1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  30 #include "gc_implementation/g1/heapRegion.inline.hpp"
  31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  33 #include "gc_implementation/shared/liveRange.hpp"
  34 #include "memory/genOopClosures.inline.hpp"
  35 #include "memory/iterator.hpp"
  36 #include "memory/space.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/atomic.inline.hpp"
  39 #include "runtime/orderAccess.inline.hpp"
  40 
  41 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  42 
  43 int    HeapRegion::LogOfHRGrainBytes = 0;
  44 int    HeapRegion::LogOfHRGrainWords = 0;
  45 size_t HeapRegion::GrainBytes        = 0;
  46 size_t HeapRegion::GrainWords        = 0;
  47 size_t HeapRegion::CardsPerRegion    = 0;
  48 
  49 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  50                                  HeapRegion* hr, ExtendedOopClosure* cl,
  51                                  CardTableModRefBS::PrecisionStyle precision,
  52                                  FilterKind fk) :
  53   DirtyCardToOopClosure(hr, cl, precision, NULL),
  54   _hr(hr), _fk(fk), _g1(g1) { }
  55 
  56 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  57                                                    OopClosure* oc) :
  58   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  59 
  60 template<class ClosureType>
  61 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
  62                                HeapRegion* hr,
  63                                HeapWord* cur, HeapWord* top) {
  64   oop cur_oop = oop(cur);
  65   size_t oop_size = hr->block_size(cur);
  66   HeapWord* next_obj = cur + oop_size;
  67   while (next_obj < top) {
  68     // Keep filtering the remembered set.
  69     if (!g1h->is_obj_dead(cur_oop, hr)) {
  70       // Bottom lies entirely below top, so we can call the
  71       // non-memRegion version of oop_iterate below.
  72       cur_oop->oop_iterate(cl);
  73     }
  74     cur = next_obj;
  75     cur_oop = oop(cur);
  76     oop_size = hr->block_size(cur);
  77     next_obj = cur + oop_size;
  78   }
  79   return cur;
  80 }
  81 
  82 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  83                                       HeapWord* bottom,
  84                                       HeapWord* top) {
  85   G1CollectedHeap* g1h = _g1;
  86   size_t oop_size;
  87   ExtendedOopClosure* cl2 = NULL;
  88 
  89   FilterIntoCSClosure intoCSFilt(this, g1h, _cl);
  90   FilterOutOfRegionClosure outOfRegionFilt(_hr, _cl);
  91 
  92   switch (_fk) {
  93   case NoFilterKind:          cl2 = _cl; break;
  94   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
  95   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
  96   default:                    ShouldNotReachHere();
  97   }
  98 
  99   // Start filtering what we add to the remembered set. If the object is
 100   // not considered dead, either because it is marked (in the mark bitmap)
 101   // or it was allocated after marking finished, then we add it. Otherwise
 102   // we can safely ignore the object.
 103   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 104     oop_size = oop(bottom)->oop_iterate(cl2, mr);
 105   } else {
 106     oop_size = _hr->block_size(bottom);
 107   }
 108 
 109   bottom += oop_size;
 110 
 111   if (bottom < top) {
 112     // We replicate the loop below for several kinds of possible filters.
 113     switch (_fk) {
 114     case NoFilterKind:
 115       bottom = walk_mem_region_loop(_cl, g1h, _hr, bottom, top);
 116       break;
 117 
 118     case IntoCSFilterKind: {
 119       FilterIntoCSClosure filt(this, g1h, _cl);
 120       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 121       break;
 122     }
 123 
 124     case OutOfRegionFilterKind: {
 125       FilterOutOfRegionClosure filt(_hr, _cl);
 126       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 127       break;
 128     }
 129 
 130     default:
 131       ShouldNotReachHere();
 132     }
 133 
 134     // Last object. Need to do dead-obj filtering here too.
 135     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 136       oop(bottom)->oop_iterate(cl2, mr);
 137     }
 138   }
 139 }
 140 
 141 // Minimum region size; we won't go lower than that.
 142 // We might want to decrease this in the future, to deal with small
 143 // heaps a bit more efficiently.
 144 #define MIN_REGION_SIZE  (      1024 * 1024 )
 145 
 146 // Maximum region size; we don't go higher than that. There's a good
 147 // reason for having an upper bound. We don't want regions to get too
 148 // large, otherwise cleanup's effectiveness would decrease as there
 149 // will be fewer opportunities to find totally empty regions after
 150 // marking.
 151 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
 152 
 153 // The automatic region size calculation will try to have around this
 154 // many regions in the heap (based on the min heap size).
