   _last_sampled_rs_lengths = 0;
 231 
 232   assert(check_list_empty(false), "just making sure...");
 233 }
 234 
 235 bool YoungList::check_list_well_formed() {
 236   bool ret = true;
 237 
 238   uint length = 0;
 239   HeapRegion* curr = _head;
 240   HeapRegion* last = NULL;
 241   while (curr != NULL) {
 242     if (!curr->is_young()) {
 243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 244                              "incorrectly tagged (y: %d, surv: %d)",
 245                              curr->bottom(), curr->end(),
 246                              curr->is_young(), curr->is_survivor());
 247       ret = false;
 248     }
 249     ++length;
 250     last = curr;
 251     curr = curr->get_next_young_region();
 252   }
 253   ret = ret && (length == _length);
 254 
 255   if (!ret) {
 256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 258                            length, _length);
 259   }
 260 
 261   return ret;
 262 }
 263 
 264 bool YoungList::check_list_empty(bool check_sample) {
 265   bool ret = true;
 266 
 267   if (_length != 0) {
 268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 269                   _length);
 270     ret = false;
 271   }
 272   if (check_sample && _last_sampled_rs_lengths != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 274     ret = false;
 275   }
 276   if (_head != NULL) {
 277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 278     ret = false;
 279   }
 280   if (!ret) {
 281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 282   }
 283 
 284   return ret;
 285 }
 286 
 287 void
 288 YoungList::rs_length_sampling_init() {
 289   _sampled_rs_lengths = 0;
 290   _curr               = _head;
 291 }
 292 
 293 bool
 294 YoungList::rs_length_sampling_more() {
 295   return _curr != NULL;
 296 }
 297 
 298 void
 299 YoungList::rs_length_sampling_next() {
 300   assert( _curr != NULL, "invariant" );
 301   size_t rs_length = _curr->rem_set()->occupied();
 302 
 303   _sampled_rs_lengths += rs_length;
 304 
 305   // The current region may not yet have been added to the
 306   // incremental collection set (it gets added when it is
 307   // retired as the current allocation region).
 308   if (_curr->in_collection_set()) {
 309     // Update the collection set policy information for this region
 310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 311   }
 312 
 313   _curr = _curr->get_next_young_region();
 314   if (_curr == NULL) {
 315     _last_sampled_rs_lengths = _sampled_rs_lengths;
 316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 317   }
 318 }
 319 
 320 void
 321 YoungList::reset_auxilary_lists() {
 322   guarantee( is_empty(), "young list should be empty" );
 323   assert(check_list_well_formed(), "young list should be well formed");
 324 
 325   // Add survivor regions to SurvRateGroup.
 326   _g1h->g1_policy()->note_start_adding_survivor_regions();
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 328 
 329   int young_index_in_cset = 0;
 330   for (HeapRegion* curr = _survivor_head;
 331        curr != NULL;
 332        curr = curr->get_next_young_region()) {
 333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 334 
 335     // The region is a non-empty survivor so let's add it to
 336     // the incremental collection set for the next evacuation
 337     // pause.
 338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 339     young_index_in_cset += 1;
 340   }
 341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 343 
 344   _head   = _survivor_head;
 345   _length = _survivor_length;
 346   if (_survivor_head != NULL) {
 347     assert(_survivor_tail != NULL, "cause it shouldn't be");
 348     assert(_survivor_length > 0, "invariant");
 349     _survivor_tail->set_next_young_region(NULL);
 350   }
 351 
 352   // Don't clear the survivor list handles until the start of
 353   // the next evacuation pause - we need it in order to re-tag
 354   // the survivor regions from this evacuation pause as 'young'
 355   // at the start of the next.
 356 
 357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 358 
 359   assert(check_list_well_formed(), "young list should be well formed");
 360 }
 361 
 362 void YoungList::print() {
 363   HeapRegion* lists[] = {_head,   _survivor_head};
 364   const char* names[] = {"YOUNG", "SURVIVOR"};
 365 
 366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 368     HeapRegion *curr = lists[list];
 369     if (curr == NULL)
 370       gclog_or_tty->print_cr("  empty");
 371     while (curr != NULL) {
 372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 373                              HR_FORMAT_PARAMS(curr),
 374                              curr->prev_top_at_mark_start(),
 375                              curr->next_top_at_mark_start(),
 376                              curr->age_in_surv_rate_group_cond());
 377       curr = curr->get_next_young_region();
 378     }
 379   }
 380 
 381   gclog_or_tty->cr();
 382 }
 383 
 384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 385 {
 386   // Claim the right to put the region on the dirty cards region list
 387   // by installing a self pointer.
 388   HeapRegion* next = hr->get_next_dirty_cards_region();
 389   if (next == NULL) {
 390     HeapRegion* res = (HeapRegion*)
 391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 392                           NULL);
 393     if (res == NULL) {
 394       HeapRegion* head;
 395       do {
 396         // Put the region to the dirty cards region list.
 397         head = _dirty_cards_region_list;
 398         next = (HeapRegion*)
 399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 400         if (next == head) {
 401           assert(hr->get_next_dirty_cards_region() == hr,
 402                  "hr->get_next_dirty_cards_region() != hr");
 403           if (next == NULL) {
 404             // The last region in the list points to itself.
 405             hr->set_next_dirty_cards_region(hr);
 406           } else {
 407             hr->set_next_dirty_cards_region(next);
 408           }
 409         }
 410       } while (next != head);
 411     }
 412   }
 413 }
 414 
 415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 416 {
 417   HeapRegion* head;
 418   HeapRegion* hr;
 419   do {
 420     head = _dirty_cards_region_list;
 421     if (head == NULL) {
 422       return NULL;
 423     }
 424     HeapRegion* new_head = head->get_next_dirty_cards_region();
 425     if (head == new_head) {
 426       // The last region.
 427       new_head = NULL;
 428     }
 429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 430                                           head);
 431   } while (hr != head);
 432   assert(hr != NULL, "invariant");
 433   hr->set_next_dirty_cards_region(NULL);
 434   return hr;
 435 }
 436 
 437 #ifdef ASSERT
 438 // A region is added to the collection set as it is retired
 439 // so an address p can point to a region which will be in the
 440 // collection set but has not yet been retired.  This method
 441 // therefore is only accurate during a GC pause after all
 442 // regions have been retired.  It is used for debugging
 443 // to check if an nmethod has references to objects that can
 444 // be move during a partial collection.  Though it can be
 445 // inaccurate, it is sufficient for G1 because the conservative
 446 // implementation of is_scavengable() for G1 will indicate that
 447 // all nmethods must be scanned during a partial collection.
 448 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 449   if (p == NULL) {
 450     return false;
 451   }
 452   return heap_region_containing(p)->in_collection_set();
 453 }
 454 #endif
 455 
 456 // Returns true if the reference points to an object that
 457 // can move in an incremental collection.
 458 bool G1CollectedHeap::is_scavengable(const void* p) {
 459   HeapRegion* hr = heap_region_containing(p);
 460   return !hr->isHumongous();
 461 }
 462 
 463 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 464   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 465   CardTableModRefBS* ct_bs = g1_barrier_set();
 466 
 467   // Count the dirty cards at the start.
 468   CountNonCleanMemRegionClosure count1(this);
 469   ct_bs->mod_card_iterate(&count1);
 470   int orig_count = count1.n();
 471 
 472   // First clear the logged cards.
 473   ClearLoggedCardTableEntryClosure clear;
 474   dcqs.apply_closure_to_all_completed_buffers(&clear);
 475   dcqs.iterate_closure_all_threads(&clear, false);
 476   clear.print_histo();
 477 
 478   // Now ensure that there's no dirty cards.
 479   CountNonCleanMemRegionClosure count2(this);
 480   ct_bs->mod_card_iterate(&count2);
 481   if (count2.n() != 0) {
 482     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 483                            count2.n(), orig_count);
 484   }
 485   guarantee(count2.n() == 0, "Card table should be clean.");
 486 
 487   RedirtyLoggedCardTableEntryClosure redirty;
 488   dcqs.apply_closure_to_all_completed_buffers(&redirty);
 489   dcqs.iterate_closure_all_threads(&redirty, false);
 490   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 491                          clear.num_processed(), orig_count);
 492   guarantee(redirty.num_processed() == clear.num_processed(),
 493             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
 494                     redirty.num_processed(), clear.num_processed()));
 495 
 496   CountNonCleanMemRegionClosure count3(this);
 497   ct_bs->mod_card_iterate(&count3);
 498   if (count3.n() != orig_count) {
 499     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 500                            orig_count, count3.n());
 501     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 502   }
 503 }
 504 
 505 // Private class members.
 506 
 507 G1CollectedHeap* G1CollectedHeap::_g1h;
 508 
 509 // Private methods.
 510 
 511 HeapRegion*
 512 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 513   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 514   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 515     if (!_secondary_free_list.is_empty()) {
 516       if (G1ConcRegionFreeingVerbose) {
 517         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 518                                "secondary_free_list has %u entries",
 519                                _secondary_free_list.length());
 520       }
 521       // It looks as if there are free regions available on the
 522       // secondary_free_list. Let's move them to the free_list and try
 523       // again to allocate from it.
 524       append_secondary_free_list();
 525 
 526       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 527              "empty we should have moved at least one entry to the free_list");
 528       HeapRegion* res = _free_list.remove_region(is_old);
 529       if (G1ConcRegionFreeingVerbose) {
 530         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 531                                "allocated "HR_FORMAT" from secondary_free_list",
 532                                HR_FORMAT_PARAMS(res));
 533       }
 534       return res;
 535     }
 536 
 537     // Wait here until we get notified either when (a) there are no
 538     // more free regions coming or (b) some regions have been moved on
 539     // the secondary_free_list.
 540     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 541   }
 542 
 543   if (G1ConcRegionFreeingVerbose) {
 544     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 545                            "could not allocate from secondary_free_list");
 546   }
 547   return NULL;
 548 }
 549 
 550 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 551   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 552          "the only time we use this to allocate a humongous region is "
 553          "when we are allocating a single humongous region");
 554 
 555   HeapRegion* res;
 556   if (G1StressConcRegionFreeing) {
 557     if (!_secondary_free_list.is_empty()) {
 558       if (G1ConcRegionFreeingVerbose) {
 559         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 560                                "forced to look at the secondary_free_list");
 561       }
 562       res = new_region_try_secondary_free_list(is_old);
 563       if (res != NULL) {
 564         return res;
 565       }
 566     }
 567   }
 568 
 569   res = _free_list.remove_region(is_old);
 570 
 571   if (res == NULL) {
 572     if (G1ConcRegionFreeingVerbose) {
 573       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 574                              "res == NULL, trying the secondary_free_list");
 575     }
 576     res = new_region_try_secondary_free_list(is_old);
 577   }
 578   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 579     // Currently, only attempts to allocate GC alloc regions set
 580     // do_expand to true. So, we should only reach here during a
 581     // safepoint. If this assumption changes we might have to
 582     // reconsider the use of _expand_heap_after_alloc_failure.
 583     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 584 
 585     ergo_verbose1(ErgoHeapSizing,
 586                   "attempt heap expansion",
 587                   ergo_format_reason("region allocation request failed")
 588                   ergo_format_byte("allocation request"),
 589                   word_size * HeapWordSize);
 590     if (expand(word_size * HeapWordSize)) {
 591       // Given that expand() succeeded in expanding the heap, and we
 592       // always expand the heap by an amount aligned to the heap
 593       // region size, the free list should in theory not be empty.
 594       // In either case remove_region() will check for NULL.
 595       res = _free_list.remove_region(is_old);
 596     } else {
 597       _expand_heap_after_alloc_failure = false;
 598     }
 599   }
 600   return res;
 601 }
 602 
 603 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 604                                                         size_t word_size) {
 605   assert(isHumongous(word_size), "word_size should be humongous");
 606   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 607 
 608   uint first = G1_NULL_HRS_INDEX;
 609   if (num_regions == 1) {
 610     // Only one region to allocate, no need to go through the slower
 611     // path. The caller will attempt the expansion if this fails, so
 612     // let's not try to expand here too.
 613     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 614     if (hr != NULL) {
 615       first = hr->hrs_index();
 616     } else {
 617       first = G1_NULL_HRS_INDEX;
 618     }
 619   } else {
 620     // We can't allocate humongous regions while cleanupComplete() is
 621     // running, since some of the regions we find to be empty might not
 622     // yet be added to the free list and it is not straightforward to
 623     // know which list they are on so that we can remove them. Note
 624     // that we only need to do this if we need to allocate more than
 625     // one region to satisfy the current humongous allocation
 626     // request. If we are only allocating one region we use the common
 627     // region allocation code (see above).
 628     wait_while_free_regions_coming();
 629     append_secondary_free_list_if_not_empty_with_lock();
 630 
 631     if (free_regions() >= num_regions) {
 632       first = _hrs.find_contiguous(num_regions);
 633       if (first != G1_NULL_HRS_INDEX) {
 634         for (uint i = first; i < first + num_regions; ++i) {
 635           HeapRegion* hr = region_at(i);
 636           assert(hr->is_empty(), "sanity");
 637           assert(is_on_master_free_list(hr), "sanity");
 638           hr->set_pending_removal(true);
 639         }
 640         _free_list.remove_all_pending(num_regions);
 641       }
 642     }
 643   }
 644   return first;
 645 }
 646 
 647 HeapWord*
 648 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 649                                                            uint num_regions,
 650                                                            size_t word_size) {
 651   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 652   assert(isHumongous(word_size), "word_size should be humongous");
 653   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 654 
 655   // Index of last region in the series + 1.
 656   uint last = first + num_regions;
 657 
 658   // We need to initialize the region(s) we just discovered. This is
 659   // a bit tricky given that it can happen concurrently with
 660   // refinement threads refining cards on these regions and
 661   // potentially wanting to refine the BOT as they are scanning
 662   // those cards (this can happen shortly after a cleanup; see CR
 663   // 6991377). So we have to set up the region(s) carefully and in
 664   // a specific order.
 665 
 666   // The word size sum of all the regions we will allocate.
 667   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 668   assert(word_size <= word_size_sum, "sanity");
 669 
 670   // This will be the "starts humongous" region.
 671   HeapRegion* first_hr = region_at(first);
 672   // The header of the new object will be placed at the bottom of
 673   // the first region.
 674   HeapWord* new_obj = first_hr->bottom();
 675   // This will be the new end of the first region in the series that
 676   // should also match the end of the last region in the series.
 677   HeapWord* new_end = new_obj + word_size_sum;
 678   // This will be the new top of the first region that will reflect
 679   // this allocation.
 680   HeapWord* new_top = new_obj + word_size;
 681 
 682   // First, we need to zero the header of the space that we will be
 683   // allocating. When we update top further down, some refinement
 684   // threads might try to scan the region. By zeroing the header we
 685   // ensure that any thread that will try to scan the region will
 686   // come across the zero klass word and bail out.
 687   //
 688   // NOTE: It would not have been correct to have used
 689   // CollectedHeap::fill_with_object() and make the space look like
 690   // an int array. The thread that is doing the allocation will
 691   // later update the object header to a potentially different array
 692   // type and, for a very short period of time, the klass and length
 693   // fields will be inconsistent. This could cause a refinement
 694   // thread to calculate the object size incorrectly.
 695   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 696 
 697   // We will set up the first region as "starts humongous". This
 698   // will also update the BOT covering all the regions to reflect
 699   // that there is a single object that starts at the bottom of the
 700   // first region.
 701   first_hr->set_startsHumongous(new_top, new_end);
 702 
 703   // Then, if there are any, we will set up the "continues
 704   // humongous" regions.
 705   HeapRegion* hr = NULL;
 706   for (uint i = first + 1; i < last; ++i) {
 707     hr = region_at(i);
 708     hr->set_continuesHumongous(first_hr);
 709   }
 710   // If we have "continues humongous" regions (hr != NULL), then the
 711   // end of the last one should match new_end.
 712   assert(hr == NULL || hr->end() == new_end, "sanity");
 713 
 714   // Up to this point no concurrent thread would have been able to
 715   // do any scanning on any region in this series. All the top
 716   // fields still point to bottom, so the intersection between
 717   // [bottom,top] and [card_start,card_end] will be empty. Before we
 718   // update the top fields, we'll do a storestore to make sure that
 719   // no thread sees the update to top before the zeroing of the
 720   // object header and the BOT initialization.
 721   OrderAccess::storestore();
 722 
 723   // Now that the BOT and the object header have been initialized,
 724   // we can update top of the "starts humongous" region.
 725   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 726          "new_top should be in this region");
 727   first_hr->set_top(new_top);
 728   if (_hr_printer.is_active()) {
 729     HeapWord* bottom = first_hr->bottom();
 730     HeapWord* end = first_hr->orig_end();
 731     if ((first + 1) == last) {
 732       // the series has a single humongous region
 733       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 734     } else {
 735       // the series has more than one humongous regions
 736       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 737     }
 738   }
 739 
 740   // Now, we will update the top fields of the "continues humongous"
 741   // regions. The reason we need to do this is that, otherwise,
 742   // these regions would look empty and this will confuse parts of
 743   // G1. For example, the code that looks for a consecutive number
 744   // of empty regions will consider them empty and try to
 745   // re-allocate them. We can extend is_empty() to also include
 746   // !continuesHumongous(), but it is easier to just update the top
 747   // fields here. The way we set top for all regions (i.e., top ==
 748   // end for all regions but the last one, top == new_top for the
 749   // last one) is actually used when we will free up the humongous
 750   // region in free_humongous_region().
 751   hr = NULL;
 752   for (uint i = first + 1; i < last; ++i) {
 753     hr = region_at(i);
 754     if ((i + 1) == last) {
 755       // last continues humongous region
 756       assert(hr->bottom() < new_top && new_top <= hr->end(),
 757              "new_top should fall on this region");
 758       hr->set_top(new_top);
 759       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 760     } else {
 761       // not last one
 762       assert(new_top > hr->end(), "new_top should be above this region");
 763       hr->set_top(hr->end());
 764       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 765     }
 766   }
 767   // If we have continues humongous regions (hr != NULL), then the
 768   // end of the last one should match new_end and its top should
 769   // match new_top.
 770   assert(hr == NULL ||
 771          (hr->end() == new_end && hr->top() == new_top), "sanity");
 772   check_bitmaps("Humongous Region Allocation", first_hr);
 773 
 774   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 775   _summary_bytes_used += first_hr->used();
 776   _humongous_set.add(first_hr);
 777 
 778   return new_obj;
 779 }
 780 
 781 // If could fit into free regions w/o expansion, try.
 782 // Otherwise, if can expand, do so.
 783 // Otherwise, if using ex regions might help, try with ex given back.
 784 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 785   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 786 
 787   verify_region_sets_optional();
 788 
 789   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 790   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 791   uint x_num = expansion_regions();
 792   uint fs = _hrs.free_suffix();
 793   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 794   if (first == G1_NULL_HRS_INDEX) {
 795     // The only thing we can do now is attempt expansion.
 796     if (fs + x_num >= num_regions) {
 797       // If the number of regions we're trying to allocate for this
 798       // object is at most the number of regions in the free suffix,
 799       // then the call to humongous_obj_allocate_find_first() above
 800       // should have succeeded and we wouldn't be here.
 801       //
 802       // We should only be trying to expand when the free suffix is
 803       // not sufficient for the object _and_ we have some expansion
 804       // room available.
 805       assert(num_regions > fs, "earlier allocation should have succeeded");
 806 
 807       ergo_verbose1(ErgoHeapSizing,
 808                     "attempt heap expansion",
 809                     ergo_format_reason("humongous allocation request failed")
 810                     ergo_format_byte("allocation request"),
 811                     word_size * HeapWordSize);
 812       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 813         // Even though the heap was expanded, it might not have
 814         // reached the desired size. So, we cannot assume that the
 815         // allocation will succeed.
 816         first = humongous_obj_allocate_find_first(num_regions, word_size);
 817       }
 818     }
 819   }
 820 
 821   HeapWord* result = NULL;
 822   if (first != G1_NULL_HRS_INDEX) {
 823     result =
 824       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 825     assert(result != NULL, "it should always return a valid result");
 826 
 827     // A successful humongous object allocation changes the used space
 828     // information of the old generation so we need to recalculate the
 829     // sizes and update the jstat counters here.
 830     g1mm()->update_sizes();
 831   }
 832 
 833   verify_region_sets_optional();
 834 
 835   return result;
 836 }
 837 
 838 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 839   assert_heap_not_locked_and_not_at_safepoint();
 840   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 841 
 842   unsigned int dummy_gc_count_before;
 843   int dummy_gclocker_retry_count = 0;
 844   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 845 }
 846 
 847 HeapWord*
 848 G1CollectedHeap::mem_allocate(size_t word_size,
 849                               bool*  gc_overhead_limit_was_exceeded) {
 850   assert_heap_not_locked_and_not_at_safepoint();
 851 
 852   // Loop until the allocation is satisfied, or unsatisfied after GC.
 853   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 854     unsigned int gc_count_before;
 855 
 856     HeapWord* result = NULL;
 857     if (!isHumongous(word_size)) {
 858       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 859     } else {
 860       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 861     }
 862     if (result != NULL) {
 863       return result;
 864     }
 865 
 866     // Create the garbage collection operation...
 867     VM_G1CollectForAllocation op(gc_count_before, word_size);
 868     // ...and get the VM thread to execute it.
 869     VMThread::execute(&op);
 870 
 871     if (op.prologue_succeeded() && op.pause_succeeded()) {
 872       // If the operation was successful we'll return the result even
 873       // if it is NULL. If the allocation attempt failed immediately
 874       // after a Full GC, it's unlikely we'll be able to allocate now.
 875       HeapWord* result = op.result();
 876       if (result != NULL && !isHumongous(word_size)) {
 877         // Allocations that take place on VM operations do not do any
 878         // card dirtying and we have to do it here. We only have to do
 879         // this for non-humongous allocations, though.
 880         dirty_young_block(result, word_size);
 881       }
 882       return result;
 883     } else {
 884       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 885         return NULL;
 886       }
 887       assert(op.result() == NULL,
 888              "the result should be NULL if the VM op did not succeed");
 889     }
 890 
 891     // Give a warning if we seem to be looping forever.
 892     if ((QueuedAllocationWarningCount > 0) &&
 893         (try_count % QueuedAllocationWarningCount == 0)) {
 894       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 895     }
 896   }
 897 
 898   ShouldNotReachHere();
 899   return NULL;
 900 }
 901 
 902 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 903                                            unsigned int *gc_count_before_ret,
 904                                            int* gclocker_retry_count_ret) {
 905   // Make sure you read the note in attempt_allocation_humongous().
 906 
 907   assert_heap_not_locked_and_not_at_safepoint();
 908   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 909          "be called for humongous allocation requests");
 910 
 911   // We should only get here after the first-level allocation attempt
 912   // (attempt_allocation()) failed to allocate.
 913 
 914   // We will loop until a) we manage to successfully perform the
 915   // allocation or b) we successfully schedule a collection which
 916   // fails to perform the allocation. b) is the only case when we'll
 917   // return NULL.
 918   HeapWord* result = NULL;
 919   for (int try_count = 1; /* we'll return */; try_count += 1) {
 920     bool should_try_gc;
 921     unsigned int gc_count_before;
 922 
 923     {
 924       MutexLockerEx x(Heap_lock);
 925 
 926       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 927                                                       false /* bot_updates */);
 928       if (result != NULL) {
 929         return result;
 930       }
 931 
 932       // If we reach here, attempt_allocation_locked() above failed to
 933       // allocate a new region. So the mutator alloc region should be NULL.
 934       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 935 
 936       if (GC_locker::is_active_and_needs_gc()) {
 937         if (g1_policy()->can_expand_young_list()) {
 938           // No need for an ergo verbose message here,
 939           // can_expand_young_list() does this when it returns true.
 940           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 941                                                       false /* bot_updates */);
 942           if (result != NULL) {
 943             return result;
 944           }
 945         }
 946         should_try_gc = false;
 947       } else {
 948         // The GCLocker may not be active but the GCLocker initiated
 949         // GC may not yet have been performed (GCLocker::needs_gc()
 950         // returns true). In this case we do not try this GC and
 951         // wait until the GCLocker initiated GC is performed, and
 952         // then retry the allocation.
 953         if (GC_locker::needs_gc()) {
 954           should_try_gc = false;
 955         } else {
 956           // Read the GC count while still holding the Heap_lock.
 957           gc_count_before = total_collections();
 958           should_try_gc = true;
 959         }
 960       }
 961     }
 962 
 963     if (should_try_gc) {
 964       bool succeeded;
 965       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 966           GCCause::_g1_inc_collection_pause);
 967       if (result != NULL) {
 968         assert(succeeded, "only way to get back a non-NULL result");
 969         return result;
 970       }
 971 
 972       if (succeeded) {
 973         // If we get here we successfully scheduled a collection which
 974         // failed to allocate. No point in trying to allocate
 975         // further. We'll just return NULL.
 976         MutexLockerEx x(Heap_lock);
 977         *gc_count_before_ret = total_collections();
 978         return NULL;
 979       }
 980     } else {
 981       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 982         MutexLockerEx x(Heap_lock);
 983         *gc_count_before_ret = total_collections();
 984         return NULL;
 985       }
 986       // The GCLocker is either active or the GCLocker initiated
 987       // GC has not yet been performed. Stall until it is and
 988       // then retry the allocation.
 989       GC_locker::stall_until_clear();
 990       (*gclocker_retry_count_ret) += 1;
 991     }
 992 
 993     // We can reach here if we were unsuccessful in scheduling a
 994     // collection (because another thread beat us to it) or if we were
 995     // stalled due to the GC locker. In either can we should retry the
 996     // allocation attempt in case another thread successfully
 997     // performed a collection and reclaimed enough space. We do the
 998     // first attempt (without holding the Heap_lock) here and the
 999     // follow-on attempt will be at the start of the next loop
1000     // iteration (after taking the Heap_lock).
1001     result = _mutator_alloc_region.attempt_allocation(word_size,
1002                                                       false /* bot_updates */);
1003     if (result != NULL) {
1004       return result;
1005     }
1006 
1007     // Give a warning if we seem to be looping forever.
1008     if ((QueuedAllocationWarningCount > 0) &&
1009         (try_count % QueuedAllocationWarningCount == 0)) {
1010       warning("G1CollectedHeap::attempt_allocation_slow() "
1011               "retries %d times", try_count);
1012     }
1013   }
1014 
1015   ShouldNotReachHere();
1016   return NULL;
1017 }
1018 
1019 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1020                                           unsigned int * gc_count_before_ret,
1021                                           int* gclocker_retry_count_ret) {
1022   // The structure of this method has a lot of similarities to
1023   // attempt_allocation_slow(). The reason these two were not merged
1024   // into a single one is that such a method would require several "if
1025   // allocation is not humongous do this, otherwise do that"
1026   // conditional paths which would obscure its flow. In fact, an early
1027   // version of this code did use a unified method which was harder to
1028   // follow and, as a result, it had subtle bugs that were hard to
1029   // track down. So keeping these two methods separate allows each to
1030   // be more readable. It will be good to keep these two in sync as
1031   // much as possible.
