1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/metadataOnStackMark.hpp"
  32 #include "classfile/stringTable.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  43 #include "gc_implementation/g1/g1EvacFailure.hpp"
  44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  45 #include "gc_implementation/g1/g1Log.hpp"
  46 #include "gc_implementation/g1/g1MarkSweep.hpp"
  47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  51 #include "gc_implementation/g1/g1StringDedup.hpp"
  52 #include "gc_implementation/g1/g1YCTypes.hpp"
  53 #include "gc_implementation/g1/heapRegion.inline.hpp"
  54 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  55 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  56 #include "gc_implementation/g1/vm_operations_g1.hpp"
  57 #include "gc_implementation/shared/gcHeapSummary.hpp"
  58 #include "gc_implementation/shared/gcTimer.hpp"
  59 #include "gc_implementation/shared/gcTrace.hpp"
  60 #include "gc_implementation/shared/gcTraceTime.hpp"
  61 #include "gc_implementation/shared/isGCActiveMark.hpp"
  62 #include "memory/allocation.hpp"
  63 #include "memory/gcLocker.inline.hpp"
  64 #include "memory/generationSpec.hpp"
  65 #include "memory/iterator.hpp"
  66 #include "memory/referenceProcessor.hpp"
  67 #include "oops/oop.inline.hpp"
  68 #include "oops/oop.pcgc.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 
  74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  75 
  76 // turn it on so that the contents of the young list (scan-only /
  77 // to-be-collected) are printed at "strategic" points before / during
  78 // / after the collection --- this is useful for debugging
  79 #define YOUNG_LIST_VERBOSE 0
  80 // CURRENT STATUS
  81 // This file is under construction.  Search for "FIXME".
  82 
  83 // INVARIANTS/NOTES
  84 //
  85 // All allocation activity covered by the G1CollectedHeap interface is
  86 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  87 // and allocate_new_tlab, which are the "entry" points to the
  88 // allocation code from the rest of the JVM.  (Note that this does not
  89 // apply to TLAB allocation, which is not part of this interface: it
  90 // is done by clients of this interface.)
  91 
  92 // Notes on implementation of parallelism in different tasks.
  93 //
  94 // G1ParVerifyTask uses heap_region_par_iterate() for parallelism.
  95 // The number of GC workers is passed to heap_region_par_iterate().
  96 // It does use run_task() which sets _n_workers in the task.
  97 // G1ParTask executes g1_process_roots() ->
  98 // SharedHeap::process_roots() which calls eventually to
  99 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
 100 // SequentialSubTasksDone.  SharedHeap::process_roots() also
 101 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
 102 //
 103 
 104 // Local to this file.
 105 
 106 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 107   bool _concurrent;
 108 public:
 109   RefineCardTableEntryClosure() : _concurrent(true) { }
 110 
 111   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 112     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 113     // This path is executed by the concurrent refine or mutator threads,
 114     // concurrently, and so we do not care if card_ptr contains references
 115     // that point into the collection set.
 116     assert(!oops_into_cset, "should be");
 117 
 118     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 119       // Caller will actually yield.
 120       return false;
 121     }
 122     // Otherwise, we finished successfully; return true.
 123     return true;
 124   }
 125 
 126   void set_concurrent(bool b) { _concurrent = b; }
 127 };
 128 
 129 
 130 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 131  private:
 132   size_t _num_processed;
 133 
 134  public:
 135   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 136 
 137   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 138     *card_ptr = CardTableModRefBS::dirty_card_val();
 139     _num_processed++;
 140     return true;
 141   }
 142 
 143   size_t num_processed() const { return _num_processed; }
 144 };
 145 
 146 YoungList::YoungList(G1CollectedHeap* g1h) :
 147     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 148     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 149   guarantee(check_list_empty(false), "just making sure...");
 150 }
 151 
 152 void YoungList::push_region(HeapRegion *hr) {
 153   assert(!hr->is_young(), "should not already be young");
 154   assert(hr->get_next_young_region() == NULL, "cause it should!");
 155 
 156   hr->set_next_young_region(_head);
 157   _head = hr;
 158 
 159   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 160   ++_length;
 161 }
 162 
 163 void YoungList::add_survivor_region(HeapRegion* hr) {
 164   assert(hr->is_survivor(), "should be flagged as survivor region");
 165   assert(hr->get_next_young_region() == NULL, "cause it should!");
 166 
 167   hr->set_next_young_region(_survivor_head);
 168   if (_survivor_head == NULL) {
 169     _survivor_tail = hr;
 170   }
 171   _survivor_head = hr;
 172   ++_survivor_length;
 173 }
 174 
 175 void YoungList::empty_list(HeapRegion* list) {
 176   while (list != NULL) {
 177     HeapRegion* next = list->get_next_young_region();
 178     list->set_next_young_region(NULL);
 179     list->uninstall_surv_rate_group();
 180     // This is called before a Full GC and all the non-empty /
 181     // non-humongous regions at the end of the Full GC will end up as
 182     // old anyway.
 183     list->set_old();
 184     list = next;
 185   }
 186 }
 187 
 188 void YoungList::empty_list() {
 189   assert(check_list_well_formed(), "young list should be well formed");
 190 
 191   empty_list(_head);
 192   _head = NULL;
 193   _length = 0;
 194 
 195   empty_list(_survivor_head);
 196   _survivor_head = NULL;
 197   _survivor_tail = NULL;
 198   _survivor_length = 0;
 199 
 200   _last_sampled_rs_lengths = 0;
 201 
 202   assert(check_list_empty(false), "just making sure...");
 203 }
 204 
 205 bool YoungList::check_list_well_formed() {
 206   bool ret = true;
 207 
 208   uint length = 0;
 209   HeapRegion* curr = _head;
 210   HeapRegion* last = NULL;
 211   while (curr != NULL) {
 212     if (!curr->is_young()) {
 213       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 214                              "incorrectly tagged (y: %d, surv: %d)",
 215                              curr->bottom(), curr->end(),
 216                              curr->is_young(), curr->is_survivor());
 217       ret = false;
 218     }
 219     ++length;
 220     last = curr;
 221     curr = curr->get_next_young_region();
 222   }
 223   ret = ret && (length == _length);
 224 
 225   if (!ret) {
 226     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 227     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 228                            length, _length);
 229   }
 230 
 231   return ret;
 232 }
 233 
 234 bool YoungList::check_list_empty(bool check_sample) {
 235   bool ret = true;
 236 
 237   if (_length != 0) {
 238     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 239                   _length);
 240     ret = false;
 241   }
 242   if (check_sample && _last_sampled_rs_lengths != 0) {
 243     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 244     ret = false;
 245   }
 246   if (_head != NULL) {
 247     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 248     ret = false;
 249   }
 250   if (!ret) {
 251     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 252   }
 253 
 254   return ret;
 255 }
 256 
 257 void
 258 YoungList::rs_length_sampling_init() {
 259   _sampled_rs_lengths = 0;
 260   _curr               = _head;
 261 }
 262 
 263 bool
 264 YoungList::rs_length_sampling_more() {
 265   return _curr != NULL;
 266 }
 267 
 268 void
 269 YoungList::rs_length_sampling_next() {
 270   assert( _curr != NULL, "invariant" );
 271   size_t rs_length = _curr->rem_set()->occupied();
 272 
 273   _sampled_rs_lengths += rs_length;
 274 
 275   // The current region may not yet have been added to the
 276   // incremental collection set (it gets added when it is
 277   // retired as the current allocation region).
 278   if (_curr->in_collection_set()) {
 279     // Update the collection set policy information for this region
 280     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 281   }
 282 
 283   _curr = _curr->get_next_young_region();
 284   if (_curr == NULL) {
 285     _last_sampled_rs_lengths = _sampled_rs_lengths;
 286     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 287   }
 288 }
 289 
 290 void
 291 YoungList::reset_auxilary_lists() {
 292   guarantee( is_empty(), "young list should be empty" );
 293   assert(check_list_well_formed(), "young list should be well formed");
 294 
 295   // Add survivor regions to SurvRateGroup.
 296   _g1h->g1_policy()->note_start_adding_survivor_regions();
 297   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 298 
 299   int young_index_in_cset = 0;
 300   for (HeapRegion* curr = _survivor_head;
 301        curr != NULL;
 302        curr = curr->get_next_young_region()) {
 303     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 304 
 305     // The region is a non-empty survivor so let's add it to
 306     // the incremental collection set for the next evacuation
 307     // pause.
 308     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 309     young_index_in_cset += 1;
 310   }
 311   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 312   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 313 
 314   _head   = _survivor_head;
 315   _length = _survivor_length;
 316   if (_survivor_head != NULL) {
 317     assert(_survivor_tail != NULL, "cause it shouldn't be");
 318     assert(_survivor_length > 0, "invariant");
 319     _survivor_tail->set_next_young_region(NULL);
 320   }
 321 
 322   // Don't clear the survivor list handles until the start of
 323   // the next evacuation pause - we need it in order to re-tag
 324   // the survivor regions from this evacuation pause as 'young'
 325   // at the start of the next.
 326 
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 328 
 329   assert(check_list_well_formed(), "young list should be well formed");
 330 }
 331 
 332 void YoungList::print() {
 333   HeapRegion* lists[] = {_head,   _survivor_head};
 334   const char* names[] = {"YOUNG", "SURVIVOR"};
 335 
 336   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 337     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 338     HeapRegion *curr = lists[list];
 339     if (curr == NULL)
 340       gclog_or_tty->print_cr("  empty");
 341     while (curr != NULL) {
 342       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 343                              HR_FORMAT_PARAMS(curr),
 344                              curr->prev_top_at_mark_start(),
 345                              curr->next_top_at_mark_start(),
 346                              curr->age_in_surv_rate_group_cond());
 347       curr = curr->get_next_young_region();
 348     }
 349   }
 350 
 351   gclog_or_tty->cr();
 352 }
 353 
 354 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 355   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 356 }
 357 
 358 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 359   // The from card cache is not the memory that is actually committed. So we cannot
 360   // take advantage of the zero_filled parameter.
 361   reset_from_card_cache(start_idx, num_regions);
 362 }
 363 
 364 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 365 {
 366   // Claim the right to put the region on the dirty cards region list
 367   // by installing a self pointer.
 368   HeapRegion* next = hr->get_next_dirty_cards_region();
 369   if (next == NULL) {
 370     HeapRegion* res = (HeapRegion*)
 371       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 372                           NULL);
 373     if (res == NULL) {
 374       HeapRegion* head;
 375       do {
 376         // Put the region to the dirty cards region list.
 377         head = _dirty_cards_region_list;
 378         next = (HeapRegion*)
 379           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 380         if (next == head) {
 381           assert(hr->get_next_dirty_cards_region() == hr,
 382                  "hr->get_next_dirty_cards_region() != hr");
 383           if (next == NULL) {
 384             // The last region in the list points to itself.
 385             hr->set_next_dirty_cards_region(hr);
 386           } else {
 387             hr->set_next_dirty_cards_region(next);
 388           }
 389         }
 390       } while (next != head);
 391     }
 392   }
 393 }
 394 
 395 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 396 {
 397   HeapRegion* head;
 398   HeapRegion* hr;
 399   do {
 400     head = _dirty_cards_region_list;
 401     if (head == NULL) {
 402       return NULL;
 403     }
 404     HeapRegion* new_head = head->get_next_dirty_cards_region();
 405     if (head == new_head) {
 406       // The last region.
 407       new_head = NULL;
 408     }
 409     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 410                                           head);
 411   } while (hr != head);
 412   assert(hr != NULL, "invariant");
 413   hr->set_next_dirty_cards_region(NULL);
 414   return hr;
 415 }
 416 
 417 #ifdef ASSERT
 418 // A region is added to the collection set as it is retired
 419 // so an address p can point to a region which will be in the
 420 // collection set but has not yet been retired.  This method
 421 // therefore is only accurate during a GC pause after all
 422 // regions have been retired.  It is used for debugging
 423 // to check if an nmethod has references to objects that can
 424 // be move during a partial collection.  Though it can be
 425 // inaccurate, it is sufficient for G1 because the conservative
 426 // implementation of is_scavengable() for G1 will indicate that
 427 // all nmethods must be scanned during a partial collection.
 428 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 429   if (p == NULL) {
 430     return false;
 431   }
 432   return heap_region_containing(p)->in_collection_set();
 433 }
 434 #endif
 435 
 436 // Returns true if the reference points to an object that
 437 // can move in an incremental collection.
 438 bool G1CollectedHeap::is_scavengable(const void* p) {
 439   HeapRegion* hr = heap_region_containing(p);
 440   return !hr->is_humongous();
 441 }
 442 
 443 // Private class members.
 444 
 445 G1CollectedHeap* G1CollectedHeap::_g1h;
 446 
 447 // Private methods.
 448 
 449 HeapRegion*
 450 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 451   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 452   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 453     if (!_secondary_free_list.is_empty()) {
 454       if (G1ConcRegionFreeingVerbose) {
 455         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 456                                "secondary_free_list has %u entries",
 457                                _secondary_free_list.length());
 458       }
 459       // It looks as if there are free regions available on the
 460       // secondary_free_list. Let's move them to the free_list and try
 461       // again to allocate from it.
 462       append_secondary_free_list();
 463 
 464       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 465              "empty we should have moved at least one entry to the free_list");
 466       HeapRegion* res = _hrm.allocate_free_region(is_old);
 467       if (G1ConcRegionFreeingVerbose) {
 468         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 469                                "allocated "HR_FORMAT" from secondary_free_list",
 470                                HR_FORMAT_PARAMS(res));
 471       }
 472       return res;
 473     }
 474 
 475     // Wait here until we get notified either when (a) there are no
 476     // more free regions coming or (b) some regions have been moved on
 477     // the secondary_free_list.
 478     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 479   }
 480 
 481   if (G1ConcRegionFreeingVerbose) {
 482     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 483                            "could not allocate from secondary_free_list");
 484   }
 485   return NULL;
 486 }
 487 
 488 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 489   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 490          "the only time we use this to allocate a humongous region is "
 491          "when we are allocating a single humongous region");
 492 
 493   HeapRegion* res;
 494   if (G1StressConcRegionFreeing) {
 495     if (!_secondary_free_list.is_empty()) {
 496       if (G1ConcRegionFreeingVerbose) {
 497         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 498                                "forced to look at the secondary_free_list");
 499       }
 500       res = new_region_try_secondary_free_list(is_old);
 501       if (res != NULL) {
 502         return res;
 503       }
 504     }
 505   }
 506 
 507   res = _hrm.allocate_free_region(is_old);
 508 
 509   if (res == NULL) {
 510     if (G1ConcRegionFreeingVerbose) {
 511       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 512                              "res == NULL, trying the secondary_free_list");
 513     }
 514     res = new_region_try_secondary_free_list(is_old);
 515   }
 516   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 517     // Currently, only attempts to allocate GC alloc regions set
 518     // do_expand to true. So, we should only reach here during a
 519     // safepoint. If this assumption changes we might have to
 520     // reconsider the use of _expand_heap_after_alloc_failure.
 521     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 522 
 523     ergo_verbose1(ErgoHeapSizing,
 524                   "attempt heap expansion",
 525                   ergo_format_reason("region allocation request failed")
 526                   ergo_format_byte("allocation request"),
 527                   word_size * HeapWordSize);
 528     if (expand(word_size * HeapWordSize)) {
 529       // Given that expand() succeeded in expanding the heap, and we
 530       // always expand the heap by an amount aligned to the heap
 531       // region size, the free list should in theory not be empty.
 532       // In either case allocate_free_region() will check for NULL.
 533       res = _hrm.allocate_free_region(is_old);
 534     } else {
 535       _expand_heap_after_alloc_failure = false;
 536     }
 537   }
 538   return res;
 539 }
 540 
 541 HeapWord*
 542 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 543                                                            uint num_regions,
 544                                                            size_t word_size,
 545                                                            AllocationContext_t context) {
 546   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 547   assert(is_humongous(word_size), "word_size should be humongous");
 548   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 549 
 550   // Index of last region in the series + 1.
 551   uint last = first + num_regions;
 552 
 553   // We need to initialize the region(s) we just discovered. This is
 554   // a bit tricky given that it can happen concurrently with
 555   // refinement threads refining cards on these regions and
 556   // potentially wanting to refine the BOT as they are scanning
 557   // those cards (this can happen shortly after a cleanup; see CR
 558   // 6991377). So we have to set up the region(s) carefully and in
 559   // a specific order.
 560 
 561   // The word size sum of all the regions we will allocate.
 562   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 563   assert(word_size <= word_size_sum, "sanity");
 564 
 565   // This will be the "starts humongous" region.
 566   HeapRegion* first_hr = region_at(first);
 567   // The header of the new object will be placed at the bottom of
 568   // the first region.
 569   HeapWord* new_obj = first_hr->bottom();
 570   // This will be the new end of the first region in the series that
 571   // should also match the end of the last region in the series.
 572   HeapWord* new_end = new_obj + word_size_sum;
 573   // This will be the new top of the first region that will reflect
 574   // this allocation.
 575   HeapWord* new_top = new_obj + word_size;
 576 
 577   // First, we need to zero the header of the space that we will be
 578   // allocating. When we update top further down, some refinement
 579   // threads might try to scan the region. By zeroing the header we
 580   // ensure that any thread that will try to scan the region will
 581   // come across the zero klass word and bail out.
 582   //
 583   // NOTE: It would not have been correct to have used
 584   // CollectedHeap::fill_with_object() and make the space look like
 585   // an int array. The thread that is doing the allocation will
 586   // later update the object header to a potentially different array
 587   // type and, for a very short period of time, the klass and length
 588   // fields will be inconsistent. This could cause a refinement
 589   // thread to calculate the object size incorrectly.
 590   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 591 
 592   // We will set up the first region as "starts humongous". This
 593   // will also update the BOT covering all the regions to reflect
 594   // that there is a single object that starts at the bottom of the
 595   // first region.
 596   first_hr->set_starts_humongous(new_top, new_end);
 597   first_hr->set_allocation_context(context);
 598   // Then, if there are any, we will set up the "continues
 599   // humongous" regions.
 600   HeapRegion* hr = NULL;
 601   for (uint i = first + 1; i < last; ++i) {
 602     hr = region_at(i);
 603     hr->set_continues_humongous(first_hr);
 604     hr->set_allocation_context(context);
 605   }
 606   // If we have "continues humongous" regions (hr != NULL), then the
 607   // end of the last one should match new_end.
 608   assert(hr == NULL || hr->end() == new_end, "sanity");
 609 
 610   // Up to this point no concurrent thread would have been able to
 611   // do any scanning on any region in this series. All the top
 612   // fields still point to bottom, so the intersection between
 613   // [bottom,top] and [card_start,card_end] will be empty. Before we
 614   // update the top fields, we'll do a storestore to make sure that
 615   // no thread sees the update to top before the zeroing of the
 616   // object header and the BOT initialization.
 617   OrderAccess::storestore();
 618 
 619   // Now that the BOT and the object header have been initialized,
 620   // we can update top of the "starts humongous" region.