 155 #define TARGET_REGION_NUMBER          2048
 156 
 157 size_t HeapRegion::max_region_size() {
 158   return (size_t)MAX_REGION_SIZE;
 159 }
 160 
 161 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 162   uintx region_size = G1HeapRegionSize;
 163   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 164     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 165     region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER,
 166                        (uintx) MIN_REGION_SIZE);
 167   }
 168 
 169   int region_size_log = log2_long((jlong) region_size);
 170   // Recalculate the region size to make sure it's a power of
 171   // 2. This means that region_size is the largest power of 2 that's
 172   // <= what we've calculated so far.
 173   region_size = ((uintx)1 << region_size_log);
 174 
 175   // Now make sure that we don't go over or under our limits.
 176   if (region_size < MIN_REGION_SIZE) {
 177     region_size = MIN_REGION_SIZE;
 178   } else if (region_size > MAX_REGION_SIZE) {
 179     region_size = MAX_REGION_SIZE;
 180   }
 181 
 182   // And recalculate the log.
 183   region_size_log = log2_long((jlong) region_size);
 184 
 185   // Now, set up the globals.
 186   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 187   LogOfHRGrainBytes = region_size_log;
 188 
 189   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 190   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 191 
 192   guarantee(GrainBytes == 0, "we should only set it once");
 193   // The cast to int is safe, given that we've bounded region_size by
 194   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 195   GrainBytes = (size_t)region_size;
 196 
 197   guarantee(GrainWords == 0, "we should only set it once");
 198   GrainWords = GrainBytes >> LogHeapWordSize;
 199   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 200 
 201   guarantee(CardsPerRegion == 0, "we should only set it once");
 202   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 203 }
 204 
 205 void HeapRegion::reset_after_compaction() {
 206   G1OffsetTableContigSpace::reset_after_compaction();
 207   // After a compaction the mark bitmap is invalid, so we must
 208   // treat all objects as being inside the unmarked area.
 209   zero_marked_bytes();
 210   init_top_at_mark_start();
 211 }
 212 
 213 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
 214   assert(_humongous_type == NotHumongous,
 215          "we should have already filtered out humongous regions");
 216   assert(_humongous_start_region == NULL,
 217          "we should have already filtered out humongous regions");
 218   assert(_end == _orig_end,
 219          "we should have already filtered out humongous regions");
 220 
 221   _in_collection_set = false;
 222 
 223   set_young_index_in_cset(-1);
 224   uninstall_surv_rate_group();
 225   set_young_type(NotYoung);
 226   reset_pre_dummy_top();
 227 
 228   if (!par) {
 229     // If this is parallel, this will be done later.
 230     HeapRegionRemSet* hrrs = rem_set();
 231     if (locked) {
 232       hrrs->clear_locked();
 233     } else {
 234       hrrs->clear();
 235     }
 236     _claimed = InitialClaimValue;
 237   }
 238   zero_marked_bytes();
 239 
 240   _offsets.resize(HeapRegion::GrainWords);
 241   init_top_at_mark_start();
 242   if (clear_space) clear(SpaceDecorator::Mangle);
 243 }
 244 
 245 void HeapRegion::par_clear() {
 246   assert(used() == 0, "the region should have been already cleared");
 247   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 248   HeapRegionRemSet* hrrs = rem_set();
 249   hrrs->clear();
 250   CardTableModRefBS* ct_bs =
 251                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 252   ct_bs->clear(MemRegion(bottom(), end()));
 253 }
 254 
 255 void HeapRegion::calc_gc_efficiency() {
 256   // GC efficiency is the ratio of how much space would be
 257   // reclaimed over how long we predict it would take to reclaim it.
 258   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 259   G1CollectorPolicy* g1p = g1h->g1_policy();
 260 
 261   // Retrieve a prediction of the elapsed time for this region for
 262   // a mixed gc because the region will only be evacuated during a
 263   // mixed gc.