1032 
1033   assert_heap_not_locked_and_not_at_safepoint();
1034   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1035          "should only be called for humongous allocations");
1036 
1037   // Humongous objects can exhaust the heap quickly, so we should check if we
1038   // need to start a marking cycle at each humongous object allocation. We do
1039   // the check before we do the actual allocation. The reason for doing it
1040   // before the allocation is that we avoid having to keep track of the newly
1041   // allocated memory while we do a GC.
1042   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1043                                            word_size)) {
1044     collect(GCCause::_g1_humongous_allocation);
1045   }
1046 
1047   // We will loop until a) we manage to successfully perform the
1048   // allocation or b) we successfully schedule a collection which
1049   // fails to perform the allocation. b) is the only case when we'll
1050   // return NULL.
1051   HeapWord* result = NULL;
1052   for (int try_count = 1; /* we'll return */; try_count += 1) {
1053     bool should_try_gc;
1054     unsigned int gc_count_before;
1055 
1056     {
1057       MutexLockerEx x(Heap_lock);
1058 
1059       // Given that humongous objects are not allocated in young
1060       // regions, we'll first try to do the allocation without doing a
1061       // collection hoping that there's enough space in the heap.
1062       result = humongous_obj_allocate(word_size);
1063       if (result != NULL) {
1064         return result;
1065       }
1066 
1067       if (GC_locker::is_active_and_needs_gc()) {
1068         should_try_gc = false;
1069       } else {
1070          // The GCLocker may not be active but the GCLocker initiated
1071         // GC may not yet have been performed (GCLocker::needs_gc()
1072         // returns true). In this case we do not try this GC and
1073         // wait until the GCLocker initiated GC is performed, and
1074         // then retry the allocation.
1075         if (GC_locker::needs_gc()) {
1076           should_try_gc = false;
1077         } else {
1078           // Read the GC count while still holding the Heap_lock.
1079           gc_count_before = total_collections();
1080           should_try_gc = true;
1081         }
1082       }
1083     }
1084 
1085     if (should_try_gc) {
1086       // If we failed to allocate the humongous object, we should try to
1087       // do a collection pause (if we're allowed) in case it reclaims
1088       // enough space for the allocation to succeed after the pause.
1089 
1090       bool succeeded;
1091       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1092           GCCause::_g1_humongous_allocation);
1093       if (result != NULL) {
1094         assert(succeeded, "only way to get back a non-NULL result");
1095         return result;
1096       }
1097 
1098       if (succeeded) {
1099         // If we get here we successfully scheduled a collection which
1100         // failed to allocate. No point in trying to allocate
1101         // further. We'll just return NULL.
1102         MutexLockerEx x(Heap_lock);
1103         *gc_count_before_ret = total_collections();
1104         return NULL;
1105       }
1106     } else {
1107       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1108         MutexLockerEx x(Heap_lock);
1109         *gc_count_before_ret = total_collections();
1110         return NULL;
1111       }
1112       // The GCLocker is either active or the GCLocker initiated
1113       // GC has not yet been performed. Stall until it is and
1114       // then retry the allocation.
1115       GC_locker::stall_until_clear();
1116       (*gclocker_retry_count_ret) += 1;
1117     }
1118 
1119     // We can reach here if we were unsuccessful in scheduling a
1120     // collection (because another thread beat us to it) or if we were
1121     // stalled due to the GC locker. In either can we should retry the
1122     // allocation attempt in case another thread successfully
1123     // performed a collection and reclaimed enough space.  Give a
1124     // warning if we seem to be looping forever.
1125 
1126     if ((QueuedAllocationWarningCount > 0) &&
1127         (try_count % QueuedAllocationWarningCount == 0)) {
1128       warning("G1CollectedHeap::attempt_allocation_humongous() "
1129               "retries %d times", try_count);
1130     }
1131   }
1132 
1133   ShouldNotReachHere();
1134   return NULL;
1135 }
1136 
1137 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1138                                        bool expect_null_mutator_alloc_region) {
1139   assert_at_safepoint(true /* should_be_vm_thread */);
1140   assert(_mutator_alloc_region.get() == NULL ||
1141                                              !expect_null_mutator_alloc_region,
1142          "the current alloc region was unexpectedly found to be non-NULL");
1143 
1144   if (!isHumongous(word_size)) {
1145     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1146                                                       false /* bot_updates */);
1147   } else {
1148     HeapWord* result = humongous_obj_allocate(word_size);
1149     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1150       g1_policy()->set_initiate_conc_mark_if_possible();
1151     }
1152     return result;
1153   }
1154 
1155   ShouldNotReachHere();
1156 }
1157 
1158 class PostMCRemSetClearClosure: public HeapRegionClosure {
1159   G1CollectedHeap* _g1h;
1160   ModRefBarrierSet* _mr_bs;
1161 public:
1162   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1163     _g1h(g1h), _mr_bs(mr_bs) {}
1164 
1165   bool doHeapRegion(HeapRegion* r) {
1166     HeapRegionRemSet* hrrs = r->rem_set();
1167 
1168     if (r->continuesHumongous()) {
1169       // We'll assert that the strong code root list and RSet is empty
1170       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1171       assert(hrrs->occupied() == 0, "RSet should be empty");
1172       return false;
1173     }
1174 
1175     _g1h->reset_gc_time_stamps(r);
1176     hrrs->clear();
1177     // You might think here that we could clear just the cards
1178     // corresponding to the used region.  But no: if we leave a dirty card
1179     // in a region we might allocate into, then it would prevent that card
1180     // from being enqueued, and cause it to be missed.
1181     // Re: the performance cost: we shouldn't be doing full GC anyway!
1182     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1183 
1184     return false;
1185   }
1186 };
1187 
1188 void G1CollectedHeap::clear_rsets_post_compaction() {
1189   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1190   heap_region_iterate(&rs_clear);
1191 }
1192 
1193 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1194   G1CollectedHeap*   _g1h;
1195   UpdateRSOopClosure _cl;
1196   int                _worker_i;
1197 public:
1198   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1199     _cl(g1->g1_rem_set(), worker_i),
1200     _worker_i(worker_i),
1201     _g1h(g1)
1202   { }
1203 
1204   bool doHeapRegion(HeapRegion* r) {
1205     if (!r->continuesHumongous()) {
1206       _cl.set_from(r);
1207       r->oop_iterate(&_cl);
1208     }
1209     return false;
1210   }
1211 };
1212 
1213 class ParRebuildRSTask: public AbstractGangTask {
1214   G1CollectedHeap* _g1;
1215 public:
1216   ParRebuildRSTask(G1CollectedHeap* g1)
1217     : AbstractGangTask("ParRebuildRSTask"),
1218       _g1(g1)
1219   { }
1220 
1221   void work(uint worker_id) {
1222     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1223     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1224                                           _g1->workers()->active_workers(),
1225                                          HeapRegion::RebuildRSClaimValue);
1226   }
1227 };
1228 
1229 class PostCompactionPrinterClosure: public HeapRegionClosure {
1230 private:
1231   G1HRPrinter* _hr_printer;
1232 public:
1233   bool doHeapRegion(HeapRegion* hr) {
1234     assert(!hr->is_young(), "not expecting to find young regions");
1235     // We only generate output for non-empty regions.
1236     if (!hr->is_empty()) {
1237       if (!hr->isHumongous()) {
1238         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1239       } else if (hr->startsHumongous()) {
1240         if (hr->region_num() == 1) {
1241           // single humongous region
1242           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1243         } else {
1244           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1245         }
1246       } else {
1247         assert(hr->continuesHumongous(), "only way to get here");
1248         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1249       }
1250     }
1251     return false;
1252   }
1253 
1254   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1255     : _hr_printer(hr_printer) { }
1256 };
1257 
1258 void G1CollectedHeap::print_hrs_post_compaction() {
1259   PostCompactionPrinterClosure cl(hr_printer());
1260   heap_region_iterate(&cl);
1261 }
1262 
1263 bool G1CollectedHeap::do_collection(bool explicit_gc,
1264                                     bool clear_all_soft_refs,
1265                                     size_t word_size) {
1266   assert_at_safepoint(true /* should_be_vm_thread */);
1267 
1268   if (GC_locker::check_active_before_gc()) {
1269     return false;
1270   }
1271 
1272   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1273   gc_timer->register_gc_start();
1274 
1275   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1276   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1277 
1278   SvcGCMarker sgcm(SvcGCMarker::FULL);
1279   ResourceMark rm;
1280 
1281   print_heap_before_gc();
1282   trace_heap_before_gc(gc_tracer);
1283 
1284   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1285 
1286   verify_region_sets_optional();
1287 
1288   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1289                            collector_policy()->should_clear_all_soft_refs();
1290 
1291   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1292 
1293   {
1294     IsGCActiveMark x;
1295 
1296     // Timing
1297     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1298     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1299     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1300 
1301     {
1302       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1303       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1304       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1305 
1306       double start = os::elapsedTime();
1307       g1_policy()->record_full_collection_start();
1308 
1309       // Note: When we have a more flexible GC logging framework that
1310       // allows us to add optional attributes to a GC log record we
1311       // could consider timing and reporting how long we wait in the
1312       // following two methods.
1313       wait_while_free_regions_coming();
1314       // If we start the compaction before the CM threads finish
1315       // scanning the root regions we might trip them over as we'll
1316       // be moving objects / updating references. So let's wait until
1317       // they are done. By telling them to abort, they should complete
1318       // early.
1319       _cm->root_regions()->abort();
1320       _cm->root_regions()->wait_until_scan_finished();
1321       append_secondary_free_list_if_not_empty_with_lock();
1322 
1323       gc_prologue(true);
1324       increment_total_collections(true /* full gc */);
1325       increment_old_marking_cycles_started();
1326 
1327       assert(used() == recalculate_used(), "Should be equal");
1328 
1329       verify_before_gc();
1330 
1331       check_bitmaps("Full GC Start");
1332       pre_full_gc_dump(gc_timer);
1333 
1334       COMPILER2_PRESENT(DerivedPointerTable::clear());
1335 
1336       // Disable discovery and empty the discovered lists
1337       // for the CM ref processor.
1338       ref_processor_cm()->disable_discovery();
1339       ref_processor_cm()->abandon_partial_discovery();
1340       ref_processor_cm()->verify_no_references_recorded();
1341 
1342       // Abandon current iterations of concurrent marking and concurrent
1343       // refinement, if any are in progress. We have to do this before
1344       // wait_until_scan_finished() below.
1345       concurrent_mark()->abort();
1346 
1347       // Make sure we'll choose a new allocation region afterwards.
1348       release_mutator_alloc_region();
1349       abandon_gc_alloc_regions();
1350       g1_rem_set()->cleanupHRRS();
1351 
1352       // We should call this after we retire any currently active alloc
1353       // regions so that all the ALLOC / RETIRE events are generated
1354       // before the start GC event.
1355       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1356 
1357       // We may have added regions to the current incremental collection
1358       // set between the last GC or pause and now. We need to clear the
1359       // incremental collection set and then start rebuilding it afresh
1360       // after this full GC.
1361       abandon_collection_set(g1_policy()->inc_cset_head());
1362       g1_policy()->clear_incremental_cset();
1363       g1_policy()->stop_incremental_cset_building();
1364 
1365       tear_down_region_sets(false /* free_list_only */);
1366       g1_policy()->set_gcs_are_young(true);
1367 
1368       // See the comments in g1CollectedHeap.hpp and
1369       // G1CollectedHeap::ref_processing_init() about
1370       // how reference processing currently works in G1.
1371 
1372       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1373       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1374 
1375       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1376       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1377 
1378       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1379       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1380 
1381       // Do collection work
1382       {
1383         HandleMark hm;  // Discard invalid handles created during gc
1384         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1385       }
1386 
1387       assert(free_regions() == 0, "we should not have added any free regions");
1388       rebuild_region_sets(false /* free_list_only */);
1389 
1390       // Enqueue any discovered reference objects that have
1391       // not been removed from the discovered lists.
1392       ref_processor_stw()->enqueue_discovered_references();
1393 
1394       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1395 
1396       MemoryService::track_memory_usage();
1397 
1398       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1399       ref_processor_stw()->verify_no_references_recorded();
1400 
1401       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1402       ClassLoaderDataGraph::purge();
1403       MetaspaceAux::verify_metrics();
1404 
1405       // Note: since we've just done a full GC, concurrent
1406       // marking is no longer active. Therefore we need not
1407       // re-enable reference discovery for the CM ref processor.
1408       // That will be done at the start of the next marking cycle.
1409       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1410       ref_processor_cm()->verify_no_references_recorded();
1411 
1412       reset_gc_time_stamp();
1413       // Since everything potentially moved, we will clear all remembered
1414       // sets, and clear all cards.  Later we will rebuild remembered
1415       // sets. We will also reset the GC time stamps of the regions.
1416       clear_rsets_post_compaction();
1417       check_gc_time_stamps();
1418 
1419       // Resize the heap if necessary.
1420       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1421 
1422       if (_hr_printer.is_active()) {
1423         // We should do this after we potentially resize the heap so
1424         // that all the COMMIT / UNCOMMIT events are generated before
1425         // the end GC event.
1426 
1427         print_hrs_post_compaction();
1428         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1429       }
1430 
1431       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1432       if (hot_card_cache->use_cache()) {
1433         hot_card_cache->reset_card_counts();
1434         hot_card_cache->reset_hot_cache();
1435       }
1436 
1437       // Rebuild remembered sets of all regions.
1438       if (G1CollectedHeap::use_parallel_gc_threads()) {
1439         uint n_workers =
1440           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1441                                                   workers()->active_workers(),
1442                                                   Threads::number_of_non_daemon_threads());
1443         assert(UseDynamicNumberOfGCThreads ||
1444                n_workers == workers()->total_workers(),
1445                "If not dynamic should be using all the  workers");
1446         workers()->set_active_workers(n_workers);
1447         // Set parallel threads in the heap (_n_par_threads) only
1448         // before a parallel phase and always reset it to 0 after
1449         // the phase so that the number of parallel threads does
1450         // no get carried forward to a serial phase where there
1451         // may be code that is "possibly_parallel".
1452         set_par_threads(n_workers);
1453 
1454         ParRebuildRSTask rebuild_rs_task(this);
1455         assert(check_heap_region_claim_values(
1456                HeapRegion::InitialClaimValue), "sanity check");
1457         assert(UseDynamicNumberOfGCThreads ||
1458                workers()->active_workers() == workers()->total_workers(),
1459                "Unless dynamic should use total workers");
1460         // Use the most recent number of  active workers
1461         assert(workers()->active_workers() > 0,
1462                "Active workers not properly set");
1463         set_par_threads(workers()->active_workers());
1464         workers()->run_task(&rebuild_rs_task);
1465         set_par_threads(0);
1466         assert(check_heap_region_claim_values(
1467                HeapRegion::RebuildRSClaimValue), "sanity check");
1468         reset_heap_region_claim_values();
1469       } else {
1470         RebuildRSOutOfRegionClosure rebuild_rs(this);
1471         heap_region_iterate(&rebuild_rs);
1472       }
1473 
1474       // Rebuild the strong code root lists for each region
1475       rebuild_strong_code_roots();
1476 
1477       if (true) { // FIXME
1478         MetaspaceGC::compute_new_size();
1479       }
1480 
1481 #ifdef TRACESPINNING
1482       ParallelTaskTerminator::print_termination_counts();
1483 #endif
1484 
1485       // Discard all rset updates
1486       JavaThread::dirty_card_queue_set().abandon_logs();
1487       assert(!G1DeferredRSUpdate
1488              || (G1DeferredRSUpdate &&
1489                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1490 
1491       _young_list->reset_sampled_info();
1492       // At this point there should be no regions in the
1493       // entire heap tagged as young.
1494       assert(check_young_list_empty(true /* check_heap */),
1495              "young list should be empty at this point");
1496 
1497       // Update the number of full collections that have been completed.
1498       increment_old_marking_cycles_completed(false /* concurrent */);
1499 
1500       _hrs.verify_optional();
1501       verify_region_sets_optional();
1502 
1503       verify_after_gc();
1504 
1505       // Clear the previous marking bitmap, if needed for bitmap verification.
1506       // Note we cannot do this when we clear the next marking bitmap in
1507       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1508       // objects marked during a full GC against the previous bitmap.
1509       // But we need to clear it before calling check_bitmaps below since
1510       // the full GC has compacted objects and updated TAMS but not updated
1511       // the prev bitmap.
1512       if (G1VerifyBitmaps) {
1513         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1514       }
1515       check_bitmaps("Full GC End");
1516 
1517       // Start a new incremental collection set for the next pause
1518       assert(g1_policy()->collection_set() == NULL, "must be");
1519       g1_policy()->start_incremental_cset_building();
1520 
1521       clear_cset_fast_test();
1522 
1523       init_mutator_alloc_region();
1524 
1525       double end = os::elapsedTime();
1526       g1_policy()->record_full_collection_end();
1527 
1528       if (G1Log::fine()) {
1529         g1_policy()->print_heap_transition();
1530       }
1531 
1532       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1533       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1534       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1535       // before any GC notifications are raised.
1536       g1mm()->update_sizes();
1537 
1538       gc_epilogue(true);
1539     }
1540 
1541     if (G1Log::finer()) {
1542       g1_policy()->print_detailed_heap_transition(true /* full */);
1543     }
1544 
1545     print_heap_after_gc();
1546     trace_heap_after_gc(gc_tracer);
1547 
1548     post_full_gc_dump(gc_timer);
1549 
1550     gc_timer->register_gc_end();
1551     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1552   }
1553 
1554   return true;
1555 }
1556 
1557 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1558   // do_collection() will return whether it succeeded in performing
1559   // the GC. Currently, there is no facility on the
1560   // do_full_collection() API to notify the caller than the collection
1561   // did not succeed (e.g., because it was locked out by the GC
1562   // locker). So, right now, we'll ignore the return value.
1563   bool dummy = do_collection(true,                /* explicit_gc */
1564                              clear_all_soft_refs,
1565                              0                    /* word_size */);
1566 }
1567 
1568 // This code is mostly copied from TenuredGeneration.
1569 void
1570 G1CollectedHeap::
1571 resize_if_necessary_after_full_collection(size_t word_size) {
1572   // Include the current allocation, if any, and bytes that will be
1573   // pre-allocated to support collections, as "used".
1574   const size_t used_after_gc = used();
1575   const size_t capacity_after_gc = capacity();
1576   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1577 
1578   // This is enforced in arguments.cpp.
1579   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1580          "otherwise the code below doesn't make sense");
1581 
1582   // We don't have floating point command-line arguments
1583   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1584   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1585   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1586   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1587 
1588   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1589   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1590 
1591   // We have to be careful here as these two calculations can overflow
1592   // 32-bit size_t's.
1593   double used_after_gc_d = (double) used_after_gc;
1594   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1595   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1596 
1597   // Let's make sure that they are both under the max heap size, which
1598   // by default will make them fit into a size_t.
1599   double desired_capacity_upper_bound = (double) max_heap_size;
1600   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1601                                     desired_capacity_upper_bound);
1602   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1603                                     desired_capacity_upper_bound);
1604 
1605   // We can now safely turn them into size_t's.
1606   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1607   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1608 
1609   // This assert only makes sense here, before we adjust them
1610   // with respect to the min and max heap size.
1611   assert(minimum_desired_capacity <= maximum_desired_capacity,
1612          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1613                  "maximum_desired_capacity = "SIZE_FORMAT,
1614                  minimum_desired_capacity, maximum_desired_capacity));
1615 
1616   // Should not be greater than the heap max size. No need to adjust
1617   // it with respect to the heap min size as it's a lower bound (i.e.,
1618   // we'll try to make the capacity larger than it, not smaller).
1619   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1620   // Should not be less than the heap min size. No need to adjust it
1621   // with respect to the heap max size as it's an upper bound (i.e.,
1622   // we'll try to make the capacity smaller than it, not greater).
1623   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1624 
1625   if (capacity_after_gc < minimum_desired_capacity) {
1626     // Don't expand unless it's significant
1627     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1628     ergo_verbose4(ErgoHeapSizing,
1629                   "attempt heap expansion",
1630                   ergo_format_reason("capacity lower than "
1631                                      "min desired capacity after Full GC")
1632                   ergo_format_byte("capacity")
1633                   ergo_format_byte("occupancy")
1634                   ergo_format_byte_perc("min desired capacity"),
1635                   capacity_after_gc, used_after_gc,
1636                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1637     expand(expand_bytes);
1638 
1639     // No expansion, now see if we want to shrink
1640   } else if (capacity_after_gc > maximum_desired_capacity) {
1641     // Capacity too large, compute shrinking size
1642     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1643     ergo_verbose4(ErgoHeapSizing,
1644                   "attempt heap shrinking",
1645                   ergo_format_reason("capacity higher than "
1646                                      "max desired capacity after Full GC")
1647                   ergo_format_byte("capacity")
1648                   ergo_format_byte("occupancy")
1649                   ergo_format_byte_perc("max desired capacity"),
1650                   capacity_after_gc, used_after_gc,
1651                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1652     shrink(shrink_bytes);
1653   }
1654 }
1655 
1656 
1657 HeapWord*
1658 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1659                                            bool* succeeded) {
1660   assert_at_safepoint(true /* should_be_vm_thread */);
1661 
1662   *succeeded = true;
1663   // Let's attempt the allocation first.
1664   HeapWord* result =
1665     attempt_allocation_at_safepoint(word_size,
1666                                  false /* expect_null_mutator_alloc_region */);
1667   if (result != NULL) {
1668     assert(*succeeded, "sanity");
1669     return result;
1670   }
1671 
1672   // In a G1 heap, we're supposed to keep allocation from failing by
1673   // incremental pauses.  Therefore, at least for now, we'll favor
1674   // expansion over collection.  (This might change in the future if we can
1675   // do something smarter than full collection to satisfy a failed alloc.)
1676   result = expand_and_allocate(word_size);
1677   if (result != NULL) {
1678     assert(*succeeded, "sanity");
1679     return result;
1680   }
1681 
1682   // Expansion didn't work, we'll try to do a Full GC.
1683   bool gc_succeeded = do_collection(false, /* explicit_gc */
1684                                     false, /* clear_all_soft_refs */
1685                                     word_size);
1686   if (!gc_succeeded) {
1687     *succeeded = false;
1688     return NULL;
1689   }
1690 
1691   // Retry the allocation
1692   result = attempt_allocation_at_safepoint(word_size,
1693                                   true /* expect_null_mutator_alloc_region */);
1694   if (result != NULL) {
1695     assert(*succeeded, "sanity");
1696     return result;
1697   }
1698 
1699   // Then, try a Full GC that will collect all soft references.
1700   gc_succeeded = do_collection(false, /* explicit_gc */
1701                                true,  /* clear_all_soft_refs */
1702                                word_size);
1703   if (!gc_succeeded) {
1704     *succeeded = false;
1705     return NULL;
1706   }
1707 
1708   // Retry the allocation once more
1709   result = attempt_allocation_at_safepoint(word_size,
1710                                   true /* expect_null_mutator_alloc_region */);
1711   if (result != NULL) {
1712     assert(*succeeded, "sanity");
1713     return result;
1714   }
1715 
1716   assert(!collector_policy()->should_clear_all_soft_refs(),
1717          "Flag should have been handled and cleared prior to this point");
1718 
1719   // What else?  We might try synchronous finalization later.  If the total
1720   // space available is large enough for the allocation, then a more
1721   // complete compaction phase than we've tried so far might be
1722   // appropriate.
1723   assert(*succeeded, "sanity");
1724   return NULL;
1725 }
1726 
1727 // Attempting to expand the heap sufficiently
1728 // to support an allocation of the given "word_size".  If
1729 // successful, perform the allocation and return the address of the
1730 // allocated block, or else "NULL".
1731 
1732 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1733   assert_at_safepoint(true /* should_be_vm_thread */);
1734 
1735   verify_region_sets_optional();
1736 
1737   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1738   ergo_verbose1(ErgoHeapSizing,
1739                 "attempt heap expansion",
1740                 ergo_format_reason("allocation request failed")
1741                 ergo_format_byte("allocation request"),
1742                 word_size * HeapWordSize);
1743   if (expand(expand_bytes)) {
1744     _hrs.verify_optional();
1745     verify_region_sets_optional();
1746     return attempt_allocation_at_safepoint(word_size,
1747                                  false /* expect_null_mutator_alloc_region */);
1748   }
1749   return NULL;
1750 }
1751 
1752 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1753                                              HeapWord* new_end) {
1754   assert(old_end != new_end, "don't call this otherwise");
1755   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1756 
1757   // Update the committed mem region.
1758   _g1_committed.set_end(new_end);
1759   // Tell the card table about the update.
1760   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1761   // Tell the BOT about the update.
1762   _bot_shared->resize(_g1_committed.word_size());
1763   // Tell the hot card cache about the update
1764   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1765 }
1766 
1767 bool G1CollectedHeap::expand(size_t expand_bytes) {
1768   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1769   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1770                                        HeapRegion::GrainBytes);
1771   ergo_verbose2(ErgoHeapSizing,
1772                 "expand the heap",
1773                 ergo_format_byte("requested expansion amount")
1774                 ergo_format_byte("attempted expansion amount"),
1775                 expand_bytes, aligned_expand_bytes);
1776 
1777   if (_g1_storage.uncommitted_size() == 0) {
1778     ergo_verbose0(ErgoHeapSizing,
1779                       "did not expand the heap",
1780                       ergo_format_reason("heap already fully expanded"));
1781     return false;
1782   }
1783 
1784   // First commit the memory.
1785   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1786   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1787   if (successful) {
1788     // Then propagate this update to the necessary data structures.
1789     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1790     update_committed_space(old_end, new_end);
1791 
1792     FreeRegionList expansion_list("Local Expansion List");
1793     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1794     assert(mr.start() == old_end, "post-condition");
1795     // mr might be a smaller region than what was requested if
1796     // expand_by() was unable to allocate the HeapRegion instances
1797     assert(mr.end() <= new_end, "post-condition");
1798 
1799     size_t actual_expand_bytes = mr.byte_size();
1800     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1801     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1802            "post-condition");
1803     if (actual_expand_bytes < aligned_expand_bytes) {
1804       // We could not expand _hrs to the desired size. In this case we
1805       // need to shrink the committed space accordingly.
1806       assert(mr.end() < new_end, "invariant");
1807 
1808       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1809       // First uncommit the memory.
1810       _g1_storage.shrink_by(diff_bytes);
1811       // Then propagate this update to the necessary data structures.
1812       update_committed_space(new_end, mr.end());
1813     }
1814     _free_list.add_as_tail(&expansion_list);
1815 
1816     if (_hr_printer.is_active()) {
1817       HeapWord* curr = mr.start();
1818       while (curr < mr.end()) {
1819         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1820         _hr_printer.commit(curr, curr_end);
1821         curr = curr_end;
1822       }
1823       assert(curr == mr.end(), "post-condition");
1824     }
1825     g1_policy()->record_new_heap_size(n_regions());
1826   } else {
1827     ergo_verbose0(ErgoHeapSizing,
1828                   "did not expand the heap",
1829                   ergo_format_reason("heap expansion operation failed"));
1830     // The expansion of the virtual storage space was unsuccessful.
1831     // Let's see if it was because we ran out of swap.
1832     if (G1ExitOnExpansionFailure &&
1833         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1834       // We had head room...