 621   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 622          "new_top should be in this region");
 623   first_hr->set_top(new_top);
 624   if (_hr_printer.is_active()) {
 625     HeapWord* bottom = first_hr->bottom();
 626     HeapWord* end = first_hr->orig_end();
 627     if ((first + 1) == last) {
 628       // the series has a single humongous region
 629       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 630     } else {
 631       // the series has more than one humongous regions
 632       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 633     }
 634   }
 635 
 636   // Now, we will update the top fields of the "continues humongous"
 637   // regions. The reason we need to do this is that, otherwise,
 638   // these regions would look empty and this will confuse parts of
 639   // G1. For example, the code that looks for a consecutive number
 640   // of empty regions will consider them empty and try to
 641   // re-allocate them. We can extend is_empty() to also include
 642   // !is_continues_humongous(), but it is easier to just update the top
 643   // fields here. The way we set top for all regions (i.e., top ==
 644   // end for all regions but the last one, top == new_top for the
 645   // last one) is actually used when we will free up the humongous
 646   // region in free_humongous_region().
 647   hr = NULL;
 648   for (uint i = first + 1; i < last; ++i) {
 649     hr = region_at(i);
 650     if ((i + 1) == last) {
 651       // last continues humongous region
 652       assert(hr->bottom() < new_top && new_top <= hr->end(),
 653              "new_top should fall on this region");
 654       hr->set_top(new_top);
 655       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 656     } else {
 657       // not last one
 658       assert(new_top > hr->end(), "new_top should be above this region");
 659       hr->set_top(hr->end());
 660       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 661     }
 662   }
 663   // If we have continues humongous regions (hr != NULL), then the
 664   // end of the last one should match new_end and its top should
 665   // match new_top.
 666   assert(hr == NULL ||
 667          (hr->end() == new_end && hr->top() == new_top), "sanity");
 668   check_bitmaps("Humongous Region Allocation", first_hr);
 669 
 670   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 671   _allocator->increase_used(first_hr->used());
 672   _humongous_set.add(first_hr);
 673 
 674   return new_obj;
 675 }
 676 
 677 // If could fit into free regions w/o expansion, try.
 678 // Otherwise, if can expand, do so.
 679 // Otherwise, if using ex regions might help, try with ex given back.
 680 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 681   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 682 
 683   verify_region_sets_optional();
 684 
 685   uint first = G1_NO_HRM_INDEX;
 686   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 687 
 688   if (obj_regions == 1) {
 689     // Only one region to allocate, try to use a fast path by directly allocating
 690     // from the free lists. Do not try to expand here, we will potentially do that
 691     // later.
 692     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 693     if (hr != NULL) {
 694       first = hr->hrm_index();
 695     }
 696   } else {
 697     // We can't allocate humongous regions spanning more than one region while
 698     // cleanupComplete() is running, since some of the regions we find to be
 699     // empty might not yet be added to the free list. It is not straightforward
 700     // to know in which list they are on so that we can remove them. We only
 701     // need to do this if we need to allocate more than one region to satisfy the
 702     // current humongous allocation request. If we are only allocating one region
 703     // we use the one-region region allocation code (see above), that already
 704     // potentially waits for regions from the secondary free list.
 705     wait_while_free_regions_coming();
 706     append_secondary_free_list_if_not_empty_with_lock();
 707 
 708     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 709     // are lucky enough to find some.
 710     first = _hrm.find_contiguous_only_empty(obj_regions);
 711     if (first != G1_NO_HRM_INDEX) {
 712       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 713     }
 714   }
 715 
 716   if (first == G1_NO_HRM_INDEX) {
 717     // Policy: We could not find enough regions for the humongous object in the
 718     // free list. Look through the heap to find a mix of free and uncommitted regions.
 719     // If so, try expansion.
 720     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 721     if (first != G1_NO_HRM_INDEX) {
 722       // We found something. Make sure these regions are committed, i.e. expand
 723       // the heap. Alternatively we could do a defragmentation GC.
 724       ergo_verbose1(ErgoHeapSizing,
 725                     "attempt heap expansion",
 726                     ergo_format_reason("humongous allocation request failed")
 727                     ergo_format_byte("allocation request"),
 728                     word_size * HeapWordSize);
 729 
 730       _hrm.expand_at(first, obj_regions);
 731       g1_policy()->record_new_heap_size(num_regions());
 732 
 733 #ifdef ASSERT
 734       for (uint i = first; i < first + obj_regions; ++i) {
 735         HeapRegion* hr = region_at(i);
 736         assert(hr->is_free(), "sanity");
 737         assert(hr->is_empty(), "sanity");
 738         assert(is_on_master_free_list(hr), "sanity");
 739       }
 740 #endif
 741       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 742     } else {
 743       // Policy: Potentially trigger a defragmentation GC.
 744     }
 745   }
 746 
 747   HeapWord* result = NULL;
 748   if (first != G1_NO_HRM_INDEX) {
 749     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 750                                                        word_size, context);
 751     assert(result != NULL, "it should always return a valid result");
 752 
 753     // A successful humongous object allocation changes the used space
 754     // information of the old generation so we need to recalculate the
 755     // sizes and update the jstat counters here.
 756     g1mm()->update_sizes();
 757   }
 758 
 759   verify_region_sets_optional();
 760 
 761   return result;
 762 }
 763 
 764 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 765   assert_heap_not_locked_and_not_at_safepoint();
 766   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 767 
 768   unsigned int dummy_gc_count_before;
 769   int dummy_gclocker_retry_count = 0;
 770   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 771 }
 772 
 773 HeapWord*
 774 G1CollectedHeap::mem_allocate(size_t word_size,
 775                               bool*  gc_overhead_limit_was_exceeded) {
 776   assert_heap_not_locked_and_not_at_safepoint();
 777 
 778   // Loop until the allocation is satisfied, or unsatisfied after GC.
 779   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 780     unsigned int gc_count_before;
 781 
 782     HeapWord* result = NULL;
 783     if (!is_humongous(word_size)) {
 784       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 785     } else {
 786       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 787     }
 788     if (result != NULL) {
 789       return result;
 790     }
 791 
 792     // Create the garbage collection operation...
 793     VM_G1CollectForAllocation op(gc_count_before, word_size);
 794     op.set_allocation_context(AllocationContext::current());
 795 
 796     // ...and get the VM thread to execute it.
 797     VMThread::execute(&op);
 798 
 799     if (op.prologue_succeeded() && op.pause_succeeded()) {
 800       // If the operation was successful we'll return the result even
 801       // if it is NULL. If the allocation attempt failed immediately
 802       // after a Full GC, it's unlikely we'll be able to allocate now.
 803       HeapWord* result = op.result();
 804       if (result != NULL && !is_humongous(word_size)) {
 805         // Allocations that take place on VM operations do not do any
 806         // card dirtying and we have to do it here. We only have to do
 807         // this for non-humongous allocations, though.
 808         dirty_young_block(result, word_size);
 809       }
 810       return result;
 811     } else {
 812       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 813         return NULL;
 814       }
 815       assert(op.result() == NULL,
 816              "the result should be NULL if the VM op did not succeed");
 817     }
 818 
 819     // Give a warning if we seem to be looping forever.
 820     if ((QueuedAllocationWarningCount > 0) &&
 821         (try_count % QueuedAllocationWarningCount == 0)) {
 822       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 823     }
 824   }
 825 
 826   ShouldNotReachHere();
 827   return NULL;
 828 }
 829 
 830 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 831                                                    AllocationContext_t context,
 832                                                    unsigned int *gc_count_before_ret,
 833                                                    int* gclocker_retry_count_ret) {
 834   // Make sure you read the note in attempt_allocation_humongous().
 835 
 836   assert_heap_not_locked_and_not_at_safepoint();
 837   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 838          "be called for humongous allocation requests");
 839 
 840   // We should only get here after the first-level allocation attempt
 841   // (attempt_allocation()) failed to allocate.
 842 
 843   // We will loop until a) we manage to successfully perform the
 844   // allocation or b) we successfully schedule a collection which
 845   // fails to perform the allocation. b) is the only case when we'll
 846   // return NULL.
 847   HeapWord* result = NULL;
 848   for (int try_count = 1; /* we'll return */; try_count += 1) {
 849     bool should_try_gc;
 850     unsigned int gc_count_before;
 851 
 852     {
 853       MutexLockerEx x(Heap_lock);
 854       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 855                                                                                     false /* bot_updates */);
 856       if (result != NULL) {
 857         return result;
 858       }
 859 
 860       // If we reach here, attempt_allocation_locked() above failed to
 861       // allocate a new region. So the mutator alloc region should be NULL.
 862       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 863 
 864       if (GC_locker::is_active_and_needs_gc()) {
 865         if (g1_policy()->can_expand_young_list()) {
 866           // No need for an ergo verbose message here,
 867           // can_expand_young_list() does this when it returns true.
 868           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 869                                                                                        false /* bot_updates */);
 870           if (result != NULL) {
 871             return result;
 872           }
 873         }
 874         should_try_gc = false;
 875       } else {
 876         // The GCLocker may not be active but the GCLocker initiated
 877         // GC may not yet have been performed (GCLocker::needs_gc()
 878         // returns true). In this case we do not try this GC and
 879         // wait until the GCLocker initiated GC is performed, and
 880         // then retry the allocation.
 881         if (GC_locker::needs_gc()) {
 882           should_try_gc = false;
 883         } else {
 884           // Read the GC count while still holding the Heap_lock.
 885           gc_count_before = total_collections();
 886           should_try_gc = true;
 887         }
 888       }
 889     }
 890 
 891     if (should_try_gc) {
 892       bool succeeded;
 893       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 894           GCCause::_g1_inc_collection_pause);
 895       if (result != NULL) {
 896         assert(succeeded, "only way to get back a non-NULL result");
 897         return result;
 898       }
 899 
 900       if (succeeded) {
 901         // If we get here we successfully scheduled a collection which
 902         // failed to allocate. No point in trying to allocate
 903         // further. We'll just return NULL.
 904         MutexLockerEx x(Heap_lock);
 905         *gc_count_before_ret = total_collections();
 906         return NULL;
 907       }
 908     } else {
 909       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 910         MutexLockerEx x(Heap_lock);
 911         *gc_count_before_ret = total_collections();
 912         return NULL;
 913       }
 914       // The GCLocker is either active or the GCLocker initiated
 915       // GC has not yet been performed. Stall until it is and
 916       // then retry the allocation.
 917       GC_locker::stall_until_clear();
 918       (*gclocker_retry_count_ret) += 1;
 919     }
 920 
 921     // We can reach here if we were unsuccessful in scheduling a
 922     // collection (because another thread beat us to it) or if we were
 923     // stalled due to the GC locker. In either can we should retry the
 924     // allocation attempt in case another thread successfully
 925     // performed a collection and reclaimed enough space. We do the
 926     // first attempt (without holding the Heap_lock) here and the
 927     // follow-on attempt will be at the start of the next loop
 928     // iteration (after taking the Heap_lock).
 929     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 930                                                                            false /* bot_updates */);
 931     if (result != NULL) {
 932       return result;
 933     }
 934 
 935     // Give a warning if we seem to be looping forever.
 936     if ((QueuedAllocationWarningCount > 0) &&
 937         (try_count % QueuedAllocationWarningCount == 0)) {
 938       warning("G1CollectedHeap::attempt_allocation_slow() "
 939               "retries %d times", try_count);
 940     }
 941   }
 942 
 943   ShouldNotReachHere();
 944   return NULL;
 945 }
 946 
 947 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 948                                                         unsigned int * gc_count_before_ret,
 949                                                         int* gclocker_retry_count_ret) {
 950   // The structure of this method has a lot of similarities to
 951   // attempt_allocation_slow(). The reason these two were not merged
 952   // into a single one is that such a method would require several "if
 953   // allocation is not humongous do this, otherwise do that"
 954   // conditional paths which would obscure its flow. In fact, an early
 955   // version of this code did use a unified method which was harder to
 956   // follow and, as a result, it had subtle bugs that were hard to
 957   // track down. So keeping these two methods separate allows each to
 958   // be more readable. It will be good to keep these two in sync as
 959   // much as possible.
 960 
 961   assert_heap_not_locked_and_not_at_safepoint();
 962   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 963          "should only be called for humongous allocations");
 964 
 965   // Humongous objects can exhaust the heap quickly, so we should check if we
 966   // need to start a marking cycle at each humongous object allocation. We do
 967   // the check before we do the actual allocation. The reason for doing it
 968   // before the allocation is that we avoid having to keep track of the newly
 969   // allocated memory while we do a GC.
 970   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 971                                            word_size)) {
 972     collect(GCCause::_g1_humongous_allocation);
 973   }
 974 
 975   // We will loop until a) we manage to successfully perform the
 976   // allocation or b) we successfully schedule a collection which
 977   // fails to perform the allocation. b) is the only case when we'll
 978   // return NULL.
 979   HeapWord* result = NULL;
 980   for (int try_count = 1; /* we'll return */; try_count += 1) {
 981     bool should_try_gc;
 982     unsigned int gc_count_before;
 983 
 984     {
 985       MutexLockerEx x(Heap_lock);
 986 
 987       // Given that humongous objects are not allocated in young
 988       // regions, we'll first try to do the allocation without doing a
 989       // collection hoping that there's enough space in the heap.
 990       result = humongous_obj_allocate(word_size, AllocationContext::current());
 991       if (result != NULL) {
 992         return result;
 993       }
 994 
 995       if (GC_locker::is_active_and_needs_gc()) {
 996         should_try_gc = false;
 997       } else {
 998          // The GCLocker may not be active but the GCLocker initiated
 999         // GC may not yet have been performed (GCLocker::needs_gc()
1000         // returns true). In this case we do not try this GC and
1001         // wait until the GCLocker initiated GC is performed, and
1002         // then retry the allocation.
1003         if (GC_locker::needs_gc()) {
1004           should_try_gc = false;
1005         } else {
1006           // Read the GC count while still holding the Heap_lock.
1007           gc_count_before = total_collections();
1008           should_try_gc = true;
1009         }
1010       }
1011     }
1012 
1013     if (should_try_gc) {
1014       // If we failed to allocate the humongous object, we should try to
1015       // do a collection pause (if we're allowed) in case it reclaims
1016       // enough space for the allocation to succeed after the pause.
1017 
1018       bool succeeded;
1019       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1020           GCCause::_g1_humongous_allocation);
1021       if (result != NULL) {
1022         assert(succeeded, "only way to get back a non-NULL result");
1023         return result;
1024       }
1025 
1026       if (succeeded) {
1027         // If we get here we successfully scheduled a collection which
1028         // failed to allocate. No point in trying to allocate
1029         // further. We'll just return NULL.
1030         MutexLockerEx x(Heap_lock);
1031         *gc_count_before_ret = total_collections();
1032         return NULL;
1033       }
1034     } else {
1035       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1036         MutexLockerEx x(Heap_lock);
1037         *gc_count_before_ret = total_collections();
1038         return NULL;
1039       }
1040       // The GCLocker is either active or the GCLocker initiated
1041       // GC has not yet been performed. Stall until it is and
1042       // then retry the allocation.
1043       GC_locker::stall_until_clear();
1044       (*gclocker_retry_count_ret) += 1;
1045     }
1046 
1047     // We can reach here if we were unsuccessful in scheduling a
1048     // collection (because another thread beat us to it) or if we were
1049     // stalled due to the GC locker. In either can we should retry the
1050     // allocation attempt in case another thread successfully
1051     // performed a collection and reclaimed enough space.  Give a
1052     // warning if we seem to be looping forever.
1053 
1054     if ((QueuedAllocationWarningCount > 0) &&
1055         (try_count % QueuedAllocationWarningCount == 0)) {
1056       warning("G1CollectedHeap::attempt_allocation_humongous() "
1057               "retries %d times", try_count);
1058     }
1059   }
1060 
1061   ShouldNotReachHere();
1062   return NULL;
1063 }
1064 
1065 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1066                                                            AllocationContext_t context,
1067                                                            bool expect_null_mutator_alloc_region) {
1068   assert_at_safepoint(true /* should_be_vm_thread */);
1069   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1070                                              !expect_null_mutator_alloc_region,
1071          "the current alloc region was unexpectedly found to be non-NULL");
1072 
1073   if (!is_humongous(word_size)) {
1074     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1075                                                       false /* bot_updates */);
1076   } else {
1077     HeapWord* result = humongous_obj_allocate(word_size, context);
1078     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1079       g1_policy()->set_initiate_conc_mark_if_possible();
1080     }
1081     return result;
1082   }
1083 
1084   ShouldNotReachHere();
1085 }
1086 
1087 class PostMCRemSetClearClosure: public HeapRegionClosure {
1088   G1CollectedHeap* _g1h;
1089   ModRefBarrierSet* _mr_bs;
1090 public:
1091   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1092     _g1h(g1h), _mr_bs(mr_bs) {}
1093 
1094   bool doHeapRegion(HeapRegion* r) {
1095     HeapRegionRemSet* hrrs = r->rem_set();
1096 
1097     if (r->is_continues_humongous()) {
1098       // We'll assert that the strong code root list and RSet is empty
1099       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1100       assert(hrrs->occupied() == 0, "RSet should be empty");
1101       return false;
1102     }
1103 
1104     _g1h->reset_gc_time_stamps(r);
1105     hrrs->clear();
1106     // You might think here that we could clear just the cards
1107     // corresponding to the used region.  But no: if we leave a dirty card
1108     // in a region we might allocate into, then it would prevent that card
1109     // from being enqueued, and cause it to be missed.
1110     // Re: the performance cost: we shouldn't be doing full GC anyway!
1111     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1112 
1113     return false;
1114   }
1115 };
1116 
1117 void G1CollectedHeap::clear_rsets_post_compaction() {
1118   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1119   heap_region_iterate(&rs_clear);
1120 }
1121 
1122 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1123   G1CollectedHeap*   _g1h;
1124   UpdateRSOopClosure _cl;
1125   int                _worker_i;
1126 public:
1127   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1128     _cl(g1->g1_rem_set(), worker_i),
1129     _worker_i(worker_i),
1130     _g1h(g1)
1131   { }
1132 
1133   bool doHeapRegion(HeapRegion* r) {
1134     if (!r->is_continues_humongous()) {
1135       _cl.set_from(r);
1136       r->oop_iterate(&_cl);
1137     }
1138     return false;
1139   }
1140 };
1141 
1142 class ParRebuildRSTask: public AbstractGangTask {
1143   G1CollectedHeap* _g1;
1144   HeapRegionClaimer _hrclaimer;
1145 
1146 public:
1147   ParRebuildRSTask(G1CollectedHeap* g1) :
1148       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1149 
1150   void work(uint worker_id) {
1151     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1152     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1153   }
1154 };
1155 
1156 class PostCompactionPrinterClosure: public HeapRegionClosure {
1157 private:
1158   G1HRPrinter* _hr_printer;
1159 public:
1160   bool doHeapRegion(HeapRegion* hr) {
1161     assert(!hr->is_young(), "not expecting to find young regions");
1162     if (hr->is_free()) {
1163       // We only generate output for non-empty regions.