 264   double region_elapsed_time_ms =
 265     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 266   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 267 }
 268 
 269 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 270   assert(!isHumongous(), "sanity / pre-condition");
 271   assert(end() == _orig_end,
 272          "Should be normal before the humongous object allocation");
 273   assert(top() == bottom(), "should be empty");
 274   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 275 
 276   _humongous_type = StartsHumongous;
 277   _humongous_start_region = this;
 278 
 279   set_end(new_end);
 280   _offsets.set_for_starts_humongous(new_top);
 281 }
 282 
 283 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 284   assert(!isHumongous(), "sanity / pre-condition");
 285   assert(end() == _orig_end,
 286          "Should be normal before the humongous object allocation");
 287   assert(top() == bottom(), "should be empty");
 288   assert(first_hr->startsHumongous(), "pre-condition");
 289 
 290   _humongous_type = ContinuesHumongous;
 291   _humongous_start_region = first_hr;
 292 }
 293 
 294 void HeapRegion::set_notHumongous() {
 295   assert(isHumongous(), "pre-condition");
 296 
 297   if (startsHumongous()) {
 298     assert(top() <= end(), "pre-condition");
 299     set_end(_orig_end);
 300     if (top() > end()) {
 301       // at least one "continues humongous" region after it
 302       set_top(end());
 303     }
 304   } else {
 305     // continues humongous
 306     assert(end() == _orig_end, "sanity");
 307   }
 308 
 309   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 310   _humongous_type = NotHumongous;
 311   _humongous_start_region = NULL;
 312 }
 313 
 314 bool HeapRegion::claimHeapRegion(jint claimValue) {
 315   jint current = _claimed;
 316   if (current != claimValue) {
 317     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 318     if (res == current) {
 319       return true;
 320     }
 321   }
 322   return false;
 323 }
 324 
 325 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
 326   HeapWord* low = addr;
 327   HeapWord* high = end();
 328   while (low < high) {
 329     size_t diff = pointer_delta(high, low);
 330     // Must add one below to bias toward the high amount.  Otherwise, if
 331   // "high" were at the desired value, and "low" were one less, we
 332     // would not converge on "high".  This is not symmetric, because
 333     // we set "high" to a block start, which might be the right one,
 334     // which we don't do for "low".
 335     HeapWord* middle = low + (diff+1)/2;
 336     if (middle == high) return high;
 337     HeapWord* mid_bs = block_start_careful(middle);
 338     if (mid_bs < addr) {
 339       low = middle;
 340     } else {
 341       high = mid_bs;
 342     }
 343   }
 344   assert(low == high && low >= addr, "Didn't work.");
 345   return low;
 346 }
 347 
 348 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 349 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 350 #endif // _MSC_VER
 351 
 352 
 353 HeapRegion::HeapRegion(uint hrs_index,
 354                        G1BlockOffsetSharedArray* sharedOffsetArray,
 355                        MemRegion mr) :
 356     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 357     _hrs_index(hrs_index),
 358     _humongous_type(NotHumongous), _humongous_start_region(NULL),
 359     _in_collection_set(false),
 360     _next_in_special_set(NULL), _orig_end(NULL),
 361     _claimed(InitialClaimValue), _evacuation_failed(false),
 362     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 363     _young_type(NotYoung), _next_young_region(NULL),
 364     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL), _pending_removal(false),
 365 #ifdef ASSERT
 366     _containing_set(NULL),
 367 #endif // ASSERT
 368      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 369     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 370     _predicted_bytes_to_copy(0)
 371 {
 372   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 373   _orig_end = mr.end();
 374   // Note that initialize() will set the start of the unmarked area of the
 375   // region.
 376   hr_clear(false /*par*/, false /*clear_space*/);
 377   set_top(bottom());
 378   record_top_and_timestamp();
 379 
 380   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 381 }
 382 
 383 CompactibleSpace* HeapRegion::next_compaction_space() const {
 384   return G1CollectedHeap::heap()->next_compaction_region(this);
 385 }
 386 
 387 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 388                                                     bool during_conc_mark) {
 389   // We always recreate the prev marking info and we'll explicitly
 390   // mark all objects we find to be self-forwarded on the prev
 391   // bitmap. So all objects need to be below PTAMS.
 392   _prev_top_at_mark_start = top();
 393   _prev_marked_bytes = 0;
 394 
 395   if (during_initial_mark) {
 396     // During initial-mark, we'll also explicitly mark all objects
 397     // we find to be self-forwarded on the next bitmap. So all
 398     // objects need to be below NTAMS.
 399     _next_top_at_mark_start = top();
 400     _next_marked_bytes = 0;
 401   } else if (during_conc_mark) {
 402     // During concurrent mark, all objects in the CSet (including
 403     // the ones we find to be self-forwarded) are implicitly live.
 404     // So all objects need to be above NTAMS.
 405     _next_top_at_mark_start = bottom();
 406     _next_marked_bytes = 0;
 407   }
 408 }
 409 
 410 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 411                                                   bool during_conc_mark,
 412                                                   size_t marked_bytes) {
 413   assert(0 <= marked_bytes && marked_bytes <= used(),
 414          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 415                  marked_bytes, used()));
 416   _prev_marked_bytes = marked_bytes;
 417 }
 418 
 419 HeapWord*
 420 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 421                                                  ObjectClosure* cl) {
 422   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 423   // We used to use "block_start_careful" here.  But we're actually happy
 424   // to update the BOT while we do this...