1835       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1836     }
1837   }
1838   return successful;
1839 }
1840 
1841 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1842   size_t aligned_shrink_bytes =
1843     ReservedSpace::page_align_size_down(shrink_bytes);
1844   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1845                                          HeapRegion::GrainBytes);
1846   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1847 
1848   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1849   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1850   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1851 
1852   ergo_verbose3(ErgoHeapSizing,
1853                 "shrink the heap",
1854                 ergo_format_byte("requested shrinking amount")
1855                 ergo_format_byte("aligned shrinking amount")
1856                 ergo_format_byte("attempted shrinking amount"),
1857                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1858   if (num_regions_removed > 0) {
1859     _g1_storage.shrink_by(shrunk_bytes);
1860     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1861 
1862     if (_hr_printer.is_active()) {
1863       HeapWord* curr = old_end;
1864       while (curr > new_end) {
1865         HeapWord* curr_end = curr;
1866         curr -= HeapRegion::GrainWords;
1867         _hr_printer.uncommit(curr, curr_end);
1868       }
1869     }
1870 
1871     _expansion_regions += num_regions_removed;
1872     update_committed_space(old_end, new_end);
1873     HeapRegionRemSet::shrink_heap(n_regions());
1874     g1_policy()->record_new_heap_size(n_regions());
1875   } else {
1876     ergo_verbose0(ErgoHeapSizing,
1877                   "did not shrink the heap",
1878                   ergo_format_reason("heap shrinking operation failed"));
1879   }
1880 }
1881 
1882 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1883   verify_region_sets_optional();
1884 
1885   // We should only reach here at the end of a Full GC which means we
1886   // should not not be holding to any GC alloc regions. The method
1887   // below will make sure of that and do any remaining clean up.
1888   abandon_gc_alloc_regions();
1889 
1890   // Instead of tearing down / rebuilding the free lists here, we
1891   // could instead use the remove_all_pending() method on free_list to
1892   // remove only the ones that we need to remove.
1893   tear_down_region_sets(true /* free_list_only */);
1894   shrink_helper(shrink_bytes);
1895   rebuild_region_sets(true /* free_list_only */);
1896 
1897   _hrs.verify_optional();
1898   verify_region_sets_optional();
1899 }
1900 
1901 // Public methods.
1902 
1903 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1904 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1905 #endif // _MSC_VER
1906 
1907 
1908 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1909   SharedHeap(policy_),
1910   _g1_policy(policy_),
1911   _dirty_card_queue_set(false),
1912   _into_cset_dirty_card_queue_set(false),
1913   _is_alive_closure_cm(this),
1914   _is_alive_closure_stw(this),
1915   _ref_processor_cm(NULL),
1916   _ref_processor_stw(NULL),
1917   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1918   _bot_shared(NULL),
1919   _evac_failure_scan_stack(NULL),
1920   _mark_in_progress(false),
1921   _cg1r(NULL), _summary_bytes_used(0),
1922   _g1mm(NULL),
1923   _refine_cte_cl(NULL),
1924   _full_collection(false),
1925   _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
1926   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1927   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1928   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1929   _free_regions_coming(false),
1930   _young_list(new YoungList(this)),
1931   _gc_time_stamp(0),
1932   _retained_old_gc_alloc_region(NULL),
1933   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1934   _old_plab_stats(OldPLABSize, PLABWeight),
1935   _expand_heap_after_alloc_failure(true),
1936   _surviving_young_words(NULL),
1937   _old_marking_cycles_started(0),
1938   _old_marking_cycles_completed(0),
1939   _concurrent_cycle_started(false),
1940   _in_cset_fast_test(),
1941   _dirty_cards_region_list(NULL),
1942   _worker_cset_start_region(NULL),
1943   _worker_cset_start_region_time_stamp(NULL),
1944   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1945   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1946   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1947   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1948 
1949   _g1h = this;
1950   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1951     vm_exit_during_initialization("Failed necessary allocation.");
1952   }
1953 
1954   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1955 
1956   int n_queues = MAX2((int)ParallelGCThreads, 1);
1957   _task_queues = new RefToScanQueueSet(n_queues);
1958 
1959   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1960   assert(n_rem_sets > 0, "Invariant.");
1961 
1962   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1963   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1964   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1965 
1966   for (int i = 0; i < n_queues; i++) {
1967     RefToScanQueue* q = new RefToScanQueue();
1968     q->initialize();
1969     _task_queues->register_queue(i, q);
1970     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1971   }
1972   clear_cset_start_regions();
1973 
1974   // Initialize the G1EvacuationFailureALot counters and flags.
1975   NOT_PRODUCT(reset_evacuation_should_fail();)
1976 
1977   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1978 }
1979 
1980 jint G1CollectedHeap::initialize() {
1981   CollectedHeap::pre_initialize();
1982   os::enable_vtime();
1983 
1984   G1Log::init();
1985 
1986   // Necessary to satisfy locking discipline assertions.
1987 
1988   MutexLocker x(Heap_lock);
1989 
1990   // We have to initialize the printer before committing the heap, as
1991   // it will be used then.
1992   _hr_printer.set_active(G1PrintHeapRegions);
1993 
1994   // While there are no constraints in the GC code that HeapWordSize
1995   // be any particular value, there are multiple other areas in the
1996   // system which believe this to be true (e.g. oop->object_size in some
1997   // cases incorrectly returns the size in wordSize units rather than
1998   // HeapWordSize).
1999   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2000 
2001   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2002   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2003   size_t heap_alignment = collector_policy()->heap_alignment();
2004 
2005   // Ensure that the sizes are properly aligned.
2006   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2007   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2008   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2009 
2010   _refine_cte_cl = new RefineCardTableEntryClosure();
2011 
2012   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2013 
2014   // Reserve the maximum.
2015 
2016   // When compressed oops are enabled, the preferred heap base
2017   // is calculated by subtracting the requested size from the
2018   // 32Gb boundary and using the result as the base address for
2019   // heap reservation. If the requested size is not aligned to
2020   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2021   // into the ReservedHeapSpace constructor) then the actual
2022   // base of the reserved heap may end up differing from the
2023   // address that was requested (i.e. the preferred heap base).
2024   // If this happens then we could end up using a non-optimal
2025   // compressed oops mode.
2026 
2027   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2028                                                  heap_alignment);
2029 
2030   // It is important to do this in a way such that concurrent readers can't
2031   // temporarily think something is in the heap.  (I've actually seen this
2032   // happen in asserts: DLD.)
2033   _reserved.set_word_size(0);
2034   _reserved.set_start((HeapWord*)heap_rs.base());
2035   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2036 
2037   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2038 
2039   // Create the gen rem set (and barrier set) for the entire reserved region.
2040   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2041   set_barrier_set(rem_set()->bs());
2042   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
2043     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2044     return JNI_ENOMEM;
2045   }
2046 
2047   // Also create a G1 rem set.
2048   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2049 
2050   // Carve out the G1 part of the heap.
2051 
2052   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2053   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2054                            g1_rs.size()/HeapWordSize);
2055 
2056   _g1_storage.initialize(g1_rs, 0);
2057   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2058   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2059                   (HeapWord*) _g1_reserved.end());
2060   assert(_hrs.max_length() == _expansion_regions,
2061          err_msg("max length: %u expansion regions: %u",
2062                  _hrs.max_length(), _expansion_regions));
2063 
2064   // Do later initialization work for concurrent refinement.
2065   _cg1r->init();
2066 
2067   // 6843694 - ensure that the maximum region index can fit
2068   // in the remembered set structures.
2069   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2070   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2071 
2072   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2073   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2074   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2075             "too many cards per region");
2076 
2077   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2078 
2079   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2080                                              heap_word_size(init_byte_size));
2081 
2082   _g1h = this;
2083 
2084   _in_cset_fast_test.initialize(_g1_reserved.start(), _g1_reserved.end(), HeapRegion::GrainBytes);
2085 
2086   // Create the ConcurrentMark data structure and thread.
2087   // (Must do this late, so that "max_regions" is defined.)
2088   _cm = new ConcurrentMark(this, heap_rs);
2089   if (_cm == NULL || !_cm->completed_initialization()) {
2090     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2091     return JNI_ENOMEM;
2092   }
2093   _cmThread = _cm->cmThread();
2094 
2095   // Initialize the from_card cache structure of HeapRegionRemSet.
2096   HeapRegionRemSet::init_heap(max_regions());
2097 
2098   // Now expand into the initial heap size.
2099   if (!expand(init_byte_size)) {
2100     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2101     return JNI_ENOMEM;
2102   }
2103 
2104   // Perform any initialization actions delegated to the policy.
2105   g1_policy()->init();
2106 
2107   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2108                                                SATB_Q_FL_lock,
2109                                                G1SATBProcessCompletedThreshold,
2110                                                Shared_SATB_Q_lock);
2111 
2112   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2113                                                 DirtyCardQ_CBL_mon,
2114                                                 DirtyCardQ_FL_lock,
2115                                                 concurrent_g1_refine()->yellow_zone(),
2116                                                 concurrent_g1_refine()->red_zone(),
2117                                                 Shared_DirtyCardQ_lock);
2118 
2119   if (G1DeferredRSUpdate) {
2120     dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2121                                       DirtyCardQ_CBL_mon,
2122                                       DirtyCardQ_FL_lock,
2123                                       -1, // never trigger processing
2124                                       -1, // no limit on length
2125                                       Shared_DirtyCardQ_lock,
2126                                       &JavaThread::dirty_card_queue_set());
2127   }
2128 
2129   // Initialize the card queue set used to hold cards containing
2130   // references into the collection set.
2131   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2132                                              DirtyCardQ_CBL_mon,
2133                                              DirtyCardQ_FL_lock,
2134                                              -1, // never trigger processing
2135                                              -1, // no limit on length
2136                                              Shared_DirtyCardQ_lock,
2137                                              &JavaThread::dirty_card_queue_set());
2138 
2139   // In case we're keeping closure specialization stats, initialize those
2140   // counts and that mechanism.
2141   SpecializationStats::clear();
2142 
2143   // Here we allocate the dummy full region that is required by the
2144   // G1AllocRegion class. If we don't pass an address in the reserved
2145   // space here, lots of asserts fire.
2146 
2147   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2148                                              _g1_reserved.start());
2149   // We'll re-use the same region whether the alloc region will
2150   // require BOT updates or not and, if it doesn't, then a non-young
2151   // region will complain that it cannot support allocations without
2152   // BOT updates. So we'll tag the dummy region as young to avoid that.
2153   dummy_region->set_young();
2154   // Make sure it's full.
2155   dummy_region->set_top(dummy_region->end());
2156   G1AllocRegion::setup(this, dummy_region);
2157 
2158   init_mutator_alloc_region();
2159 
2160   // Do create of the monitoring and management support so that
2161   // values in the heap have been properly initialized.
2162   _g1mm = new G1MonitoringSupport(this);
2163 
2164   G1StringDedup::initialize();
2165 
2166   return JNI_OK;
2167 }
2168 
2169 void G1CollectedHeap::stop() {
2170   // Stop all concurrent threads. We do this to make sure these threads
2171   // do not continue to execute and access resources (e.g. gclog_or_tty)
2172   // that are destroyed during shutdown.
2173   _cg1r->stop();
2174   _cmThread->stop();
2175   if (G1StringDedup::is_enabled()) {
2176     G1StringDedup::stop();
2177   }
2178 }
2179 
2180 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2181   return HeapRegion::max_region_size();
2182 }
2183 
2184 void G1CollectedHeap::ref_processing_init() {
2185   // Reference processing in G1 currently works as follows:
2186   //
2187   // * There are two reference processor instances. One is
2188   //   used to record and process discovered references
2189   //   during concurrent marking; the other is used to
2190   //   record and process references during STW pauses
2191   //   (both full and incremental).
2192   // * Both ref processors need to 'span' the entire heap as
2193   //   the regions in the collection set may be dotted around.
2194   //
2195   // * For the concurrent marking ref processor:
2196   //   * Reference discovery is enabled at initial marking.
2197   //   * Reference discovery is disabled and the discovered
2198   //     references processed etc during remarking.
2199   //   * Reference discovery is MT (see below).
2200   //   * Reference discovery requires a barrier (see below).
2201   //   * Reference processing may or may not be MT
2202   //     (depending on the value of ParallelRefProcEnabled
2203   //     and ParallelGCThreads).
2204   //   * A full GC disables reference discovery by the CM
2205   //     ref processor and abandons any entries on it's
2206   //     discovered lists.
2207   //
2208   // * For the STW processor:
2209   //   * Non MT discovery is enabled at the start of a full GC.
2210   //   * Processing and enqueueing during a full GC is non-MT.
2211   //   * During a full GC, references are processed after marking.
2212   //
2213   //   * Discovery (may or may not be MT) is enabled at the start
2214   //     of an incremental evacuation pause.
2215   //   * References are processed near the end of a STW evacuation pause.
2216   //   * For both types of GC:
2217   //     * Discovery is atomic - i.e. not concurrent.
2218   //     * Reference discovery will not need a barrier.
2219 
2220   SharedHeap::ref_processing_init();
2221   MemRegion mr = reserved_region();
2222 
2223   // Concurrent Mark ref processor
2224   _ref_processor_cm =
2225     new ReferenceProcessor(mr,    // span
2226                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2227                                 // mt processing
2228                            (int) ParallelGCThreads,
2229                                 // degree of mt processing
2230                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2231                                 // mt discovery
2232                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2233                                 // degree of mt discovery
2234                            false,
2235                                 // Reference discovery is not atomic
2236                            &_is_alive_closure_cm);
2237                                 // is alive closure
2238                                 // (for efficiency/performance)
2239 
2240   // STW ref processor
2241   _ref_processor_stw =
2242     new ReferenceProcessor(mr,    // span
2243                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2244                                 // mt processing
2245                            MAX2((int)ParallelGCThreads, 1),
2246                                 // degree of mt processing
2247                            (ParallelGCThreads > 1),
2248                                 // mt discovery
2249                            MAX2((int)ParallelGCThreads, 1),
2250                                 // degree of mt discovery
2251                            true,
2252                                 // Reference discovery is atomic
2253                            &_is_alive_closure_stw);
2254                                 // is alive closure
2255                                 // (for efficiency/performance)
2256 }
2257 
2258 size_t G1CollectedHeap::capacity() const {
2259   return _g1_committed.byte_size();
2260 }
2261 
2262 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2263   assert(!hr->continuesHumongous(), "pre-condition");
2264   hr->reset_gc_time_stamp();
2265   if (hr->startsHumongous()) {
2266     uint first_index = hr->hrs_index() + 1;
2267     uint last_index = hr->last_hc_index();
2268     for (uint i = first_index; i < last_index; i += 1) {
2269       HeapRegion* chr = region_at(i);
2270       assert(chr->continuesHumongous(), "sanity");
2271       chr->reset_gc_time_stamp();
2272     }
2273   }
2274 }
2275 
2276 #ifndef PRODUCT
2277 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2278 private:
2279   unsigned _gc_time_stamp;
2280   bool _failures;
2281 
2282 public:
2283   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2284     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2285 
2286   virtual bool doHeapRegion(HeapRegion* hr) {
2287     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2288     if (_gc_time_stamp != region_gc_time_stamp) {
2289       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2290                              "expected %d", HR_FORMAT_PARAMS(hr),
2291                              region_gc_time_stamp, _gc_time_stamp);
2292       _failures = true;
2293     }
2294     return false;
2295   }
2296 
2297   bool failures() { return _failures; }
2298 };
2299 
2300 void G1CollectedHeap::check_gc_time_stamps() {
2301   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2302   heap_region_iterate(&cl);
2303   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2304 }
2305 #endif // PRODUCT
2306 
2307 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2308                                                  DirtyCardQueue* into_cset_dcq,
2309                                                  bool concurrent,
2310                                                  uint worker_i) {
2311   // Clean cards in the hot card cache
2312   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2313   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2314 
2315   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2316   int n_completed_buffers = 0;
2317   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2318     n_completed_buffers++;
2319   }
2320   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2321   dcqs.clear_n_completed_buffers();
2322   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2323 }
2324 
2325 
2326 // Computes the sum of the storage used by the various regions.
2327 
2328 size_t G1CollectedHeap::used() const {
2329   assert(Heap_lock->owner() != NULL,
2330          "Should be owned on this thread's behalf.");
2331   size_t result = _summary_bytes_used;
2332   // Read only once in case it is set to NULL concurrently
2333   HeapRegion* hr = _mutator_alloc_region.get();
2334   if (hr != NULL)
2335     result += hr->used();
2336   return result;
2337 }
2338 
2339 size_t G1CollectedHeap::used_unlocked() const {
2340   size_t result = _summary_bytes_used;
2341   return result;
2342 }
2343 
2344 class SumUsedClosure: public HeapRegionClosure {
2345   size_t _used;
2346 public:
2347   SumUsedClosure() : _used(0) {}
2348   bool doHeapRegion(HeapRegion* r) {
2349     if (!r->continuesHumongous()) {
2350       _used += r->used();
2351     }
2352     return false;
2353   }
2354   size_t result() { return _used; }
2355 };
2356 
2357 size_t G1CollectedHeap::recalculate_used() const {
2358   double recalculate_used_start = os::elapsedTime();
2359 
2360   SumUsedClosure blk;
2361   heap_region_iterate(&blk);
2362 
2363   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2364   return blk.result();
2365 }
2366 
2367 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2368   switch (cause) {
2369     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2370     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2371     case GCCause::_g1_humongous_allocation: return true;
2372     default:                                return false;
2373   }
2374 }
2375 
2376 #ifndef PRODUCT
2377 void G1CollectedHeap::allocate_dummy_regions() {
2378   // Let's fill up most of the region
2379   size_t word_size = HeapRegion::GrainWords - 1024;
2380   // And as a result the region we'll allocate will be humongous.
2381   guarantee(isHumongous(word_size), "sanity");
2382 
2383   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2384     // Let's use the existing mechanism for the allocation
2385     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2386     if (dummy_obj != NULL) {
2387       MemRegion mr(dummy_obj, word_size);
2388       CollectedHeap::fill_with_object(mr);
2389     } else {
2390       // If we can't allocate once, we probably cannot allocate
2391       // again. Let's get out of the loop.
2392       break;
2393     }
2394   }
2395 }
2396 #endif // !PRODUCT
2397 
2398 void G1CollectedHeap::increment_old_marking_cycles_started() {
2399   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2400     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2401     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2402     _old_marking_cycles_started, _old_marking_cycles_completed));
2403 
2404   _old_marking_cycles_started++;
2405 }
2406 
2407 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2408   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2409 
2410   // We assume that if concurrent == true, then the caller is a
2411   // concurrent thread that was joined the Suspendible Thread
2412   // Set. If there's ever a cheap way to check this, we should add an
2413   // assert here.
2414 
2415   // Given that this method is called at the end of a Full GC or of a
2416   // concurrent cycle, and those can be nested (i.e., a Full GC can
2417   // interrupt a concurrent cycle), the number of full collections
2418   // completed should be either one (in the case where there was no
2419   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2420   // behind the number of full collections started.
2421 
2422   // This is the case for the inner caller, i.e. a Full GC.
2423   assert(concurrent ||
2424          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2425          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2426          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2427                  "is inconsistent with _old_marking_cycles_completed = %u",
2428                  _old_marking_cycles_started, _old_marking_cycles_completed));
2429 
2430   // This is the case for the outer caller, i.e. the concurrent cycle.
2431   assert(!concurrent ||
2432          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2433          err_msg("for outer caller (concurrent cycle): "
2434                  "_old_marking_cycles_started = %u "
2435                  "is inconsistent with _old_marking_cycles_completed = %u",
2436                  _old_marking_cycles_started, _old_marking_cycles_completed));
2437 
2438   _old_marking_cycles_completed += 1;
2439 
2440   // We need to clear the "in_progress" flag in the CM thread before
2441   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2442   // is set) so that if a waiter requests another System.gc() it doesn't
2443   // incorrectly see that a marking cycle is still in progress.
2444   if (concurrent) {
2445     _cmThread->clear_in_progress();
2446   }
2447 
2448   // This notify_all() will ensure that a thread that called
2449   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2450   // and it's waiting for a full GC to finish will be woken up. It is
2451   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2452   FullGCCount_lock->notify_all();
2453 }
2454 
2455 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2456   _concurrent_cycle_started = true;
2457   _gc_timer_cm->register_gc_start(start_time);
2458 
2459   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2460   trace_heap_before_gc(_gc_tracer_cm);
2461 }
2462 
2463 void G1CollectedHeap::register_concurrent_cycle_end() {
2464   if (_concurrent_cycle_started) {
2465     if (_cm->has_aborted()) {
2466       _gc_tracer_cm->report_concurrent_mode_failure();
2467     }
2468 
2469     _gc_timer_cm->register_gc_end();
2470     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2471 
2472     _concurrent_cycle_started = false;
2473   }
2474 }
2475 
2476 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2477   if (_concurrent_cycle_started) {
2478     trace_heap_after_gc(_gc_tracer_cm);
2479   }
2480 }
2481 
2482 G1YCType G1CollectedHeap::yc_type() {
2483   bool is_young = g1_policy()->gcs_are_young();
2484   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2485   bool is_during_mark = mark_in_progress();
2486 
2487   if (is_initial_mark) {
2488     return InitialMark;
2489   } else if (is_during_mark) {
2490     return DuringMark;
2491   } else if (is_young) {
2492     return Normal;
2493   } else {
2494     return Mixed;
2495   }
2496 }
2497 
2498 void G1CollectedHeap::collect(GCCause::Cause cause) {
2499   assert_heap_not_locked();
2500 
2501   unsigned int gc_count_before;
2502   unsigned int old_marking_count_before;
2503   bool retry_gc;
2504 
2505   do {
2506     retry_gc = false;
2507 
2508     {
2509       MutexLocker ml(Heap_lock);
2510 
2511       // Read the GC count while holding the Heap_lock
2512       gc_count_before = total_collections();
2513       old_marking_count_before = _old_marking_cycles_started;
2514     }
2515 
2516     if (should_do_concurrent_full_gc(cause)) {
2517       // Schedule an initial-mark evacuation pause that will start a
2518       // concurrent cycle. We're setting word_size to 0 which means that
2519       // we are not requesting a post-GC allocation.
2520       VM_G1IncCollectionPause op(gc_count_before,
2521                                  0,     /* word_size */
2522                                  true,  /* should_initiate_conc_mark */
2523                                  g1_policy()->max_pause_time_ms(),
2524                                  cause);
2525 
2526       VMThread::execute(&op);
2527       if (!op.pause_succeeded()) {
2528         if (old_marking_count_before == _old_marking_cycles_started) {
2529           retry_gc = op.should_retry_gc();
2530         } else {
2531           // A Full GC happened while we were trying to schedule the
2532           // initial-mark GC. No point in starting a new cycle given
2533           // that the whole heap was collected anyway.
2534         }
2535 
2536         if (retry_gc) {
2537           if (GC_locker::is_active_and_needs_gc()) {
2538             GC_locker::stall_until_clear();
2539           }
2540         }
2541       }
2542     } else {
2543       if (cause == GCCause::_gc_locker
2544           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2545 
2546         // Schedule a standard evacuation pause. We're setting word_size
2547         // to 0 which means that we are not requesting a post-GC allocation.
2548         VM_G1IncCollectionPause op(gc_count_before,
2549                                    0,     /* word_size */
2550                                    false, /* should_initiate_conc_mark */
2551                                    g1_policy()->max_pause_time_ms(),
2552                                    cause);
2553         VMThread::execute(&op);
2554       } else {
2555         // Schedule a Full GC.
2556         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2557         VMThread::execute(&op);
2558       }
2559     }
2560   } while (retry_gc);
2561 }
2562 
2563 bool G1CollectedHeap::is_in(const void* p) const {
2564   if (_g1_committed.contains(p)) {
2565     // Given that we know that p is in the committed space,
2566     // heap_region_containing_raw() should successfully
2567     // return the containing region.
2568     HeapRegion* hr = heap_region_containing_raw(p);
2569     return hr->is_in(p);
2570   } else {
2571     return false;
2572   }
2573 }
2574 
2575 // Iteration functions.
2576 
2577 // Iterates an OopClosure over all ref-containing fields of objects
2578 // within a HeapRegion.
2579 
2580 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2581   MemRegion _mr;
2582   ExtendedOopClosure* _cl;
2583 public:
2584   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2585     : _mr(mr), _cl(cl) {}
2586   bool doHeapRegion(HeapRegion* r) {
2587     if (!r->continuesHumongous()) {
2588       r->oop_iterate(_cl);
2589     }
2590     return false;
2591   }
2592 };
2593 
2594 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2595   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2596   heap_region_iterate(&blk);
2597 }
2598 
2599 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2600   IterateOopClosureRegionClosure blk(mr, cl);
2601   heap_region_iterate(&blk);
2602 }
2603 
2604 // Iterates an ObjectClosure over all objects within a HeapRegion.
2605 
2606 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2607   ObjectClosure* _cl;
2608 public:
2609   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2610   bool doHeapRegion(HeapRegion* r) {
2611     if (! r->continuesHumongous()) {
2612       r->object_iterate(_cl);
2613     }
2614     return false;
2615   }
2616 };
2617 
2618 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2619   IterateObjectClosureRegionClosure blk(cl);
2620   heap_region_iterate(&blk);
2621 }
2622 
2623 // Calls a SpaceClosure on a HeapRegion.
2624 
2625 class SpaceClosureRegionClosure: public HeapRegionClosure {
2626   SpaceClosure* _cl;
2627 public:
2628   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2629   bool doHeapRegion(HeapRegion* r) {
2630     _cl->do_space(r);
2631     return false;
2632   }
2633 };
2634 
2635 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2636   SpaceClosureRegionClosure blk(cl);
2637   heap_region_iterate(&blk);
2638 }
2639 
2640 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2641   _hrs.iterate(cl);
2642 }
2643 
2644 void
2645 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2646                                                  uint worker_id,
2647                                                  uint no_of_par_workers,
2648                                                  jint claim_value) {
2649   const uint regions = n_regions();
2650   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2651                              no_of_par_workers :
2652                              1);
2653   assert(UseDynamicNumberOfGCThreads ||
2654          no_of_par_workers == workers()->total_workers(),
2655          "Non dynamic should use fixed number of workers");
2656   // try to spread out the starting points of the workers
2657   const HeapRegion* start_hr =
2658                         start_region_for_worker(worker_id, no_of_par_workers);
2659   const uint start_index = start_hr->hrs_index();
2660 
2661   // each worker will actually look at all regions
2662   for (uint count = 0; count < regions; ++count) {
2663     const uint index = (start_index + count) % regions;
2664     assert(0 <= index && index < regions, "sanity");
2665     HeapRegion* r = region_at(index);
2666     // we'll ignore "continues humongous" regions (we'll process them
2667     // when we come across their corresponding "start humongous"
2668     // region) and regions already claimed
2669     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2670       continue;
2671     }
2672     // OK, try to claim it
2673     if (r->claimHeapRegion(claim_value)) {
2674       // success!
2675       assert(!r->continuesHumongous(), "sanity");
2676       if (r->startsHumongous()) {
2677         // If the region is "starts humongous" we'll iterate over its
2678         // "continues humongous" first; in fact we'll do them
2679         // first. The order is important. In on case, calling the
2680         // closure on the "starts humongous" region might de-allocate
2681         // and clear all its "continues humongous" regions and, as a
2682         // result, we might end up processing them twice. So, we'll do
2683         // them first (notice: most closures will ignore them anyway) and
2684         // then we'll do the "starts humongous" region.