1164     } else if (hr->is_starts_humongous()) {
1165       if (hr->region_num() == 1) {
1166         // single humongous region
1167         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1168       } else {
1169         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1170       }
1171     } else if (hr->is_continues_humongous()) {
1172       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1173     } else if (hr->is_old()) {
1174       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1175     } else {
1176       ShouldNotReachHere();
1177     }
1178     return false;
1179   }
1180 
1181   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1182     : _hr_printer(hr_printer) { }
1183 };
1184 
1185 void G1CollectedHeap::print_hrm_post_compaction() {
1186   PostCompactionPrinterClosure cl(hr_printer());
1187   heap_region_iterate(&cl);
1188 }
1189 
1190 bool G1CollectedHeap::do_collection(bool explicit_gc,
1191                                     bool clear_all_soft_refs,
1192                                     size_t word_size) {
1193   assert_at_safepoint(true /* should_be_vm_thread */);
1194 
1195   if (GC_locker::check_active_before_gc()) {
1196     return false;
1197   }
1198 
1199   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1200   gc_timer->register_gc_start();
1201 
1202   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1203   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1204 
1205   SvcGCMarker sgcm(SvcGCMarker::FULL);
1206   ResourceMark rm;
1207 
1208   print_heap_before_gc();
1209   trace_heap_before_gc(gc_tracer);
1210 
1211   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1212 
1213   verify_region_sets_optional();
1214 
1215   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1216                            collector_policy()->should_clear_all_soft_refs();
1217 
1218   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1219 
1220   {
1221     IsGCActiveMark x;
1222 
1223     // Timing
1224     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1225     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1226 
1227     {
1228       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1229       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1230       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1231 
1232       g1_policy()->record_full_collection_start();
1233 
1234       // Note: When we have a more flexible GC logging framework that
1235       // allows us to add optional attributes to a GC log record we
1236       // could consider timing and reporting how long we wait in the
1237       // following two methods.
1238       wait_while_free_regions_coming();
1239       // If we start the compaction before the CM threads finish
1240       // scanning the root regions we might trip them over as we'll
1241       // be moving objects / updating references. So let's wait until
1242       // they are done. By telling them to abort, they should complete
1243       // early.
1244       _cm->root_regions()->abort();
1245       _cm->root_regions()->wait_until_scan_finished();
1246       append_secondary_free_list_if_not_empty_with_lock();
1247 
1248       gc_prologue(true);
1249       increment_total_collections(true /* full gc */);
1250       increment_old_marking_cycles_started();
1251 
1252       assert(used() == recalculate_used(), "Should be equal");
1253 
1254       verify_before_gc();
1255 
1256       check_bitmaps("Full GC Start");
1257       pre_full_gc_dump(gc_timer);
1258 
1259       COMPILER2_PRESENT(DerivedPointerTable::clear());
1260 
1261       // Disable discovery and empty the discovered lists
1262       // for the CM ref processor.
1263       ref_processor_cm()->disable_discovery();
1264       ref_processor_cm()->abandon_partial_discovery();
1265       ref_processor_cm()->verify_no_references_recorded();
1266 
1267       // Abandon current iterations of concurrent marking and concurrent
1268       // refinement, if any are in progress. We have to do this before
1269       // wait_until_scan_finished() below.
1270       concurrent_mark()->abort();
1271 
1272       // Make sure we'll choose a new allocation region afterwards.
1273       _allocator->release_mutator_alloc_region();
1274       _allocator->abandon_gc_alloc_regions();
1275       g1_rem_set()->cleanupHRRS();
1276 
1277       // We should call this after we retire any currently active alloc
1278       // regions so that all the ALLOC / RETIRE events are generated
1279       // before the start GC event.
1280       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1281 
1282       // We may have added regions to the current incremental collection
1283       // set between the last GC or pause and now. We need to clear the
1284       // incremental collection set and then start rebuilding it afresh
1285       // after this full GC.
1286       abandon_collection_set(g1_policy()->inc_cset_head());
1287       g1_policy()->clear_incremental_cset();
1288       g1_policy()->stop_incremental_cset_building();
1289 
1290       tear_down_region_sets(false /* free_list_only */);
1291       g1_policy()->set_gcs_are_young(true);
1292 
1293       // See the comments in g1CollectedHeap.hpp and
1294       // G1CollectedHeap::ref_processing_init() about
1295       // how reference processing currently works in G1.
1296 
1297       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1298       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1299 
1300       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1301       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1302 
1303       ref_processor_stw()->enable_discovery();
1304       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1305 
1306       // Do collection work
1307       {
1308         HandleMark hm;  // Discard invalid handles created during gc
1309         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1310       }
1311 
1312       assert(num_free_regions() == 0, "we should not have added any free regions");
1313       rebuild_region_sets(false /* free_list_only */);
1314 
1315       // Enqueue any discovered reference objects that have
1316       // not been removed from the discovered lists.
1317       ref_processor_stw()->enqueue_discovered_references();
1318 
1319       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1320 
1321       MemoryService::track_memory_usage();
1322 
1323       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1324       ref_processor_stw()->verify_no_references_recorded();
1325 
1326       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1327       ClassLoaderDataGraph::purge();
1328       MetaspaceAux::verify_metrics();
1329 
1330       // Note: since we've just done a full GC, concurrent
1331       // marking is no longer active. Therefore we need not
1332       // re-enable reference discovery for the CM ref processor.
1333       // That will be done at the start of the next marking cycle.
1334       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1335       ref_processor_cm()->verify_no_references_recorded();
1336 
1337       reset_gc_time_stamp();
1338       // Since everything potentially moved, we will clear all remembered
1339       // sets, and clear all cards.  Later we will rebuild remembered
1340       // sets. We will also reset the GC time stamps of the regions.
1341       clear_rsets_post_compaction();
1342       check_gc_time_stamps();
1343 
1344       // Resize the heap if necessary.
1345       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1346 
1347       if (_hr_printer.is_active()) {
1348         // We should do this after we potentially resize the heap so
1349         // that all the COMMIT / UNCOMMIT events are generated before
1350         // the end GC event.
1351 
1352         print_hrm_post_compaction();
1353         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1354       }
1355 
1356       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1357       if (hot_card_cache->use_cache()) {
1358         hot_card_cache->reset_card_counts();
1359         hot_card_cache->reset_hot_cache();
1360       }
1361 
1362       // Rebuild remembered sets of all regions.
1363       uint n_workers =
1364         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1365                                                 workers()->active_workers(),
1366                                                 Threads::number_of_non_daemon_threads());
1367       assert(UseDynamicNumberOfGCThreads ||
1368              n_workers == workers()->total_workers(),
1369              "If not dynamic should be using all the  workers");
1370       workers()->set_active_workers(n_workers);
1371       // Set parallel threads in the heap (_n_par_threads) only
1372       // before a parallel phase and always reset it to 0 after
1373       // the phase so that the number of parallel threads does
1374       // no get carried forward to a serial phase where there
1375       // may be code that is "possibly_parallel".
1376       set_par_threads(n_workers);
1377 
1378       ParRebuildRSTask rebuild_rs_task(this);
1379       assert(UseDynamicNumberOfGCThreads ||
1380              workers()->active_workers() == workers()->total_workers(),
1381              "Unless dynamic should use total workers");
1382       // Use the most recent number of  active workers
1383       assert(workers()->active_workers() > 0,
1384              "Active workers not properly set");
1385       set_par_threads(workers()->active_workers());
1386       workers()->run_task(&rebuild_rs_task);
1387       set_par_threads(0);
1388 
1389       // Rebuild the strong code root lists for each region
1390       rebuild_strong_code_roots();
1391 
1392       if (true) { // FIXME
1393         MetaspaceGC::compute_new_size();
1394       }
1395 
1396 #ifdef TRACESPINNING
1397       ParallelTaskTerminator::print_termination_counts();
1398 #endif
1399 
1400       // Discard all rset updates
1401       JavaThread::dirty_card_queue_set().abandon_logs();
1402       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1403 
1404       _young_list->reset_sampled_info();
1405       // At this point there should be no regions in the
1406       // entire heap tagged as young.
1407       assert(check_young_list_empty(true /* check_heap */),
1408              "young list should be empty at this point");
1409 
1410       // Update the number of full collections that have been completed.
1411       increment_old_marking_cycles_completed(false /* concurrent */);
1412 
1413       _hrm.verify_optional();
1414       verify_region_sets_optional();
1415 
1416       verify_after_gc();
1417 
1418       // Clear the previous marking bitmap, if needed for bitmap verification.
1419       // Note we cannot do this when we clear the next marking bitmap in
1420       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1421       // objects marked during a full GC against the previous bitmap.
1422       // But we need to clear it before calling check_bitmaps below since
1423       // the full GC has compacted objects and updated TAMS but not updated
1424       // the prev bitmap.
1425       if (G1VerifyBitmaps) {
1426         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1427       }
1428       check_bitmaps("Full GC End");
1429 
1430       // Start a new incremental collection set for the next pause
1431       assert(g1_policy()->collection_set() == NULL, "must be");
1432       g1_policy()->start_incremental_cset_building();
1433 
1434       clear_cset_fast_test();
1435 
1436       _allocator->init_mutator_alloc_region();
1437 
1438       g1_policy()->record_full_collection_end();
1439 
1440       if (G1Log::fine()) {
1441         g1_policy()->print_heap_transition();
1442       }
1443 
1444       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1445       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1446       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1447       // before any GC notifications are raised.
1448       g1mm()->update_sizes();
1449 
1450       gc_epilogue(true);
1451     }
1452 
1453     if (G1Log::finer()) {
1454       g1_policy()->print_detailed_heap_transition(true /* full */);
1455     }
1456 
1457     print_heap_after_gc();
1458     trace_heap_after_gc(gc_tracer);
1459 
1460     post_full_gc_dump(gc_timer);
1461 
1462     gc_timer->register_gc_end();
1463     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1464   }
1465 
1466   return true;
1467 }
1468 
1469 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1470   // do_collection() will return whether it succeeded in performing
1471   // the GC. Currently, there is no facility on the
1472   // do_full_collection() API to notify the caller than the collection
1473   // did not succeed (e.g., because it was locked out by the GC
1474   // locker). So, right now, we'll ignore the return value.
1475   bool dummy = do_collection(true,                /* explicit_gc */
1476                              clear_all_soft_refs,
1477                              0                    /* word_size */);
1478 }
1479 
1480 // This code is mostly copied from TenuredGeneration.
1481 void
1482 G1CollectedHeap::
1483 resize_if_necessary_after_full_collection(size_t word_size) {
1484   // Include the current allocation, if any, and bytes that will be
1485   // pre-allocated to support collections, as "used".
1486   const size_t used_after_gc = used();
1487   const size_t capacity_after_gc = capacity();
1488   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1489 
1490   // This is enforced in arguments.cpp.
1491   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1492          "otherwise the code below doesn't make sense");
1493 
1494   // We don't have floating point command-line arguments
1495   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1496   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1497   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1498   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1499 
1500   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1501   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1502 
1503   // We have to be careful here as these two calculations can overflow
1504   // 32-bit size_t's.
1505   double used_after_gc_d = (double) used_after_gc;
1506   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1507   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1508 
1509   // Let's make sure that they are both under the max heap size, which
1510   // by default will make them fit into a size_t.
1511   double desired_capacity_upper_bound = (double) max_heap_size;
1512   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1513                                     desired_capacity_upper_bound);
1514   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1515                                     desired_capacity_upper_bound);
1516 
1517   // We can now safely turn them into size_t's.
1518   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1519   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1520 
1521   // This assert only makes sense here, before we adjust them
1522   // with respect to the min and max heap size.
1523   assert(minimum_desired_capacity <= maximum_desired_capacity,
1524          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1525                  "maximum_desired_capacity = "SIZE_FORMAT,
1526                  minimum_desired_capacity, maximum_desired_capacity));
1527 
1528   // Should not be greater than the heap max size. No need to adjust
1529   // it with respect to the heap min size as it's a lower bound (i.e.,
1530   // we'll try to make the capacity larger than it, not smaller).
1531   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1532   // Should not be less than the heap min size. No need to adjust it
1533   // with respect to the heap max size as it's an upper bound (i.e.,
1534   // we'll try to make the capacity smaller than it, not greater).
1535   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1536 
1537   if (capacity_after_gc < minimum_desired_capacity) {
1538     // Don't expand unless it's significant
1539     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1540     ergo_verbose4(ErgoHeapSizing,
1541                   "attempt heap expansion",
1542                   ergo_format_reason("capacity lower than "
1543                                      "min desired capacity after Full GC")
1544                   ergo_format_byte("capacity")
1545                   ergo_format_byte("occupancy")
1546                   ergo_format_byte_perc("min desired capacity"),
1547                   capacity_after_gc, used_after_gc,
1548                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1549     expand(expand_bytes);
1550 
1551     // No expansion, now see if we want to shrink
1552   } else if (capacity_after_gc > maximum_desired_capacity) {
1553     // Capacity too large, compute shrinking size
1554     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1555     ergo_verbose4(ErgoHeapSizing,
1556                   "attempt heap shrinking",
1557                   ergo_format_reason("capacity higher than "
1558                                      "max desired capacity after Full GC")
1559                   ergo_format_byte("capacity")
1560                   ergo_format_byte("occupancy")
1561                   ergo_format_byte_perc("max desired capacity"),
1562                   capacity_after_gc, used_after_gc,
1563                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1564     shrink(shrink_bytes);
1565   }
1566 }
1567 
1568 
1569 HeapWord*
1570 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1571                                            AllocationContext_t context,
1572                                            bool* succeeded) {
1573   assert_at_safepoint(true /* should_be_vm_thread */);
1574 
1575   *succeeded = true;
1576   // Let's attempt the allocation first.
1577   HeapWord* result =
1578     attempt_allocation_at_safepoint(word_size,
1579                                     context,
1580                                     false /* expect_null_mutator_alloc_region */);
1581   if (result != NULL) {
1582     assert(*succeeded, "sanity");
1583     return result;
1584   }
1585 
1586   // In a G1 heap, we're supposed to keep allocation from failing by
1587   // incremental pauses.  Therefore, at least for now, we'll favor
1588   // expansion over collection.  (This might change in the future if we can
1589   // do something smarter than full collection to satisfy a failed alloc.)
1590   result = expand_and_allocate(word_size, context);
1591   if (result != NULL) {
1592     assert(*succeeded, "sanity");
1593     return result;
1594   }
1595 
1596   // Expansion didn't work, we'll try to do a Full GC.
1597   bool gc_succeeded = do_collection(false, /* explicit_gc */
1598                                     false, /* clear_all_soft_refs */
1599                                     word_size);
1600   if (!gc_succeeded) {
1601     *succeeded = false;
1602     return NULL;
1603   }
1604 
1605   // Retry the allocation
1606   result = attempt_allocation_at_safepoint(word_size,
1607                                            context,
1608                                            true /* expect_null_mutator_alloc_region */);
1609   if (result != NULL) {
1610     assert(*succeeded, "sanity");
1611     return result;
1612   }
1613 
1614   // Then, try a Full GC that will collect all soft references.
1615   gc_succeeded = do_collection(false, /* explicit_gc */
1616                                true,  /* clear_all_soft_refs */
1617                                word_size);
1618   if (!gc_succeeded) {
1619     *succeeded = false;
1620     return NULL;
1621   }
1622 
1623   // Retry the allocation once more
1624   result = attempt_allocation_at_safepoint(word_size,
1625                                            context,
1626                                            true /* expect_null_mutator_alloc_region */);
1627   if (result != NULL) {
1628     assert(*succeeded, "sanity");
1629     return result;
1630   }
1631 
1632   assert(!collector_policy()->should_clear_all_soft_refs(),
1633          "Flag should have been handled and cleared prior to this point");
1634 
1635   // What else?  We might try synchronous finalization later.  If the total
1636   // space available is large enough for the allocation, then a more
1637   // complete compaction phase than we've tried so far might be
1638   // appropriate.
1639   assert(*succeeded, "sanity");
1640   return NULL;
1641 }
1642 
1643 // Attempting to expand the heap sufficiently
1644 // to support an allocation of the given "word_size".  If
1645 // successful, perform the allocation and return the address of the
1646 // allocated block, or else "NULL".
1647 
1648 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1649   assert_at_safepoint(true /* should_be_vm_thread */);
1650 
1651   verify_region_sets_optional();
1652 
1653   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1654   ergo_verbose1(ErgoHeapSizing,
1655                 "attempt heap expansion",
1656                 ergo_format_reason("allocation request failed")
1657                 ergo_format_byte("allocation request"),
1658                 word_size * HeapWordSize);
1659   if (expand(expand_bytes)) {
1660     _hrm.verify_optional();
1661     verify_region_sets_optional();
1662     return attempt_allocation_at_safepoint(word_size,
1663                                            context,
1664                                            false /* expect_null_mutator_alloc_region */);
1665   }
1666   return NULL;
1667 }
1668 
1669 bool G1CollectedHeap::expand(size_t expand_bytes) {
1670   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1671   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1672                                        HeapRegion::GrainBytes);
1673   ergo_verbose2(ErgoHeapSizing,
1674                 "expand the heap",
1675                 ergo_format_byte("requested expansion amount")
1676                 ergo_format_byte("attempted expansion amount"),
1677                 expand_bytes, aligned_expand_bytes);
1678 
1679   if (is_maximal_no_gc()) {
1680     ergo_verbose0(ErgoHeapSizing,
1681                       "did not expand the heap",
1682                       ergo_format_reason("heap already fully expanded"));
1683     return false;
1684   }
1685 
1686   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1687   assert(regions_to_expand > 0, "Must expand by at least one region");
1688 
1689   uint expanded_by = _hrm.expand_by(regions_to_expand);
1690 
1691   if (expanded_by > 0) {
1692     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1693     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1694     g1_policy()->record_new_heap_size(num_regions());
1695   } else {
1696     ergo_verbose0(ErgoHeapSizing,
1697                   "did not expand the heap",
1698                   ergo_format_reason("heap expansion operation failed"));
1699     // The expansion of the virtual storage space was unsuccessful.
1700     // Let's see if it was because we ran out of swap.
1701     if (G1ExitOnExpansionFailure &&
1702         _hrm.available() >= regions_to_expand) {
1703       // We had head room...
1704       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1705     }
1706   }
1707   return regions_to_expand > 0;
1708 }
1709 
1710 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1711   size_t aligned_shrink_bytes =
1712     ReservedSpace::page_align_size_down(shrink_bytes);
1713   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1714                                          HeapRegion::GrainBytes);
1715   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1716 
1717   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1718   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1719 
1720   ergo_verbose3(ErgoHeapSizing,
1721                 "shrink the heap",
1722                 ergo_format_byte("requested shrinking amount")
1723                 ergo_format_byte("aligned shrinking amount")
1724                 ergo_format_byte("attempted shrinking amount"),
1725                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1726   if (num_regions_removed > 0) {
1727     g1_policy()->record_new_heap_size(num_regions());
1728   } else {
1729     ergo_verbose0(ErgoHeapSizing,
1730                   "did not shrink the heap",
1731                   ergo_format_reason("heap shrinking operation failed"));
1732   }
1733 }
1734 
1735 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1736   verify_region_sets_optional();
1737 
1738   // We should only reach here at the end of a Full GC which means we
1739   // should not not be holding to any GC alloc regions. The method
1740   // below will make sure of that and do any remaining clean up.