 425   HeapWord* cur = block_start(mr.start());
 426   mr = mr.intersection(used_region());
 427   if (mr.is_empty()) return NULL;
 428   // Otherwise, find the obj that extends onto mr.start().
 429 
 430   assert(cur <= mr.start()
 431          && (oop(cur)->klass_or_null() == NULL ||
 432              cur + oop(cur)->size() > mr.start()),
 433          "postcondition of block_start");
 434   oop obj;
 435   while (cur < mr.end()) {
 436     obj = oop(cur);
 437     if (obj->klass_or_null() == NULL) {
 438       // Ran into an unparseable point.
 439       return cur;
 440     } else if (!g1h->is_obj_dead(obj)) {
 441       cl->do_object(obj);
 442     }
 443     cur += block_size(cur);
 444   }
 445   return NULL;
 446 }
 447 
 448 HeapWord*
 449 HeapRegion::
 450 oops_on_card_seq_iterate_careful(MemRegion mr,
 451                                  FilterOutOfRegionClosure* cl,
 452                                  bool filter_young,
 453                                  jbyte* card_ptr) {
 454   // Currently, we should only have to clean the card if filter_young
 455   // is true and vice versa.
 456   if (filter_young) {
 457     assert(card_ptr != NULL, "pre-condition");
 458   } else {
 459     assert(card_ptr == NULL, "pre-condition");
 460   }
 461   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 462 
 463   // If we're within a stop-world GC, then we might look at a card in a
 464   // GC alloc region that extends onto a GC LAB, which may not be
 465   // parseable.  Stop such at the "saved_mark" of the region.
 466   if (g1h->is_gc_active()) {
 467     mr = mr.intersection(used_region_at_save_marks());
 468   } else {
 469     mr = mr.intersection(used_region());
 470   }
 471   if (mr.is_empty()) return NULL;
 472   // Otherwise, find the obj that extends onto mr.start().
 473 
 474   // The intersection of the incoming mr (for the card) and the
 475   // allocated part of the region is non-empty. This implies that
 476   // we have actually allocated into this region. The code in
 477   // G1CollectedHeap.cpp that allocates a new region sets the
 478   // is_young tag on the region before allocating. Thus we
 479   // safely know if this region is young.
 480   if (is_young() && filter_young) {
 481     return NULL;
 482   }
 483 
 484   assert(!is_young(), "check value of filter_young");
 485 
 486   // We can only clean the card here, after we make the decision that
 487   // the card is not young. And we only clean the card if we have been
 488   // asked to (i.e., card_ptr != NULL).
 489   if (card_ptr != NULL) {
 490     *card_ptr = CardTableModRefBS::clean_card_val();
 491     // We must complete this write before we do any of the reads below.
 492     OrderAccess::storeload();
 493   }
 494 
 495   // Cache the boundaries of the memory region in some const locals
 496   HeapWord* const start = mr.start();
 497   HeapWord* const end = mr.end();
 498 
 499   // We used to use "block_start_careful" here.  But we're actually happy
 500   // to update the BOT while we do this...
 501   HeapWord* cur = block_start(start);
 502   assert(cur <= start, "Postcondition");
 503 
 504   oop obj;
 505 
 506   HeapWord* next = cur;
 507   while (next <= start) {
 508     cur = next;
 509     obj = oop(cur);
 510     if (obj->klass_or_null() == NULL) {
 511       // Ran into an unparseable point.
 512       return cur;
 513     }
 514     // Otherwise...
 515     next = cur + block_size(cur);
 516   }
 517 
 518   // If we finish the above loop...We have a parseable object that
 519   // begins on or before the start of the memory region, and ends
 520   // inside or spans the entire region.
 521 
 522   assert(obj == oop(cur), "sanity");
 523   assert(cur <= start, "Loop postcondition");
 524   assert(obj->klass_or_null() != NULL, "Loop postcondition");
 525   assert((cur + block_size(cur)) > start, "Loop postcondition");
 526 
 527   if (!g1h->is_obj_dead(obj)) {
 528     obj->oop_iterate(cl, mr);
 529   }
 530 
 531   while (cur < end) {
 532     obj = oop(cur);
 533     if (obj->klass_or_null() == NULL) {
 534       // Ran into an unparseable point.
 535       return cur;
 536     };
 537 
 538     // Otherwise:
 539     next = cur + block_size(cur);
 540 
 541     if (!g1h->is_obj_dead(obj)) {
 542       if (next < end || !obj->is_objArray()) {
 543         // This object either does not span the MemRegion
 544         // boundary, or if it does it's not an array.
 545         // Apply closure to whole object.
 546         obj->oop_iterate(cl);
 547       } else {
 548         // This obj is an array that spans the boundary.