2685         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2686           HeapRegion* chr = region_at(ch_index);
2687 
2688           // if the region has already been claimed or it's not
2689           // "continues humongous" we're done
2690           if (chr->claim_value() == claim_value ||
2691               !chr->continuesHumongous()) {
2692             break;
2693           }
2694 
2695           // No one should have claimed it directly. We can given
2696           // that we claimed its "starts humongous" region.
2697           assert(chr->claim_value() != claim_value, "sanity");
2698           assert(chr->humongous_start_region() == r, "sanity");
2699 
2700           if (chr->claimHeapRegion(claim_value)) {
2701             // we should always be able to claim it; no one else should
2702             // be trying to claim this region
2703 
2704             bool res2 = cl->doHeapRegion(chr);
2705             assert(!res2, "Should not abort");
2706 
2707             // Right now, this holds (i.e., no closure that actually
2708             // does something with "continues humongous" regions
2709             // clears them). We might have to weaken it in the future,
2710             // but let's leave these two asserts here for extra safety.
2711             assert(chr->continuesHumongous(), "should still be the case");
2712             assert(chr->humongous_start_region() == r, "sanity");
2713           } else {
2714             guarantee(false, "we should not reach here");
2715           }
2716         }
2717       }
2718 
2719       assert(!r->continuesHumongous(), "sanity");
2720       bool res = cl->doHeapRegion(r);
2721       assert(!res, "Should not abort");
2722     }
2723   }
2724 }
2725 
2726 class ResetClaimValuesClosure: public HeapRegionClosure {
2727 public:
2728   bool doHeapRegion(HeapRegion* r) {
2729     r->set_claim_value(HeapRegion::InitialClaimValue);
2730     return false;
2731   }
2732 };
2733 
2734 void G1CollectedHeap::reset_heap_region_claim_values() {
2735   ResetClaimValuesClosure blk;
2736   heap_region_iterate(&blk);
2737 }
2738 
2739 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2740   ResetClaimValuesClosure blk;
2741   collection_set_iterate(&blk);
2742 }
2743 
2744 #ifdef ASSERT
2745 // This checks whether all regions in the heap have the correct claim
2746 // value. I also piggy-backed on this a check to ensure that the
2747 // humongous_start_region() information on "continues humongous"
2748 // regions is correct.
2749 
2750 class CheckClaimValuesClosure : public HeapRegionClosure {
2751 private:
2752   jint _claim_value;
2753   uint _failures;
2754   HeapRegion* _sh_region;
2755 
2756 public:
2757   CheckClaimValuesClosure(jint claim_value) :
2758     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2759   bool doHeapRegion(HeapRegion* r) {
2760     if (r->claim_value() != _claim_value) {
2761       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2762                              "claim value = %d, should be %d",
2763                              HR_FORMAT_PARAMS(r),
2764                              r->claim_value(), _claim_value);
2765       ++_failures;
2766     }
2767     if (!r->isHumongous()) {
2768       _sh_region = NULL;
2769     } else if (r->startsHumongous()) {
2770       _sh_region = r;
2771     } else if (r->continuesHumongous()) {
2772       if (r->humongous_start_region() != _sh_region) {
2773         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2774                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2775                                HR_FORMAT_PARAMS(r),
2776                                r->humongous_start_region(),
2777                                _sh_region);
2778         ++_failures;
2779       }
2780     }
2781     return false;
2782   }
2783   uint failures() { return _failures; }
2784 };
2785 
2786 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2787   CheckClaimValuesClosure cl(claim_value);
2788   heap_region_iterate(&cl);
2789   return cl.failures() == 0;
2790 }
2791 
2792 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2793 private:
2794   jint _claim_value;
2795   uint _failures;
2796 
2797 public:
2798   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2799     _claim_value(claim_value), _failures(0) { }
2800 
2801   uint failures() { return _failures; }
2802 
2803   bool doHeapRegion(HeapRegion* hr) {
2804     assert(hr->in_collection_set(), "how?");
2805     assert(!hr->isHumongous(), "H-region in CSet");
2806     if (hr->claim_value() != _claim_value) {
2807       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2808                              "claim value = %d, should be %d",
2809                              HR_FORMAT_PARAMS(hr),
2810                              hr->claim_value(), _claim_value);
2811       _failures += 1;
2812     }
2813     return false;
2814   }
2815 };
2816 
2817 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2818   CheckClaimValuesInCSetHRClosure cl(claim_value);
2819   collection_set_iterate(&cl);
2820   return cl.failures() == 0;
2821 }
2822 #endif // ASSERT
2823 
2824 // Clear the cached CSet starting regions and (more importantly)
2825 // the time stamps. Called when we reset the GC time stamp.
2826 void G1CollectedHeap::clear_cset_start_regions() {
2827   assert(_worker_cset_start_region != NULL, "sanity");
2828   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2829 
2830   int n_queues = MAX2((int)ParallelGCThreads, 1);
2831   for (int i = 0; i < n_queues; i++) {
2832     _worker_cset_start_region[i] = NULL;
2833     _worker_cset_start_region_time_stamp[i] = 0;
2834   }
2835 }
2836 
2837 // Given the id of a worker, obtain or calculate a suitable
2838 // starting region for iterating over the current collection set.
2839 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2840   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2841 
2842   HeapRegion* result = NULL;
2843   unsigned gc_time_stamp = get_gc_time_stamp();
2844 
2845   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2846     // Cached starting region for current worker was set
2847     // during the current pause - so it's valid.
2848     // Note: the cached starting heap region may be NULL
2849     // (when the collection set is empty).
2850     result = _worker_cset_start_region[worker_i];
2851     assert(result == NULL || result->in_collection_set(), "sanity");
2852     return result;
2853   }
2854 
2855   // The cached entry was not valid so let's calculate
2856   // a suitable starting heap region for this worker.
2857 
2858   // We want the parallel threads to start their collection
2859   // set iteration at different collection set regions to
2860   // avoid contention.
2861   // If we have:
2862   //          n collection set regions
2863   //          p threads
2864   // Then thread t will start at region floor ((t * n) / p)
2865 
2866   result = g1_policy()->collection_set();
2867   if (G1CollectedHeap::use_parallel_gc_threads()) {
2868     uint cs_size = g1_policy()->cset_region_length();
2869     uint active_workers = workers()->active_workers();
2870     assert(UseDynamicNumberOfGCThreads ||
2871              active_workers == workers()->total_workers(),
2872              "Unless dynamic should use total workers");
2873 
2874     uint end_ind   = (cs_size * worker_i) / active_workers;
2875     uint start_ind = 0;
2876 
2877     if (worker_i > 0 &&
2878         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2879       // Previous workers starting region is valid
2880       // so let's iterate from there
2881       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2882       result = _worker_cset_start_region[worker_i - 1];
2883     }
2884 
2885     for (uint i = start_ind; i < end_ind; i++) {
2886       result = result->next_in_collection_set();
2887     }
2888   }
2889 
2890   // Note: the calculated starting heap region may be NULL
2891   // (when the collection set is empty).
2892   assert(result == NULL || result->in_collection_set(), "sanity");
2893   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2894          "should be updated only once per pause");
2895   _worker_cset_start_region[worker_i] = result;
2896   OrderAccess::storestore();
2897   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2898   return result;
2899 }
2900 
2901 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2902                                                      uint no_of_par_workers) {
2903   uint worker_num =
2904            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2905   assert(UseDynamicNumberOfGCThreads ||
2906          no_of_par_workers == workers()->total_workers(),
2907          "Non dynamic should use fixed number of workers");
2908   const uint start_index = n_regions() * worker_i / worker_num;
2909   return region_at(start_index);
2910 }
2911 
2912 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2913   HeapRegion* r = g1_policy()->collection_set();
2914   while (r != NULL) {
2915     HeapRegion* next = r->next_in_collection_set();
2916     if (cl->doHeapRegion(r)) {
2917       cl->incomplete();
2918       return;
2919     }
2920     r = next;
2921   }
2922 }
2923 
2924 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2925                                                   HeapRegionClosure *cl) {
2926   if (r == NULL) {
2927     // The CSet is empty so there's nothing to do.
2928     return;
2929   }
2930 
2931   assert(r->in_collection_set(),
2932          "Start region must be a member of the collection set.");
2933   HeapRegion* cur = r;
2934   while (cur != NULL) {
2935     HeapRegion* next = cur->next_in_collection_set();
2936     if (cl->doHeapRegion(cur) && false) {
2937       cl->incomplete();
2938       return;
2939     }
2940     cur = next;
2941   }
2942   cur = g1_policy()->collection_set();
2943   while (cur != r) {
2944     HeapRegion* next = cur->next_in_collection_set();
2945     if (cl->doHeapRegion(cur) && false) {
2946       cl->incomplete();
2947       return;
2948     }
2949     cur = next;
2950   }
2951 }
2952 
2953 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2954   // We're not using an iterator given that it will wrap around when
2955   // it reaches the last region and this is not what we want here.
2956   uint index = from->hrs_index() + 1;
2957   while (index < n_regions()) {
2958     HeapRegion* hr = region_at(index);
2959     if (!hr->isHumongous()) {
2960       return hr;
2961     }
2962     index += 1;
2963   }
2964   return NULL;
2965 }
2966 
2967 Space* G1CollectedHeap::space_containing(const void* addr) const {
2968   return heap_region_containing(addr);
2969 }
2970 
2971 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2972   Space* sp = space_containing(addr);
2973   return sp->block_start(addr);
2974 }
2975 
2976 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2977   Space* sp = space_containing(addr);
2978   return sp->block_size(addr);
2979 }
2980 
2981 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2982   Space* sp = space_containing(addr);
2983   return sp->block_is_obj(addr);
2984 }
2985 
2986 bool G1CollectedHeap::supports_tlab_allocation() const {
2987   return true;
2988 }
2989 
2990 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2991   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2992 }
2993 
2994 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2995   return young_list()->eden_used_bytes();
2996 }
2997 
2998 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2999 // must be smaller than the humongous object limit.
3000 size_t G1CollectedHeap::max_tlab_size() const {
3001   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
3002 }
3003 
3004 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3005   // Return the remaining space in the cur alloc region, but not less than
3006   // the min TLAB size.
3007 
3008   // Also, this value can be at most the humongous object threshold,
3009   // since we can't allow tlabs to grow big enough to accommodate
3010   // humongous objects.
3011 
3012   HeapRegion* hr = _mutator_alloc_region.get();
3013   size_t max_tlab = max_tlab_size() * wordSize;
3014   if (hr == NULL) {
3015     return max_tlab;
3016   } else {
3017     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
3018   }
3019 }
3020 
3021 size_t G1CollectedHeap::max_capacity() const {
3022   return _g1_reserved.byte_size();
3023 }
3024 
3025 jlong G1CollectedHeap::millis_since_last_gc() {
3026   // assert(false, "NYI");
3027   return 0;
3028 }
3029 
3030 void G1CollectedHeap::prepare_for_verify() {
3031   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3032     ensure_parsability(false);
3033   }
3034   g1_rem_set()->prepare_for_verify();
3035 }
3036 
3037 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3038                                               VerifyOption vo) {
3039   switch (vo) {
3040   case VerifyOption_G1UsePrevMarking:
3041     return hr->obj_allocated_since_prev_marking(obj);
3042   case VerifyOption_G1UseNextMarking:
3043     return hr->obj_allocated_since_next_marking(obj);
3044   case VerifyOption_G1UseMarkWord:
3045     return false;
3046   default:
3047     ShouldNotReachHere();
3048   }
3049   return false; // keep some compilers happy
3050 }
3051 
3052 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3053   switch (vo) {
3054   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3055   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3056   case VerifyOption_G1UseMarkWord:    return NULL;
3057   default:                            ShouldNotReachHere();
3058   }
3059   return NULL; // keep some compilers happy
3060 }
3061 
3062 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3063   switch (vo) {
3064   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3065   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3066   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3067   default:                            ShouldNotReachHere();
3068   }
3069   return false; // keep some compilers happy
3070 }
3071 
3072 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3073   switch (vo) {
3074   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3075   case VerifyOption_G1UseNextMarking: return "NTAMS";
3076   case VerifyOption_G1UseMarkWord:    return "NONE";
3077   default:                            ShouldNotReachHere();
3078   }
3079   return NULL; // keep some compilers happy
3080 }
3081 
3082 class VerifyRootsClosure: public OopClosure {
3083 private:
3084   G1CollectedHeap* _g1h;
3085   VerifyOption     _vo;
3086   bool             _failures;
3087 public:
3088   // _vo == UsePrevMarking -> use "prev" marking information,
3089   // _vo == UseNextMarking -> use "next" marking information,
3090   // _vo == UseMarkWord    -> use mark word from object header.
3091   VerifyRootsClosure(VerifyOption vo) :
3092     _g1h(G1CollectedHeap::heap()),
3093     _vo(vo),
3094     _failures(false) { }
3095 
3096   bool failures() { return _failures; }
3097 
3098   template <class T> void do_oop_nv(T* p) {
3099     T heap_oop = oopDesc::load_heap_oop(p);
3100     if (!oopDesc::is_null(heap_oop)) {
3101       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3102       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3103         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3104                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3105         if (_vo == VerifyOption_G1UseMarkWord) {
3106           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3107         }
3108         obj->print_on(gclog_or_tty);
3109         _failures = true;
3110       }
3111     }
3112   }
3113 
3114   void do_oop(oop* p)       { do_oop_nv(p); }
3115   void do_oop(narrowOop* p) { do_oop_nv(p); }
3116 };
3117 
3118 class G1VerifyCodeRootOopClosure: public OopClosure {
3119   G1CollectedHeap* _g1h;
3120   OopClosure* _root_cl;
3121   nmethod* _nm;
3122   VerifyOption _vo;
3123   bool _failures;
3124 
3125   template <class T> void do_oop_work(T* p) {
3126     // First verify that this root is live
3127     _root_cl->do_oop(p);
3128 
3129     if (!G1VerifyHeapRegionCodeRoots) {
3130       // We're not verifying the code roots attached to heap region.
3131       return;
3132     }
3133 
3134     // Don't check the code roots during marking verification in a full GC
3135     if (_vo == VerifyOption_G1UseMarkWord) {
3136       return;
3137     }
3138 
3139     // Now verify that the current nmethod (which contains p) is
3140     // in the code root list of the heap region containing the
3141     // object referenced by p.
3142 
3143     T heap_oop = oopDesc::load_heap_oop(p);
3144     if (!oopDesc::is_null(heap_oop)) {
3145       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3146 
3147       // Now fetch the region containing the object
3148       HeapRegion* hr = _g1h->heap_region_containing(obj);
3149       HeapRegionRemSet* hrrs = hr->rem_set();
3150       // Verify that the strong code root list for this region
3151       // contains the nmethod
3152       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3153         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3154                               "from nmethod "PTR_FORMAT" not in strong "
3155                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3156                               p, _nm, hr->bottom(), hr->end());
3157         _failures = true;
3158       }
3159     }
3160   }
3161 
3162 public:
3163   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3164     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3165 
3166   void do_oop(oop* p) { do_oop_work(p); }
3167   void do_oop(narrowOop* p) { do_oop_work(p); }
3168 
3169   void set_nmethod(nmethod* nm) { _nm = nm; }
3170   bool failures() { return _failures; }
3171 };
3172 
3173 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3174   G1VerifyCodeRootOopClosure* _oop_cl;
3175 
3176 public:
3177   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3178     _oop_cl(oop_cl) {}
3179 
3180   void do_code_blob(CodeBlob* cb) {
3181     nmethod* nm = cb->as_nmethod_or_null();
3182     if (nm != NULL) {
3183       _oop_cl->set_nmethod(nm);
3184       nm->oops_do(_oop_cl);
3185     }
3186   }
3187 };
3188 
3189 class YoungRefCounterClosure : public OopClosure {
3190   G1CollectedHeap* _g1h;
3191   int              _count;
3192  public:
3193   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3194   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3195   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3196 
3197   int count() { return _count; }
3198   void reset_count() { _count = 0; };
3199 };
3200 
3201 class VerifyKlassClosure: public KlassClosure {
3202   YoungRefCounterClosure _young_ref_counter_closure;
3203   OopClosure *_oop_closure;
3204  public:
3205   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3206   void do_klass(Klass* k) {
3207     k->oops_do(_oop_closure);
3208 
3209     _young_ref_counter_closure.reset_count();
3210     k->oops_do(&_young_ref_counter_closure);
3211     if (_young_ref_counter_closure.count() > 0) {
3212       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
3213     }
3214   }
3215 };
3216 
3217 class VerifyLivenessOopClosure: public OopClosure {
3218   G1CollectedHeap* _g1h;
3219   VerifyOption _vo;
3220 public:
3221   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3222     _g1h(g1h), _vo(vo)
3223   { }
3224   void do_oop(narrowOop *p) { do_oop_work(p); }
3225   void do_oop(      oop *p) { do_oop_work(p); }
3226 
3227   template <class T> void do_oop_work(T *p) {
3228     oop obj = oopDesc::load_decode_heap_oop(p);
3229     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3230               "Dead object referenced by a not dead object");
3231   }
3232 };
3233 
3234 class VerifyObjsInRegionClosure: public ObjectClosure {
3235 private:
3236   G1CollectedHeap* _g1h;
3237   size_t _live_bytes;
3238   HeapRegion *_hr;
3239   VerifyOption _vo;
3240 public:
3241   // _vo == UsePrevMarking -> use "prev" marking information,
3242   // _vo == UseNextMarking -> use "next" marking information,
3243   // _vo == UseMarkWord    -> use mark word from object header.
3244   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3245     : _live_bytes(0), _hr(hr), _vo(vo) {
3246     _g1h = G1CollectedHeap::heap();
3247   }
3248   void do_object(oop o) {
3249     VerifyLivenessOopClosure isLive(_g1h, _vo);
3250     assert(o != NULL, "Huh?");
3251     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3252       // If the object is alive according to the mark word,
3253       // then verify that the marking information agrees.
3254       // Note we can't verify the contra-positive of the
3255       // above: if the object is dead (according to the mark
3256       // word), it may not be marked, or may have been marked
3257       // but has since became dead, or may have been allocated
3258       // since the last marking.
3259       if (_vo == VerifyOption_G1UseMarkWord) {
3260         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3261       }
3262 
3263       o->oop_iterate_no_header(&isLive);
3264       if (!_hr->obj_allocated_since_prev_marking(o)) {
3265         size_t obj_size = o->size();    // Make sure we don't overflow
3266         _live_bytes += (obj_size * HeapWordSize);
3267       }
3268     }
3269   }
3270   size_t live_bytes() { return _live_bytes; }
3271 };
3272 
3273 class PrintObjsInRegionClosure : public ObjectClosure {
3274   HeapRegion *_hr;
3275   G1CollectedHeap *_g1;
3276 public:
3277   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3278     _g1 = G1CollectedHeap::heap();
3279   };
3280 
3281   void do_object(oop o) {
3282     if (o != NULL) {
3283       HeapWord *start = (HeapWord *) o;
3284       size_t word_sz = o->size();
3285       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3286                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3287                           (void*) o, word_sz,
3288                           _g1->isMarkedPrev(o),
3289                           _g1->isMarkedNext(o),
3290                           _hr->obj_allocated_since_prev_marking(o));
3291       HeapWord *end = start + word_sz;
3292       HeapWord *cur;
3293       int *val;
3294       for (cur = start; cur < end; cur++) {
3295         val = (int *) cur;
3296         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
3297       }
3298     }
3299   }
3300 };
3301 
3302 class VerifyRegionClosure: public HeapRegionClosure {
3303 private:
3304   bool             _par;
3305   VerifyOption     _vo;
3306   bool             _failures;
3307 public:
3308   // _vo == UsePrevMarking -> use "prev" marking information,
3309   // _vo == UseNextMarking -> use "next" marking information,
3310   // _vo == UseMarkWord    -> use mark word from object header.
3311   VerifyRegionClosure(bool par, VerifyOption vo)
3312     : _par(par),
3313       _vo(vo),
3314       _failures(false) {}
3315 
3316   bool failures() {
3317     return _failures;
3318   }
3319 
3320   bool doHeapRegion(HeapRegion* r) {
3321     if (!r->continuesHumongous()) {
3322       bool failures = false;
3323       r->verify(_vo, &failures);
3324       if (failures) {
3325         _failures = true;
3326       } else {
3327         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3328         r->object_iterate(&not_dead_yet_cl);
3329         if (_vo != VerifyOption_G1UseNextMarking) {
3330           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3331             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3332                                    "max_live_bytes "SIZE_FORMAT" "
3333                                    "< calculated "SIZE_FORMAT,
3334                                    r->bottom(), r->end(),
3335                                    r->max_live_bytes(),
3336                                  not_dead_yet_cl.live_bytes());
3337             _failures = true;
3338           }
3339         } else {
3340           // When vo == UseNextMarking we cannot currently do a sanity
3341           // check on the live bytes as the calculation has not been
3342           // finalized yet.
3343         }
3344       }
3345     }
3346     return false; // stop the region iteration if we hit a failure
3347   }
3348 };
3349 
3350 // This is the task used for parallel verification of the heap regions
3351 
3352 class G1ParVerifyTask: public AbstractGangTask {
3353 private:
3354   G1CollectedHeap* _g1h;
3355   VerifyOption     _vo;
3356   bool             _failures;
3357 
3358 public:
3359   // _vo == UsePrevMarking -> use "prev" marking information,
3360   // _vo == UseNextMarking -> use "next" marking information,
3361   // _vo == UseMarkWord    -> use mark word from object header.
3362   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3363     AbstractGangTask("Parallel verify task"),
3364     _g1h(g1h),
3365     _vo(vo),
3366     _failures(false) { }
3367 
3368   bool failures() {
3369     return _failures;
3370   }
3371 
3372   void work(uint worker_id) {
3373     HandleMark hm;
3374     VerifyRegionClosure blk(true, _vo);
3375     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3376                                           _g1h->workers()->active_workers(),
3377                                           HeapRegion::ParVerifyClaimValue);
3378     if (blk.failures()) {
3379       _failures = true;
3380     }
3381   }
3382 };
3383 
3384 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3385   if (SafepointSynchronize::is_at_safepoint()) {
3386     assert(Thread::current()->is_VM_thread(),
3387            "Expected to be executed serially by the VM thread at this point");
3388 
3389     if (!silent) { gclog_or_tty->print("Roots "); }
3390     VerifyRootsClosure rootsCl(vo);
3391     VerifyKlassClosure klassCl(this, &rootsCl);
3392     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3393 
3394     // We apply the relevant closures to all the oops in the
3395     // system dictionary, class loader data graph, the string table
3396     // and the nmethods in the code cache.
3397     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3398     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3399 
3400     process_all_roots(true,            // activate StrongRootsScope
3401                       SO_AllCodeCache, // roots scanning options
3402                       &rootsCl,
3403                       &cldCl,
3404                       &blobsCl);
3405 
3406     bool failures = rootsCl.failures() || codeRootsCl.failures();
3407 
3408     if (vo != VerifyOption_G1UseMarkWord) {
3409       // If we're verifying during a full GC then the region sets
3410       // will have been torn down at the start of the GC. Therefore
3411       // verifying the region sets will fail. So we only verify
3412       // the region sets when not in a full GC.
3413       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3414       verify_region_sets();
3415     }
3416 
3417     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3418     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3419       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3420              "sanity check");
3421 
3422       G1ParVerifyTask task(this, vo);
3423       assert(UseDynamicNumberOfGCThreads ||
3424         workers()->active_workers() == workers()->total_workers(),
3425         "If not dynamic should be using all the workers");
3426       int n_workers = workers()->active_workers();
3427       set_par_threads(n_workers);
3428       workers()->run_task(&task);
3429       set_par_threads(0);
3430       if (task.failures()) {
3431         failures = true;
3432       }
3433 
3434       // Checks that the expected amount of parallel work was done.
3435       // The implication is that n_workers is > 0.
3436       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3437              "sanity check");
3438 
3439       reset_heap_region_claim_values();
3440 
3441       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3442              "sanity check");
3443     } else {
3444       VerifyRegionClosure blk(false, vo);
3445       heap_region_iterate(&blk);
3446       if (blk.failures()) {
3447         failures = true;
3448       }
3449     }
3450     if (!silent) gclog_or_tty->print("RemSet ");
3451     rem_set()->verify();
3452 
3453     if (G1StringDedup::is_enabled()) {
3454       if (!silent) gclog_or_tty->print("StrDedup ");
3455       G1StringDedup::verify();
3456     }
3457 
3458     if (failures) {
3459       gclog_or_tty->print_cr("Heap:");
3460       // It helps to have the per-region information in the output to
3461       // help us track down what went wrong. This is why we call
3462       // print_extended_on() instead of print_on().
3463       print_extended_on(gclog_or_tty);
3464       gclog_or_tty->cr();
3465 #ifndef PRODUCT
3466       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3467         concurrent_mark()->print_reachable("at-verification-failure",
3468                                            vo, false /* all */);
3469       }
3470 #endif
3471       gclog_or_tty->flush();
3472     }
3473     guarantee(!failures, "there should not have been any failures");
3474   } else {
3475     if (!silent) {
3476       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3477       if (G1StringDedup::is_enabled()) {
3478         gclog_or_tty->print(", StrDedup");
3479       }
3480       gclog_or_tty->print(") ");
3481     }
3482   }
3483 }
3484 
3485 void G1CollectedHeap::verify(bool silent) {
3486   verify(silent, VerifyOption_G1UsePrevMarking);
3487 }
3488 
3489 double G1CollectedHeap::verify(bool guard, const char* msg) {
3490   double verify_time_ms = 0.0;
3491 
3492   if (guard && total_collections() >= VerifyGCStartAt) {
3493     double verify_start = os::elapsedTime();
3494     HandleMark hm;  // Discard invalid handles created during verification
3495     prepare_for_verify();
3496     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3497     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3498   }
3499 
3500   return verify_time_ms;
3501 }
3502 
3503 void G1CollectedHeap::verify_before_gc() {
3504   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3505   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3506 }
3507 
3508 void G1CollectedHeap::verify_after_gc() {
3509   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3510   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3511 }
3512 
3513 class PrintRegionClosure: public HeapRegionClosure {
3514   outputStream* _st;
3515 public:
3516   PrintRegionClosure(outputStream* st) : _st(st) {}
3517   bool doHeapRegion(HeapRegion* r) {
3518     r->print_on(_st);
3519     return false;
3520   }
3521 };
3522 
3523 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3524                                        const HeapRegion* hr,
3525                                        const VerifyOption vo) const {
3526   switch (vo) {
3527   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3528   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3529   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3530   default:                            ShouldNotReachHere();
3531   }
3532   return false; // keep some compilers happy
3533 }
3534 
3535 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3536                                        const VerifyOption vo) const {
3537   switch (vo) {
3538   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3539   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3540   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3541   default:                            ShouldNotReachHere();
3542   }
3543   return false; // keep some compilers happy
3544 }
3545 
3546 void G1CollectedHeap::print_on(outputStream* st) const {
3547   st->print(" %-20s", "garbage-first heap");
3548   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3549             capacity()/K, used_unlocked()/K);
3550   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3551             _g1_storage.low_boundary(),
3552             _g1_storage.high(),
3553             _g1_storage.high_boundary());
3554   st->cr();
3555   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3556   uint young_regions = _young_list->length();
3557   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3558             (size_t) young_regions * HeapRegion::GrainBytes / K);
3559   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3560   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3561             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3562   st->cr();
3563   MetaspaceAux::print_on(st);
3564 }
3565 
3566 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3567   print_on(st);
3568 
3569   // Print the per-region information.