1741   _allocator->abandon_gc_alloc_regions();
1742 
1743   // Instead of tearing down / rebuilding the free lists here, we
1744   // could instead use the remove_all_pending() method on free_list to
1745   // remove only the ones that we need to remove.
1746   tear_down_region_sets(true /* free_list_only */);
1747   shrink_helper(shrink_bytes);
1748   rebuild_region_sets(true /* free_list_only */);
1749 
1750   _hrm.verify_optional();
1751   verify_region_sets_optional();
1752 }
1753 
1754 // Public methods.
1755 
1756 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1757 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1758 #endif // _MSC_VER
1759 
1760 
1761 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1762   SharedHeap(policy_),
1763   _g1_policy(policy_),
1764   _dirty_card_queue_set(false),
1765   _into_cset_dirty_card_queue_set(false),
1766   _is_alive_closure_cm(this),
1767   _is_alive_closure_stw(this),
1768   _ref_processor_cm(NULL),
1769   _ref_processor_stw(NULL),
1770   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1771   _bot_shared(NULL),
1772   _evac_failure_scan_stack(NULL),
1773   _mark_in_progress(false),
1774   _cg1r(NULL),
1775   _g1mm(NULL),
1776   _refine_cte_cl(NULL),
1777   _full_collection(false),
1778   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1779   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1780   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1781   _humongous_is_live(),
1782   _has_humongous_reclaim_candidates(false),
1783   _free_regions_coming(false),
1784   _young_list(new YoungList(this)),
1785   _gc_time_stamp(0),
1786   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1787   _old_plab_stats(OldPLABSize, PLABWeight),
1788   _expand_heap_after_alloc_failure(true),
1789   _surviving_young_words(NULL),
1790   _old_marking_cycles_started(0),
1791   _old_marking_cycles_completed(0),
1792   _concurrent_cycle_started(false),
1793   _heap_summary_sent(false),
1794   _in_cset_fast_test(),
1795   _dirty_cards_region_list(NULL),
1796   _worker_cset_start_region(NULL),
1797   _worker_cset_start_region_time_stamp(NULL),
1798   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1799   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1800   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1801   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1802 
1803   _g1h = this;
1804   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1805     vm_exit_during_initialization("Failed necessary allocation.");
1806   }
1807 
1808   _allocator = G1Allocator::create_allocator(_g1h);
1809   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1810 
1811   int n_queues = MAX2((int)ParallelGCThreads, 1);
1812   _task_queues = new RefToScanQueueSet(n_queues);
1813 
1814   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1815   assert(n_rem_sets > 0, "Invariant.");
1816 
1817   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1818   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1819   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1820 
1821   for (int i = 0; i < n_queues; i++) {
1822     RefToScanQueue* q = new RefToScanQueue();
1823     q->initialize();
1824     _task_queues->register_queue(i, q);
1825     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1826   }
1827   clear_cset_start_regions();
1828 
1829   // Initialize the G1EvacuationFailureALot counters and flags.
1830   NOT_PRODUCT(reset_evacuation_should_fail();)
1831 
1832   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1833 }
1834 
1835 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1836                                                                  size_t size,
1837                                                                  size_t translation_factor) {
1838   // Determine the preferred page size for the auxiliary data structures. We always
1839   // prefer large pages if the given size allows it for performance reasons.
1840   size_t const commit_size = os::page_size_for_region_unaligned(size, 1);
1841   // The base address reserved space must be aligned to that page. Otherwise we
1842   // would need to split pages (or it would be completely impossible) when
1843   // uncommitting memory within the heap.
1844   // Size need *not* be aligned to above calculated commit size.
1845   size_t const alignment = MAX2(commit_size, (size_t)os::vm_allocation_granularity());
1846   bool const use_large_pages = commit_size != (size_t)os::vm_page_size() ? UseLargePages : false;
1847   ReservedSpace rs(align_size_up(size, alignment), alignment, use_large_pages);
1848   G1RegionToSpaceMapper* result  =
1849     G1RegionToSpaceMapper::create_mapper(rs,
1850                                          size,
1851                                          commit_size,
1852                                          HeapRegion::GrainBytes,
1853                                          translation_factor,
1854                                          mtGC);
1855   if (TracePageSizes) {
1856     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT" base=" PTR_FORMAT" size=" SIZE_FORMAT" alignment=" SIZE_FORMAT" reqsize=" SIZE_FORMAT,
1857                            description, commit_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1858   }
1859   return result;
1860 }
1861 
1862 jint G1CollectedHeap::initialize() {
1863   CollectedHeap::pre_initialize();
1864   os::enable_vtime();
1865 
1866   G1Log::init();
1867 
1868   // Necessary to satisfy locking discipline assertions.
1869 
1870   MutexLocker x(Heap_lock);
1871 
1872   // We have to initialize the printer before committing the heap, as
1873   // it will be used then.
1874   _hr_printer.set_active(G1PrintHeapRegions);
1875 
1876   // While there are no constraints in the GC code that HeapWordSize
1877   // be any particular value, there are multiple other areas in the
1878   // system which believe this to be true (e.g. oop->object_size in some
1879   // cases incorrectly returns the size in wordSize units rather than
1880   // HeapWordSize).
1881   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1882 
1883   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1884   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1885   size_t heap_alignment = collector_policy()->heap_alignment();
1886 
1887   // Ensure that the sizes are properly aligned.
1888   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1889   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1890   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1891 
1892   _refine_cte_cl = new RefineCardTableEntryClosure();
1893 
1894   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1895 
1896   // Reserve the maximum.
1897 
1898   // When compressed oops are enabled, the preferred heap base
1899   // is calculated by subtracting the requested size from the
1900   // 32Gb boundary and using the result as the base address for
1901   // heap reservation. If the requested size is not aligned to
1902   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1903   // into the ReservedHeapSpace constructor) then the actual
1904   // base of the reserved heap may end up differing from the
1905   // address that was requested (i.e. the preferred heap base).
1906   // If this happens then we could end up using a non-optimal
1907   // compressed oops mode.
1908 
1909   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1910                                                  heap_alignment);
1911 
1912   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1913 
1914   // Create the barrier set for the entire reserved region.
1915   G1SATBCardTableLoggingModRefBS* bs
1916     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1917   bs->initialize();
1918   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1919   set_barrier_set(bs);
1920 
1921   // Also create a G1 rem set.
1922   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1923 
1924   // Carve out the G1 part of the heap.
1925 
1926   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1927   G1RegionToSpaceMapper* heap_storage =
1928     G1RegionToSpaceMapper::create_mapper(g1_rs,
1929                                          g1_rs.size(),
1930                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1931                                          HeapRegion::GrainBytes,
1932                                          1,
1933                                          mtJavaHeap);
1934   heap_storage->set_mapping_changed_listener(&_listener);
1935 
1936   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1937   G1RegionToSpaceMapper* bot_storage =
1938     create_aux_memory_mapper("Block offset table",
1939                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1940                              G1BlockOffsetSharedArray::N_bytes);
1941 
1942   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1943   G1RegionToSpaceMapper* cardtable_storage =
1944     create_aux_memory_mapper("Card table",
1945                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1946                              G1BlockOffsetSharedArray::N_bytes);
1947 
1948   G1RegionToSpaceMapper* card_counts_storage =
1949     create_aux_memory_mapper("Card counts table",
1950                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1951                              G1BlockOffsetSharedArray::N_bytes);
1952 
1953   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1954   G1RegionToSpaceMapper* prev_bitmap_storage =
1955     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::mark_distance());
1956   G1RegionToSpaceMapper* next_bitmap_storage =
1957     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::mark_distance());
1958 
1959   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1960   g1_barrier_set()->initialize(cardtable_storage);
1961    // Do later initialization work for concurrent refinement.
1962   _cg1r->init(card_counts_storage);
1963 
1964   // 6843694 - ensure that the maximum region index can fit
1965   // in the remembered set structures.
1966   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1967   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1968 
1969   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1970   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1971   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1972             "too many cards per region");
1973 
1974   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1975 
1976   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1977 
1978   _g1h = this;
1979 
1980   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1981   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1982 
1983   // Create the ConcurrentMark data structure and thread.
1984   // (Must do this late, so that "max_regions" is defined.)
1985   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1986   if (_cm == NULL || !_cm->completed_initialization()) {
1987     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1988     return JNI_ENOMEM;
1989   }
1990   _cmThread = _cm->cmThread();
1991 
1992   // Initialize the from_card cache structure of HeapRegionRemSet.
1993   HeapRegionRemSet::init_heap(max_regions());
1994 
1995   // Now expand into the initial heap size.
1996   if (!expand(init_byte_size)) {
1997     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1998     return JNI_ENOMEM;
1999   }
2000 
2001   // Perform any initialization actions delegated to the policy.
2002   g1_policy()->init();
2003 
2004   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2005                                                SATB_Q_FL_lock,
2006                                                G1SATBProcessCompletedThreshold,
2007                                                Shared_SATB_Q_lock);
2008 
2009   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2010                                                 DirtyCardQ_CBL_mon,
2011                                                 DirtyCardQ_FL_lock,
2012                                                 concurrent_g1_refine()->yellow_zone(),
2013                                                 concurrent_g1_refine()->red_zone(),
2014                                                 Shared_DirtyCardQ_lock);
2015 
2016   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2017                                     DirtyCardQ_CBL_mon,
2018                                     DirtyCardQ_FL_lock,
2019                                     -1, // never trigger processing
2020                                     -1, // no limit on length
2021                                     Shared_DirtyCardQ_lock,
2022                                     &JavaThread::dirty_card_queue_set());
2023 
2024   // Initialize the card queue set used to hold cards containing
2025   // references into the collection set.
2026   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2027                                              DirtyCardQ_CBL_mon,
2028                                              DirtyCardQ_FL_lock,
2029                                              -1, // never trigger processing
2030                                              -1, // no limit on length
2031                                              Shared_DirtyCardQ_lock,
2032                                              &JavaThread::dirty_card_queue_set());
2033 
2034   // In case we're keeping closure specialization stats, initialize those
2035   // counts and that mechanism.
2036   SpecializationStats::clear();
2037 
2038   // Here we allocate the dummy HeapRegion that is required by the
2039   // G1AllocRegion class.
2040   HeapRegion* dummy_region = _hrm.get_dummy_region();
2041 
2042   // We'll re-use the same region whether the alloc region will
2043   // require BOT updates or not and, if it doesn't, then a non-young
2044   // region will complain that it cannot support allocations without
2045   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2046   dummy_region->set_eden();
2047   // Make sure it's full.
2048   dummy_region->set_top(dummy_region->end());
2049   G1AllocRegion::setup(this, dummy_region);
2050 
2051   _allocator->init_mutator_alloc_region();
2052 
2053   // Do create of the monitoring and management support so that
2054   // values in the heap have been properly initialized.
2055   _g1mm = new G1MonitoringSupport(this);
2056 
2057   G1StringDedup::initialize();
2058 
2059   return JNI_OK;
2060 }
2061 
2062 void G1CollectedHeap::stop() {
2063   // Stop all concurrent threads. We do this to make sure these threads
2064   // do not continue to execute and access resources (e.g. gclog_or_tty)
2065   // that are destroyed during shutdown.
2066   _cg1r->stop();
2067   _cmThread->stop();
2068   if (G1StringDedup::is_enabled()) {
2069     G1StringDedup::stop();
2070   }
2071 }
2072 
2073 void G1CollectedHeap::clear_humongous_is_live_table() {
2074   guarantee(G1EagerReclaimHumongousObjects, "Should only be called if true");
2075   _humongous_is_live.clear();
2076 }
2077 
2078 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2079   return HeapRegion::max_region_size();
2080 }
2081 
2082 void G1CollectedHeap::ref_processing_init() {
2083   // Reference processing in G1 currently works as follows:
2084   //
2085   // * There are two reference processor instances. One is
2086   //   used to record and process discovered references
2087   //   during concurrent marking; the other is used to
2088   //   record and process references during STW pauses
2089   //   (both full and incremental).
2090   // * Both ref processors need to 'span' the entire heap as
2091   //   the regions in the collection set may be dotted around.
2092   //
2093   // * For the concurrent marking ref processor:
2094   //   * Reference discovery is enabled at initial marking.
2095   //   * Reference discovery is disabled and the discovered
2096   //     references processed etc during remarking.
2097   //   * Reference discovery is MT (see below).
2098   //   * Reference discovery requires a barrier (see below).
2099   //   * Reference processing may or may not be MT
2100   //     (depending on the value of ParallelRefProcEnabled
2101   //     and ParallelGCThreads).
2102   //   * A full GC disables reference discovery by the CM
2103   //     ref processor and abandons any entries on it's
2104   //     discovered lists.
2105   //
2106   // * For the STW processor:
2107   //   * Non MT discovery is enabled at the start of a full GC.
2108   //   * Processing and enqueueing during a full GC is non-MT.
2109   //   * During a full GC, references are processed after marking.
2110   //
2111   //   * Discovery (may or may not be MT) is enabled at the start
2112   //     of an incremental evacuation pause.
2113   //   * References are processed near the end of a STW evacuation pause.
2114   //   * For both types of GC:
2115   //     * Discovery is atomic - i.e. not concurrent.
2116   //     * Reference discovery will not need a barrier.
2117 
2118   SharedHeap::ref_processing_init();
2119   MemRegion mr = reserved_region();
2120 
2121   // Concurrent Mark ref processor
2122   _ref_processor_cm =
2123     new ReferenceProcessor(mr,    // span
2124                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2125                                 // mt processing
2126                            (int) ParallelGCThreads,
2127                                 // degree of mt processing
2128                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2129                                 // mt discovery
2130                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2131                                 // degree of mt discovery
2132                            false,
2133                                 // Reference discovery is not atomic
2134                            &_is_alive_closure_cm);
2135                                 // is alive closure
2136                                 // (for efficiency/performance)
2137 
2138   // STW ref processor
2139   _ref_processor_stw =
2140     new ReferenceProcessor(mr,    // span
2141                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2142                                 // mt processing
2143                            MAX2((int)ParallelGCThreads, 1),
2144                                 // degree of mt processing
2145                            (ParallelGCThreads > 1),
2146                                 // mt discovery
2147                            MAX2((int)ParallelGCThreads, 1),
2148                                 // degree of mt discovery
2149                            true,
2150                                 // Reference discovery is atomic
2151                            &_is_alive_closure_stw);
2152                                 // is alive closure
2153                                 // (for efficiency/performance)
2154 }
2155 
2156 size_t G1CollectedHeap::capacity() const {
2157   return _hrm.length() * HeapRegion::GrainBytes;
2158 }
2159 
2160 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2161   assert(!hr->is_continues_humongous(), "pre-condition");
2162   hr->reset_gc_time_stamp();
2163   if (hr->is_starts_humongous()) {
2164     uint first_index = hr->hrm_index() + 1;
2165     uint last_index = hr->last_hc_index();
2166     for (uint i = first_index; i < last_index; i += 1) {
2167       HeapRegion* chr = region_at(i);
2168       assert(chr->is_continues_humongous(), "sanity");
2169       chr->reset_gc_time_stamp();
2170     }
2171   }
2172 }
2173 
2174 #ifndef PRODUCT
2175 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2176 private:
2177   unsigned _gc_time_stamp;
2178   bool _failures;
2179 
2180 public:
2181   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2182     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2183 
2184   virtual bool doHeapRegion(HeapRegion* hr) {
2185     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2186     if (_gc_time_stamp != region_gc_time_stamp) {
2187       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2188                              "expected %d", HR_FORMAT_PARAMS(hr),
2189                              region_gc_time_stamp, _gc_time_stamp);
2190       _failures = true;
2191     }
2192     return false;
2193   }
2194 
2195   bool failures() { return _failures; }
2196 };
2197 
2198 void G1CollectedHeap::check_gc_time_stamps() {
2199   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2200   heap_region_iterate(&cl);
2201   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2202 }
2203 #endif // PRODUCT
2204 
2205 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2206                                                  DirtyCardQueue* into_cset_dcq,
2207                                                  bool concurrent,
2208                                                  uint worker_i) {
2209   // Clean cards in the hot card cache
2210   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2211   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2212 
2213   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2214   int n_completed_buffers = 0;
2215   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2216     n_completed_buffers++;
2217   }
2218   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2219   dcqs.clear_n_completed_buffers();
2220   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2221 }
2222 
2223 
2224 // Computes the sum of the storage used by the various regions.
2225 size_t G1CollectedHeap::used() const {
2226   return _allocator->used();
2227 }
2228 
2229 size_t G1CollectedHeap::used_unlocked() const {
2230   return _allocator->used_unlocked();
2231 }
2232 
2233 class SumUsedClosure: public HeapRegionClosure {
2234   size_t _used;
2235 public:
2236   SumUsedClosure() : _used(0) {}
2237   bool doHeapRegion(HeapRegion* r) {
2238     if (!r->is_continues_humongous()) {
2239       _used += r->used();
2240     }
2241     return false;
2242   }
2243   size_t result() { return _used; }
2244 };
2245 
2246 size_t G1CollectedHeap::recalculate_used() const {
2247   double recalculate_used_start = os::elapsedTime();
2248 
2249   SumUsedClosure blk;
2250   heap_region_iterate(&blk);
2251 
2252   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2253   return blk.result();
2254 }
2255 
2256 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2257   switch (cause) {
2258     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2259     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2260     case GCCause::_g1_humongous_allocation: return true;
2261     case GCCause::_update_allocation_context_stats_inc: return true;
2262     case GCCause::_wb_conc_mark:            return true;
2263     default:                                return false;
2264   }
2265 }
2266 
2267 #ifndef PRODUCT
2268 void G1CollectedHeap::allocate_dummy_regions() {
2269   // Let's fill up most of the region
2270   size_t word_size = HeapRegion::GrainWords - 1024;
2271   // And as a result the region we'll allocate will be humongous.
2272   guarantee(is_humongous(word_size), "sanity");
2273 
2274   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2275     // Let's use the existing mechanism for the allocation
2276     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2277                                                  AllocationContext::system());
2278     if (dummy_obj != NULL) {
2279       MemRegion mr(dummy_obj, word_size);
2280       CollectedHeap::fill_with_object(mr);
2281     } else {
2282       // If we can't allocate once, we probably cannot allocate
2283       // again. Let's get out of the loop.
2284       break;
2285     }
2286   }
2287 }
2288 #endif // !PRODUCT
2289 
2290 void G1CollectedHeap::increment_old_marking_cycles_started() {
2291   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2292     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2293     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2294     _old_marking_cycles_started, _old_marking_cycles_completed));
2295 
2296   _old_marking_cycles_started++;
2297 }
2298 
2299 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2300   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2301 
2302   // We assume that if concurrent == true, then the caller is a
2303   // concurrent thread that was joined the Suspendible Thread
2304   // Set. If there's ever a cheap way to check this, we should add an
2305   // assert here.