 549         // Stop at the boundary.
 550         obj->oop_iterate(cl, mr);
 551       }
 552     }
 553     cur = next;
 554   }
 555   return NULL;
 556 }
 557 
 558 // Code roots support
 559 
 560 void HeapRegion::add_strong_code_root(nmethod* nm) {
 561   HeapRegionRemSet* hrrs = rem_set();
 562   hrrs->add_strong_code_root(nm);
 563 }
 564 
 565 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 566   HeapRegionRemSet* hrrs = rem_set();
 567   hrrs->remove_strong_code_root(nm);
 568 }
 569 
 570 void HeapRegion::migrate_strong_code_roots() {
 571   assert(in_collection_set(), "only collection set regions");
 572   assert(!isHumongous(),
 573           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
 574                   HR_FORMAT_PARAMS(this)));
 575 
 576   HeapRegionRemSet* hrrs = rem_set();
 577   hrrs->migrate_strong_code_roots();
 578 }
 579 
 580 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 581   HeapRegionRemSet* hrrs = rem_set();
 582   hrrs->strong_code_roots_do(blk);
 583 }
 584 
 585 class VerifyStrongCodeRootOopClosure: public OopClosure {
 586   const HeapRegion* _hr;
 587   nmethod* _nm;
 588   bool _failures;
 589   bool _has_oops_in_region;
 590 
 591   template <class T> void do_oop_work(T* p) {
 592     T heap_oop = oopDesc::load_heap_oop(p);
 593     if (!oopDesc::is_null(heap_oop)) {
 594       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 595 
 596       // Note: not all the oops embedded in the nmethod are in the
 597       // current region. We only look at those which are.
 598       if (_hr->is_in(obj)) {
 599         // Object is in the region. Check that its less than top
 600         if (_hr->top() <= (HeapWord*)obj) {
 601           // Object is above top
 602           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
 603                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
 604                                  "top "PTR_FORMAT,
 605                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
 606           _failures = true;
 607           return;
 608         }
 609         // Nmethod has at least one oop in the current region
 610         _has_oops_in_region = true;
 611       }
 612     }
 613   }
 614 
 615 public:
 616   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 617     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 618 
 619   void do_oop(narrowOop* p) { do_oop_work(p); }
 620   void do_oop(oop* p)       { do_oop_work(p); }
 621 
 622   bool failures()           { return _failures; }
 623   bool has_oops_in_region() { return _has_oops_in_region; }
 624 };
 625 
 626 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 627   const HeapRegion* _hr;
 628   bool _failures;
 629 public:
 630   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 631     _hr(hr), _failures(false) {}
 632 
 633   void do_code_blob(CodeBlob* cb) {
 634     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 635     if (nm != NULL) {
 636       // Verify that the nemthod is live
 637       if (!nm->is_alive()) {
 638         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
 639                                PTR_FORMAT" in its strong code roots",
 640                                _hr->bottom(), _hr->end(), nm);
 641         _failures = true;
 642       } else {
 643         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 644         nm->oops_do(&oop_cl);
 645         if (!oop_cl.has_oops_in_region()) {
 646           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
 647                                  PTR_FORMAT" in its strong code roots "
 648                                  "with no pointers into region",
 649                                  _hr->bottom(), _hr->end(), nm);
 650           _failures = true;
 651         } else if (oop_cl.failures()) {
 652           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
 653                                  "failures for nmethod "PTR_FORMAT,
 654                                  _hr->bottom(), _hr->end(), nm);
 655           _failures = true;
 656         }
 657       }
 658     }
 659   }
 660 
 661   bool failures()       { return _failures; }
 662 };
 663 
 664 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 665   if (!G1VerifyHeapRegionCodeRoots) {
 666     // We're not verifying code roots.
 667     return;
 668   }
 669   if (vo == VerifyOption_G1UseMarkWord) {
 670     // Marking verification during a full GC is performed after class
 671     // unloading, code cache unloading, etc so the strong code roots
 672     // attached to each heap region are in an inconsistent state. They won't
 673     // be consistent until the strong code roots are rebuilt after the
 674     // actual GC. Skip verifying the strong code roots in this particular
 675     // time.