3570   st->cr();
3571   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3572                "HS=humongous(starts), HC=humongous(continues), "
3573                "CS=collection set, F=free, TS=gc time stamp, "
3574                "PTAMS=previous top-at-mark-start, "
3575                "NTAMS=next top-at-mark-start)");
3576   PrintRegionClosure blk(st);
3577   heap_region_iterate(&blk);
3578 }
3579 
3580 void G1CollectedHeap::print_on_error(outputStream* st) const {
3581   this->CollectedHeap::print_on_error(st);
3582 
3583   if (_cm != NULL) {
3584     st->cr();
3585     _cm->print_on_error(st);
3586   }
3587 }
3588 
3589 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3590   if (G1CollectedHeap::use_parallel_gc_threads()) {
3591     workers()->print_worker_threads_on(st);
3592   }
3593   _cmThread->print_on(st);
3594   st->cr();
3595   _cm->print_worker_threads_on(st);
3596   _cg1r->print_worker_threads_on(st);
3597   if (G1StringDedup::is_enabled()) {
3598     G1StringDedup::print_worker_threads_on(st);
3599   }
3600 }
3601 
3602 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3603   if (G1CollectedHeap::use_parallel_gc_threads()) {
3604     workers()->threads_do(tc);
3605   }
3606   tc->do_thread(_cmThread);
3607   _cg1r->threads_do(tc);
3608   if (G1StringDedup::is_enabled()) {
3609     G1StringDedup::threads_do(tc);
3610   }
3611 }
3612 
3613 void G1CollectedHeap::print_tracing_info() const {
3614   // We'll overload this to mean "trace GC pause statistics."
3615   if (TraceYoungGenTime || TraceOldGenTime) {
3616     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3617     // to that.
3618     g1_policy()->print_tracing_info();
3619   }
3620   if (G1SummarizeRSetStats) {
3621     g1_rem_set()->print_summary_info();
3622   }
3623   if (G1SummarizeConcMark) {
3624     concurrent_mark()->print_summary_info();
3625   }
3626   g1_policy()->print_yg_surv_rate_info();
3627   SpecializationStats::print();
3628 }
3629 
3630 #ifndef PRODUCT
3631 // Helpful for debugging RSet issues.
3632 
3633 class PrintRSetsClosure : public HeapRegionClosure {
3634 private:
3635   const char* _msg;
3636   size_t _occupied_sum;
3637 
3638 public:
3639   bool doHeapRegion(HeapRegion* r) {
3640     HeapRegionRemSet* hrrs = r->rem_set();
3641     size_t occupied = hrrs->occupied();
3642     _occupied_sum += occupied;
3643 
3644     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3645                            HR_FORMAT_PARAMS(r));
3646     if (occupied == 0) {
3647       gclog_or_tty->print_cr("  RSet is empty");
3648     } else {
3649       hrrs->print();
3650     }
3651     gclog_or_tty->print_cr("----------");
3652     return false;
3653   }
3654 
3655   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3656     gclog_or_tty->cr();
3657     gclog_or_tty->print_cr("========================================");
3658     gclog_or_tty->print_cr("%s", msg);
3659     gclog_or_tty->cr();
3660   }
3661 
3662   ~PrintRSetsClosure() {
3663     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3664     gclog_or_tty->print_cr("========================================");
3665     gclog_or_tty->cr();
3666   }
3667 };
3668 
3669 void G1CollectedHeap::print_cset_rsets() {
3670   PrintRSetsClosure cl("Printing CSet RSets");
3671   collection_set_iterate(&cl);
3672 }
3673 
3674 void G1CollectedHeap::print_all_rsets() {
3675   PrintRSetsClosure cl("Printing All RSets");;
3676   heap_region_iterate(&cl);
3677 }
3678 #endif // PRODUCT
3679 
3680 G1CollectedHeap* G1CollectedHeap::heap() {
3681   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3682          "not a garbage-first heap");
3683   return _g1h;
3684 }
3685 
3686 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3687   // always_do_update_barrier = false;
3688   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3689   // Fill TLAB's and such
3690   accumulate_statistics_all_tlabs();
3691   ensure_parsability(true);
3692 
3693   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3694       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3695     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3696   }
3697 }
3698 
3699 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3700 
3701   if (G1SummarizeRSetStats &&
3702       (G1SummarizeRSetStatsPeriod > 0) &&
3703       // we are at the end of the GC. Total collections has already been increased.
3704       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3705     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3706   }
3707 
3708   // FIXME: what is this about?
3709   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3710   // is set.
3711   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3712                         "derived pointer present"));
3713   // always_do_update_barrier = true;
3714 
3715   resize_all_tlabs();
3716 
3717   // We have just completed a GC. Update the soft reference
3718   // policy with the new heap occupancy
3719   Universe::update_heap_info_at_gc();
3720 }
3721 
3722 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3723                                                unsigned int gc_count_before,
3724                                                bool* succeeded,
3725                                                GCCause::Cause gc_cause) {
3726   assert_heap_not_locked_and_not_at_safepoint();
3727   g1_policy()->record_stop_world_start();
3728   VM_G1IncCollectionPause op(gc_count_before,
3729                              word_size,
3730                              false, /* should_initiate_conc_mark */
3731                              g1_policy()->max_pause_time_ms(),
3732                              gc_cause);
3733   VMThread::execute(&op);
3734 
3735   HeapWord* result = op.result();
3736   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3737   assert(result == NULL || ret_succeeded,
3738          "the result should be NULL if the VM did not succeed");
3739   *succeeded = ret_succeeded;
3740 
3741   assert_heap_not_locked();
3742   return result;
3743 }
3744 
3745 void
3746 G1CollectedHeap::doConcurrentMark() {
3747   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3748   if (!_cmThread->in_progress()) {
3749     _cmThread->set_started();
3750     CGC_lock->notify();
3751   }
3752 }
3753 
3754 size_t G1CollectedHeap::pending_card_num() {
3755   size_t extra_cards = 0;
3756   JavaThread *curr = Threads::first();
3757   while (curr != NULL) {
3758     DirtyCardQueue& dcq = curr->dirty_card_queue();
3759     extra_cards += dcq.size();
3760     curr = curr->next();
3761   }
3762   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3763   size_t buffer_size = dcqs.buffer_size();
3764   size_t buffer_num = dcqs.completed_buffers_num();
3765 
3766   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3767   // in bytes - not the number of 'entries'. We need to convert
3768   // into a number of cards.
3769   return (buffer_size * buffer_num + extra_cards) / oopSize;
3770 }
3771 
3772 size_t G1CollectedHeap::cards_scanned() {
3773   return g1_rem_set()->cardsScanned();
3774 }
3775 
3776 void
3777 G1CollectedHeap::setup_surviving_young_words() {
3778   assert(_surviving_young_words == NULL, "pre-condition");
3779   uint array_length = g1_policy()->young_cset_region_length();
3780   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3781   if (_surviving_young_words == NULL) {
3782     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3783                           "Not enough space for young surv words summary.");
3784   }
3785   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3786 #ifdef ASSERT
3787   for (uint i = 0;  i < array_length; ++i) {
3788     assert( _surviving_young_words[i] == 0, "memset above" );
3789   }
3790 #endif // !ASSERT
3791 }
3792 
3793 void
3794 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3795   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3796   uint array_length = g1_policy()->young_cset_region_length();
3797   for (uint i = 0; i < array_length; ++i) {
3798     _surviving_young_words[i] += surv_young_words[i];
3799   }
3800 }
3801 
3802 void
3803 G1CollectedHeap::cleanup_surviving_young_words() {
3804   guarantee( _surviving_young_words != NULL, "pre-condition" );
3805   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3806   _surviving_young_words = NULL;
3807 }
3808 
3809 #ifdef ASSERT
3810 class VerifyCSetClosure: public HeapRegionClosure {
3811 public:
3812   bool doHeapRegion(HeapRegion* hr) {
3813     // Here we check that the CSet region's RSet is ready for parallel
3814     // iteration. The fields that we'll verify are only manipulated
3815     // when the region is part of a CSet and is collected. Afterwards,
3816     // we reset these fields when we clear the region's RSet (when the
3817     // region is freed) so they are ready when the region is
3818     // re-allocated. The only exception to this is if there's an
3819     // evacuation failure and instead of freeing the region we leave
3820     // it in the heap. In that case, we reset these fields during
3821     // evacuation failure handling.
3822     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3823 
3824     // Here's a good place to add any other checks we'd like to
3825     // perform on CSet regions.
3826     return false;
3827   }
3828 };
3829 #endif // ASSERT
3830 
3831 #if TASKQUEUE_STATS
3832 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3833   st->print_raw_cr("GC Task Stats");
3834   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3835   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3836 }
3837 
3838 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3839   print_taskqueue_stats_hdr(st);
3840 
3841   TaskQueueStats totals;
3842   const int n = workers() != NULL ? workers()->total_workers() : 1;
3843   for (int i = 0; i < n; ++i) {
3844     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3845     totals += task_queue(i)->stats;
3846   }
3847   st->print_raw("tot "); totals.print(st); st->cr();
3848 
3849   DEBUG_ONLY(totals.verify());
3850 }
3851 
3852 void G1CollectedHeap::reset_taskqueue_stats() {
3853   const int n = workers() != NULL ? workers()->total_workers() : 1;
3854   for (int i = 0; i < n; ++i) {
3855     task_queue(i)->stats.reset();
3856   }
3857 }
3858 #endif // TASKQUEUE_STATS
3859 
3860 void G1CollectedHeap::log_gc_header() {
3861   if (!G1Log::fine()) {
3862     return;
3863   }
3864 
3865   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3866 
3867   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3868     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3869     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3870 
3871   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3872 }
3873 
3874 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3875   if (!G1Log::fine()) {
3876     return;
3877   }
3878 
3879   if (G1Log::finer()) {
3880     if (evacuation_failed()) {
3881       gclog_or_tty->print(" (to-space exhausted)");
3882     }
3883     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3884     g1_policy()->phase_times()->note_gc_end();
3885     g1_policy()->phase_times()->print(pause_time_sec);
3886     g1_policy()->print_detailed_heap_transition();
3887   } else {
3888     if (evacuation_failed()) {
3889       gclog_or_tty->print("--");
3890     }
3891     g1_policy()->print_heap_transition();
3892     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3893   }
3894   gclog_or_tty->flush();
3895 }
3896 
3897 bool
3898 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3899   assert_at_safepoint(true /* should_be_vm_thread */);
3900   guarantee(!is_gc_active(), "collection is not reentrant");
3901 
3902   if (GC_locker::check_active_before_gc()) {
3903     return false;
3904   }
3905 
3906   _gc_timer_stw->register_gc_start();
3907 
3908   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3909 
3910   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3911   ResourceMark rm;
3912 
3913   print_heap_before_gc();
3914   trace_heap_before_gc(_gc_tracer_stw);
3915 
3916   verify_region_sets_optional();
3917   verify_dirty_young_regions();
3918 
3919   // This call will decide whether this pause is an initial-mark
3920   // pause. If it is, during_initial_mark_pause() will return true
3921   // for the duration of this pause.
3922   g1_policy()->decide_on_conc_mark_initiation();
3923 
3924   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3925   assert(!g1_policy()->during_initial_mark_pause() ||
3926           g1_policy()->gcs_are_young(), "sanity");
3927 
3928   // We also do not allow mixed GCs during marking.
3929   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3930 
3931   // Record whether this pause is an initial mark. When the current
3932   // thread has completed its logging output and it's safe to signal
3933   // the CM thread, the flag's value in the policy has been reset.
3934   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3935 
3936   // Inner scope for scope based logging, timers, and stats collection
3937   {
3938     EvacuationInfo evacuation_info;
3939 
3940     if (g1_policy()->during_initial_mark_pause()) {
3941       // We are about to start a marking cycle, so we increment the
3942       // full collection counter.
3943       increment_old_marking_cycles_started();
3944       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3945     }
3946 
3947     _gc_tracer_stw->report_yc_type(yc_type());
3948 
3949     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3950 
3951     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3952                                 workers()->active_workers() : 1);
3953     double pause_start_sec = os::elapsedTime();
3954     g1_policy()->phase_times()->note_gc_start(active_workers);
3955     log_gc_header();
3956 
3957     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3958     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3959 
3960     // If the secondary_free_list is not empty, append it to the
3961     // free_list. No need to wait for the cleanup operation to finish;
3962     // the region allocation code will check the secondary_free_list
3963     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3964     // set, skip this step so that the region allocation code has to
3965     // get entries from the secondary_free_list.
3966     if (!G1StressConcRegionFreeing) {
3967       append_secondary_free_list_if_not_empty_with_lock();
3968     }
3969 
3970     assert(check_young_list_well_formed(), "young list should be well formed");
3971     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3972            "sanity check");
3973 
3974     // Don't dynamically change the number of GC threads this early.  A value of
3975     // 0 is used to indicate serial work.  When parallel work is done,
3976     // it will be set.
3977 
3978     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3979       IsGCActiveMark x;
3980 
3981       gc_prologue(false);
3982       increment_total_collections(false /* full gc */);
3983       increment_gc_time_stamp();
3984 
3985       verify_before_gc();
3986 
3987       check_bitmaps("GC Start");
3988 
3989       COMPILER2_PRESENT(DerivedPointerTable::clear());
3990 
3991       // Please see comment in g1CollectedHeap.hpp and
3992       // G1CollectedHeap::ref_processing_init() to see how
3993       // reference processing currently works in G1.
3994 
3995       // Enable discovery in the STW reference processor
3996       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3997                                             true /*verify_no_refs*/);
3998 
3999       {
4000         // We want to temporarily turn off discovery by the
4001         // CM ref processor, if necessary, and turn it back on
4002         // on again later if we do. Using a scoped
4003         // NoRefDiscovery object will do this.
4004         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4005 
4006         // Forget the current alloc region (we might even choose it to be part
4007         // of the collection set!).
4008         release_mutator_alloc_region();
4009 
4010         // We should call this after we retire the mutator alloc
4011         // region(s) so that all the ALLOC / RETIRE events are generated
4012         // before the start GC event.
4013         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4014 
4015         // This timing is only used by the ergonomics to handle our pause target.
4016         // It is unclear why this should not include the full pause. We will
4017         // investigate this in CR 7178365.
4018         //
4019         // Preserving the old comment here if that helps the investigation:
4020         //
4021         // The elapsed time induced by the start time below deliberately elides
4022         // the possible verification above.
4023         double sample_start_time_sec = os::elapsedTime();
4024 
4025 #if YOUNG_LIST_VERBOSE
4026         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4027         _young_list->print();
4028         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4029 #endif // YOUNG_LIST_VERBOSE
4030 
4031         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4032 
4033         double scan_wait_start = os::elapsedTime();
4034         // We have to wait until the CM threads finish scanning the
4035         // root regions as it's the only way to ensure that all the
4036         // objects on them have been correctly scanned before we start
4037         // moving them during the GC.
4038         bool waited = _cm->root_regions()->wait_until_scan_finished();
4039         double wait_time_ms = 0.0;
4040         if (waited) {
4041           double scan_wait_end = os::elapsedTime();
4042           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4043         }
4044         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4045 
4046 #if YOUNG_LIST_VERBOSE
4047         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4048         _young_list->print();
4049 #endif // YOUNG_LIST_VERBOSE
4050 
4051         if (g1_policy()->during_initial_mark_pause()) {
4052           concurrent_mark()->checkpointRootsInitialPre();
4053         }
4054 
4055 #if YOUNG_LIST_VERBOSE
4056         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4057         _young_list->print();
4058         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4059 #endif // YOUNG_LIST_VERBOSE
4060 
4061         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4062 
4063         _cm->note_start_of_gc();
4064         // We should not verify the per-thread SATB buffers given that
4065         // we have not filtered them yet (we'll do so during the
4066         // GC). We also call this after finalize_cset() to
4067         // ensure that the CSet has been finalized.
4068         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4069                                  true  /* verify_enqueued_buffers */,
4070                                  false /* verify_thread_buffers */,
4071                                  true  /* verify_fingers */);
4072 
4073         if (_hr_printer.is_active()) {
4074           HeapRegion* hr = g1_policy()->collection_set();
4075           while (hr != NULL) {
4076             G1HRPrinter::RegionType type;
4077             if (!hr->is_young()) {
4078               type = G1HRPrinter::Old;
4079             } else if (hr->is_survivor()) {
4080               type = G1HRPrinter::Survivor;
4081             } else {
4082               type = G1HRPrinter::Eden;
4083             }
4084             _hr_printer.cset(hr);
4085             hr = hr->next_in_collection_set();
4086           }
4087         }
4088 
4089 #ifdef ASSERT
4090         VerifyCSetClosure cl;
4091         collection_set_iterate(&cl);
4092 #endif // ASSERT
4093 
4094         setup_surviving_young_words();
4095 
4096         // Initialize the GC alloc regions.
4097         init_gc_alloc_regions(evacuation_info);
4098 
4099         // Actually do the work...
4100         evacuate_collection_set(evacuation_info);
4101 
4102         // We do this to mainly verify the per-thread SATB buffers
4103         // (which have been filtered by now) since we didn't verify
4104         // them earlier. No point in re-checking the stacks / enqueued
4105         // buffers given that the CSet has not changed since last time
4106         // we checked.
4107         _cm->verify_no_cset_oops(false /* verify_stacks */,
4108                                  false /* verify_enqueued_buffers */,
4109                                  true  /* verify_thread_buffers */,
4110                                  true  /* verify_fingers */);
4111 
4112         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4113         g1_policy()->clear_collection_set();
4114 
4115         cleanup_surviving_young_words();
4116 
4117         // Start a new incremental collection set for the next pause.
4118         g1_policy()->start_incremental_cset_building();
4119 
4120         clear_cset_fast_test();
4121 
4122         _young_list->reset_sampled_info();
4123 
4124         // Don't check the whole heap at this point as the
4125         // GC alloc regions from this pause have been tagged
4126         // as survivors and moved on to the survivor list.
4127         // Survivor regions will fail the !is_young() check.
4128         assert(check_young_list_empty(false /* check_heap */),
4129           "young list should be empty");
4130 
4131 #if YOUNG_LIST_VERBOSE
4132         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4133         _young_list->print();
4134 #endif // YOUNG_LIST_VERBOSE
4135 
4136         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4137                                              _young_list->first_survivor_region(),
4138                                              _young_list->last_survivor_region());
4139 
4140         _young_list->reset_auxilary_lists();
4141 
4142         if (evacuation_failed()) {
4143           _summary_bytes_used = recalculate_used();
4144           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4145           for (uint i = 0; i < n_queues; i++) {
4146             if (_evacuation_failed_info_array[i].has_failed()) {
4147               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4148             }
4149           }
4150         } else {
4151           // The "used" of the the collection set have already been subtracted
4152           // when they were freed.  Add in the bytes evacuated.
4153           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4154         }
4155 
4156         if (g1_policy()->during_initial_mark_pause()) {
4157           // We have to do this before we notify the CM threads that
4158           // they can start working to make sure that all the
4159           // appropriate initialization is done on the CM object.
4160           concurrent_mark()->checkpointRootsInitialPost();
4161           set_marking_started();
4162           // Note that we don't actually trigger the CM thread at
4163           // this point. We do that later when we're sure that
4164           // the current thread has completed its logging output.
4165         }
4166 
4167         allocate_dummy_regions();
4168 
4169 #if YOUNG_LIST_VERBOSE
4170         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4171         _young_list->print();
4172         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4173 #endif // YOUNG_LIST_VERBOSE
4174 
4175         init_mutator_alloc_region();
4176 
4177         {
4178           size_t expand_bytes = g1_policy()->expansion_amount();
4179           if (expand_bytes > 0) {
4180             size_t bytes_before = capacity();
4181             // No need for an ergo verbose message here,
4182             // expansion_amount() does this when it returns a value > 0.
4183             if (!expand(expand_bytes)) {
4184               // We failed to expand the heap so let's verify that
4185               // committed/uncommitted amount match the backing store
4186               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4187               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4188             }
4189           }
4190         }
4191 
4192         // We redo the verification but now wrt to the new CSet which
4193         // has just got initialized after the previous CSet was freed.
4194         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4195                                  true  /* verify_enqueued_buffers */,
4196                                  true  /* verify_thread_buffers */,
4197                                  true  /* verify_fingers */);
4198         _cm->note_end_of_gc();
4199 
4200         // This timing is only used by the ergonomics to handle our pause target.
4201         // It is unclear why this should not include the full pause. We will
4202         // investigate this in CR 7178365.
4203         double sample_end_time_sec = os::elapsedTime();
4204         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4205         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4206 
4207         MemoryService::track_memory_usage();
4208 
4209         // In prepare_for_verify() below we'll need to scan the deferred
4210         // update buffers to bring the RSets up-to-date if
4211         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4212         // the update buffers we'll probably need to scan cards on the
4213         // regions we just allocated to (i.e., the GC alloc
4214         // regions). However, during the last GC we called
4215         // set_saved_mark() on all the GC alloc regions, so card
4216         // scanning might skip the [saved_mark_word()...top()] area of
4217         // those regions (i.e., the area we allocated objects into
4218         // during the last GC). But it shouldn't. Given that
4219         // saved_mark_word() is conditional on whether the GC time stamp
4220         // on the region is current or not, by incrementing the GC time
4221         // stamp here we invalidate all the GC time stamps on all the
4222         // regions and saved_mark_word() will simply return top() for
4223         // all the regions. This is a nicer way of ensuring this rather
4224         // than iterating over the regions and fixing them. In fact, the
4225         // GC time stamp increment here also ensures that
4226         // saved_mark_word() will return top() between pauses, i.e.,
4227         // during concurrent refinement. So we don't need the
4228         // is_gc_active() check to decided which top to use when
4229         // scanning cards (see CR 7039627).
4230         increment_gc_time_stamp();
4231 
4232         verify_after_gc();
4233         check_bitmaps("GC End");
4234 
4235         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4236         ref_processor_stw()->verify_no_references_recorded();
4237 
4238         // CM reference discovery will be re-enabled if necessary.
4239       }
4240 
4241       // We should do this after we potentially expand the heap so
4242       // that all the COMMIT events are generated before the end GC
4243       // event, and after we retire the GC alloc regions so that all
4244       // RETIRE events are generated before the end GC event.
4245       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4246 
4247       if (mark_in_progress()) {
4248         concurrent_mark()->update_g1_committed();
4249       }
4250 
4251 #ifdef TRACESPINNING
4252       ParallelTaskTerminator::print_termination_counts();
4253 #endif
4254 
4255       gc_epilogue(false);
4256     }
4257 
4258     // Print the remainder of the GC log output.
4259     log_gc_footer(os::elapsedTime() - pause_start_sec);
4260 
4261     // It is not yet to safe to tell the concurrent mark to
4262     // start as we have some optional output below. We don't want the
4263     // output from the concurrent mark thread interfering with this
4264     // logging output either.
4265 
4266     _hrs.verify_optional();
4267     verify_region_sets_optional();
4268 
4269     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4270     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4271 
4272     print_heap_after_gc();
4273     trace_heap_after_gc(_gc_tracer_stw);
4274 
4275     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4276     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4277     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4278     // before any GC notifications are raised.
4279     g1mm()->update_sizes();
4280 
4281     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4282     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4283     _gc_timer_stw->register_gc_end();
4284     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4285   }
4286   // It should now be safe to tell the concurrent mark thread to start
4287   // without its logging output interfering with the logging output
4288   // that came from the pause.
4289 
4290   if (should_start_conc_mark) {
4291     // CAUTION: after the doConcurrentMark() call below,
4292     // the concurrent marking thread(s) could be running
4293     // concurrently with us. Make sure that anything after
4294     // this point does not assume that we are the only GC thread
4295     // running. Note: of course, the actual marking work will
4296     // not start until the safepoint itself is released in
4297     // SuspendibleThreadSet::desynchronize().
4298     doConcurrentMark();
4299   }
4300 
4301   return true;
4302 }
4303 
4304 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4305 {
4306   size_t gclab_word_size;
4307   switch (purpose) {
4308     case GCAllocForSurvived:
4309       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4310       break;
4311     case GCAllocForTenured:
4312       gclab_word_size = _old_plab_stats.desired_plab_sz();
4313       break;
4314     default:
4315       assert(false, "unknown GCAllocPurpose");
4316       gclab_word_size = _old_plab_stats.desired_plab_sz();
4317       break;
4318   }
4319 
4320   // Prevent humongous PLAB sizes for two reasons:
4321   // * PLABs are allocated using a similar paths as oops, but should
4322   //   never be in a humongous region
4323   // * Allowing humongous PLABs needlessly churns the region free lists
4324   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4325 }
4326 
4327 void G1CollectedHeap::init_mutator_alloc_region() {
4328   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4329   _mutator_alloc_region.init();
4330 }
4331 
4332 void G1CollectedHeap::release_mutator_alloc_region() {
4333   _mutator_alloc_region.release();
4334   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4335 }
4336 
4337 void G1CollectedHeap::use_retained_old_gc_alloc_region(EvacuationInfo& evacuation_info) {
4338   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4339   _retained_old_gc_alloc_region = NULL;
4340 
4341   // We will discard the current GC alloc region if:
4342   // a) it's in the collection set (it can happen!),
4343   // b) it's already full (no point in using it),
4344   // c) it's empty (this means that it was emptied during
4345   // a cleanup and it should be on the free list now), or
4346   // d) it's humongous (this means that it was emptied
4347   // during a cleanup and was added to the free list, but
4348   // has been subsequently used to allocate a humongous
4349   // object that may be less than the region size).
4350   if (retained_region != NULL &&
4351       !retained_region->in_collection_set() &&
4352       !(retained_region->top() == retained_region->end()) &&
4353       !retained_region->is_empty() &&
4354       !retained_region->isHumongous()) {
4355     retained_region->record_top_and_timestamp();
4356     // The retained region was added to the old region set when it was
4357     // retired. We have to remove it now, since we don't allow regions
4358     // we allocate to in the region sets. We'll re-add it later, when
4359     // it's retired again.
4360     _old_set.remove(retained_region);
4361     bool during_im = g1_policy()->during_initial_mark_pause();
4362     retained_region->note_start_of_copying(during_im);
4363     _old_gc_alloc_region.set(retained_region);
4364     _hr_printer.reuse(retained_region);
4365     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4366   }
4367 }
4368 
4369 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4370   assert_at_safepoint(true /* should_be_vm_thread */);
4371 
4372   _survivor_gc_alloc_region.init();
4373   _old_gc_alloc_region.init();
4374 
4375   use_retained_old_gc_alloc_region(evacuation_info);
4376 }
4377 
4378 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4379   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4380                                          _old_gc_alloc_region.count());
4381   _survivor_gc_alloc_region.release();
4382   // If we have an old GC alloc region to release, we'll save it in
4383   // _retained_old_gc_alloc_region. If we don't
4384   // _retained_old_gc_alloc_region will become NULL. This is what we
4385   // want either way so no reason to check explicitly for either
4386   // condition.