2306 
2307   // Given that this method is called at the end of a Full GC or of a
2308   // concurrent cycle, and those can be nested (i.e., a Full GC can
2309   // interrupt a concurrent cycle), the number of full collections
2310   // completed should be either one (in the case where there was no
2311   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2312   // behind the number of full collections started.
2313 
2314   // This is the case for the inner caller, i.e. a Full GC.
2315   assert(concurrent ||
2316          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2317          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2318          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2319                  "is inconsistent with _old_marking_cycles_completed = %u",
2320                  _old_marking_cycles_started, _old_marking_cycles_completed));
2321 
2322   // This is the case for the outer caller, i.e. the concurrent cycle.
2323   assert(!concurrent ||
2324          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2325          err_msg("for outer caller (concurrent cycle): "
2326                  "_old_marking_cycles_started = %u "
2327                  "is inconsistent with _old_marking_cycles_completed = %u",
2328                  _old_marking_cycles_started, _old_marking_cycles_completed));
2329 
2330   _old_marking_cycles_completed += 1;
2331 
2332   // We need to clear the "in_progress" flag in the CM thread before
2333   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2334   // is set) so that if a waiter requests another System.gc() it doesn't
2335   // incorrectly see that a marking cycle is still in progress.
2336   if (concurrent) {
2337     _cmThread->clear_in_progress();
2338   }
2339 
2340   // This notify_all() will ensure that a thread that called
2341   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2342   // and it's waiting for a full GC to finish will be woken up. It is
2343   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2344   FullGCCount_lock->notify_all();
2345 }
2346 
2347 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2348   _concurrent_cycle_started = true;
2349   _gc_timer_cm->register_gc_start(start_time);
2350 
2351   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2352   trace_heap_before_gc(_gc_tracer_cm);
2353 }
2354 
2355 void G1CollectedHeap::register_concurrent_cycle_end() {
2356   if (_concurrent_cycle_started) {
2357     if (_cm->has_aborted()) {
2358       _gc_tracer_cm->report_concurrent_mode_failure();
2359     }
2360 
2361     _gc_timer_cm->register_gc_end();
2362     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2363 
2364     // Clear state variables to prepare for the next concurrent cycle.
2365     _concurrent_cycle_started = false;
2366     _heap_summary_sent = false;
2367   }
2368 }
2369 
2370 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2371   if (_concurrent_cycle_started) {
2372     // This function can be called when:
2373     //  the cleanup pause is run
2374     //  the concurrent cycle is aborted before the cleanup pause.
2375     //  the concurrent cycle is aborted after the cleanup pause,
2376     //   but before the concurrent cycle end has been registered.
2377     // Make sure that we only send the heap information once.
2378     if (!_heap_summary_sent) {
2379       trace_heap_after_gc(_gc_tracer_cm);
2380       _heap_summary_sent = true;
2381     }
2382   }
2383 }
2384 
2385 G1YCType G1CollectedHeap::yc_type() {
2386   bool is_young = g1_policy()->gcs_are_young();
2387   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2388   bool is_during_mark = mark_in_progress();
2389 
2390   if (is_initial_mark) {
2391     return InitialMark;
2392   } else if (is_during_mark) {
2393     return DuringMark;
2394   } else if (is_young) {
2395     return Normal;
2396   } else {
2397     return Mixed;
2398   }
2399 }
2400 
2401 void G1CollectedHeap::collect(GCCause::Cause cause) {
2402   assert_heap_not_locked();
2403 
2404   unsigned int gc_count_before;
2405   unsigned int old_marking_count_before;
2406   unsigned int full_gc_count_before;
2407   bool retry_gc;
2408 
2409   do {
2410     retry_gc = false;
2411 
2412     {
2413       MutexLocker ml(Heap_lock);
2414 
2415       // Read the GC count while holding the Heap_lock
2416       gc_count_before = total_collections();
2417       full_gc_count_before = total_full_collections();
2418       old_marking_count_before = _old_marking_cycles_started;
2419     }
2420 
2421     if (should_do_concurrent_full_gc(cause)) {
2422       // Schedule an initial-mark evacuation pause that will start a
2423       // concurrent cycle. We're setting word_size to 0 which means that
2424       // we are not requesting a post-GC allocation.
2425       VM_G1IncCollectionPause op(gc_count_before,
2426                                  0,     /* word_size */
2427                                  true,  /* should_initiate_conc_mark */
2428                                  g1_policy()->max_pause_time_ms(),
2429                                  cause);
2430       op.set_allocation_context(AllocationContext::current());
2431 
2432       VMThread::execute(&op);
2433       if (!op.pause_succeeded()) {
2434         if (old_marking_count_before == _old_marking_cycles_started) {
2435           retry_gc = op.should_retry_gc();
2436         } else {
2437           // A Full GC happened while we were trying to schedule the
2438           // initial-mark GC. No point in starting a new cycle given
2439           // that the whole heap was collected anyway.
2440         }
2441 
2442         if (retry_gc) {
2443           if (GC_locker::is_active_and_needs_gc()) {
2444             GC_locker::stall_until_clear();
2445           }
2446         }
2447       }
2448     } else {
2449       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2450           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2451 
2452         // Schedule a standard evacuation pause. We're setting word_size
2453         // to 0 which means that we are not requesting a post-GC allocation.
2454         VM_G1IncCollectionPause op(gc_count_before,
2455                                    0,     /* word_size */
2456                                    false, /* should_initiate_conc_mark */
2457                                    g1_policy()->max_pause_time_ms(),
2458                                    cause);
2459         VMThread::execute(&op);
2460       } else {
2461         // Schedule a Full GC.
2462         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2463         VMThread::execute(&op);
2464       }
2465     }
2466   } while (retry_gc);
2467 }
2468 
2469 bool G1CollectedHeap::is_in(const void* p) const {
2470   if (_hrm.reserved().contains(p)) {
2471     // Given that we know that p is in the reserved space,
2472     // heap_region_containing_raw() should successfully
2473     // return the containing region.
2474     HeapRegion* hr = heap_region_containing_raw(p);
2475     return hr->is_in(p);
2476   } else {
2477     return false;
2478   }
2479 }
2480 
2481 #ifdef ASSERT
2482 bool G1CollectedHeap::is_in_exact(const void* p) const {
2483   bool contains = reserved_region().contains(p);
2484   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2485   if (contains && available) {
2486     return true;
2487   } else {
2488     return false;
2489   }
2490 }
2491 #endif
2492 
2493 // Iteration functions.
2494 
2495 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2496 
2497 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2498   ExtendedOopClosure* _cl;
2499 public:
2500   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2501   bool doHeapRegion(HeapRegion* r) {
2502     if (!r->is_continues_humongous()) {
2503       r->oop_iterate(_cl);
2504     }
2505     return false;
2506   }
2507 };
2508 
2509 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2510   IterateOopClosureRegionClosure blk(cl);
2511   heap_region_iterate(&blk);
2512 }
2513 
2514 // Iterates an ObjectClosure over all objects within a HeapRegion.
2515 
2516 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2517   ObjectClosure* _cl;
2518 public:
2519   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2520   bool doHeapRegion(HeapRegion* r) {
2521     if (!r->is_continues_humongous()) {
2522       r->object_iterate(_cl);
2523     }
2524     return false;
2525   }
2526 };
2527 
2528 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2529   IterateObjectClosureRegionClosure blk(cl);
2530   heap_region_iterate(&blk);
2531 }
2532 
2533 // Calls a SpaceClosure on a HeapRegion.
2534 
2535 class SpaceClosureRegionClosure: public HeapRegionClosure {
2536   SpaceClosure* _cl;
2537 public:
2538   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2539   bool doHeapRegion(HeapRegion* r) {
2540     _cl->do_space(r);
2541     return false;
2542   }
2543 };
2544 
2545 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2546   SpaceClosureRegionClosure blk(cl);
2547   heap_region_iterate(&blk);
2548 }
2549 
2550 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2551   _hrm.iterate(cl);
2552 }
2553 
2554 void
2555 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2556                                          uint worker_id,
2557                                          HeapRegionClaimer *hrclaimer,
2558                                          bool concurrent) const {
2559   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2560 }
2561 
2562 // Clear the cached CSet starting regions and (more importantly)
2563 // the time stamps. Called when we reset the GC time stamp.
2564 void G1CollectedHeap::clear_cset_start_regions() {
2565   assert(_worker_cset_start_region != NULL, "sanity");
2566   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2567 
2568   int n_queues = MAX2((int)ParallelGCThreads, 1);
2569   for (int i = 0; i < n_queues; i++) {
2570     _worker_cset_start_region[i] = NULL;
2571     _worker_cset_start_region_time_stamp[i] = 0;
2572   }
2573 }
2574 
2575 // Given the id of a worker, obtain or calculate a suitable
2576 // starting region for iterating over the current collection set.
2577 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2578   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2579 
2580   HeapRegion* result = NULL;
2581   unsigned gc_time_stamp = get_gc_time_stamp();
2582 
2583   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2584     // Cached starting region for current worker was set
2585     // during the current pause - so it's valid.
2586     // Note: the cached starting heap region may be NULL
2587     // (when the collection set is empty).
2588     result = _worker_cset_start_region[worker_i];
2589     assert(result == NULL || result->in_collection_set(), "sanity");
2590     return result;
2591   }
2592 
2593   // The cached entry was not valid so let's calculate
2594   // a suitable starting heap region for this worker.
2595 
2596   // We want the parallel threads to start their collection
2597   // set iteration at different collection set regions to
2598   // avoid contention.
2599   // If we have:
2600   //          n collection set regions
2601   //          p threads
2602   // Then thread t will start at region floor ((t * n) / p)
2603 
2604   result = g1_policy()->collection_set();
2605   uint cs_size = g1_policy()->cset_region_length();
2606   uint active_workers = workers()->active_workers();
2607   assert(UseDynamicNumberOfGCThreads ||
2608            active_workers == workers()->total_workers(),
2609            "Unless dynamic should use total workers");
2610 
2611   uint end_ind   = (cs_size * worker_i) / active_workers;
2612   uint start_ind = 0;
2613 
2614   if (worker_i > 0 &&
2615       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2616     // Previous workers starting region is valid
2617     // so let's iterate from there
2618     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2619     result = _worker_cset_start_region[worker_i - 1];
2620   }
2621 
2622   for (uint i = start_ind; i < end_ind; i++) {
2623     result = result->next_in_collection_set();
2624   }
2625 
2626   // Note: the calculated starting heap region may be NULL
2627   // (when the collection set is empty).
2628   assert(result == NULL || result->in_collection_set(), "sanity");
2629   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2630          "should be updated only once per pause");
2631   _worker_cset_start_region[worker_i] = result;
2632   OrderAccess::storestore();
2633   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2634   return result;
2635 }
2636 
2637 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2638   HeapRegion* r = g1_policy()->collection_set();
2639   while (r != NULL) {
2640     HeapRegion* next = r->next_in_collection_set();
2641     if (cl->doHeapRegion(r)) {
2642       cl->incomplete();
2643       return;
2644     }
2645     r = next;
2646   }
2647 }
2648 
2649 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2650                                                   HeapRegionClosure *cl) {
2651   if (r == NULL) {
2652     // The CSet is empty so there's nothing to do.
2653     return;
2654   }
2655 
2656   assert(r->in_collection_set(),
2657          "Start region must be a member of the collection set.");
2658   HeapRegion* cur = r;
2659   while (cur != NULL) {
2660     HeapRegion* next = cur->next_in_collection_set();
2661     if (cl->doHeapRegion(cur) && false) {
2662       cl->incomplete();
2663       return;
2664     }
2665     cur = next;
2666   }
2667   cur = g1_policy()->collection_set();
2668   while (cur != r) {
2669     HeapRegion* next = cur->next_in_collection_set();
2670     if (cl->doHeapRegion(cur) && false) {
2671       cl->incomplete();
2672       return;
2673     }
2674     cur = next;
2675   }
2676 }
2677 
2678 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2679   HeapRegion* result = _hrm.next_region_in_heap(from);
2680   while (result != NULL && result->is_humongous()) {
2681     result = _hrm.next_region_in_heap(result);
2682   }
2683   return result;
2684 }
2685 
2686 Space* G1CollectedHeap::space_containing(const void* addr) const {
2687   return heap_region_containing(addr);
2688 }
2689 
2690 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2691   Space* sp = space_containing(addr);
2692   return sp->block_start(addr);
2693 }
2694 
2695 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2696   Space* sp = space_containing(addr);
2697   return sp->block_size(addr);
2698 }
2699 
2700 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2701   Space* sp = space_containing(addr);
2702   return sp->block_is_obj(addr);
2703 }
2704 
2705 bool G1CollectedHeap::supports_tlab_allocation() const {
2706   return true;
2707 }
2708 
2709 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2710   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2711 }
2712 
2713 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2714   return young_list()->eden_used_bytes();
2715 }
2716 
2717 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2718 // must be smaller than the humongous object limit.
2719 size_t G1CollectedHeap::max_tlab_size() const {
2720   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2721 }
2722 
2723 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2724   // Return the remaining space in the cur alloc region, but not less than
2725   // the min TLAB size.
2726 
2727   // Also, this value can be at most the humongous object threshold,
2728   // since we can't allow tlabs to grow big enough to accommodate
2729   // humongous objects.
2730 
2731   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2732   size_t max_tlab = max_tlab_size() * wordSize;
2733   if (hr == NULL) {
2734     return max_tlab;
2735   } else {
2736     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2737   }
2738 }
2739 
2740 size_t G1CollectedHeap::max_capacity() const {
2741   return _hrm.reserved().byte_size();
2742 }
2743 
2744 jlong G1CollectedHeap::millis_since_last_gc() {
2745   // assert(false, "NYI");
2746   return 0;
2747 }
2748 
2749 void G1CollectedHeap::prepare_for_verify() {
2750   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2751     ensure_parsability(false);
2752   }
2753   g1_rem_set()->prepare_for_verify();
2754 }
2755 
2756 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2757                                               VerifyOption vo) {
2758   switch (vo) {
2759   case VerifyOption_G1UsePrevMarking:
2760     return hr->obj_allocated_since_prev_marking(obj);
2761   case VerifyOption_G1UseNextMarking:
2762     return hr->obj_allocated_since_next_marking(obj);
2763   case VerifyOption_G1UseMarkWord:
2764     return false;
2765   default:
2766     ShouldNotReachHere();
2767   }
2768   return false; // keep some compilers happy
2769 }
2770 
2771 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2772   switch (vo) {
2773   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2774   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2775   case VerifyOption_G1UseMarkWord:    return NULL;
2776   default:                            ShouldNotReachHere();
2777   }
2778   return NULL; // keep some compilers happy
2779 }
2780 
2781 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2782   switch (vo) {
2783   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2784   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2785   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2786   default:                            ShouldNotReachHere();
2787   }
2788   return false; // keep some compilers happy
2789 }
2790 
2791 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2792   switch (vo) {
2793   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2794   case VerifyOption_G1UseNextMarking: return "NTAMS";
2795   case VerifyOption_G1UseMarkWord:    return "NONE";
2796   default:                            ShouldNotReachHere();
2797   }
2798   return NULL; // keep some compilers happy
2799 }
2800 
2801 class VerifyRootsClosure: public OopClosure {
2802 private:
2803   G1CollectedHeap* _g1h;
2804   VerifyOption     _vo;
2805   bool             _failures;
2806 public:
2807   // _vo == UsePrevMarking -> use "prev" marking information,
2808   // _vo == UseNextMarking -> use "next" marking information,
2809   // _vo == UseMarkWord    -> use mark word from object header.
2810   VerifyRootsClosure(VerifyOption vo) :
2811     _g1h(G1CollectedHeap::heap()),
2812     _vo(vo),
2813     _failures(false) { }
2814 
2815   bool failures() { return _failures; }
2816 
2817   template <class T> void do_oop_nv(T* p) {
2818     T heap_oop = oopDesc::load_heap_oop(p);
2819     if (!oopDesc::is_null(heap_oop)) {
2820       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2821       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2822         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2823                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2824         if (_vo == VerifyOption_G1UseMarkWord) {
2825           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2826         }
2827         obj->print_on(gclog_or_tty);
2828         _failures = true;
2829       }
2830     }
2831   }
2832 
2833   void do_oop(oop* p)       { do_oop_nv(p); }
2834   void do_oop(narrowOop* p) { do_oop_nv(p); }
2835 };
2836 
2837 class G1VerifyCodeRootOopClosure: public OopClosure {
2838   G1CollectedHeap* _g1h;
2839   OopClosure* _root_cl;
2840   nmethod* _nm;
2841   VerifyOption _vo;
2842   bool _failures;
2843 
2844   template <class T> void do_oop_work(T* p) {
2845     // First verify that this root is live
2846     _root_cl->do_oop(p);
2847 
2848     if (!G1VerifyHeapRegionCodeRoots) {
2849       // We're not verifying the code roots attached to heap region.
2850       return;
2851     }
2852 
2853     // Don't check the code roots during marking verification in a full GC
2854     if (_vo == VerifyOption_G1UseMarkWord) {
2855       return;
2856     }
2857 
2858     // Now verify that the current nmethod (which contains p) is
2859     // in the code root list of the heap region containing the
2860     // object referenced by p.
2861 
2862     T heap_oop = oopDesc::load_heap_oop(p);
2863     if (!oopDesc::is_null(heap_oop)) {
2864       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2865 
2866       // Now fetch the region containing the object
2867       HeapRegion* hr = _g1h->heap_region_containing(obj);
2868       HeapRegionRemSet* hrrs = hr->rem_set();
2869       // Verify that the strong code root list for this region
2870       // contains the nmethod
2871       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2872         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2873                               "from nmethod "PTR_FORMAT" not in strong "
2874                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2875                               p, _nm, hr->bottom(), hr->end());
2876         _failures = true;
2877       }
2878     }
2879   }
2880 
2881 public:
2882   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2883     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2884 
2885   void do_oop(oop* p) { do_oop_work(p); }
2886   void do_oop(narrowOop* p) { do_oop_work(p); }
2887 
2888   void set_nmethod(nmethod* nm) { _nm = nm; }
2889   bool failures() { return _failures; }
2890 };
2891 
2892 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2893   G1VerifyCodeRootOopClosure* _oop_cl;
2894 
2895 public:
2896   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2897     _oop_cl(oop_cl) {}
2898 
2899   void do_code_blob(CodeBlob* cb) {
2900     nmethod* nm = cb->as_nmethod_or_null();
2901     if (nm != NULL) {
2902       _oop_cl->set_nmethod(nm);
2903       nm->oops_do(_oop_cl);
2904     }
2905   }
2906 };
2907 
2908 class YoungRefCounterClosure : public OopClosure {
2909   G1CollectedHeap* _g1h;
2910   int              _count;
2911  public:
2912   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2913   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2914   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2915 
2916   int count() { return _count; }
2917   void reset_count() { _count = 0; };
2918 };
2919 
2920 class VerifyKlassClosure: public KlassClosure {
2921   YoungRefCounterClosure _young_ref_counter_closure;
2922   OopClosure *_oop_closure;
2923  public:
2924   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2925   void do_klass(Klass* k) {
2926     k->oops_do(_oop_closure);
2927 
2928     _young_ref_counter_closure.reset_count();
2929     k->oops_do(&_young_ref_counter_closure);
2930     if (_young_ref_counter_closure.count() > 0) {
2931       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
2932     }
2933   }
2934 };
2935 
2936 class VerifyLivenessOopClosure: public OopClosure {
2937   G1CollectedHeap* _g1h;
2938   VerifyOption _vo;
2939 public:
2940   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2941     _g1h(g1h), _vo(vo)
2942   { }
2943   void do_oop(narrowOop *p) { do_oop_work(p); }
2944   void do_oop(      oop *p) { do_oop_work(p); }
2945 
2946   template <class T> void do_oop_work(T *p) {
2947     oop obj = oopDesc::load_decode_heap_oop(p);
2948     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2949               "Dead object referenced by a not dead object");
2950   }
2951 };
2952 
2953 class VerifyObjsInRegionClosure: public ObjectClosure {
2954 private:
2955   G1CollectedHeap* _g1h;
2956   size_t _live_bytes;
2957   HeapRegion *_hr;
2958   VerifyOption _vo;
2959 public:
2960   // _vo == UsePrevMarking -> use "prev" marking information,
2961   // _vo == UseNextMarking -> use "next" marking information,
2962   // _vo == UseMarkWord    -> use mark word from object header.