 676     assert(VerifyDuringGC, "only way to get here");
 677     return;
 678   }
 679 
 680   HeapRegionRemSet* hrrs = rem_set();
 681   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 682 
 683   // if this region is empty then there should be no entries
 684   // on its strong code root list
 685   if (is_empty()) {
 686     if (strong_code_roots_length > 0) {
 687       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
 688                              "but has "SIZE_FORMAT" code root entries",
 689                              bottom(), end(), strong_code_roots_length);
 690       *failures = true;
 691     }
 692     return;
 693   }
 694 
 695   if (continuesHumongous()) {
 696     if (strong_code_roots_length > 0) {
 697       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
 698                              "region but has "SIZE_FORMAT" code root entries",
 699                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
 700       *failures = true;
 701     }
 702     return;
 703   }
 704 
 705   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 706   strong_code_roots_do(&cb_cl);
 707 
 708   if (cb_cl.failures()) {
 709     *failures = true;
 710   }
 711 }
 712 
 713 void HeapRegion::print() const { print_on(gclog_or_tty); }
 714 void HeapRegion::print_on(outputStream* st) const {
 715   if (isHumongous()) {
 716     if (startsHumongous())
 717       st->print(" HS");
 718     else
 719       st->print(" HC");
 720   } else {
 721     st->print("   ");
 722   }
 723   if (in_collection_set())
 724     st->print(" CS");
 725   else
 726     st->print("   ");
 727   if (is_young())
 728     st->print(is_survivor() ? " SU" : " Y ");
 729   else
 730     st->print("   ");
 731   if (is_empty())
 732     st->print(" F");
 733   else
 734     st->print("  ");
 735   st->print(" TS %5d", _gc_time_stamp);
 736   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 737             prev_top_at_mark_start(), next_top_at_mark_start());
 738   G1OffsetTableContigSpace::print_on(st);
 739 }
 740 
 741 class VerifyLiveClosure: public OopClosure {
 742 private:
 743   G1CollectedHeap* _g1h;
 744   CardTableModRefBS* _bs;
 745   oop _containing_obj;
 746   bool _failures;
 747   int _n_failures;
 748   VerifyOption _vo;
 749 public:
 750   // _vo == UsePrevMarking -> use "prev" marking information,
 751   // _vo == UseNextMarking -> use "next" marking information,
 752   // _vo == UseMarkWord    -> use mark word from object header.
 753   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 754     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 755     _failures(false), _n_failures(0), _vo(vo)
 756   {
 757     BarrierSet* bs = _g1h->barrier_set();
 758     if (bs->is_a(BarrierSet::CardTableModRef))
 759       _bs = (CardTableModRefBS*)bs;
 760   }
 761 
 762   void set_containing_obj(oop obj) {
 763     _containing_obj = obj;
 764   }
 765 
 766   bool failures() { return _failures; }
 767   int n_failures() { return _n_failures; }
 768 
 769   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 770   virtual void do_oop(      oop* p) { do_oop_work(p); }
 771 
 772   void print_object(outputStream* out, oop obj) {
 773 #ifdef PRODUCT
 774     Klass* k = obj->klass();
 775     const char* class_name = InstanceKlass::cast(k)->external_name();
 776     out->print_cr("class name %s", class_name);
 777 #else // PRODUCT
 778     obj->print_on(out);
 779 #endif // PRODUCT
 780   }
 781 
 782   template <class T>
 783   void do_oop_work(T* p) {
 784     assert(_containing_obj != NULL, "Precondition");
 785     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 786            "Precondition");
 787     T heap_oop = oopDesc::load_heap_oop(p);
 788     if (!oopDesc::is_null(heap_oop)) {
 789       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 790       bool failed = false;
 791       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 792         MutexLockerEx x(ParGCRareEvent_lock,
 793                         Mutex::_no_safepoint_check_flag);
 794 
 795         if (!_failures) {
 796           gclog_or_tty->cr();
 797           gclog_or_tty->print_cr("----------");
 798         }
 799         if (!_g1h->is_in_closed_subset(obj)) {
 800           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 801           gclog_or_tty->print_cr("Field "PTR_FORMAT
 802                                  " of live obj "PTR_FORMAT" in region "
 803                                  "["PTR_FORMAT", "PTR_FORMAT")",
 804                                  p, (void*) _containing_obj,
 805                                  from->bottom(), from->end());
 806           print_object(gclog_or_tty, _containing_obj);
 807           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 808                                  (void*) obj);
 809         } else {
 810           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 811           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 812           gclog_or_tty->print_cr("Field "PTR_FORMAT
 813                                  " of live obj "PTR_FORMAT" in region "
 814                                  "["PTR_FORMAT", "PTR_FORMAT")",
 815                                  p, (void*) _containing_obj,
 816                                  from->bottom(), from->end());
 817           print_object(gclog_or_tty, _containing_obj);
 818           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 819                                  "["PTR_FORMAT", "PTR_FORMAT")",
 820                                  (void*) obj, to->bottom(), to->end());
 821           print_object(gclog_or_tty, obj);
 822         }
 823         gclog_or_tty->print_cr("----------");
 824         gclog_or_tty->flush();
 825         _failures = true;
 826         failed = true;
 827         _n_failures++;
 828       }
 829 
 830       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
 831         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 832         HeapRegion* to   = _g1h->heap_region_containing(obj);
 833         if (from != NULL && to != NULL &&
 834             from != to &&
 835             !to->isHumongous()) {
 836           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 837           jbyte cv_field = *_bs->byte_for_const(p);
 838           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 839 
 840           bool is_bad = !(from->is_young()
 841                           || to->rem_set()->contains_reference(p)
 842                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 843                               (_containing_obj->is_objArray() ?