4387   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4388 
4389   if (ResizePLAB) {
4390     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4391     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4392   }
4393 }
4394 
4395 void G1CollectedHeap::abandon_gc_alloc_regions() {
4396   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4397   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4398   _retained_old_gc_alloc_region = NULL;
4399 }
4400 
4401 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4402   _drain_in_progress = false;
4403   set_evac_failure_closure(cl);
4404   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4405 }
4406 
4407 void G1CollectedHeap::finalize_for_evac_failure() {
4408   assert(_evac_failure_scan_stack != NULL &&
4409          _evac_failure_scan_stack->length() == 0,
4410          "Postcondition");
4411   assert(!_drain_in_progress, "Postcondition");
4412   delete _evac_failure_scan_stack;
4413   _evac_failure_scan_stack = NULL;
4414 }
4415 
4416 void G1CollectedHeap::remove_self_forwarding_pointers() {
4417   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4418 
4419   double remove_self_forwards_start = os::elapsedTime();
4420 
4421   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4422 
4423   if (G1CollectedHeap::use_parallel_gc_threads()) {
4424     set_par_threads();
4425     workers()->run_task(&rsfp_task);
4426     set_par_threads(0);
4427   } else {
4428     rsfp_task.work(0);
4429   }
4430 
4431   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4432 
4433   // Reset the claim values in the regions in the collection set.
4434   reset_cset_heap_region_claim_values();
4435 
4436   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4437 
4438   // Now restore saved marks, if any.
4439   assert(_objs_with_preserved_marks.size() ==
4440             _preserved_marks_of_objs.size(), "Both or none.");
4441   while (!_objs_with_preserved_marks.is_empty()) {
4442     oop obj = _objs_with_preserved_marks.pop();
4443     markOop m = _preserved_marks_of_objs.pop();
4444     obj->set_mark(m);
4445   }
4446   _objs_with_preserved_marks.clear(true);
4447   _preserved_marks_of_objs.clear(true);
4448 
4449   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4450 }
4451 
4452 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4453   _evac_failure_scan_stack->push(obj);
4454 }
4455 
4456 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4457   assert(_evac_failure_scan_stack != NULL, "precondition");
4458 
4459   while (_evac_failure_scan_stack->length() > 0) {
4460      oop obj = _evac_failure_scan_stack->pop();
4461      _evac_failure_closure->set_region(heap_region_containing(obj));
4462      obj->oop_iterate_backwards(_evac_failure_closure);
4463   }
4464 }
4465 
4466 oop
4467 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4468                                                oop old) {
4469   assert(obj_in_cs(old),
4470          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4471                  (HeapWord*) old));
4472   markOop m = old->mark();
4473   oop forward_ptr = old->forward_to_atomic(old);
4474   if (forward_ptr == NULL) {
4475     // Forward-to-self succeeded.
4476     assert(_par_scan_state != NULL, "par scan state");
4477     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4478     uint queue_num = _par_scan_state->queue_num();
4479 
4480     _evacuation_failed = true;
4481     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4482     if (_evac_failure_closure != cl) {
4483       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4484       assert(!_drain_in_progress,
4485              "Should only be true while someone holds the lock.");
4486       // Set the global evac-failure closure to the current thread's.
4487       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4488       set_evac_failure_closure(cl);
4489       // Now do the common part.
4490       handle_evacuation_failure_common(old, m);
4491       // Reset to NULL.
4492       set_evac_failure_closure(NULL);
4493     } else {
4494       // The lock is already held, and this is recursive.
4495       assert(_drain_in_progress, "This should only be the recursive case.");
4496       handle_evacuation_failure_common(old, m);
4497     }
4498     return old;
4499   } else {
4500     // Forward-to-self failed. Either someone else managed to allocate
4501     // space for this object (old != forward_ptr) or they beat us in
4502     // self-forwarding it (old == forward_ptr).
4503     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4504            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4505                    "should not be in the CSet",
4506                    (HeapWord*) old, (HeapWord*) forward_ptr));
4507     return forward_ptr;
4508   }
4509 }
4510 
4511 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4512   preserve_mark_if_necessary(old, m);
4513 
4514   HeapRegion* r = heap_region_containing(old);
4515   if (!r->evacuation_failed()) {
4516     r->set_evacuation_failed(true);
4517     _hr_printer.evac_failure(r);
4518   }
4519 
4520   push_on_evac_failure_scan_stack(old);
4521 
4522   if (!_drain_in_progress) {
4523     // prevent recursion in copy_to_survivor_space()
4524     _drain_in_progress = true;
4525     drain_evac_failure_scan_stack();
4526     _drain_in_progress = false;
4527   }
4528 }
4529 
4530 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4531   assert(evacuation_failed(), "Oversaving!");
4532   // We want to call the "for_promotion_failure" version only in the
4533   // case of a promotion failure.
4534   if (m->must_be_preserved_for_promotion_failure(obj)) {
4535     _objs_with_preserved_marks.push(obj);
4536     _preserved_marks_of_objs.push(m);
4537   }
4538 }
4539 
4540 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4541                                                   size_t word_size) {
4542   if (purpose == GCAllocForSurvived) {
4543     HeapWord* result = survivor_attempt_allocation(word_size);
4544     if (result != NULL) {
4545       return result;
4546     } else {
4547       // Let's try to allocate in the old gen in case we can fit the
4548       // object there.
4549       return old_attempt_allocation(word_size);
4550     }
4551   } else {
4552     assert(purpose ==  GCAllocForTenured, "sanity");
4553     HeapWord* result = old_attempt_allocation(word_size);
4554     if (result != NULL) {
4555       return result;
4556     } else {
4557       // Let's try to allocate in the survivors in case we can fit the
4558       // object there.
4559       return survivor_attempt_allocation(word_size);
4560     }
4561   }
4562 
4563   ShouldNotReachHere();
4564   // Trying to keep some compilers happy.
4565   return NULL;
4566 }
4567 
4568 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4569   ParGCAllocBuffer(gclab_word_size), _retired(true) { }
4570 
4571 void G1ParCopyHelper::mark_object(oop obj) {
4572   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4573 
4574   // We know that the object is not moving so it's safe to read its size.
4575   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4576 }
4577 
4578 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4579   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4580   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4581   assert(from_obj != to_obj, "should not be self-forwarded");
4582 
4583   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4584   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4585 
4586   // The object might be in the process of being copied by another
4587   // worker so we cannot trust that its to-space image is
4588   // well-formed. So we have to read its size from its from-space
4589   // image which we know should not be changing.
4590   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4591 }
4592 
4593 template <class T>
4594 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4595   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4596     _scanned_klass->record_modified_oops();
4597   }
4598 }
4599 
4600 template <G1Barrier barrier, G1Mark do_mark_object>
4601 template <class T>
4602 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4603   T heap_oop = oopDesc::load_heap_oop(p);
4604 
4605   if (oopDesc::is_null(heap_oop)) {
4606     return;
4607   }
4608 
4609   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4610 
4611   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4612 
4613   if (_g1->in_cset_fast_test(obj)) {
4614     oop forwardee;
4615     if (obj->is_forwarded()) {
4616       forwardee = obj->forwardee();
4617     } else {
4618       forwardee = _par_scan_state->copy_to_survivor_space(obj);
4619     }
4620     assert(forwardee != NULL, "forwardee should not be NULL");
4621     oopDesc::encode_store_heap_oop(p, forwardee);
4622     if (do_mark_object != G1MarkNone && forwardee != obj) {
4623       // If the object is self-forwarded we don't need to explicitly
4624       // mark it, the evacuation failure protocol will do so.
4625       mark_forwarded_object(obj, forwardee);
4626     }
4627 
4628     if (barrier == G1BarrierKlass) {
4629       do_klass_barrier(p, forwardee);
4630     }
4631   } else {
4632     // The object is not in collection set. If we're a root scanning
4633     // closure during an initial mark pause then attempt to mark the object.
4634     if (do_mark_object == G1MarkFromRoot) {
4635       mark_object(obj);
4636     }
4637   }
4638 
4639   if (barrier == G1BarrierEvac) {
4640     _par_scan_state->update_rs(_from, p, _worker_id);
4641   }
4642 }
4643 
4644 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4645 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4646 
4647 class G1ParEvacuateFollowersClosure : public VoidClosure {
4648 protected:
4649   G1CollectedHeap*              _g1h;
4650   G1ParScanThreadState*         _par_scan_state;
4651   RefToScanQueueSet*            _queues;
4652   ParallelTaskTerminator*       _terminator;
4653 
4654   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4655   RefToScanQueueSet*      queues()         { return _queues; }
4656   ParallelTaskTerminator* terminator()     { return _terminator; }
4657 
4658 public:
4659   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4660                                 G1ParScanThreadState* par_scan_state,
4661                                 RefToScanQueueSet* queues,
4662                                 ParallelTaskTerminator* terminator)
4663     : _g1h(g1h), _par_scan_state(par_scan_state),
4664       _queues(queues), _terminator(terminator) {}
4665 
4666   void do_void();
4667 
4668 private:
4669   inline bool offer_termination();
4670 };
4671 
4672 bool G1ParEvacuateFollowersClosure::offer_termination() {
4673   G1ParScanThreadState* const pss = par_scan_state();
4674   pss->start_term_time();
4675   const bool res = terminator()->offer_termination();
4676   pss->end_term_time();
4677   return res;
4678 }
4679 
4680 void G1ParEvacuateFollowersClosure::do_void() {
4681   G1ParScanThreadState* const pss = par_scan_state();
4682   pss->trim_queue();
4683   do {
4684     pss->steal_and_trim_queue(queues());
4685   } while (!offer_termination());
4686 }
4687 
4688 class G1KlassScanClosure : public KlassClosure {
4689  G1ParCopyHelper* _closure;
4690  bool             _process_only_dirty;
4691  int              _count;
4692  public:
4693   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4694       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4695   void do_klass(Klass* klass) {
4696     // If the klass has not been dirtied we know that there's
4697     // no references into  the young gen and we can skip it.
4698    if (!_process_only_dirty || klass->has_modified_oops()) {
4699       // Clean the klass since we're going to scavenge all the metadata.
4700       klass->clear_modified_oops();
4701 
4702       // Tell the closure that this klass is the Klass to scavenge
4703       // and is the one to dirty if oops are left pointing into the young gen.
4704       _closure->set_scanned_klass(klass);
4705 
4706       klass->oops_do(_closure);
4707 
4708       _closure->set_scanned_klass(NULL);
4709     }
4710     _count++;
4711   }
4712 };
4713 
4714 class G1ParTask : public AbstractGangTask {
4715 protected:
4716   G1CollectedHeap*       _g1h;
4717   RefToScanQueueSet      *_queues;
4718   ParallelTaskTerminator _terminator;
4719   uint _n_workers;
4720 
4721   Mutex _stats_lock;
4722   Mutex* stats_lock() { return &_stats_lock; }
4723 
4724   size_t getNCards() {
4725     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4726       / G1BlockOffsetSharedArray::N_bytes;
4727   }
4728 
4729 public:
4730   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
4731     : AbstractGangTask("G1 collection"),
4732       _g1h(g1h),
4733       _queues(task_queues),
4734       _terminator(0, _queues),
4735       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4736   {}
4737 
4738   RefToScanQueueSet* queues() { return _queues; }
4739 
4740   RefToScanQueue *work_queue(int i) {
4741     return queues()->queue(i);
4742   }
4743 
4744   ParallelTaskTerminator* terminator() { return &_terminator; }
4745 
4746   virtual void set_for_termination(int active_workers) {
4747     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4748     // in the young space (_par_seq_tasks) in the G1 heap
4749     // for SequentialSubTasksDone.
4750     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4751     // both of which need setting by set_n_termination().
4752     _g1h->SharedHeap::set_n_termination(active_workers);
4753     _g1h->set_n_termination(active_workers);
4754     terminator()->reset_for_reuse(active_workers);
4755     _n_workers = active_workers;
4756   }
4757 
4758   // Helps out with CLD processing.
4759   //
4760   // During InitialMark we need to:
4761   // 1) Scavenge all CLDs for the young GC.
4762   // 2) Mark all objects directly reachable from strong CLDs.
4763   template <G1Mark do_mark_object>
4764   class G1CLDClosure : public CLDClosure {
4765     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4766     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4767     G1KlassScanClosure                                _klass_in_cld_closure;
4768     bool                                              _claim;
4769 
4770    public:
4771     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4772                  bool only_young, bool claim)
4773         : _oop_closure(oop_closure),
4774           _oop_in_klass_closure(oop_closure->g1(),
4775                                 oop_closure->pss(),
4776                                 oop_closure->rp()),
4777           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4778           _claim(claim) {
4779 
4780     }
4781 
4782     void do_cld(ClassLoaderData* cld) {
4783       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4784     }
4785   };
4786 
4787   class G1CodeBlobClosure: public CodeBlobClosure {
4788     OopClosure* _f;
4789 
4790    public:
4791     G1CodeBlobClosure(OopClosure* f) : _f(f) {}
4792     void do_code_blob(CodeBlob* blob) {
4793       nmethod* that = blob->as_nmethod_or_null();
4794       if (that != NULL) {
4795         if (!that->test_set_oops_do_mark()) {
4796           that->oops_do(_f);
4797           that->fix_oop_relocations();
4798         }
4799       }
4800     }
4801   };
4802 
4803   void work(uint worker_id) {
4804     if (worker_id >= _n_workers) return;  // no work needed this round
4805 
4806     double start_time_ms = os::elapsedTime() * 1000.0;
4807     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4808 
4809     {
4810       ResourceMark rm;
4811       HandleMark   hm;
4812 
4813       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4814 
4815       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4816       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4817 
4818       pss.set_evac_failure_closure(&evac_failure_cl);
4819 
4820       bool only_young = _g1h->g1_policy()->gcs_are_young();
4821 
4822       // Non-IM young GC.
4823       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4824       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4825                                                                                only_young, // Only process dirty klasses.
4826                                                                                false);     // No need to claim CLDs.
4827       // IM young GC.
4828       //    Strong roots closures.
4829       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4830       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4831                                                                                false, // Process all klasses.
4832                                                                                true); // Need to claim CLDs.
4833       //    Weak roots closures.
4834       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4835       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4836                                                                                     false, // Process all klasses.
4837                                                                                     true); // Need to claim CLDs.
4838 
4839       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
4840       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
4841       // IM Weak code roots are handled later.
4842 
4843       OopClosure* strong_root_cl;
4844       OopClosure* weak_root_cl;
4845       CLDClosure* strong_cld_cl;
4846       CLDClosure* weak_cld_cl;
4847       CodeBlobClosure* strong_code_cl;
4848 
4849       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4850         // We also need to mark copied objects.
4851         strong_root_cl = &scan_mark_root_cl;
4852         weak_root_cl   = &scan_mark_weak_root_cl;
4853         strong_cld_cl  = &scan_mark_cld_cl;
4854         weak_cld_cl    = &scan_mark_weak_cld_cl;
4855         strong_code_cl = &scan_mark_code_cl;
4856       } else {
4857         strong_root_cl = &scan_only_root_cl;
4858         weak_root_cl   = &scan_only_root_cl;
4859         strong_cld_cl  = &scan_only_cld_cl;
4860         weak_cld_cl    = &scan_only_cld_cl;
4861         strong_code_cl = &scan_only_code_cl;
4862       }
4863 
4864 
4865       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
4866 
4867       pss.start_strong_roots();
4868       _g1h->g1_process_roots(strong_root_cl,
4869                              weak_root_cl,
4870                              &push_heap_rs_cl,
4871                              strong_cld_cl,
4872                              weak_cld_cl,
4873                              strong_code_cl,
4874                              worker_id);
4875 
4876       pss.end_strong_roots();
4877 
4878       {
4879         double start = os::elapsedTime();
4880         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4881         evac.do_void();
4882         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4883         double term_ms = pss.term_time()*1000.0;
4884         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4885         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4886       }
4887       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4888       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4889 
4890       if (ParallelGCVerbose) {
4891         MutexLocker x(stats_lock());
4892         pss.print_termination_stats(worker_id);
4893       }
4894 
4895       assert(pss.queue_is_empty(), "should be empty");
4896 
4897       // Close the inner scope so that the ResourceMark and HandleMark
4898       // destructors are executed here and are included as part of the
4899       // "GC Worker Time".
4900     }
4901 
4902     double end_time_ms = os::elapsedTime() * 1000.0;
4903     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4904   }
4905 };
4906 
4907 // *** Common G1 Evacuation Stuff
4908 
4909 // This method is run in a GC worker.
4910 
4911 void
4912 G1CollectedHeap::
4913 g1_process_roots(OopClosure* scan_non_heap_roots,
4914                  OopClosure* scan_non_heap_weak_roots,
4915                  OopsInHeapRegionClosure* scan_rs,
4916                  CLDClosure* scan_strong_clds,
4917                  CLDClosure* scan_weak_clds,
4918                  CodeBlobClosure* scan_strong_code,
4919                  uint worker_i) {
4920 
4921   // First scan the shared roots.
4922   double ext_roots_start = os::elapsedTime();
4923   double closure_app_time_sec = 0.0;
4924 
4925   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
4926 
4927   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4928   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
4929 
4930   process_roots(false, // no scoping; this is parallel code
4931                 SharedHeap::SO_None,
4932                 &buf_scan_non_heap_roots,
4933                 &buf_scan_non_heap_weak_roots,
4934                 scan_strong_clds,
4935                 // Initial Mark handles the weak CLDs separately.
4936                 (during_im ? NULL : scan_weak_clds),
4937                 scan_strong_code);
4938 
4939   // Now the CM ref_processor roots.
4940   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4941     // We need to treat the discovered reference lists of the
4942     // concurrent mark ref processor as roots and keep entries
4943     // (which are added by the marking threads) on them live
4944     // until they can be processed at the end of marking.
4945     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4946   }
4947 
4948   if (during_im) {
4949     // Barrier to make sure all workers passed
4950     // the strong CLD and strong nmethods phases.
4951     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
4952 
4953     // Now take the complement of the strong CLDs.
4954     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
4955   }
4956 
4957   // Finish up any enqueued closure apps (attributed as object copy time).
4958   buf_scan_non_heap_roots.done();
4959   buf_scan_non_heap_weak_roots.done();
4960 
4961   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
4962       + buf_scan_non_heap_weak_roots.closure_app_seconds();
4963 
4964   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4965 
4966   double ext_root_time_ms =
4967     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4968 
4969   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4970 
4971   // During conc marking we have to filter the per-thread SATB buffers
4972   // to make sure we remove any oops into the CSet (which will show up
4973   // as implicitly live).
4974   double satb_filtering_ms = 0.0;
4975   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
4976     if (mark_in_progress()) {
4977       double satb_filter_start = os::elapsedTime();
4978 
4979       JavaThread::satb_mark_queue_set().filter_thread_buffers();
4980 
4981       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
4982     }
4983   }
4984   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4985 
4986   // Now scan the complement of the collection set.
4987   MarkingCodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots, CodeBlobToOopClosure::FixRelocations);
4988 
4989   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
4990 
4991   _process_strong_tasks->all_tasks_completed();
4992 }
4993 
4994 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4995 private:
4996   BoolObjectClosure* _is_alive;
4997   int _initial_string_table_size;
4998   int _initial_symbol_table_size;
4999 
5000   bool  _process_strings;
5001   int _strings_processed;
5002   int _strings_removed;
5003 
5004   bool  _process_symbols;
5005   int _symbols_processed;
5006   int _symbols_removed;
5007 
5008   bool _do_in_parallel;
5009 public:
5010   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
5011     AbstractGangTask("String/Symbol Unlinking"),
5012     _is_alive(is_alive),
5013     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
5014     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
5015     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
5016 
5017     _initial_string_table_size = StringTable::the_table()->table_size();
5018     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
5019     if (process_strings) {
5020       StringTable::clear_parallel_claimed_index();
5021     }
5022     if (process_symbols) {
5023       SymbolTable::clear_parallel_claimed_index();
5024     }
5025   }
5026 
5027   ~G1StringSymbolTableUnlinkTask() {
5028     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
5029               err_msg("claim value %d after unlink less than initial string table size %d",
5030                       StringTable::parallel_claimed_index(), _initial_string_table_size));
5031     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
5032               err_msg("claim value %d after unlink less than initial symbol table size %d",
5033                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
5034 
5035     if (G1TraceStringSymbolTableScrubbing) {
5036       gclog_or_tty->print_cr("Cleaned string and symbol table, "
5037                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
5038                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
5039                              strings_processed(), strings_removed(),
5040                              symbols_processed(), symbols_removed());
5041     }
5042   }
5043 
5044   void work(uint worker_id) {
5045     if (_do_in_parallel) {
5046       int strings_processed = 0;
5047       int strings_removed = 0;
5048       int symbols_processed = 0;
5049       int symbols_removed = 0;
5050       if (_process_strings) {
5051         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
5052         Atomic::add(strings_processed, &_strings_processed);
5053         Atomic::add(strings_removed, &_strings_removed);
5054       }
5055       if (_process_symbols) {
5056         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
5057         Atomic::add(symbols_processed, &_symbols_processed);
5058         Atomic::add(symbols_removed, &_symbols_removed);
5059       }
5060     } else {
5061       if (_process_strings) {
5062         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
5063       }
5064       if (_process_symbols) {
5065         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
5066       }
5067     }
5068   }
5069 
5070   size_t strings_processed() const { return (size_t)_strings_processed; }
5071   size_t strings_removed()   const { return (size_t)_strings_removed; }
5072 
5073   size_t symbols_processed() const { return (size_t)_symbols_processed; }
5074   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
5075 };
5076 
5077 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
5078 private:
5079   static Monitor* _lock;
5080 
5081   BoolObjectClosure* const _is_alive;
5082   const bool               _unloading_occurred;
5083   const uint               _num_workers;
5084 
5085   // Variables used to claim nmethods.
5086   nmethod* _first_nmethod;
5087   volatile nmethod* _claimed_nmethod;
5088 
5089   // The list of nmethods that need to be processed by the second pass.
5090   volatile nmethod* _postponed_list;
5091   volatile uint     _num_entered_barrier;
5092 
5093  public:
5094   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
5095       _is_alive(is_alive),
5096       _unloading_occurred(unloading_occurred),
5097       _num_workers(num_workers),
5098       _first_nmethod(NULL),
5099       _claimed_nmethod(NULL),
5100       _postponed_list(NULL),
5101       _num_entered_barrier(0)
5102   {
5103     nmethod::increase_unloading_clock();
5104     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
5105     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
5106   }
5107 
5108   ~G1CodeCacheUnloadingTask() {
5109     CodeCache::verify_clean_inline_caches();
5110 
5111     CodeCache::set_needs_cache_clean(false);
5112     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
5113 
5114     CodeCache::verify_icholder_relocations();
5115   }
5116 
5117  private:
5118   void add_to_postponed_list(nmethod* nm) {
5119       nmethod* old;
5120       do {
5121         old = (nmethod*)_postponed_list;
5122         nm->set_unloading_next(old);
5123       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
5124   }
5125 
5126   void clean_nmethod(nmethod* nm) {
5127     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
5128 
5129     if (postponed) {
5130       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
5131       add_to_postponed_list(nm);
5132     }
5133 
5134     // Mark that this thread has been cleaned/unloaded.
5135     // After this call, it will be safe to ask if this nmethod was unloaded or not.
5136     nm->set_unloading_clock(nmethod::global_unloading_clock());
5137   }
5138 
5139   void clean_nmethod_postponed(nmethod* nm) {
5140     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
5141   }
5142 
5143   static const int MaxClaimNmethods = 16;
5144 
5145   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
5146     nmethod* first;
5147     nmethod* last;
5148 
5149     do {
5150       *num_claimed_nmethods = 0;
5151 
5152       first = last = (nmethod*)_claimed_nmethod;
5153 
5154       if (first != NULL) {
5155         for (int i = 0; i < MaxClaimNmethods; i++) {
5156           last = CodeCache::alive_nmethod(CodeCache::next(last));
5157 
5158           if (last == NULL) {
5159             break;
5160           }
5161 
5162           claimed_nmethods[i] = last;
5163           (*num_claimed_nmethods)++;
5164         }
5165       }
5166 
5167     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
5168   }
5169 
5170   nmethod* claim_postponed_nmethod() {
5171     nmethod* claim;
5172     nmethod* next;
5173 
5174     do {
5175       claim = (nmethod*)_postponed_list;
5176       if (claim == NULL) {
5177         return NULL;
5178       }
5179 
5180       next = claim->unloading_next();
5181 
5182     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
5183 
5184     return claim;
5185   }
5186 
5187  public:
5188   // Mark that we're done with the first pass of nmethod cleaning.
5189   void barrier_mark(uint worker_id) {
5190     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
5191     _num_entered_barrier++;
5192     if (_num_entered_barrier == _num_workers) {
5193       ml.notify_all();
5194     }
5195   }
5196 
5197   // See if we have to wait for the other workers to
5198   // finish their first-pass nmethod cleaning work.
5199   void barrier_wait(uint worker_id) {
5200     if (_num_entered_barrier < _num_workers) {
5201       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
5202       while (_num_entered_barrier < _num_workers) {
5203           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
5204       }
5205     }
5206   }
5207 
5208   // Cleaning and unloading of nmethods. Some work has to be postponed
5209   // to the second pass, when we know which nmethods survive.
5210   void work_first_pass(uint worker_id) {
5211     // The first nmethods is claimed by the first worker.
5212     if (worker_id == 0 && _first_nmethod != NULL) {
5213       clean_nmethod(_first_nmethod);
5214       _first_nmethod = NULL;
5215     }
5216 
5217     int num_claimed_nmethods;
5218     nmethod* claimed_nmethods[MaxClaimNmethods];
5219 
5220     while (true) {
5221       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
5222 
5223       if (num_claimed_nmethods == 0) {
5224         break;
5225       }
5226 
5227       for (int i = 0; i < num_claimed_nmethods; i++) {
5228         clean_nmethod(claimed_nmethods[i]);
5229       }
5230     }
5231   }
5232 
5233   void work_second_pass(uint worker_id) {
5234     nmethod* nm;
5235     // Take care of postponed nmethods.
5236     while ((nm = claim_postponed_nmethod()) != NULL) {
5237       clean_nmethod_postponed(nm);
5238     }
5239   }
5240 };
5241 
5242 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
5243 
5244 class G1KlassCleaningTask : public StackObj {
5245   BoolObjectClosure*                      _is_alive;
5246   volatile jint                           _clean_klass_tree_claimed;
5247   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
5248 
5249  public:
5250   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
5251       _is_alive(is_alive),
5252       _clean_klass_tree_claimed(0),
5253       _klass_iterator() {
5254   }
5255 
5256  private:
5257   bool claim_clean_klass_tree_task() {
5258     if (_clean_klass_tree_claimed) {
5259       return false;
5260     }
5261 
5262     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
5263   }
5264 
5265   InstanceKlass* claim_next_klass() {
5266     Klass* klass;
5267     do {
5268       klass =_klass_iterator.next_klass();
5269     } while (klass != NULL && !klass->oop_is_instance());
5270 
5271     return (InstanceKlass*)klass;
5272   }
5273 
5274 public:
5275 
5276   void clean_klass(InstanceKlass* ik) {
5277     ik->clean_implementors_list(_is_alive);
5278     ik->clean_method_data(_is_alive);
5279 
5280     // G1 specific cleanup work that has
5281     // been moved here to be done in parallel.