2963   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2964     : _live_bytes(0), _hr(hr), _vo(vo) {
2965     _g1h = G1CollectedHeap::heap();
2966   }
2967   void do_object(oop o) {
2968     VerifyLivenessOopClosure isLive(_g1h, _vo);
2969     assert(o != NULL, "Huh?");
2970     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2971       // If the object is alive according to the mark word,
2972       // then verify that the marking information agrees.
2973       // Note we can't verify the contra-positive of the
2974       // above: if the object is dead (according to the mark
2975       // word), it may not be marked, or may have been marked
2976       // but has since became dead, or may have been allocated
2977       // since the last marking.
2978       if (_vo == VerifyOption_G1UseMarkWord) {
2979         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2980       }
2981 
2982       o->oop_iterate_no_header(&isLive);
2983       if (!_hr->obj_allocated_since_prev_marking(o)) {
2984         size_t obj_size = o->size();    // Make sure we don't overflow
2985         _live_bytes += (obj_size * HeapWordSize);
2986       }
2987     }
2988   }
2989   size_t live_bytes() { return _live_bytes; }
2990 };
2991 
2992 class PrintObjsInRegionClosure : public ObjectClosure {
2993   HeapRegion *_hr;
2994   G1CollectedHeap *_g1;
2995 public:
2996   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2997     _g1 = G1CollectedHeap::heap();
2998   };
2999 
3000   void do_object(oop o) {
3001     if (o != NULL) {
3002       HeapWord *start = (HeapWord *) o;
3003       size_t word_sz = o->size();
3004       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3005                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3006                           (void*) o, word_sz,
3007                           _g1->isMarkedPrev(o),
3008                           _g1->isMarkedNext(o),
3009                           _hr->obj_allocated_since_prev_marking(o));
3010       HeapWord *end = start + word_sz;
3011       HeapWord *cur;
3012       int *val;
3013       for (cur = start; cur < end; cur++) {
3014         val = (int *) cur;
3015         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
3016       }
3017     }
3018   }
3019 };
3020 
3021 class VerifyRegionClosure: public HeapRegionClosure {
3022 private:
3023   bool             _par;
3024   VerifyOption     _vo;
3025   bool             _failures;
3026 public:
3027   // _vo == UsePrevMarking -> use "prev" marking information,
3028   // _vo == UseNextMarking -> use "next" marking information,
3029   // _vo == UseMarkWord    -> use mark word from object header.
3030   VerifyRegionClosure(bool par, VerifyOption vo)
3031     : _par(par),
3032       _vo(vo),
3033       _failures(false) {}
3034 
3035   bool failures() {
3036     return _failures;
3037   }
3038 
3039   bool doHeapRegion(HeapRegion* r) {
3040     if (!r->is_continues_humongous()) {
3041       bool failures = false;
3042       r->verify(_vo, &failures);
3043       if (failures) {
3044         _failures = true;
3045       } else {
3046         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3047         r->object_iterate(&not_dead_yet_cl);
3048         if (_vo != VerifyOption_G1UseNextMarking) {
3049           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3050             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3051                                    "max_live_bytes "SIZE_FORMAT" "
3052                                    "< calculated "SIZE_FORMAT,
3053                                    r->bottom(), r->end(),
3054                                    r->max_live_bytes(),
3055                                  not_dead_yet_cl.live_bytes());
3056             _failures = true;
3057           }
3058         } else {
3059           // When vo == UseNextMarking we cannot currently do a sanity
3060           // check on the live bytes as the calculation has not been
3061           // finalized yet.
3062         }
3063       }
3064     }
3065     return false; // stop the region iteration if we hit a failure
3066   }
3067 };
3068 
3069 // This is the task used for parallel verification of the heap regions
3070 
3071 class G1ParVerifyTask: public AbstractGangTask {
3072 private:
3073   G1CollectedHeap*  _g1h;
3074   VerifyOption      _vo;
3075   bool              _failures;
3076   HeapRegionClaimer _hrclaimer;
3077 
3078 public:
3079   // _vo == UsePrevMarking -> use "prev" marking information,
3080   // _vo == UseNextMarking -> use "next" marking information,
3081   // _vo == UseMarkWord    -> use mark word from object header.
3082   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3083       AbstractGangTask("Parallel verify task"),
3084       _g1h(g1h),
3085       _vo(vo),
3086       _failures(false),
3087       _hrclaimer(g1h->workers()->active_workers()) {}
3088 
3089   bool failures() {
3090     return _failures;
3091   }
3092 
3093   void work(uint worker_id) {
3094     HandleMark hm;
3095     VerifyRegionClosure blk(true, _vo);
3096     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3097     if (blk.failures()) {
3098       _failures = true;
3099     }
3100   }
3101 };
3102 
3103 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3104   if (SafepointSynchronize::is_at_safepoint()) {
3105     assert(Thread::current()->is_VM_thread(),
3106            "Expected to be executed serially by the VM thread at this point");
3107 
3108     if (!silent) { gclog_or_tty->print("Roots "); }
3109     VerifyRootsClosure rootsCl(vo);
3110     VerifyKlassClosure klassCl(this, &rootsCl);
3111     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3112 
3113     // We apply the relevant closures to all the oops in the
3114     // system dictionary, class loader data graph, the string table
3115     // and the nmethods in the code cache.
3116     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3117     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3118 
3119     process_all_roots(true,            // activate StrongRootsScope
3120                       SO_AllCodeCache, // roots scanning options
3121                       &rootsCl,
3122                       &cldCl,
3123                       &blobsCl);
3124 
3125     bool failures = rootsCl.failures() || codeRootsCl.failures();
3126 
3127     if (vo != VerifyOption_G1UseMarkWord) {
3128       // If we're verifying during a full GC then the region sets
3129       // will have been torn down at the start of the GC. Therefore
3130       // verifying the region sets will fail. So we only verify
3131       // the region sets when not in a full GC.
3132       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3133       verify_region_sets();
3134     }
3135 
3136     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3137     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3138 
3139       G1ParVerifyTask task(this, vo);
3140       assert(UseDynamicNumberOfGCThreads ||
3141         workers()->active_workers() == workers()->total_workers(),
3142         "If not dynamic should be using all the workers");
3143       int n_workers = workers()->active_workers();
3144       set_par_threads(n_workers);
3145       workers()->run_task(&task);
3146       set_par_threads(0);
3147       if (task.failures()) {
3148         failures = true;
3149       }
3150 
3151     } else {
3152       VerifyRegionClosure blk(false, vo);
3153       heap_region_iterate(&blk);
3154       if (blk.failures()) {
3155         failures = true;
3156       }
3157     }
3158 
3159     if (G1StringDedup::is_enabled()) {
3160       if (!silent) gclog_or_tty->print("StrDedup ");
3161       G1StringDedup::verify();
3162     }
3163 
3164     if (failures) {
3165       gclog_or_tty->print_cr("Heap:");
3166       // It helps to have the per-region information in the output to
3167       // help us track down what went wrong. This is why we call
3168       // print_extended_on() instead of print_on().
3169       print_extended_on(gclog_or_tty);
3170       gclog_or_tty->cr();
3171 #ifndef PRODUCT
3172       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3173         concurrent_mark()->print_reachable("at-verification-failure",
3174                                            vo, false /* all */);
3175       }
3176 #endif
3177       gclog_or_tty->flush();
3178     }
3179     guarantee(!failures, "there should not have been any failures");
3180   } else {
3181     if (!silent) {
3182       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3183       if (G1StringDedup::is_enabled()) {
3184         gclog_or_tty->print(", StrDedup");
3185       }
3186       gclog_or_tty->print(") ");
3187     }
3188   }
3189 }
3190 
3191 void G1CollectedHeap::verify(bool silent) {
3192   verify(silent, VerifyOption_G1UsePrevMarking);
3193 }
3194 
3195 double G1CollectedHeap::verify(bool guard, const char* msg) {
3196   double verify_time_ms = 0.0;
3197 
3198   if (guard && total_collections() >= VerifyGCStartAt) {
3199     double verify_start = os::elapsedTime();
3200     HandleMark hm;  // Discard invalid handles created during verification
3201     prepare_for_verify();
3202     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3203     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3204   }
3205 
3206   return verify_time_ms;
3207 }
3208 
3209 void G1CollectedHeap::verify_before_gc() {
3210   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3211   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3212 }
3213 
3214 void G1CollectedHeap::verify_after_gc() {
3215   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3216   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3217 }
3218 
3219 class PrintRegionClosure: public HeapRegionClosure {
3220   outputStream* _st;
3221 public:
3222   PrintRegionClosure(outputStream* st) : _st(st) {}
3223   bool doHeapRegion(HeapRegion* r) {
3224     r->print_on(_st);
3225     return false;
3226   }
3227 };
3228 
3229 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3230                                        const HeapRegion* hr,
3231                                        const VerifyOption vo) const {
3232   switch (vo) {
3233   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3234   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3235   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3236   default:                            ShouldNotReachHere();
3237   }
3238   return false; // keep some compilers happy
3239 }
3240 
3241 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3242                                        const VerifyOption vo) const {
3243   switch (vo) {
3244   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3245   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3246   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3247   default:                            ShouldNotReachHere();
3248   }
3249   return false; // keep some compilers happy
3250 }
3251 
3252 void G1CollectedHeap::print_on(outputStream* st) const {
3253   st->print(" %-20s", "garbage-first heap");
3254   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3255             capacity()/K, used_unlocked()/K);
3256   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3257             _hrm.reserved().start(),
3258             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3259             _hrm.reserved().end());
3260   st->cr();
3261   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3262   uint young_regions = _young_list->length();
3263   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3264             (size_t) young_regions * HeapRegion::GrainBytes / K);
3265   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3266   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3267             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3268   st->cr();
3269   MetaspaceAux::print_on(st);
3270 }
3271 
3272 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3273   print_on(st);
3274 
3275   // Print the per-region information.
3276   st->cr();
3277   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3278                "HS=humongous(starts), HC=humongous(continues), "
3279                "CS=collection set, F=free, TS=gc time stamp, "
3280                "PTAMS=previous top-at-mark-start, "
3281                "NTAMS=next top-at-mark-start)");
3282   PrintRegionClosure blk(st);
3283   heap_region_iterate(&blk);
3284 }
3285 
3286 void G1CollectedHeap::print_on_error(outputStream* st) const {
3287   this->CollectedHeap::print_on_error(st);
3288 
3289   if (_cm != NULL) {
3290     st->cr();
3291     _cm->print_on_error(st);
3292   }
3293 }
3294 
3295 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3296   workers()->print_worker_threads_on(st);
3297   _cmThread->print_on(st);
3298   st->cr();
3299   _cm->print_worker_threads_on(st);
3300   _cg1r->print_worker_threads_on(st);
3301   if (G1StringDedup::is_enabled()) {
3302     G1StringDedup::print_worker_threads_on(st);
3303   }
3304 }
3305 
3306 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3307   workers()->threads_do(tc);
3308   tc->do_thread(_cmThread);
3309   _cg1r->threads_do(tc);
3310   if (G1StringDedup::is_enabled()) {
3311     G1StringDedup::threads_do(tc);
3312   }
3313 }
3314 
3315 void G1CollectedHeap::print_tracing_info() const {
3316   // We'll overload this to mean "trace GC pause statistics."
3317   if (TraceYoungGenTime || TraceOldGenTime) {
3318     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3319     // to that.
3320     g1_policy()->print_tracing_info();
3321   }
3322   if (G1SummarizeRSetStats) {
3323     g1_rem_set()->print_summary_info();
3324   }
3325   if (G1SummarizeConcMark) {
3326     concurrent_mark()->print_summary_info();
3327   }
3328   g1_policy()->print_yg_surv_rate_info();
3329   SpecializationStats::print();
3330 }
3331 
3332 #ifndef PRODUCT
3333 // Helpful for debugging RSet issues.
3334 
3335 class PrintRSetsClosure : public HeapRegionClosure {
3336 private:
3337   const char* _msg;
3338   size_t _occupied_sum;
3339 
3340 public:
3341   bool doHeapRegion(HeapRegion* r) {
3342     HeapRegionRemSet* hrrs = r->rem_set();
3343     size_t occupied = hrrs->occupied();
3344     _occupied_sum += occupied;
3345 
3346     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3347                            HR_FORMAT_PARAMS(r));
3348     if (occupied == 0) {
3349       gclog_or_tty->print_cr("  RSet is empty");
3350     } else {
3351       hrrs->print();
3352     }
3353     gclog_or_tty->print_cr("----------");
3354     return false;
3355   }
3356 
3357   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3358     gclog_or_tty->cr();
3359     gclog_or_tty->print_cr("========================================");
3360     gclog_or_tty->print_cr("%s", msg);
3361     gclog_or_tty->cr();
3362   }
3363 
3364   ~PrintRSetsClosure() {
3365     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3366     gclog_or_tty->print_cr("========================================");
3367     gclog_or_tty->cr();
3368   }
3369 };
3370 
3371 void G1CollectedHeap::print_cset_rsets() {
3372   PrintRSetsClosure cl("Printing CSet RSets");
3373   collection_set_iterate(&cl);
3374 }
3375 
3376 void G1CollectedHeap::print_all_rsets() {
3377   PrintRSetsClosure cl("Printing All RSets");;
3378   heap_region_iterate(&cl);
3379 }
3380 #endif // PRODUCT
3381 
3382 G1CollectedHeap* G1CollectedHeap::heap() {
3383   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3384          "not a garbage-first heap");
3385   return _g1h;
3386 }
3387 
3388 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3389   // always_do_update_barrier = false;
3390   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3391   // Fill TLAB's and such
3392   accumulate_statistics_all_tlabs();
3393   ensure_parsability(true);
3394 
3395   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3396       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3397     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3398   }
3399 }
3400 
3401 void G1CollectedHeap::gc_epilogue(bool full) {
3402 
3403   if (G1SummarizeRSetStats &&
3404       (G1SummarizeRSetStatsPeriod > 0) &&
3405       // we are at the end of the GC. Total collections has already been increased.
3406       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3407     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3408   }
3409 
3410   // FIXME: what is this about?
3411   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3412   // is set.
3413   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3414                         "derived pointer present"));
3415   // always_do_update_barrier = true;
3416 
3417   resize_all_tlabs();
3418   allocation_context_stats().update(full);
3419 
3420   // We have just completed a GC. Update the soft reference
3421   // policy with the new heap occupancy
3422   Universe::update_heap_info_at_gc();
3423 }
3424 
3425 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3426                                                unsigned int gc_count_before,
3427                                                bool* succeeded,
3428                                                GCCause::Cause gc_cause) {
3429   assert_heap_not_locked_and_not_at_safepoint();
3430   g1_policy()->record_stop_world_start();
3431   VM_G1IncCollectionPause op(gc_count_before,
3432                              word_size,
3433                              false, /* should_initiate_conc_mark */
3434                              g1_policy()->max_pause_time_ms(),
3435                              gc_cause);
3436 
3437   op.set_allocation_context(AllocationContext::current());
3438   VMThread::execute(&op);
3439 
3440   HeapWord* result = op.result();
3441   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3442   assert(result == NULL || ret_succeeded,
3443          "the result should be NULL if the VM did not succeed");
3444   *succeeded = ret_succeeded;
3445 
3446   assert_heap_not_locked();
3447   return result;
3448 }
3449 
3450 void
3451 G1CollectedHeap::doConcurrentMark() {
3452   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3453   if (!_cmThread->in_progress()) {
3454     _cmThread->set_started();
3455     CGC_lock->notify();
3456   }
3457 }
3458 
3459 size_t G1CollectedHeap::pending_card_num() {
3460   size_t extra_cards = 0;
3461   JavaThread *curr = Threads::first();
3462   while (curr != NULL) {
3463     DirtyCardQueue& dcq = curr->dirty_card_queue();
3464     extra_cards += dcq.size();
3465     curr = curr->next();
3466   }
3467   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3468   size_t buffer_size = dcqs.buffer_size();
3469   size_t buffer_num = dcqs.completed_buffers_num();
3470 
3471   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3472   // in bytes - not the number of 'entries'. We need to convert
3473   // into a number of cards.
3474   return (buffer_size * buffer_num + extra_cards) / oopSize;
3475 }
3476 
3477 size_t G1CollectedHeap::cards_scanned() {
3478   return g1_rem_set()->cardsScanned();
3479 }
3480 
3481 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3482   HeapRegion* region = region_at(index);
3483   assert(region->is_starts_humongous(), "Must start a humongous object");
3484   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3485 }
3486 
3487 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3488  private:
3489   size_t _total_humongous;
3490   size_t _candidate_humongous;
3491 
3492   DirtyCardQueue _dcq;
3493 
3494   bool humongous_region_is_candidate(uint index) {
3495     HeapRegion* region = G1CollectedHeap::heap()->region_at(index);
3496     assert(region->is_starts_humongous(), "Must start a humongous object");
3497     HeapRegionRemSet* const rset = region->rem_set();
3498     bool const allow_stale_refs = G1EagerReclaimHumongousObjectsWithStaleRefs;
3499     return !oop(region->bottom())->is_objArray() &&
3500            ((allow_stale_refs && rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)) ||
3501             (!allow_stale_refs && rset->is_empty()));
3502   }
3503 
3504  public:
3505   RegisterHumongousWithInCSetFastTestClosure()
3506   : _total_humongous(0),
3507     _candidate_humongous(0),
3508     _dcq(&JavaThread::dirty_card_queue_set()) {
3509   }
3510 
3511   virtual bool doHeapRegion(HeapRegion* r) {
3512     if (!r->is_starts_humongous()) {
3513       return false;
3514     }
3515     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3516 
3517     uint region_idx = r->hrm_index();
3518     bool is_candidate = humongous_region_is_candidate(region_idx);
3519     // Is_candidate already filters out humongous object with large remembered sets.