 844                                   cv_field == dirty
 845                                : cv_obj == dirty || cv_field == dirty));
 846           if (is_bad) {
 847             MutexLockerEx x(ParGCRareEvent_lock,
 848                             Mutex::_no_safepoint_check_flag);
 849 
 850             if (!_failures) {
 851               gclog_or_tty->cr();
 852               gclog_or_tty->print_cr("----------");
 853             }
 854             gclog_or_tty->print_cr("Missing rem set entry:");
 855             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 856                                    "of obj "PTR_FORMAT", "
 857                                    "in region "HR_FORMAT,
 858                                    p, (void*) _containing_obj,
 859                                    HR_FORMAT_PARAMS(from));
 860             _containing_obj->print_on(gclog_or_tty);
 861             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 862                                    "in region "HR_FORMAT,
 863                                    (void*) obj,
 864                                    HR_FORMAT_PARAMS(to));
 865             obj->print_on(gclog_or_tty);
 866             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 867                           cv_obj, cv_field);
 868             gclog_or_tty->print_cr("----------");
 869             gclog_or_tty->flush();
 870             _failures = true;
 871             if (!failed) _n_failures++;
 872           }
 873         }
 874       }
 875     }
 876   }
 877 };
 878 
 879 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 880 // We would need a mechanism to make that code skip dead objects.
 881 
 882 void HeapRegion::verify(VerifyOption vo,
 883                         bool* failures) const {
 884   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 885   *failures = false;
 886   HeapWord* p = bottom();
 887   HeapWord* prev_p = NULL;
 888   VerifyLiveClosure vl_cl(g1, vo);
 889   bool is_humongous = isHumongous();
 890   bool do_bot_verify = !is_young();
 891   size_t object_num = 0;
 892   while (p < top()) {
 893     oop obj = oop(p);
 894     size_t obj_size = block_size(p);
 895     object_num += 1;
 896 
 897     if (is_humongous != g1->isHumongous(obj_size)) {
 898       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 899                              SIZE_FORMAT" words) in a %shumongous region",
 900                              p, g1->isHumongous(obj_size) ? "" : "non-",
 901                              obj_size, is_humongous ? "" : "non-");
 902        *failures = true;
 903        return;
 904     }
 905 
 906     // If it returns false, verify_for_object() will output the
 907     // appropriate messasge.
 908     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
 909       *failures = true;
 910       return;
 911     }
 912 
 913     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 914       if (obj->is_oop()) {
 915         Klass* klass = obj->klass();
 916         if (!klass->is_metaspace_object()) {
 917           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 918                                  "not metadata", klass, (void *)obj);
 919           *failures = true;
 920           return;
 921         } else if (!klass->is_klass()) {
 922           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 923                                  "not a klass", klass, (void *)obj);
 924           *failures = true;
 925           return;
 926         } else {
 927           vl_cl.set_containing_obj(obj);
 928           obj->oop_iterate_no_header(&vl_cl);
 929           if (vl_cl.failures()) {
 930             *failures = true;
 931           }
 932           if (G1MaxVerifyFailures >= 0 &&
 933               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 934             return;
 935           }
 936         }
 937       } else {
 938         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
 939         *failures = true;
 940         return;
 941       }
 942     }
 943     prev_p = p;
 944     p += obj_size;
 945   }
 946 
 947   if (p != top()) {
 948     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 949                            "does not match top "PTR_FORMAT, p, top());
 950     *failures = true;
 951     return;
 952   }
 953 
 954   HeapWord* the_end = end();
 955   assert(p == top(), "it should still hold");
 956   // Do some extra BOT consistency checking for addresses in the
 957   // range [top, end). BOT look-ups in this range should yield
 958   // top. No point in doing that if top == end (there's nothing there).