5282     ik->clean_dependent_nmethods();
5283   }
5284 
5285   void work() {
5286     ResourceMark rm;
5287 
5288     // One worker will clean the subklass/sibling klass tree.
5289     if (claim_clean_klass_tree_task()) {
5290       Klass::clean_subklass_tree(_is_alive);
5291     }
5292 
5293     // All workers will help cleaning the classes,
5294     InstanceKlass* klass;
5295     while ((klass = claim_next_klass()) != NULL) {
5296       clean_klass(klass);
5297     }
5298   }
5299 };
5300 
5301 // To minimize the remark pause times, the tasks below are done in parallel.
5302 class G1ParallelCleaningTask : public AbstractGangTask {
5303 private:
5304   G1StringSymbolTableUnlinkTask _string_symbol_task;
5305   G1CodeCacheUnloadingTask      _code_cache_task;
5306   G1KlassCleaningTask           _klass_cleaning_task;
5307 
5308 public:
5309   // The constructor is run in the VMThread.
5310   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5311       AbstractGangTask("Parallel Cleaning"),
5312       _string_symbol_task(is_alive, process_strings, process_symbols),
5313       _code_cache_task(num_workers, is_alive, unloading_occurred),
5314       _klass_cleaning_task(is_alive) {
5315   }
5316 
5317   // The parallel work done by all worker threads.
5318   void work(uint worker_id) {
5319     // Do first pass of code cache cleaning.
5320     _code_cache_task.work_first_pass(worker_id);
5321 
5322     // Let the threads, mark that the first pass is done.
5323     _code_cache_task.barrier_mark(worker_id);
5324 
5325     // Clean the Strings and Symbols.
5326     _string_symbol_task.work(worker_id);
5327 
5328     // Wait for all workers to finish the first code cache cleaning pass.
5329     _code_cache_task.barrier_wait(worker_id);
5330 
5331     // Do the second code cache cleaning work, which realize on
5332     // the liveness information gathered during the first pass.
5333     _code_cache_task.work_second_pass(worker_id);
5334 
5335     // Clean all klasses that were not unloaded.
5336     _klass_cleaning_task.work();
5337   }
5338 };
5339 
5340 
5341 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5342                                         bool process_strings,
5343                                         bool process_symbols,
5344                                         bool class_unloading_occurred) {
5345   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5346                     workers()->active_workers() : 1);
5347 
5348   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5349                                         n_workers, class_unloading_occurred);
5350   if (G1CollectedHeap::use_parallel_gc_threads()) {
5351     set_par_threads(n_workers);
5352     workers()->run_task(&g1_unlink_task);
5353     set_par_threads(0);
5354   } else {
5355     g1_unlink_task.work(0);
5356   }
5357 }
5358 
5359 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5360                                                      bool process_strings, bool process_symbols) {
5361   {
5362     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5363                      _g1h->workers()->active_workers() : 1);
5364     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5365     if (G1CollectedHeap::use_parallel_gc_threads()) {
5366       set_par_threads(n_workers);
5367       workers()->run_task(&g1_unlink_task);
5368       set_par_threads(0);
5369     } else {
5370       g1_unlink_task.work(0);
5371     }
5372   }
5373 
5374   if (G1StringDedup::is_enabled()) {
5375     G1StringDedup::unlink(is_alive);
5376   }
5377 }
5378 
5379 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5380  private:
5381   DirtyCardQueueSet* _queue;
5382  public:
5383   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5384 
5385   virtual void work(uint worker_id) {
5386     double start_time = os::elapsedTime();
5387 
5388     RedirtyLoggedCardTableEntryClosure cl;
5389     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
5390       _queue->par_apply_closure_to_all_completed_buffers(&cl);
5391     } else {
5392       _queue->apply_closure_to_all_completed_buffers(&cl);
5393     }
5394 
5395     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
5396     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
5397     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
5398   }
5399 };
5400 
5401 void G1CollectedHeap::redirty_logged_cards() {
5402   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
5403   double redirty_logged_cards_start = os::elapsedTime();
5404 
5405   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5406                    _g1h->workers()->active_workers() : 1);
5407 
5408   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5409   dirty_card_queue_set().reset_for_par_iteration();
5410   if (use_parallel_gc_threads()) {
5411     set_par_threads(n_workers);
5412     workers()->run_task(&redirty_task);
5413     set_par_threads(0);
5414   } else {
5415     redirty_task.work(0);
5416   }
5417 
5418   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5419   dcq.merge_bufferlists(&dirty_card_queue_set());
5420   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5421 
5422   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5423 }
5424 
5425 // Weak Reference Processing support
5426 
5427 // An always "is_alive" closure that is used to preserve referents.
5428 // If the object is non-null then it's alive.  Used in the preservation
5429 // of referent objects that are pointed to by reference objects
5430 // discovered by the CM ref processor.
5431 class G1AlwaysAliveClosure: public BoolObjectClosure {
5432   G1CollectedHeap* _g1;
5433 public:
5434   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5435   bool do_object_b(oop p) {
5436     if (p != NULL) {
5437       return true;
5438     }
5439     return false;
5440   }
5441 };
5442 
5443 bool G1STWIsAliveClosure::do_object_b(oop p) {
5444   // An object is reachable if it is outside the collection set,
5445   // or is inside and copied.
5446   return !_g1->obj_in_cs(p) || p->is_forwarded();
5447 }
5448 
5449 // Non Copying Keep Alive closure
5450 class G1KeepAliveClosure: public OopClosure {
5451   G1CollectedHeap* _g1;
5452 public:
5453   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5454   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5455   void do_oop(      oop* p) {
5456     oop obj = *p;
5457 
5458     if (_g1->obj_in_cs(obj)) {
5459       assert( obj->is_forwarded(), "invariant" );
5460       *p = obj->forwardee();
5461     }
5462   }
5463 };
5464 
5465 // Copying Keep Alive closure - can be called from both
5466 // serial and parallel code as long as different worker
5467 // threads utilize different G1ParScanThreadState instances
5468 // and different queues.
5469 
5470 class G1CopyingKeepAliveClosure: public OopClosure {
5471   G1CollectedHeap*         _g1h;
5472   OopClosure*              _copy_non_heap_obj_cl;
5473   G1ParScanThreadState*    _par_scan_state;
5474 
5475 public:
5476   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5477                             OopClosure* non_heap_obj_cl,
5478                             G1ParScanThreadState* pss):
5479     _g1h(g1h),
5480     _copy_non_heap_obj_cl(non_heap_obj_cl),
5481     _par_scan_state(pss)
5482   {}
5483 
5484   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5485   virtual void do_oop(      oop* p) { do_oop_work(p); }
5486 
5487   template <class T> void do_oop_work(T* p) {
5488     oop obj = oopDesc::load_decode_heap_oop(p);
5489 
5490     if (_g1h->obj_in_cs(obj)) {
5491       // If the referent object has been forwarded (either copied
5492       // to a new location or to itself in the event of an
5493       // evacuation failure) then we need to update the reference
5494       // field and, if both reference and referent are in the G1
5495       // heap, update the RSet for the referent.
5496       //
5497       // If the referent has not been forwarded then we have to keep
5498       // it alive by policy. Therefore we have copy the referent.
5499       //
5500       // If the reference field is in the G1 heap then we can push
5501       // on the PSS queue. When the queue is drained (after each
5502       // phase of reference processing) the object and it's followers
5503       // will be copied, the reference field set to point to the
5504       // new location, and the RSet updated. Otherwise we need to
5505       // use the the non-heap or metadata closures directly to copy
5506       // the referent object and update the pointer, while avoiding
5507       // updating the RSet.
5508 
5509       if (_g1h->is_in_g1_reserved(p)) {
5510         _par_scan_state->push_on_queue(p);
5511       } else {
5512         assert(!Metaspace::contains((const void*)p),
5513                err_msg("Unexpectedly found a pointer from metadata: "
5514                               PTR_FORMAT, p));
5515           _copy_non_heap_obj_cl->do_oop(p);
5516         }
5517       }
5518     }
5519 };
5520 
5521 // Serial drain queue closure. Called as the 'complete_gc'
5522 // closure for each discovered list in some of the
5523 // reference processing phases.
5524 
5525 class G1STWDrainQueueClosure: public VoidClosure {
5526 protected:
5527   G1CollectedHeap* _g1h;
5528   G1ParScanThreadState* _par_scan_state;
5529 
5530   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5531 
5532 public:
5533   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5534     _g1h(g1h),
5535     _par_scan_state(pss)
5536   { }
5537 
5538   void do_void() {
5539     G1ParScanThreadState* const pss = par_scan_state();
5540     pss->trim_queue();
5541   }
5542 };
5543 
5544 // Parallel Reference Processing closures
5545 
5546 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5547 // processing during G1 evacuation pauses.
5548 
5549 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5550 private:
5551   G1CollectedHeap*   _g1h;
5552   RefToScanQueueSet* _queues;
5553   FlexibleWorkGang*  _workers;
5554   int                _active_workers;
5555 
5556 public:
5557   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5558                         FlexibleWorkGang* workers,
5559                         RefToScanQueueSet *task_queues,
5560                         int n_workers) :
5561     _g1h(g1h),
5562     _queues(task_queues),
5563     _workers(workers),
5564     _active_workers(n_workers)
5565   {
5566     assert(n_workers > 0, "shouldn't call this otherwise");
5567   }
5568 
5569   // Executes the given task using concurrent marking worker threads.
5570   virtual void execute(ProcessTask& task);
5571   virtual void execute(EnqueueTask& task);
5572 };
5573 
5574 // Gang task for possibly parallel reference processing
5575 
5576 class G1STWRefProcTaskProxy: public AbstractGangTask {
5577   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5578   ProcessTask&     _proc_task;
5579   G1CollectedHeap* _g1h;
5580   RefToScanQueueSet *_task_queues;
5581   ParallelTaskTerminator* _terminator;
5582 
5583 public:
5584   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5585                      G1CollectedHeap* g1h,
5586                      RefToScanQueueSet *task_queues,
5587                      ParallelTaskTerminator* terminator) :
5588     AbstractGangTask("Process reference objects in parallel"),
5589     _proc_task(proc_task),
5590     _g1h(g1h),
5591     _task_queues(task_queues),
5592     _terminator(terminator)
5593   {}
5594 
5595   virtual void work(uint worker_id) {
5596     // The reference processing task executed by a single worker.
5597     ResourceMark rm;
5598     HandleMark   hm;
5599 
5600     G1STWIsAliveClosure is_alive(_g1h);
5601 
5602     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5603     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5604 
5605     pss.set_evac_failure_closure(&evac_failure_cl);
5606 
5607     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5608 
5609     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5610 
5611     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5612 
5613     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5614       // We also need to mark copied objects.
5615       copy_non_heap_cl = &copy_mark_non_heap_cl;
5616     }
5617 
5618     // Keep alive closure.
5619     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5620 
5621     // Complete GC closure
5622     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5623 
5624     // Call the reference processing task's work routine.
5625     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5626 
5627     // Note we cannot assert that the refs array is empty here as not all
5628     // of the processing tasks (specifically phase2 - pp2_work) execute
5629     // the complete_gc closure (which ordinarily would drain the queue) so
5630     // the queue may not be empty.
5631   }
5632 };
5633 
5634 // Driver routine for parallel reference processing.
5635 // Creates an instance of the ref processing gang
5636 // task and has the worker threads execute it.
5637 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5638   assert(_workers != NULL, "Need parallel worker threads.");
5639 
5640   ParallelTaskTerminator terminator(_active_workers, _queues);
5641   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5642 
5643   _g1h->set_par_threads(_active_workers);
5644   _workers->run_task(&proc_task_proxy);
5645   _g1h->set_par_threads(0);
5646 }
5647 
5648 // Gang task for parallel reference enqueueing.
5649 
5650 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5651   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5652   EnqueueTask& _enq_task;
5653 
5654 public:
5655   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5656     AbstractGangTask("Enqueue reference objects in parallel"),
5657     _enq_task(enq_task)
5658   { }
5659 
5660   virtual void work(uint worker_id) {
5661     _enq_task.work(worker_id);
5662   }
5663 };
5664 
5665 // Driver routine for parallel reference enqueueing.
5666 // Creates an instance of the ref enqueueing gang
5667 // task and has the worker threads execute it.
5668 
5669 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5670   assert(_workers != NULL, "Need parallel worker threads.");
5671 
5672   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5673 
5674   _g1h->set_par_threads(_active_workers);
5675   _workers->run_task(&enq_task_proxy);
5676   _g1h->set_par_threads(0);
5677 }
5678 
5679 // End of weak reference support closures
5680 
5681 // Abstract task used to preserve (i.e. copy) any referent objects
5682 // that are in the collection set and are pointed to by reference
5683 // objects discovered by the CM ref processor.
5684 
5685 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5686 protected:
5687   G1CollectedHeap* _g1h;
5688   RefToScanQueueSet      *_queues;
5689   ParallelTaskTerminator _terminator;
5690   uint _n_workers;
5691 
5692 public:
5693   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5694     AbstractGangTask("ParPreserveCMReferents"),
5695     _g1h(g1h),
5696     _queues(task_queues),
5697     _terminator(workers, _queues),
5698     _n_workers(workers)
5699   { }
5700 
5701   void work(uint worker_id) {
5702     ResourceMark rm;
5703     HandleMark   hm;
5704 
5705     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5706     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5707 
5708     pss.set_evac_failure_closure(&evac_failure_cl);
5709 
5710     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5711 
5712     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5713 
5714     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5715 
5716     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5717 
5718     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5719       // We also need to mark copied objects.
5720       copy_non_heap_cl = &copy_mark_non_heap_cl;
5721     }
5722 
5723     // Is alive closure
5724     G1AlwaysAliveClosure always_alive(_g1h);
5725 
5726     // Copying keep alive closure. Applied to referent objects that need
5727     // to be copied.
5728     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5729 
5730     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5731 
5732     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5733     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5734 
5735     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5736     // So this must be true - but assert just in case someone decides to
5737     // change the worker ids.
5738     assert(0 <= worker_id && worker_id < limit, "sanity");
5739     assert(!rp->discovery_is_atomic(), "check this code");
5740 
5741     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5742     for (uint idx = worker_id; idx < limit; idx += stride) {
5743       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5744 
5745       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5746       while (iter.has_next()) {
5747         // Since discovery is not atomic for the CM ref processor, we
5748         // can see some null referent objects.
5749         iter.load_ptrs(DEBUG_ONLY(true));
5750         oop ref = iter.obj();
5751 
5752         // This will filter nulls.
5753         if (iter.is_referent_alive()) {
5754           iter.make_referent_alive();
5755         }
5756         iter.move_to_next();
5757       }
5758     }
5759 
5760     // Drain the queue - which may cause stealing
5761     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5762     drain_queue.do_void();
5763     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5764     assert(pss.queue_is_empty(), "should be");
5765   }
5766 };
5767 
5768 // Weak Reference processing during an evacuation pause (part 1).
5769 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5770   double ref_proc_start = os::elapsedTime();
5771 
5772   ReferenceProcessor* rp = _ref_processor_stw;
5773   assert(rp->discovery_enabled(), "should have been enabled");
5774 
5775   // Any reference objects, in the collection set, that were 'discovered'
5776   // by the CM ref processor should have already been copied (either by
5777   // applying the external root copy closure to the discovered lists, or
5778   // by following an RSet entry).
5779   //
5780   // But some of the referents, that are in the collection set, that these
5781   // reference objects point to may not have been copied: the STW ref
5782   // processor would have seen that the reference object had already
5783   // been 'discovered' and would have skipped discovering the reference,
5784   // but would not have treated the reference object as a regular oop.
5785   // As a result the copy closure would not have been applied to the
5786   // referent object.
5787   //
5788   // We need to explicitly copy these referent objects - the references
5789   // will be processed at the end of remarking.
5790   //
5791   // We also need to do this copying before we process the reference
5792   // objects discovered by the STW ref processor in case one of these
5793   // referents points to another object which is also referenced by an
5794   // object discovered by the STW ref processor.
5795 
5796   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5797            no_of_gc_workers == workers()->active_workers(),
5798            "Need to reset active GC workers");
5799 
5800   set_par_threads(no_of_gc_workers);
5801   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5802                                                  no_of_gc_workers,
5803                                                  _task_queues);
5804 
5805   if (G1CollectedHeap::use_parallel_gc_threads()) {
5806     workers()->run_task(&keep_cm_referents);
5807   } else {
5808     keep_cm_referents.work(0);
5809   }
5810 
5811   set_par_threads(0);
5812 
5813   // Closure to test whether a referent is alive.
5814   G1STWIsAliveClosure is_alive(this);
5815 
5816   // Even when parallel reference processing is enabled, the processing
5817   // of JNI refs is serial and performed serially by the current thread
5818   // rather than by a worker. The following PSS will be used for processing
5819   // JNI refs.
5820 
5821   // Use only a single queue for this PSS.
5822   G1ParScanThreadState            pss(this, 0, NULL);
5823 
5824   // We do not embed a reference processor in the copying/scanning
5825   // closures while we're actually processing the discovered
5826   // reference objects.
5827   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5828 
5829   pss.set_evac_failure_closure(&evac_failure_cl);
5830 
5831   assert(pss.queue_is_empty(), "pre-condition");
5832 
5833   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5834 
5835   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5836 
5837   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5838 
5839   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5840     // We also need to mark copied objects.
5841     copy_non_heap_cl = &copy_mark_non_heap_cl;
5842   }
5843 
5844   // Keep alive closure.
5845   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5846 
5847   // Serial Complete GC closure
5848   G1STWDrainQueueClosure drain_queue(this, &pss);
5849 
5850   // Setup the soft refs policy...
5851   rp->setup_policy(false);
5852 
5853   ReferenceProcessorStats stats;
5854   if (!rp->processing_is_mt()) {
5855     // Serial reference processing...
5856     stats = rp->process_discovered_references(&is_alive,
5857                                               &keep_alive,
5858                                               &drain_queue,
5859                                               NULL,
5860                                               _gc_timer_stw,
5861                                               _gc_tracer_stw->gc_id());
5862   } else {
5863     // Parallel reference processing
5864     assert(rp->num_q() == no_of_gc_workers, "sanity");
5865     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5866 
5867     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5868     stats = rp->process_discovered_references(&is_alive,
5869                                               &keep_alive,
5870                                               &drain_queue,
5871                                               &par_task_executor,
5872                                               _gc_timer_stw,
5873                                               _gc_tracer_stw->gc_id());
5874   }
5875 
5876   _gc_tracer_stw->report_gc_reference_stats(stats);
5877 
5878   // We have completed copying any necessary live referent objects.
5879   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5880 
5881   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5882   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5883 }
5884 
5885 // Weak Reference processing during an evacuation pause (part 2).
5886 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5887   double ref_enq_start = os::elapsedTime();
5888 
5889   ReferenceProcessor* rp = _ref_processor_stw;
5890   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5891 
5892   // Now enqueue any remaining on the discovered lists on to
5893   // the pending list.
5894   if (!rp->processing_is_mt()) {
5895     // Serial reference processing...
5896     rp->enqueue_discovered_references();
5897   } else {
5898     // Parallel reference enqueueing
5899 
5900     assert(no_of_gc_workers == workers()->active_workers(),
5901            "Need to reset active workers");
5902     assert(rp->num_q() == no_of_gc_workers, "sanity");
5903     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5904 
5905     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5906     rp->enqueue_discovered_references(&par_task_executor);
5907   }
5908 
5909   rp->verify_no_references_recorded();
5910   assert(!rp->discovery_enabled(), "should have been disabled");
5911 
5912   // FIXME
5913   // CM's reference processing also cleans up the string and symbol tables.
5914   // Should we do that here also? We could, but it is a serial operation
5915   // and could significantly increase the pause time.
5916 
5917   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5918   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5919 }
5920 
5921 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5922   _expand_heap_after_alloc_failure = true;
5923   _evacuation_failed = false;
5924 
5925   // Should G1EvacuationFailureALot be in effect for this GC?
5926   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5927 
5928   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5929 
5930   // Disable the hot card cache.
5931   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5932   hot_card_cache->reset_hot_cache_claimed_index();
5933   hot_card_cache->set_use_cache(false);
5934 
5935   uint n_workers;
5936   if (G1CollectedHeap::use_parallel_gc_threads()) {
5937     n_workers =
5938       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5939                                      workers()->active_workers(),
5940                                      Threads::number_of_non_daemon_threads());
5941     assert(UseDynamicNumberOfGCThreads ||
5942            n_workers == workers()->total_workers(),
5943            "If not dynamic should be using all the  workers");
5944     workers()->set_active_workers(n_workers);
5945     set_par_threads(n_workers);
5946   } else {
5947     assert(n_par_threads() == 0,
5948            "Should be the original non-parallel value");
5949     n_workers = 1;
5950   }
5951 
5952   G1ParTask g1_par_task(this, _task_queues);
5953 
5954   init_for_evac_failure(NULL);
5955 
5956   rem_set()->prepare_for_younger_refs_iterate(true);
5957 
5958   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5959   double start_par_time_sec = os::elapsedTime();
5960   double end_par_time_sec;
5961 
5962   {
5963     StrongRootsScope srs(this);
5964     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5965     if (g1_policy()->during_initial_mark_pause()) {
5966       ClassLoaderDataGraph::clear_claimed_marks();
5967     }
5968 
5969     if (G1CollectedHeap::use_parallel_gc_threads()) {
5970       // The individual threads will set their evac-failure closures.
5971       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5972       // These tasks use ShareHeap::_process_strong_tasks
5973       assert(UseDynamicNumberOfGCThreads ||
5974              workers()->active_workers() == workers()->total_workers(),
5975              "If not dynamic should be using all the  workers");
5976       workers()->run_task(&g1_par_task);
5977     } else {
5978       g1_par_task.set_for_termination(n_workers);
5979       g1_par_task.work(0);
5980     }
5981     end_par_time_sec = os::elapsedTime();
5982 
5983     // Closing the inner scope will execute the destructor
5984     // for the StrongRootsScope object. We record the current
5985     // elapsed time before closing the scope so that time
5986     // taken for the SRS destructor is NOT included in the
5987     // reported parallel time.
5988   }
5989 
5990   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5991   g1_policy()->phase_times()->record_par_time(par_time_ms);
5992 
5993   double code_root_fixup_time_ms =
5994         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5995   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5996 
5997   set_par_threads(0);
5998 
5999   // Process any discovered reference objects - we have
6000   // to do this _before_ we retire the GC alloc regions
6001   // as we may have to copy some 'reachable' referent
6002   // objects (and their reachable sub-graphs) that were
6003   // not copied during the pause.
6004   process_discovered_references(n_workers);
6005 
6006   // Weak root processing.
6007   {
6008     G1STWIsAliveClosure is_alive(this);
6009     G1KeepAliveClosure keep_alive(this);
6010     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
6011     if (G1StringDedup::is_enabled()) {
6012       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
6013     }
6014   }
6015 
6016   release_gc_alloc_regions(n_workers, evacuation_info);
6017   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
6018 
6019   // Reset and re-enable the hot card cache.
6020   // Note the counts for the cards in the regions in the
6021   // collection set are reset when the collection set is freed.
6022   hot_card_cache->reset_hot_cache();
6023   hot_card_cache->set_use_cache(true);
6024 
6025   // Migrate the strong code roots attached to each region in
6026   // the collection set. Ideally we would like to do this
6027   // after we have finished the scanning/evacuation of the
6028   // strong code roots for a particular heap region.
6029   migrate_strong_code_roots();
6030 
6031   purge_code_root_memory();
6032 
6033   if (g1_policy()->during_initial_mark_pause()) {
6034     // Reset the claim values set during marking the strong code roots
6035     reset_heap_region_claim_values();
6036   }
6037 
6038   finalize_for_evac_failure();
6039 
6040   if (evacuation_failed()) {
6041     remove_self_forwarding_pointers();
6042 
6043     // Reset the G1EvacuationFailureALot counters and flags
6044     // Note: the values are reset only when an actual
6045     // evacuation failure occurs.
6046     NOT_PRODUCT(reset_evacuation_should_fail();)
6047   }
6048 
6049   // Enqueue any remaining references remaining on the STW
6050   // reference processor's discovered lists. We need to do
6051   // this after the card table is cleaned (and verified) as
6052   // the act of enqueueing entries on to the pending list
6053   // will log these updates (and dirty their associated
6054   // cards). We need these updates logged to update any
6055   // RSets.
6056   enqueue_discovered_references(n_workers);
6057 
6058   if (G1DeferredRSUpdate) {
6059     redirty_logged_cards();
6060   }
6061   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
6062 }
6063 
6064 void G1CollectedHeap::free_region(HeapRegion* hr,
6065                                   FreeRegionList* free_list,
6066                                   bool par,
6067                                   bool locked) {
6068   assert(!hr->isHumongous(), "this is only for non-humongous regions");
6069   assert(!hr->is_empty(), "the region should not be empty");
6070   assert(free_list != NULL, "pre-condition");
6071 
6072   if (G1VerifyBitmaps) {
6073     MemRegion mr(hr->bottom(), hr->end());
6074     concurrent_mark()->clearRangePrevBitmap(mr);
6075   }
6076 
6077   // Clear the card counts for this region.
6078   // Note: we only need to do this if the region is not young
6079   // (since we don't refine cards in young regions).
6080   if (!hr->is_young()) {
6081     _cg1r->hot_card_cache()->reset_card_counts(hr);
6082   }
6083   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
6084   free_list->add_ordered(hr);
6085 }
6086 
6087 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
6088                                      FreeRegionList* free_list,
6089                                      bool par) {
6090   assert(hr->startsHumongous(), "this is only for starts humongous regions");
6091   assert(free_list != NULL, "pre-condition");
6092 
6093   size_t hr_capacity = hr->capacity();
6094   // We need to read this before we make the region non-humongous,
6095   // otherwise the information will be gone.
6096   uint last_index = hr->last_hc_index();
6097   hr->set_notHumongous();
6098   free_region(hr, free_list, par);
6099 
6100   uint i = hr->hrs_index() + 1;
6101   while (i < last_index) {
6102     HeapRegion* curr_hr = region_at(i);
6103     assert(curr_hr->continuesHumongous(), "invariant");
6104     curr_hr->set_notHumongous();
6105     free_region(curr_hr, free_list, par);
6106     i += 1;
6107   }
6108 }
6109 
6110 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
6111                                        const HeapRegionSetCount& humongous_regions_removed) {
6112   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
6113     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
6114     _old_set.bulk_remove(old_regions_removed);
6115     _humongous_set.bulk_remove(humongous_regions_removed);
6116   }
6117 
6118 }
6119 
6120 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
6121   assert(list != NULL, "list can't be null");
6122   if (!list->is_empty()) {
6123     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6124     _free_list.add_ordered(list);
6125   }
6126 }
6127 
6128 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
6129   assert(_summary_bytes_used >= bytes,
6130          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
6131                   _summary_bytes_used, bytes));
6132   _summary_bytes_used -= bytes;
6133 }
6134 
6135 class G1ParCleanupCTTask : public AbstractGangTask {
6136   G1SATBCardTableModRefBS* _ct_bs;
6137   G1CollectedHeap* _g1h;
6138   HeapRegion* volatile _su_head;
6139 public:
6140   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6141                      G1CollectedHeap* g1h) :
6142     AbstractGangTask("G1 Par Cleanup CT Task"),
6143     _ct_bs(ct_bs), _g1h(g1h) { }
6144 
6145   void work(uint worker_id) {
6146     HeapRegion* r;
6147     while (r = _g1h->pop_dirty_cards_region()) {
6148       clear_cards(r);
6149     }
6150   }
6151 
6152   void clear_cards(HeapRegion* r) {
6153     // Cards of the survivors should have already been dirtied.