3520     // If we have a humongous object with a few remembered sets, we simply flush these
3521     // remembered set entries into the DCQS. That will result in automatic
3522     // re-evaluation of their remembered set entries during the following evacuation
3523     // phase.
3524     if (is_candidate) {
3525       if (!r->rem_set()->is_empty()) {
3526         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3527                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3528         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3529         HeapRegionRemSetIterator hrrs(r->rem_set());
3530         size_t card_index;
3531         while (hrrs.has_next(card_index)) {
3532           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3533           if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3534             *card_ptr = CardTableModRefBS::dirty_card_val();
3535             _dcq.enqueue(card_ptr);
3536           }
3537         }
3538         r->rem_set()->clear_locked();
3539       }
3540       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3541       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
3542       _candidate_humongous++;
3543     }
3544     _total_humongous++;
3545 
3546     return false;
3547   }
3548 
3549   size_t total_humongous() const { return _total_humongous; }
3550   size_t candidate_humongous() const { return _candidate_humongous; }
3551 
3552   void flush_rem_set_entries() { _dcq.flush(); }
3553 };
3554 
3555 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
3556   if (!G1EagerReclaimHumongousObjects) {
3557     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3558     return;
3559   }
3560   double time = os::elapsed_counter();
3561 
3562   RegisterHumongousWithInCSetFastTestClosure cl;
3563   heap_region_iterate(&cl);
3564 
3565   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3566   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3567                                                                   cl.total_humongous(),
3568                                                                   cl.candidate_humongous());
3569   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3570 
3571   if (_has_humongous_reclaim_candidates || G1TraceEagerReclaimHumongousObjects) {
3572     clear_humongous_is_live_table();
3573   }
3574 
3575   // Finally flush all remembered set entries to re-check into the global DCQS.
3576   cl.flush_rem_set_entries();
3577 }
3578 
3579 void
3580 G1CollectedHeap::setup_surviving_young_words() {
3581   assert(_surviving_young_words == NULL, "pre-condition");
3582   uint array_length = g1_policy()->young_cset_region_length();
3583   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3584   if (_surviving_young_words == NULL) {
3585     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3586                           "Not enough space for young surv words summary.");
3587   }
3588   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3589 #ifdef ASSERT
3590   for (uint i = 0;  i < array_length; ++i) {
3591     assert( _surviving_young_words[i] == 0, "memset above" );
3592   }
3593 #endif // !ASSERT
3594 }
3595 
3596 void
3597 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3598   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3599   uint array_length = g1_policy()->young_cset_region_length();
3600   for (uint i = 0; i < array_length; ++i) {
3601     _surviving_young_words[i] += surv_young_words[i];
3602   }
3603 }
3604 
3605 void
3606 G1CollectedHeap::cleanup_surviving_young_words() {
3607   guarantee( _surviving_young_words != NULL, "pre-condition" );
3608   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3609   _surviving_young_words = NULL;
3610 }
3611 
3612 #ifdef ASSERT
3613 class VerifyCSetClosure: public HeapRegionClosure {
3614 public:
3615   bool doHeapRegion(HeapRegion* hr) {
3616     // Here we check that the CSet region's RSet is ready for parallel
3617     // iteration. The fields that we'll verify are only manipulated
3618     // when the region is part of a CSet and is collected. Afterwards,
3619     // we reset these fields when we clear the region's RSet (when the
3620     // region is freed) so they are ready when the region is
3621     // re-allocated. The only exception to this is if there's an
3622     // evacuation failure and instead of freeing the region we leave
3623     // it in the heap. In that case, we reset these fields during
3624     // evacuation failure handling.
3625     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3626 
3627     // Here's a good place to add any other checks we'd like to
3628     // perform on CSet regions.
3629     return false;
3630   }
3631 };
3632 #endif // ASSERT
3633 
3634 #if TASKQUEUE_STATS
3635 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3636   st->print_raw_cr("GC Task Stats");
3637   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3638   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3639 }
3640 
3641 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3642   print_taskqueue_stats_hdr(st);
3643 
3644   TaskQueueStats totals;
3645   const int n = workers()->total_workers();
3646   for (int i = 0; i < n; ++i) {
3647     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3648     totals += task_queue(i)->stats;
3649   }
3650   st->print_raw("tot "); totals.print(st); st->cr();
3651 
3652   DEBUG_ONLY(totals.verify());
3653 }
3654 
3655 void G1CollectedHeap::reset_taskqueue_stats() {
3656   const int n = workers()->total_workers();
3657   for (int i = 0; i < n; ++i) {
3658     task_queue(i)->stats.reset();
3659   }
3660 }
3661 #endif // TASKQUEUE_STATS
3662 
3663 void G1CollectedHeap::log_gc_header() {
3664   if (!G1Log::fine()) {
3665     return;
3666   }
3667 
3668   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3669 
3670   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3671     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3672     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3673 
3674   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3675 }
3676 
3677 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3678   if (!G1Log::fine()) {
3679     return;
3680   }
3681 
3682   if (G1Log::finer()) {
3683     if (evacuation_failed()) {
3684       gclog_or_tty->print(" (to-space exhausted)");
3685     }
3686     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3687     g1_policy()->phase_times()->note_gc_end();
3688     g1_policy()->phase_times()->print(pause_time_sec);
3689     g1_policy()->print_detailed_heap_transition();
3690   } else {
3691     if (evacuation_failed()) {
3692       gclog_or_tty->print("--");
3693     }
3694     g1_policy()->print_heap_transition();
3695     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3696   }
3697   gclog_or_tty->flush();
3698 }
3699 
3700 bool
3701 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3702   assert_at_safepoint(true /* should_be_vm_thread */);
3703   guarantee(!is_gc_active(), "collection is not reentrant");
3704 
3705   if (GC_locker::check_active_before_gc()) {
3706     return false;
3707   }
3708 
3709   _gc_timer_stw->register_gc_start();
3710 
3711   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3712 
3713   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3714   ResourceMark rm;
3715 
3716   print_heap_before_gc();
3717   trace_heap_before_gc(_gc_tracer_stw);
3718 
3719   verify_region_sets_optional();
3720   verify_dirty_young_regions();
3721 
3722   // This call will decide whether this pause is an initial-mark
3723   // pause. If it is, during_initial_mark_pause() will return true
3724   // for the duration of this pause.
3725   g1_policy()->decide_on_conc_mark_initiation();
3726 
3727   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3728   assert(!g1_policy()->during_initial_mark_pause() ||
3729           g1_policy()->gcs_are_young(), "sanity");
3730 
3731   // We also do not allow mixed GCs during marking.
3732   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3733 
3734   // Record whether this pause is an initial mark. When the current
3735   // thread has completed its logging output and it's safe to signal
3736   // the CM thread, the flag's value in the policy has been reset.
3737   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3738 
3739   // Inner scope for scope based logging, timers, and stats collection
3740   {
3741     EvacuationInfo evacuation_info;
3742 
3743     if (g1_policy()->during_initial_mark_pause()) {
3744       // We are about to start a marking cycle, so we increment the
3745       // full collection counter.
3746       increment_old_marking_cycles_started();
3747       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3748     }
3749 
3750     _gc_tracer_stw->report_yc_type(yc_type());
3751 
3752     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3753 
3754     int active_workers = workers()->active_workers();
3755     double pause_start_sec = os::elapsedTime();
3756     g1_policy()->phase_times()->note_gc_start(active_workers);
3757     log_gc_header();
3758 
3759     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3760     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3761 
3762     // If the secondary_free_list is not empty, append it to the
3763     // free_list. No need to wait for the cleanup operation to finish;
3764     // the region allocation code will check the secondary_free_list
3765     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3766     // set, skip this step so that the region allocation code has to
3767     // get entries from the secondary_free_list.
3768     if (!G1StressConcRegionFreeing) {
3769       append_secondary_free_list_if_not_empty_with_lock();
3770     }
3771 
3772     assert(check_young_list_well_formed(), "young list should be well formed");
3773 
3774     // Don't dynamically change the number of GC threads this early.  A value of
3775     // 0 is used to indicate serial work.  When parallel work is done,
3776     // it will be set.
3777 
3778     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3779       IsGCActiveMark x;
3780 
3781       gc_prologue(false);
3782       increment_total_collections(false /* full gc */);
3783       increment_gc_time_stamp();
3784 
3785       verify_before_gc();
3786 
3787       check_bitmaps("GC Start");
3788 
3789       COMPILER2_PRESENT(DerivedPointerTable::clear());
3790 
3791       // Please see comment in g1CollectedHeap.hpp and
3792       // G1CollectedHeap::ref_processing_init() to see how
3793       // reference processing currently works in G1.
3794 
3795       // Enable discovery in the STW reference processor
3796       ref_processor_stw()->enable_discovery();
3797 
3798       {
3799         // We want to temporarily turn off discovery by the
3800         // CM ref processor, if necessary, and turn it back on
3801         // on again later if we do. Using a scoped
3802         // NoRefDiscovery object will do this.
3803         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3804 
3805         // Forget the current alloc region (we might even choose it to be part
3806         // of the collection set!).
3807         _allocator->release_mutator_alloc_region();
3808 
3809         // We should call this after we retire the mutator alloc
3810         // region(s) so that all the ALLOC / RETIRE events are generated
3811         // before the start GC event.
3812         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3813 
3814         // This timing is only used by the ergonomics to handle our pause target.
3815         // It is unclear why this should not include the full pause. We will
3816         // investigate this in CR 7178365.
3817         //
3818         // Preserving the old comment here if that helps the investigation:
3819         //
3820         // The elapsed time induced by the start time below deliberately elides
3821         // the possible verification above.
3822         double sample_start_time_sec = os::elapsedTime();
3823 
3824 #if YOUNG_LIST_VERBOSE
3825         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3826         _young_list->print();
3827         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3828 #endif // YOUNG_LIST_VERBOSE
3829 
3830         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3831 
3832         double scan_wait_start = os::elapsedTime();
3833         // We have to wait until the CM threads finish scanning the
3834         // root regions as it's the only way to ensure that all the
3835         // objects on them have been correctly scanned before we start
3836         // moving them during the GC.
3837         bool waited = _cm->root_regions()->wait_until_scan_finished();
3838         double wait_time_ms = 0.0;
3839         if (waited) {
3840           double scan_wait_end = os::elapsedTime();
3841           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3842         }
3843         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3844 
3845 #if YOUNG_LIST_VERBOSE
3846         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3847         _young_list->print();
3848 #endif // YOUNG_LIST_VERBOSE
3849 
3850         if (g1_policy()->during_initial_mark_pause()) {
3851           concurrent_mark()->checkpointRootsInitialPre();
3852         }
3853 
3854 #if YOUNG_LIST_VERBOSE
3855         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3856         _young_list->print();
3857         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3858 #endif // YOUNG_LIST_VERBOSE
3859 
3860         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3861 
3862         register_humongous_regions_with_in_cset_fast_test();
3863 
3864         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3865 
3866         _cm->note_start_of_gc();
3867         // We should not verify the per-thread SATB buffers given that
3868         // we have not filtered them yet (we'll do so during the
3869         // GC). We also call this after finalize_cset() to
3870         // ensure that the CSet has been finalized.
3871         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3872                                  true  /* verify_enqueued_buffers */,
3873                                  false /* verify_thread_buffers */,
3874                                  true  /* verify_fingers */);
3875 
3876         if (_hr_printer.is_active()) {
3877           HeapRegion* hr = g1_policy()->collection_set();
3878           while (hr != NULL) {
3879             _hr_printer.cset(hr);
3880             hr = hr->next_in_collection_set();
3881           }
3882         }
3883 
3884 #ifdef ASSERT
3885         VerifyCSetClosure cl;
3886         collection_set_iterate(&cl);
3887 #endif // ASSERT
3888 
3889         setup_surviving_young_words();
3890 
3891         // Initialize the GC alloc regions.
3892         _allocator->init_gc_alloc_regions(evacuation_info);
3893 
3894         // Actually do the work...
3895         evacuate_collection_set(evacuation_info);
3896 
3897         // We do this to mainly verify the per-thread SATB buffers
3898         // (which have been filtered by now) since we didn't verify
3899         // them earlier. No point in re-checking the stacks / enqueued
3900         // buffers given that the CSet has not changed since last time
3901         // we checked.
3902         _cm->verify_no_cset_oops(false /* verify_stacks */,
3903                                  false /* verify_enqueued_buffers */,
3904                                  true  /* verify_thread_buffers */,
3905                                  true  /* verify_fingers */);
3906 
3907         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3908 
3909         eagerly_reclaim_humongous_regions();
3910 
3911         g1_policy()->clear_collection_set();
3912 
3913         cleanup_surviving_young_words();
3914 
3915         // Start a new incremental collection set for the next pause.
3916         g1_policy()->start_incremental_cset_building();
3917 
3918         clear_cset_fast_test();
3919 
3920         _young_list->reset_sampled_info();
3921 
3922         // Don't check the whole heap at this point as the
3923         // GC alloc regions from this pause have been tagged
3924         // as survivors and moved on to the survivor list.
3925         // Survivor regions will fail the !is_young() check.
3926         assert(check_young_list_empty(false /* check_heap */),
3927           "young list should be empty");
3928 
3929 #if YOUNG_LIST_VERBOSE
3930         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3931         _young_list->print();
3932 #endif // YOUNG_LIST_VERBOSE
3933 
3934         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3935                                              _young_list->first_survivor_region(),
3936                                              _young_list->last_survivor_region());
3937 
3938         _young_list->reset_auxilary_lists();
3939 
3940         if (evacuation_failed()) {
3941           _allocator->set_used(recalculate_used());
3942           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3943           for (uint i = 0; i < n_queues; i++) {
3944             if (_evacuation_failed_info_array[i].has_failed()) {
3945               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3946             }
3947           }
3948         } else {
3949           // The "used" of the the collection set have already been subtracted
3950           // when they were freed.  Add in the bytes evacuated.
3951           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3952         }
3953 
3954         if (g1_policy()->during_initial_mark_pause()) {
3955           // We have to do this before we notify the CM threads that
3956           // they can start working to make sure that all the
3957           // appropriate initialization is done on the CM object.
3958           concurrent_mark()->checkpointRootsInitialPost();
3959           set_marking_started();
3960           // Note that we don't actually trigger the CM thread at
3961           // this point. We do that later when we're sure that
3962           // the current thread has completed its logging output.
3963         }
3964 
3965         allocate_dummy_regions();
3966 
3967 #if YOUNG_LIST_VERBOSE
3968         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3969         _young_list->print();
3970         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3971 #endif // YOUNG_LIST_VERBOSE
3972 
3973         _allocator->init_mutator_alloc_region();
3974 
3975         {
3976           size_t expand_bytes = g1_policy()->expansion_amount();
3977           if (expand_bytes > 0) {
3978             size_t bytes_before = capacity();
3979             // No need for an ergo verbose message here,
3980             // expansion_amount() does this when it returns a value > 0.
3981             if (!expand(expand_bytes)) {
3982               // We failed to expand the heap. Cannot do anything about it.
3983             }
3984           }
3985         }
3986 
3987         // We redo the verification but now wrt to the new CSet which
3988         // has just got initialized after the previous CSet was freed.
3989         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3990                                  true  /* verify_enqueued_buffers */,
3991                                  true  /* verify_thread_buffers */,
3992                                  true  /* verify_fingers */);
3993         _cm->note_end_of_gc();
3994 
3995         // This timing is only used by the ergonomics to handle our pause target.
3996         // It is unclear why this should not include the full pause. We will
3997         // investigate this in CR 7178365.
3998         double sample_end_time_sec = os::elapsedTime();
3999         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4000         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4001 
4002         MemoryService::track_memory_usage();
4003 
4004         // In prepare_for_verify() below we'll need to scan the deferred
4005         // update buffers to bring the RSets up-to-date if
4006         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4007         // the update buffers we'll probably need to scan cards on the
4008         // regions we just allocated to (i.e., the GC alloc
4009         // regions). However, during the last GC we called
4010         // set_saved_mark() on all the GC alloc regions, so card
4011         // scanning might skip the [saved_mark_word()...top()] area of
4012         // those regions (i.e., the area we allocated objects into
4013         // during the last GC). But it shouldn't. Given that
4014         // saved_mark_word() is conditional on whether the GC time stamp
4015         // on the region is current or not, by incrementing the GC time
4016         // stamp here we invalidate all the GC time stamps on all the
4017         // regions and saved_mark_word() will simply return top() for
4018         // all the regions. This is a nicer way of ensuring this rather
4019         // than iterating over the regions and fixing them. In fact, the
4020         // GC time stamp increment here also ensures that
4021         // saved_mark_word() will return top() between pauses, i.e.,
4022         // during concurrent refinement. So we don't need the
4023         // is_gc_active() check to decided which top to use when
4024         // scanning cards (see CR 7039627).
4025         increment_gc_time_stamp();
4026 
4027         verify_after_gc();
4028         check_bitmaps("GC End");
4029 
4030         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4031         ref_processor_stw()->verify_no_references_recorded();
4032 
4033         // CM reference discovery will be re-enabled if necessary.
4034       }
4035 
4036       // We should do this after we potentially expand the heap so
4037       // that all the COMMIT events are generated before the end GC
4038       // event, and after we retire the GC alloc regions so that all
4039       // RETIRE events are generated before the end GC event.
4040       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4041 
4042 #ifdef TRACESPINNING
4043       ParallelTaskTerminator::print_termination_counts();
4044 #endif
4045 
4046       gc_epilogue(false);
4047     }
4048 
4049     // Print the remainder of the GC log output.
4050     log_gc_footer(os::elapsedTime() - pause_start_sec);
4051 
4052     // It is not yet to safe to tell the concurrent mark to
4053     // start as we have some optional output below. We don't want the
4054     // output from the concurrent mark thread interfering with this
4055     // logging output either.
4056 
4057     _hrm.verify_optional();
4058     verify_region_sets_optional();
4059 
4060     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4061     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4062 
4063     print_heap_after_gc();
4064     trace_heap_after_gc(_gc_tracer_stw);
4065 
4066     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4067     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4068     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4069     // before any GC notifications are raised.
4070     g1mm()->update_sizes();
4071 
4072     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4073     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4074     _gc_timer_stw->register_gc_end();
4075     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4076   }
4077   // It should now be safe to tell the concurrent mark thread to start
4078   // without its logging output interfering with the logging output
4079   // that came from the pause.
4080 
4081   if (should_start_conc_mark) {
4082     // CAUTION: after the doConcurrentMark() call below,
4083     // the concurrent marking thread(s) could be running
4084     // concurrently with us. Make sure that anything after
4085     // this point does not assume that we are the only GC thread
4086     // running. Note: of course, the actual marking work will
4087     // not start until the safepoint itself is released in
4088     // SuspendibleThreadSet::desynchronize().