 959   if (p < the_end) {
 960     // Look up top
 961     HeapWord* addr_1 = p;
 962     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 963     if (b_start_1 != p) {
 964       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
 965                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 966                              addr_1, b_start_1, p);
 967       *failures = true;
 968       return;
 969     }
 970 
 971     // Look up top + 1
 972     HeapWord* addr_2 = p + 1;
 973     if (addr_2 < the_end) {
 974       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 975       if (b_start_2 != p) {
 976         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
 977                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 978                                addr_2, b_start_2, p);
 979         *failures = true;
 980         return;
 981       }
 982     }
 983 
 984     // Look up an address between top and end
 985     size_t diff = pointer_delta(the_end, p) / 2;
 986     HeapWord* addr_3 = p + diff;
 987     if (addr_3 < the_end) {
 988       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 989       if (b_start_3 != p) {
 990         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
 991                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 992                                addr_3, b_start_3, p);
 993         *failures = true;
 994         return;
 995       }
 996     }
 997 
 998     // Look up end - 1
 999     HeapWord* addr_4 = the_end - 1;
1000     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
1001     if (b_start_4 != p) {
1002       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
1003                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1004                              addr_4, b_start_4, p);
1005       *failures = true;
1006       return;
1007     }
1008   }
1009 
1010   if (is_humongous && object_num > 1) {
1011     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
1012                            "but has "SIZE_FORMAT", objects",
1013                            bottom(), end(), object_num);
1014     *failures = true;
1015     return;
1016   }
1017 
1018   verify_strong_code_roots(vo, failures);
1019 }
1020 
1021 void HeapRegion::verify() const {
1022   bool dummy = false;
1023   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
1024 }
1025 
1026 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
1027 // away eventually.
1028 
1029 void G1OffsetTableContigSpace::clear(bool mangle_space) {
1030   set_top(bottom());
1031   set_saved_mark_word(bottom());
1032   CompactibleSpace::clear(mangle_space);
1033   _offsets.zero_bottom_entry();
1034   _offsets.initialize_threshold();
1035 }
1036 
1037 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
1038   Space::set_bottom(new_bottom);
1039   _offsets.set_bottom(new_bottom);
1040 }
1041 
1042 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
1043   Space::set_end(new_end);
1044   _offsets.resize(new_end - bottom());
1045 }
1046 
1047 void G1OffsetTableContigSpace::print() const {
1048   print_short();
1049   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
1050                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
1051                 bottom(), top(), _offsets.threshold(), end());
1052 }
1053 
1054 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
1055   return _offsets.initialize_threshold();
1056 }
1057 
1058 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
1059                                                     HeapWord* end) {
1060   _offsets.alloc_block(start, end);
1061   return _offsets.threshold();
1062 }
1063 
1064 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
1065   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1066   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
1067   if (_gc_time_stamp < g1h->get_gc_time_stamp())
1068     return top();
1069   else
1070     return Space::saved_mark_word();
1071 }
1072 
1073 void G1OffsetTableContigSpace::record_top_and_timestamp() {
1074   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1075   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
1076 
1077   if (_gc_time_stamp < curr_gc_time_stamp) {
1078     // The order of these is important, as another thread might be
1079     // about to start scanning this region. If it does so after
1080     // set_saved_mark and before _gc_time_stamp = ..., then the latter
1081     // will be false, and it will pick up top() as the high water mark
1082     // of region. If it does so after _gc_time_stamp = ..., then it
1083     // will pick up the right saved_mark_word() as the high water mark
1084     // of the region. Either way, the behavior will be correct.
1085     Space::set_saved_mark_word(top());
1086     OrderAccess::storestore();
1087     _gc_time_stamp = curr_gc_time_stamp;
1088     // No need to do another barrier to flush the writes above. If
1089     // this is called in parallel with other threads trying to
1090     // allocate into the region, the caller should call this while
1091     // holding a lock and when the lock is released the writes will be
1092     // flushed.
1093   }
1094 }
1095 
1096 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
1097   object_iterate(blk);
1098 }
1099 
1100 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
1101   HeapWord* p = bottom();
1102   while (p < top()) {
1103     if (block_is_obj(p)) {
1104       blk->do_object(oop(p));
1105     }
1106     p += block_size(p);
1107   }
1108 }
1109 
1110 #define block_is_always_obj(q) true
1111 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
1112   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
1113 }
1114 #undef block_is_always_obj
1115 
1116 G1OffsetTableContigSpace::
1117 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1118                          MemRegion mr) :
1119   _offsets(sharedOffsetArray, mr),
1120   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1121   _gc_time_stamp(0)
1122 {
1123   _offsets.set_space(this);
1124   // false ==> we'll do the clearing if there's clearing to be done.
1125   CompactibleSpace::initialize(mr, false, SpaceDecorator::Mangle);
1126   _top = bottom();
1127   _offsets.zero_bottom_entry();
1128   _offsets.initialize_threshold();
1129 }