6154     if (!r->is_survivor()) {
6155       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6156     }
6157   }
6158 };
6159 
6160 #ifndef PRODUCT
6161 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6162   G1CollectedHeap* _g1h;
6163   G1SATBCardTableModRefBS* _ct_bs;
6164 public:
6165   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6166     : _g1h(g1h), _ct_bs(ct_bs) { }
6167   virtual bool doHeapRegion(HeapRegion* r) {
6168     if (r->is_survivor()) {
6169       _g1h->verify_dirty_region(r);
6170     } else {
6171       _g1h->verify_not_dirty_region(r);
6172     }
6173     return false;
6174   }
6175 };
6176 
6177 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6178   // All of the region should be clean.
6179   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6180   MemRegion mr(hr->bottom(), hr->end());
6181   ct_bs->verify_not_dirty_region(mr);
6182 }
6183 
6184 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6185   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6186   // dirty allocated blocks as they allocate them. The thread that
6187   // retires each region and replaces it with a new one will do a
6188   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6189   // not dirty that area (one less thing to have to do while holding
6190   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6191   // is dirty.
6192   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6193   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6194   if (hr->is_young()) {
6195     ct_bs->verify_g1_young_region(mr);
6196   } else {
6197     ct_bs->verify_dirty_region(mr);
6198   }
6199 }
6200 
6201 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6202   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6203   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6204     verify_dirty_region(hr);
6205   }
6206 }
6207 
6208 void G1CollectedHeap::verify_dirty_young_regions() {
6209   verify_dirty_young_list(_young_list->first_region());
6210 }
6211 
6212 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
6213                                                HeapWord* tams, HeapWord* end) {
6214   guarantee(tams <= end,
6215             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
6216   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
6217   if (result < end) {
6218     gclog_or_tty->cr();
6219     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
6220                            bitmap_name, result);
6221     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
6222                            bitmap_name, tams, end);
6223     return false;
6224   }
6225   return true;
6226 }
6227 
6228 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
6229   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
6230   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
6231 
6232   HeapWord* bottom = hr->bottom();
6233   HeapWord* ptams  = hr->prev_top_at_mark_start();
6234   HeapWord* ntams  = hr->next_top_at_mark_start();
6235   HeapWord* end    = hr->end();
6236 
6237   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
6238 
6239   bool res_n = true;
6240   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
6241   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
6242   // if we happen to be in that state.
6243   if (mark_in_progress() || !_cmThread->in_progress()) {
6244     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
6245   }
6246   if (!res_p || !res_n) {
6247     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
6248                            HR_FORMAT_PARAMS(hr));
6249     gclog_or_tty->print_cr("#### Caller: %s", caller);
6250     return false;
6251   }
6252   return true;
6253 }
6254 
6255 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
6256   if (!G1VerifyBitmaps) return;
6257 
6258   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
6259 }
6260 
6261 class G1VerifyBitmapClosure : public HeapRegionClosure {
6262 private:
6263   const char* _caller;
6264   G1CollectedHeap* _g1h;
6265   bool _failures;
6266 
6267 public:
6268   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
6269     _caller(caller), _g1h(g1h), _failures(false) { }
6270 
6271   bool failures() { return _failures; }
6272 
6273   virtual bool doHeapRegion(HeapRegion* hr) {
6274     if (hr->continuesHumongous()) return false;
6275 
6276     bool result = _g1h->verify_bitmaps(_caller, hr);
6277     if (!result) {
6278       _failures = true;
6279     }
6280     return false;
6281   }
6282 };
6283 
6284 void G1CollectedHeap::check_bitmaps(const char* caller) {
6285   if (!G1VerifyBitmaps) return;
6286 
6287   G1VerifyBitmapClosure cl(caller, this);
6288   heap_region_iterate(&cl);
6289   guarantee(!cl.failures(), "bitmap verification");
6290 }
6291 #endif // PRODUCT
6292 
6293 void G1CollectedHeap::cleanUpCardTable() {
6294   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6295   double start = os::elapsedTime();
6296 
6297   {
6298     // Iterate over the dirty cards region list.
6299     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6300 
6301     if (G1CollectedHeap::use_parallel_gc_threads()) {
6302       set_par_threads();
6303       workers()->run_task(&cleanup_task);
6304       set_par_threads(0);
6305     } else {
6306       while (_dirty_cards_region_list) {
6307         HeapRegion* r = _dirty_cards_region_list;
6308         cleanup_task.clear_cards(r);
6309         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6310         if (_dirty_cards_region_list == r) {
6311           // The last region.
6312           _dirty_cards_region_list = NULL;
6313         }
6314         r->set_next_dirty_cards_region(NULL);
6315       }
6316     }
6317 #ifndef PRODUCT
6318     if (G1VerifyCTCleanup || VerifyAfterGC) {
6319       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6320       heap_region_iterate(&cleanup_verifier);
6321     }
6322 #endif
6323   }
6324 
6325   double elapsed = os::elapsedTime() - start;
6326   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6327 }
6328 
6329 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6330   size_t pre_used = 0;
6331   FreeRegionList local_free_list("Local List for CSet Freeing");
6332 
6333   double young_time_ms     = 0.0;
6334   double non_young_time_ms = 0.0;
6335 
6336   // Since the collection set is a superset of the the young list,
6337   // all we need to do to clear the young list is clear its
6338   // head and length, and unlink any young regions in the code below
6339   _young_list->clear();
6340 
6341   G1CollectorPolicy* policy = g1_policy();
6342 
6343   double start_sec = os::elapsedTime();
6344   bool non_young = true;
6345 
6346   HeapRegion* cur = cs_head;
6347   int age_bound = -1;
6348   size_t rs_lengths = 0;
6349 
6350   while (cur != NULL) {
6351     assert(!is_on_master_free_list(cur), "sanity");
6352     if (non_young) {
6353       if (cur->is_young()) {
6354         double end_sec = os::elapsedTime();
6355         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6356         non_young_time_ms += elapsed_ms;
6357 
6358         start_sec = os::elapsedTime();
6359         non_young = false;
6360       }
6361     } else {
6362       if (!cur->is_young()) {
6363         double end_sec = os::elapsedTime();
6364         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6365         young_time_ms += elapsed_ms;
6366 
6367         start_sec = os::elapsedTime();
6368         non_young = true;
6369       }
6370     }
6371 
6372     rs_lengths += cur->rem_set()->occupied_locked();
6373 
6374     HeapRegion* next = cur->next_in_collection_set();
6375     assert(cur->in_collection_set(), "bad CS");
6376     cur->set_next_in_collection_set(NULL);
6377     cur->set_in_collection_set(false);
6378 
6379     if (cur->is_young()) {
6380       int index = cur->young_index_in_cset();
6381       assert(index != -1, "invariant");
6382       assert((uint) index < policy->young_cset_region_length(), "invariant");
6383       size_t words_survived = _surviving_young_words[index];
6384       cur->record_surv_words_in_group(words_survived);
6385 
6386       // At this point the we have 'popped' cur from the collection set
6387       // (linked via next_in_collection_set()) but it is still in the
6388       // young list (linked via next_young_region()). Clear the
6389       // _next_young_region field.
6390       cur->set_next_young_region(NULL);
6391     } else {
6392       int index = cur->young_index_in_cset();
6393       assert(index == -1, "invariant");
6394     }
6395 
6396     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6397             (!cur->is_young() && cur->young_index_in_cset() == -1),
6398             "invariant" );
6399 
6400     if (!cur->evacuation_failed()) {
6401       MemRegion used_mr = cur->used_region();
6402 
6403       // And the region is empty.
6404       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6405       pre_used += cur->used();
6406       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6407     } else {
6408       cur->uninstall_surv_rate_group();
6409       if (cur->is_young()) {
6410         cur->set_young_index_in_cset(-1);
6411       }
6412       cur->set_not_young();
6413       cur->set_evacuation_failed(false);
6414       // The region is now considered to be old.
6415       _old_set.add(cur);
6416       evacuation_info.increment_collectionset_used_after(cur->used());
6417     }
6418     cur = next;
6419   }
6420 
6421   evacuation_info.set_regions_freed(local_free_list.length());
6422   policy->record_max_rs_lengths(rs_lengths);
6423   policy->cset_regions_freed();
6424 
6425   double end_sec = os::elapsedTime();
6426   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6427 
6428   if (non_young) {
6429     non_young_time_ms += elapsed_ms;
6430   } else {
6431     young_time_ms += elapsed_ms;
6432   }
6433 
6434   prepend_to_freelist(&local_free_list);
6435   decrement_summary_bytes(pre_used);
6436   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6437   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6438 }
6439 
6440 // This routine is similar to the above but does not record
6441 // any policy statistics or update free lists; we are abandoning
6442 // the current incremental collection set in preparation of a
6443 // full collection. After the full GC we will start to build up
6444 // the incremental collection set again.
6445 // This is only called when we're doing a full collection
6446 // and is immediately followed by the tearing down of the young list.
6447 
6448 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6449   HeapRegion* cur = cs_head;
6450 
6451   while (cur != NULL) {
6452     HeapRegion* next = cur->next_in_collection_set();
6453     assert(cur->in_collection_set(), "bad CS");
6454     cur->set_next_in_collection_set(NULL);
6455     cur->set_in_collection_set(false);
6456     cur->set_young_index_in_cset(-1);
6457     cur = next;
6458   }
6459 }
6460 
6461 void G1CollectedHeap::set_free_regions_coming() {
6462   if (G1ConcRegionFreeingVerbose) {
6463     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6464                            "setting free regions coming");
6465   }
6466 
6467   assert(!free_regions_coming(), "pre-condition");
6468   _free_regions_coming = true;
6469 }
6470 
6471 void G1CollectedHeap::reset_free_regions_coming() {
6472   assert(free_regions_coming(), "pre-condition");
6473 
6474   {
6475     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6476     _free_regions_coming = false;
6477     SecondaryFreeList_lock->notify_all();
6478   }
6479 
6480   if (G1ConcRegionFreeingVerbose) {
6481     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6482                            "reset free regions coming");
6483   }
6484 }
6485 
6486 void G1CollectedHeap::wait_while_free_regions_coming() {
6487   // Most of the time we won't have to wait, so let's do a quick test
6488   // first before we take the lock.
6489   if (!free_regions_coming()) {
6490     return;
6491   }
6492 
6493   if (G1ConcRegionFreeingVerbose) {
6494     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6495                            "waiting for free regions");
6496   }
6497 
6498   {
6499     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6500     while (free_regions_coming()) {
6501       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6502     }
6503   }
6504 
6505   if (G1ConcRegionFreeingVerbose) {
6506     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6507                            "done waiting for free regions");
6508   }
6509 }
6510 
6511 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6512   assert(heap_lock_held_for_gc(),
6513               "the heap lock should already be held by or for this thread");
6514   _young_list->push_region(hr);
6515 }
6516 
6517 class NoYoungRegionsClosure: public HeapRegionClosure {
6518 private:
6519   bool _success;
6520 public:
6521   NoYoungRegionsClosure() : _success(true) { }
6522   bool doHeapRegion(HeapRegion* r) {
6523     if (r->is_young()) {
6524       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6525                              r->bottom(), r->end());
6526       _success = false;
6527     }
6528     return false;
6529   }
6530   bool success() { return _success; }
6531 };
6532 
6533 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6534   bool ret = _young_list->check_list_empty(check_sample);
6535 
6536   if (check_heap) {
6537     NoYoungRegionsClosure closure;
6538     heap_region_iterate(&closure);
6539     ret = ret && closure.success();
6540   }
6541 
6542   return ret;
6543 }
6544 
6545 class TearDownRegionSetsClosure : public HeapRegionClosure {
6546 private:
6547   HeapRegionSet *_old_set;
6548 
6549 public:
6550   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6551 
6552   bool doHeapRegion(HeapRegion* r) {
6553     if (r->is_empty()) {
6554       // We ignore empty regions, we'll empty the free list afterwards
6555     } else if (r->is_young()) {
6556       // We ignore young regions, we'll empty the young list afterwards
6557     } else if (r->isHumongous()) {
6558       // We ignore humongous regions, we're not tearing down the
6559       // humongous region set
6560     } else {
6561       // The rest should be old
6562       _old_set->remove(r);
6563     }
6564     return false;
6565   }
6566 
6567   ~TearDownRegionSetsClosure() {
6568     assert(_old_set->is_empty(), "post-condition");
6569   }
6570 };
6571 
6572 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6573   assert_at_safepoint(true /* should_be_vm_thread */);
6574 
6575   if (!free_list_only) {
6576     TearDownRegionSetsClosure cl(&_old_set);
6577     heap_region_iterate(&cl);
6578 
6579     // Note that emptying the _young_list is postponed and instead done as
6580     // the first step when rebuilding the regions sets again. The reason for
6581     // this is that during a full GC string deduplication needs to know if
6582     // a collected region was young or old when the full GC was initiated.
6583   }
6584   _free_list.remove_all();
6585 }
6586 
6587 class RebuildRegionSetsClosure : public HeapRegionClosure {
6588 private:
6589   bool            _free_list_only;
6590   HeapRegionSet*   _old_set;
6591   FreeRegionList* _free_list;
6592   size_t          _total_used;
6593 
6594 public:
6595   RebuildRegionSetsClosure(bool free_list_only,
6596                            HeapRegionSet* old_set, FreeRegionList* free_list) :
6597     _free_list_only(free_list_only),
6598     _old_set(old_set), _free_list(free_list), _total_used(0) {
6599     assert(_free_list->is_empty(), "pre-condition");
6600     if (!free_list_only) {
6601       assert(_old_set->is_empty(), "pre-condition");
6602     }
6603   }
6604 
6605   bool doHeapRegion(HeapRegion* r) {
6606     if (r->continuesHumongous()) {
6607       return false;
6608     }
6609 
6610     if (r->is_empty()) {
6611       // Add free regions to the free list
6612       _free_list->add_as_tail(r);
6613     } else if (!_free_list_only) {
6614       assert(!r->is_young(), "we should not come across young regions");
6615 
6616       if (r->startsHumongous()) {
6617         // We ignore humongous regions, we left the humongous set unchanged
6618       } else if (r->continuesHumongous()) {
6619       } else {
6620         // The rest should be old, add them to the old set
6621         _old_set->add(r);
6622       }
6623       _total_used += r->used();
6624     }
6625 
6626     return false;
6627   }
6628 
6629   size_t total_used() {
6630     return _total_used;
6631   }
6632 };
6633 
6634 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6635   assert_at_safepoint(true /* should_be_vm_thread */);
6636 
6637   if (!free_list_only) {
6638     _young_list->empty_list();
6639   }
6640 
6641   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6642   heap_region_iterate(&cl);
6643 
6644   if (!free_list_only) {
6645     _summary_bytes_used = cl.total_used();
6646   }
6647   assert(_summary_bytes_used == recalculate_used(),
6648          err_msg("inconsistent _summary_bytes_used, "
6649                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6650                  _summary_bytes_used, recalculate_used()));
6651 }
6652 
6653 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6654   _refine_cte_cl->set_concurrent(concurrent);
6655 }
6656 
6657 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6658   HeapRegion* hr = heap_region_containing(p);
6659   return hr->is_in(p);
6660 }
6661 
6662 // Methods for the mutator alloc region
6663 
6664 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6665                                                       bool force) {
6666   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6667   assert(!force || g1_policy()->can_expand_young_list(),
6668          "if force is true we should be able to expand the young list");
6669   bool young_list_full = g1_policy()->is_young_list_full();
6670   if (force || !young_list_full) {
6671     HeapRegion* new_alloc_region = new_region(word_size,
6672                                               false /* is_old */,
6673                                               false /* do_expand */);
6674     if (new_alloc_region != NULL) {
6675       set_region_short_lived_locked(new_alloc_region);
6676       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6677       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6678       return new_alloc_region;
6679     }
6680   }
6681   return NULL;
6682 }
6683 
6684 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6685                                                   size_t allocated_bytes) {
6686   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6687   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6688 
6689   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6690   _summary_bytes_used += allocated_bytes;
6691   _hr_printer.retire(alloc_region);
6692   // We update the eden sizes here, when the region is retired,
6693   // instead of when it's allocated, since this is the point that its
6694   // used space has been recored in _summary_bytes_used.
6695   g1mm()->update_eden_size();
6696 }
6697 
6698 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6699                                                     bool force) {
6700   return _g1h->new_mutator_alloc_region(word_size, force);
6701 }
6702 
6703 void G1CollectedHeap::set_par_threads() {
6704   // Don't change the number of workers.  Use the value previously set
6705   // in the workgroup.
6706   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6707   uint n_workers = workers()->active_workers();
6708   assert(UseDynamicNumberOfGCThreads ||
6709            n_workers == workers()->total_workers(),
6710       "Otherwise should be using the total number of workers");
6711   if (n_workers == 0) {
6712     assert(false, "Should have been set in prior evacuation pause.");
6713     n_workers = ParallelGCThreads;
6714     workers()->set_active_workers(n_workers);
6715   }
6716   set_par_threads(n_workers);
6717 }
6718 
6719 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6720                                        size_t allocated_bytes) {
6721   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6722 }
6723 
6724 // Methods for the GC alloc regions
6725 
6726 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6727                                                  uint count,
6728                                                  GCAllocPurpose ap) {
6729   assert(FreeList_lock->owned_by_self(), "pre-condition");
6730 
6731   if (count < g1_policy()->max_regions(ap)) {
6732     bool survivor = (ap == GCAllocForSurvived);
6733     HeapRegion* new_alloc_region = new_region(word_size,
6734                                               !survivor,
6735                                               true /* do_expand */);
6736     if (new_alloc_region != NULL) {
6737       // We really only need to do this for old regions given that we
6738       // should never scan survivors. But it doesn't hurt to do it
6739       // for survivors too.
6740       new_alloc_region->record_top_and_timestamp();
6741       if (survivor) {
6742         new_alloc_region->set_survivor();
6743         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6744         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6745       } else {
6746         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6747         check_bitmaps("Old Region Allocation", new_alloc_region);
6748       }
6749       bool during_im = g1_policy()->during_initial_mark_pause();
6750       new_alloc_region->note_start_of_copying(during_im);
6751       return new_alloc_region;
6752     } else {
6753       g1_policy()->note_alloc_region_limit_reached(ap);
6754     }
6755   }
6756   return NULL;
6757 }
6758 
6759 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6760                                              size_t allocated_bytes,
6761                                              GCAllocPurpose ap) {
6762   bool during_im = g1_policy()->during_initial_mark_pause();
6763   alloc_region->note_end_of_copying(during_im);
6764   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6765   if (ap == GCAllocForSurvived) {
6766     young_list()->add_survivor_region(alloc_region);
6767   } else {
6768     _old_set.add(alloc_region);
6769   }
6770   _hr_printer.retire(alloc_region);
6771 }
6772 
6773 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6774                                                        bool force) {
6775   assert(!force, "not supported for GC alloc regions");
6776   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6777 }
6778 
6779 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6780                                           size_t allocated_bytes) {
6781   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6782                                GCAllocForSurvived);
6783 }
6784 
6785 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6786                                                   bool force) {
6787   assert(!force, "not supported for GC alloc regions");
6788   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6789 }
6790 
6791 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6792                                      size_t allocated_bytes) {
6793   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6794                                GCAllocForTenured);
6795 }
6796 // Heap region set verification
6797 
6798 class VerifyRegionListsClosure : public HeapRegionClosure {
6799 private:
6800   HeapRegionSet*   _old_set;
6801   HeapRegionSet*   _humongous_set;
6802   FreeRegionList*  _free_list;
6803 
6804 public:
6805   HeapRegionSetCount _old_count;
6806   HeapRegionSetCount _humongous_count;
6807   HeapRegionSetCount _free_count;
6808 
6809   VerifyRegionListsClosure(HeapRegionSet* old_set,
6810                            HeapRegionSet* humongous_set,
6811                            FreeRegionList* free_list) :
6812     _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
6813     _old_count(), _humongous_count(), _free_count(){ }
6814 
6815   bool doHeapRegion(HeapRegion* hr) {
6816     if (hr->continuesHumongous()) {
6817       return false;
6818     }
6819 
6820     if (hr->is_young()) {
6821       // TODO
6822     } else if (hr->startsHumongous()) {
6823       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrs_index()));
6824       _humongous_count.increment(1u, hr->capacity());
6825     } else if (hr->is_empty()) {
6826       assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->hrs_index()));
6827       _free_count.increment(1u, hr->capacity());
6828     } else {
6829       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrs_index()));
6830       _old_count.increment(1u, hr->capacity());
6831     }
6832     return false;
6833   }
6834 
6835   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
6836     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6837     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6838         old_set->total_capacity_bytes(), _old_count.capacity()));
6839 
6840     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6841     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6842         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6843 
6844     guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
6845     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6846         free_list->total_capacity_bytes(), _free_count.capacity()));
6847   }
6848 };
6849 
6850 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6851                                              HeapWord* bottom) {
6852   HeapWord* end = bottom + HeapRegion::GrainWords;
6853   MemRegion mr(bottom, end);
6854   assert(_g1_reserved.contains(mr), "invariant");
6855   // This might return NULL if the allocation fails
6856   return new HeapRegion(hrs_index, _bot_shared, mr);
6857 }
6858 
6859 void G1CollectedHeap::verify_region_sets() {
6860   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6861 
6862   // First, check the explicit lists.
6863   _free_list.verify_list();
6864   {
6865     // Given that a concurrent operation might be adding regions to
6866     // the secondary free list we have to take the lock before
6867     // verifying it.
6868     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6869     _secondary_free_list.verify_list();
6870   }
6871 
6872   // If a concurrent region freeing operation is in progress it will
6873   // be difficult to correctly attributed any free regions we come
6874   // across to the correct free list given that they might belong to
6875   // one of several (free_list, secondary_free_list, any local lists,
6876   // etc.). So, if that's the case we will skip the rest of the
6877   // verification operation. Alternatively, waiting for the concurrent
6878   // operation to complete will have a non-trivial effect on the GC's
6879   // operation (no concurrent operation will last longer than the
6880   // interval between two calls to verification) and it might hide
6881   // any issues that we would like to catch during testing.
6882   if (free_regions_coming()) {
6883     return;
6884   }
6885 
6886   // Make sure we append the secondary_free_list on the free_list so
6887   // that all free regions we will come across can be safely
6888   // attributed to the free_list.
6889   append_secondary_free_list_if_not_empty_with_lock();
6890 
6891   // Finally, make sure that the region accounting in the lists is
6892   // consistent with what we see in the heap.
6893 
6894   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6895   heap_region_iterate(&cl);
6896   cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
6897 }
6898 
6899 // Optimized nmethod scanning
6900 
6901 class RegisterNMethodOopClosure: public OopClosure {
6902   G1CollectedHeap* _g1h;
6903   nmethod* _nm;
6904 
6905   template <class T> void do_oop_work(T* p) {
6906     T heap_oop = oopDesc::load_heap_oop(p);
6907     if (!oopDesc::is_null(heap_oop)) {
6908       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6909       HeapRegion* hr = _g1h->heap_region_containing(obj);
6910       assert(!hr->continuesHumongous(),
6911              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6912                      " starting at "HR_FORMAT,
6913                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6914 
6915       // HeapRegion::add_strong_code_root() avoids adding duplicate
6916       // entries but having duplicates is  OK since we "mark" nmethods
6917       // as visited when we scan the strong code root lists during the GC.
6918       hr->add_strong_code_root(_nm);
6919       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
6920              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
6921                      _nm, HR_FORMAT_PARAMS(hr)));
6922     }
6923   }
6924 
6925 public:
6926   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6927     _g1h(g1h), _nm(nm) {}
6928 
6929   void do_oop(oop* p)       { do_oop_work(p); }
6930   void do_oop(narrowOop* p) { do_oop_work(p); }
6931 };
6932 
6933 class UnregisterNMethodOopClosure: public OopClosure {
6934   G1CollectedHeap* _g1h;
6935   nmethod* _nm;
6936 
6937   template <class T> void do_oop_work(T* p) {
6938     T heap_oop = oopDesc::load_heap_oop(p);
6939     if (!oopDesc::is_null(heap_oop)) {
6940       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6941       HeapRegion* hr = _g1h->heap_region_containing(obj);
6942       assert(!hr->continuesHumongous(),
6943              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6944                      " starting at "HR_FORMAT,
6945                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6946 
6947       hr->remove_strong_code_root(_nm);
6948       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
6949              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
6950                      _nm, HR_FORMAT_PARAMS(hr)));
6951     }
6952   }
6953 
6954 public:
6955   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6956     _g1h(g1h), _nm(nm) {}
6957 
6958   void do_oop(oop* p)       { do_oop_work(p); }
6959   void do_oop(narrowOop* p) { do_oop_work(p); }
6960 };
6961 
6962 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6963   CollectedHeap::register_nmethod(nm);
6964 
6965   guarantee(nm != NULL, "sanity");
6966   RegisterNMethodOopClosure reg_cl(this, nm);
6967   nm->oops_do(&reg_cl);
6968 }
6969 
6970 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6971   CollectedHeap::unregister_nmethod(nm);
6972 
6973   guarantee(nm != NULL, "sanity");
6974   UnregisterNMethodOopClosure reg_cl(this, nm);
6975   nm->oops_do(&reg_cl, true);
6976 }
6977 
6978 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
6979 public:
6980   bool doHeapRegion(HeapRegion *hr) {
6981     assert(!hr->isHumongous(),
6982            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
6983                    HR_FORMAT_PARAMS(hr)));
6984     hr->migrate_strong_code_roots();
6985     return false;
6986   }
6987 };
6988 
6989 void G1CollectedHeap::migrate_strong_code_roots() {
6990   MigrateCodeRootsHeapRegionClosure cl;
6991   double migrate_start = os::elapsedTime();
6992   collection_set_iterate(&cl);
6993   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
6994   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
6995 }
6996 
6997 void G1CollectedHeap::purge_code_root_memory() {
6998   double purge_start = os::elapsedTime();
6999   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
7000   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
7001   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
7002 }
7003 
7004 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
7005   G1CollectedHeap* _g1h;
7006 
7007 public:
7008   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
7009     _g1h(g1h) {}
7010 
7011   void do_code_blob(CodeBlob* cb) {
7012     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
7013     if (nm == NULL) {
7014       return;
7015     }
7016 
7017     if (ScavengeRootsInCode) {
7018       _g1h->register_nmethod(nm);
7019     }
7020   }
7021 };
7022 
7023 void G1CollectedHeap::rebuild_strong_code_roots() {
7024   RebuildStrongCodeRootClosure blob_cl(this);
7025   CodeCache::blobs_do(&blob_cl);
7026 }