4089     doConcurrentMark();
4090   }
4091 
4092   return true;
4093 }
4094 
4095 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4096   _drain_in_progress = false;
4097   set_evac_failure_closure(cl);
4098   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4099 }
4100 
4101 void G1CollectedHeap::finalize_for_evac_failure() {
4102   assert(_evac_failure_scan_stack != NULL &&
4103          _evac_failure_scan_stack->length() == 0,
4104          "Postcondition");
4105   assert(!_drain_in_progress, "Postcondition");
4106   delete _evac_failure_scan_stack;
4107   _evac_failure_scan_stack = NULL;
4108 }
4109 
4110 void G1CollectedHeap::remove_self_forwarding_pointers() {
4111   double remove_self_forwards_start = os::elapsedTime();
4112 
4113   set_par_threads();
4114   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4115   workers()->run_task(&rsfp_task);
4116   set_par_threads(0);
4117 
4118   // Now restore saved marks, if any.
4119   assert(_objs_with_preserved_marks.size() ==
4120             _preserved_marks_of_objs.size(), "Both or none.");
4121   while (!_objs_with_preserved_marks.is_empty()) {
4122     oop obj = _objs_with_preserved_marks.pop();
4123     markOop m = _preserved_marks_of_objs.pop();
4124     obj->set_mark(m);
4125   }
4126   _objs_with_preserved_marks.clear(true);
4127   _preserved_marks_of_objs.clear(true);
4128 
4129   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4130 }
4131 
4132 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4133   _evac_failure_scan_stack->push(obj);
4134 }
4135 
4136 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4137   assert(_evac_failure_scan_stack != NULL, "precondition");
4138 
4139   while (_evac_failure_scan_stack->length() > 0) {
4140      oop obj = _evac_failure_scan_stack->pop();
4141      _evac_failure_closure->set_region(heap_region_containing(obj));
4142      obj->oop_iterate_backwards(_evac_failure_closure);
4143   }
4144 }
4145 
4146 oop
4147 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4148                                                oop old) {
4149   assert(obj_in_cs(old),
4150          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4151                  (HeapWord*) old));
4152   markOop m = old->mark();
4153   oop forward_ptr = old->forward_to_atomic(old);
4154   if (forward_ptr == NULL) {
4155     // Forward-to-self succeeded.
4156     assert(_par_scan_state != NULL, "par scan state");
4157     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4158     uint queue_num = _par_scan_state->queue_num();
4159 
4160     _evacuation_failed = true;
4161     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4162     if (_evac_failure_closure != cl) {
4163       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4164       assert(!_drain_in_progress,
4165              "Should only be true while someone holds the lock.");
4166       // Set the global evac-failure closure to the current thread's.
4167       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4168       set_evac_failure_closure(cl);
4169       // Now do the common part.
4170       handle_evacuation_failure_common(old, m);
4171       // Reset to NULL.
4172       set_evac_failure_closure(NULL);
4173     } else {
4174       // The lock is already held, and this is recursive.
4175       assert(_drain_in_progress, "This should only be the recursive case.");
4176       handle_evacuation_failure_common(old, m);
4177     }
4178     return old;
4179   } else {
4180     // Forward-to-self failed. Either someone else managed to allocate
4181     // space for this object (old != forward_ptr) or they beat us in
4182     // self-forwarding it (old == forward_ptr).
4183     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4184            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4185                    "should not be in the CSet",
4186                    (HeapWord*) old, (HeapWord*) forward_ptr));
4187     return forward_ptr;
4188   }
4189 }
4190 
4191 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4192   preserve_mark_if_necessary(old, m);
4193 
4194   HeapRegion* r = heap_region_containing(old);
4195   if (!r->evacuation_failed()) {
4196     r->set_evacuation_failed(true);
4197     _hr_printer.evac_failure(r);
4198   }
4199 
4200   push_on_evac_failure_scan_stack(old);
4201 
4202   if (!_drain_in_progress) {
4203     // prevent recursion in copy_to_survivor_space()
4204     _drain_in_progress = true;
4205     drain_evac_failure_scan_stack();
4206     _drain_in_progress = false;
4207   }
4208 }
4209 
4210 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4211   assert(evacuation_failed(), "Oversaving!");
4212   // We want to call the "for_promotion_failure" version only in the
4213   // case of a promotion failure.
4214   if (m->must_be_preserved_for_promotion_failure(obj)) {
4215     _objs_with_preserved_marks.push(obj);
4216     _preserved_marks_of_objs.push(m);
4217   }
4218 }
4219 
4220 void G1ParCopyHelper::mark_object(oop obj) {
4221   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4222 
4223   // We know that the object is not moving so it's safe to read its size.
4224   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4225 }
4226 
4227 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4228   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4229   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4230   assert(from_obj != to_obj, "should not be self-forwarded");
4231 
4232   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4233   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4234 
4235   // The object might be in the process of being copied by another
4236   // worker so we cannot trust that its to-space image is
4237   // well-formed. So we have to read its size from its from-space
4238   // image which we know should not be changing.
4239   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4240 }
4241 
4242 template <class T>
4243 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4244   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4245     _scanned_klass->record_modified_oops();
4246   }
4247 }
4248 
4249 template <G1Barrier barrier, G1Mark do_mark_object>
4250 template <class T>
4251 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4252   T heap_oop = oopDesc::load_heap_oop(p);
4253 
4254   if (oopDesc::is_null(heap_oop)) {
4255     return;
4256   }
4257 
4258   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4259 
4260   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4261 
4262   const InCSetState state = _g1->in_cset_state(obj);
4263   if (state.is_in_cset()) {
4264     oop forwardee;
4265     markOop m = obj->mark();
4266     if (m->is_marked()) {
4267       forwardee = (oop) m->decode_pointer();
4268     } else {
4269       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4270     }
4271     assert(forwardee != NULL, "forwardee should not be NULL");
4272     oopDesc::encode_store_heap_oop(p, forwardee);
4273     if (do_mark_object != G1MarkNone && forwardee != obj) {
4274       // If the object is self-forwarded we don't need to explicitly
4275       // mark it, the evacuation failure protocol will do so.
4276       mark_forwarded_object(obj, forwardee);
4277     }
4278 
4279     if (barrier == G1BarrierKlass) {
4280       do_klass_barrier(p, forwardee);
4281     }
4282   } else {
4283     if (state.is_humongous()) {
4284       _g1->set_humongous_is_live(obj);
4285     }
4286     // The object is not in collection set. If we're a root scanning
4287     // closure during an initial mark pause then attempt to mark the object.
4288     if (do_mark_object == G1MarkFromRoot) {
4289       mark_object(obj);
4290     }
4291   }
4292 
4293   if (barrier == G1BarrierEvac) {
4294     _par_scan_state->update_rs(_from, p, _worker_id);
4295   }
4296 }
4297 
4298 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4299 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4300 
4301 class G1ParEvacuateFollowersClosure : public VoidClosure {
4302 protected:
4303   G1CollectedHeap*              _g1h;
4304   G1ParScanThreadState*         _par_scan_state;
4305   RefToScanQueueSet*            _queues;
4306   ParallelTaskTerminator*       _terminator;
4307 
4308   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4309   RefToScanQueueSet*      queues()         { return _queues; }
4310   ParallelTaskTerminator* terminator()     { return _terminator; }
4311 
4312 public:
4313   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4314                                 G1ParScanThreadState* par_scan_state,
4315                                 RefToScanQueueSet* queues,
4316                                 ParallelTaskTerminator* terminator)
4317     : _g1h(g1h), _par_scan_state(par_scan_state),
4318       _queues(queues), _terminator(terminator) {}
4319 
4320   void do_void();
4321 
4322 private:
4323   inline bool offer_termination();
4324 };
4325 
4326 bool G1ParEvacuateFollowersClosure::offer_termination() {
4327   G1ParScanThreadState* const pss = par_scan_state();
4328   pss->start_term_time();
4329   const bool res = terminator()->offer_termination();
4330   pss->end_term_time();
4331   return res;
4332 }
4333 
4334 void G1ParEvacuateFollowersClosure::do_void() {
4335   G1ParScanThreadState* const pss = par_scan_state();
4336   pss->trim_queue();
4337   do {
4338     pss->steal_and_trim_queue(queues());
4339   } while (!offer_termination());
4340 }
4341 
4342 class G1KlassScanClosure : public KlassClosure {
4343  G1ParCopyHelper* _closure;
4344  bool             _process_only_dirty;
4345  int              _count;
4346  public:
4347   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4348       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4349   void do_klass(Klass* klass) {
4350     // If the klass has not been dirtied we know that there's
4351     // no references into  the young gen and we can skip it.
4352    if (!_process_only_dirty || klass->has_modified_oops()) {
4353       // Clean the klass since we're going to scavenge all the metadata.
4354       klass->clear_modified_oops();
4355 
4356       // Tell the closure that this klass is the Klass to scavenge
4357       // and is the one to dirty if oops are left pointing into the young gen.
4358       _closure->set_scanned_klass(klass);
4359 
4360       klass->oops_do(_closure);
4361 
4362       _closure->set_scanned_klass(NULL);
4363     }
4364     _count++;
4365   }
4366 };
4367 
4368 class G1CodeBlobClosure : public CodeBlobClosure {
4369   class HeapRegionGatheringOopClosure : public OopClosure {
4370     G1CollectedHeap* _g1h;
4371     OopClosure* _work;
4372     nmethod* _nm;
4373 
4374     template <typename T>
4375     void do_oop_work(T* p) {
4376       _work->do_oop(p);
4377       T oop_or_narrowoop = oopDesc::load_heap_oop(p);
4378       if (!oopDesc::is_null(oop_or_narrowoop)) {
4379         oop o = oopDesc::decode_heap_oop_not_null(oop_or_narrowoop);
4380         HeapRegion* hr = _g1h->heap_region_containing_raw(o);
4381         assert(!_g1h->obj_in_cs(o) || hr->rem_set()->strong_code_roots_list_contains(_nm), "if o still in CS then evacuation failed and nm must already be in the remset");
4382         hr->add_strong_code_root(_nm);
4383       }
4384     }
4385 
4386   public:
4387     HeapRegionGatheringOopClosure(OopClosure* oc) : _g1h(G1CollectedHeap::heap()), _work(oc), _nm(NULL) {}
4388 
4389     void do_oop(oop* o) {
4390       do_oop_work(o);
4391     }
4392 
4393     void do_oop(narrowOop* o) {
4394       do_oop_work(o);
4395     }
4396 
4397     void set_nm(nmethod* nm) {
4398       _nm = nm;
4399     }
4400   };
4401 
4402   HeapRegionGatheringOopClosure _oc;
4403 public:
4404   G1CodeBlobClosure(OopClosure* oc) : _oc(oc) {}
4405 
4406   void do_code_blob(CodeBlob* cb) {
4407     nmethod* nm = cb->as_nmethod_or_null();
4408     if (nm != NULL) {
4409       if (!nm->test_set_oops_do_mark()) {
4410         _oc.set_nm(nm);
4411         nm->oops_do(&_oc);
4412         nm->fix_oop_relocations();
4413       }
4414     }
4415   }
4416 };
4417 
4418 class G1ParTask : public AbstractGangTask {
4419 protected:
4420   G1CollectedHeap*       _g1h;
4421   RefToScanQueueSet      *_queues;
4422   ParallelTaskTerminator _terminator;
4423   uint _n_workers;
4424 
4425   Mutex _stats_lock;
4426   Mutex* stats_lock() { return &_stats_lock; }
4427 
4428 public:
4429   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
4430     : AbstractGangTask("G1 collection"),
4431       _g1h(g1h),
4432       _queues(task_queues),
4433       _terminator(0, _queues),
4434       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4435   {}
4436 
4437   RefToScanQueueSet* queues() { return _queues; }
4438 
4439   RefToScanQueue *work_queue(int i) {
4440     return queues()->queue(i);
4441   }
4442 
4443   ParallelTaskTerminator* terminator() { return &_terminator; }
4444 
4445   virtual void set_for_termination(int active_workers) {
4446     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4447     // in the young space (_par_seq_tasks) in the G1 heap
4448     // for SequentialSubTasksDone.
4449     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4450     // both of which need setting by set_n_termination().
4451     _g1h->SharedHeap::set_n_termination(active_workers);
4452     _g1h->set_n_termination(active_workers);
4453     terminator()->reset_for_reuse(active_workers);
4454     _n_workers = active_workers;
4455   }
4456 
4457   // Helps out with CLD processing.
4458   //
4459   // During InitialMark we need to:
4460   // 1) Scavenge all CLDs for the young GC.
4461   // 2) Mark all objects directly reachable from strong CLDs.
4462   template <G1Mark do_mark_object>
4463   class G1CLDClosure : public CLDClosure {
4464     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4465     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4466     G1KlassScanClosure                                _klass_in_cld_closure;
4467     bool                                              _claim;
4468 
4469    public:
4470     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4471                  bool only_young, bool claim)
4472         : _oop_closure(oop_closure),
4473           _oop_in_klass_closure(oop_closure->g1(),
4474                                 oop_closure->pss(),
4475                                 oop_closure->rp()),
4476           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4477           _claim(claim) {
4478 
4479     }
4480 
4481     void do_cld(ClassLoaderData* cld) {
4482       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4483     }
4484   };
4485 
4486   void work(uint worker_id) {
4487     if (worker_id >= _n_workers) return;  // no work needed this round
4488 
4489     double start_time_ms = os::elapsedTime() * 1000.0;
4490     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4491 
4492     {
4493       ResourceMark rm;
4494       HandleMark   hm;
4495 
4496       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4497 
4498       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4499       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4500 
4501       pss.set_evac_failure_closure(&evac_failure_cl);
4502 
4503       bool only_young = _g1h->g1_policy()->gcs_are_young();
4504 
4505       // Non-IM young GC.
4506       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4507       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4508                                                                                only_young, // Only process dirty klasses.
4509                                                                                false);     // No need to claim CLDs.
4510       // IM young GC.
4511       //    Strong roots closures.
4512       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4513       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4514                                                                                false, // Process all klasses.
4515                                                                                true); // Need to claim CLDs.
4516       //    Weak roots closures.
4517       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4518       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4519                                                                                     false, // Process all klasses.
4520                                                                                     true); // Need to claim CLDs.
4521 
4522       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
4523       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
4524       // IM Weak code roots are handled later.
4525 
4526       OopClosure* strong_root_cl;
4527       OopClosure* weak_root_cl;
4528       CLDClosure* strong_cld_cl;
4529       CLDClosure* weak_cld_cl;
4530       CodeBlobClosure* strong_code_cl;
4531 
4532       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4533         // We also need to mark copied objects.
4534         strong_root_cl = &scan_mark_root_cl;
4535         strong_cld_cl  = &scan_mark_cld_cl;
4536         strong_code_cl = &scan_mark_code_cl;
4537         if (ClassUnloadingWithConcurrentMark) {
4538           weak_root_cl = &scan_mark_weak_root_cl;
4539           weak_cld_cl  = &scan_mark_weak_cld_cl;
4540         } else {
4541           weak_root_cl = &scan_mark_root_cl;
4542           weak_cld_cl  = &scan_mark_cld_cl;
4543         }
4544       } else {
4545         strong_root_cl = &scan_only_root_cl;
4546         weak_root_cl   = &scan_only_root_cl;
4547         strong_cld_cl  = &scan_only_cld_cl;
4548         weak_cld_cl    = &scan_only_cld_cl;
4549         strong_code_cl = &scan_only_code_cl;
4550       }
4551 
4552 
4553       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
4554 
4555       pss.start_strong_roots();
4556       _g1h->g1_process_roots(strong_root_cl,
4557                              weak_root_cl,
4558                              &push_heap_rs_cl,
4559                              strong_cld_cl,
4560                              weak_cld_cl,
4561                              strong_code_cl,
4562                              worker_id);
4563 
4564       pss.end_strong_roots();
4565 
4566       {
4567         double start = os::elapsedTime();
4568         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4569         evac.do_void();
4570         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4571         double term_ms = pss.term_time()*1000.0;
4572         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4573         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4574       }
4575       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4576       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4577 
4578       if (PrintTerminationStats) {
4579         MutexLocker x(stats_lock());
4580         pss.print_termination_stats(worker_id);
4581       }
4582 
4583       assert(pss.queue_is_empty(), "should be empty");
4584 
4585       // Close the inner scope so that the ResourceMark and HandleMark
4586       // destructors are executed here and are included as part of the
4587       // "GC Worker Time".
4588     }
4589 
4590     double end_time_ms = os::elapsedTime() * 1000.0;
4591     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4592   }
4593 };
4594 
4595 // *** Common G1 Evacuation Stuff
4596 
4597 // This method is run in a GC worker.
4598 
4599 void
4600 G1CollectedHeap::
4601 g1_process_roots(OopClosure* scan_non_heap_roots,
4602                  OopClosure* scan_non_heap_weak_roots,
4603                  G1ParPushHeapRSClosure* scan_rs,
4604                  CLDClosure* scan_strong_clds,
4605                  CLDClosure* scan_weak_clds,
4606                  CodeBlobClosure* scan_strong_code,
4607                  uint worker_i) {
4608 
4609   // First scan the shared roots.
4610   double ext_roots_start = os::elapsedTime();
4611   double closure_app_time_sec = 0.0;
4612 
4613   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
4614   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
4615 
4616   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4617   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
4618 
4619   process_roots(false, // no scoping; this is parallel code
4620                 SharedHeap::SO_None,
4621                 &buf_scan_non_heap_roots,
4622                 &buf_scan_non_heap_weak_roots,
4623                 scan_strong_clds,
4624                 // Unloading Initial Marks handle the weak CLDs separately.
4625                 (trace_metadata ? NULL : scan_weak_clds),
4626                 scan_strong_code);
4627 
4628   // Now the CM ref_processor roots.
4629   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4630     // We need to treat the discovered reference lists of the
4631     // concurrent mark ref processor as roots and keep entries
4632     // (which are added by the marking threads) on them live
4633     // until they can be processed at the end of marking.
4634     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4635   }
4636 
4637   if (trace_metadata) {
4638     // Barrier to make sure all workers passed
4639     // the strong CLD and strong nmethods phases.
4640     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
4641 
4642     // Now take the complement of the strong CLDs.
4643     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
4644   }
4645 
4646   // Finish up any enqueued closure apps (attributed as object copy time).
4647   buf_scan_non_heap_roots.done();
4648   buf_scan_non_heap_weak_roots.done();
4649 
4650   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
4651       + buf_scan_non_heap_weak_roots.closure_app_seconds();
4652 
4653   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4654 
4655   double ext_root_time_ms =
4656     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4657 
4658   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4659 
4660   // During conc marking we have to filter the per-thread SATB buffers
4661   // to make sure we remove any oops into the CSet (which will show up
4662   // as implicitly live).
4663   double satb_filtering_ms = 0.0;
4664   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
4665     if (mark_in_progress()) {
4666       double satb_filter_start = os::elapsedTime();
4667 
4668       JavaThread::satb_mark_queue_set().filter_thread_buffers();
4669 
4670       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
4671     }
4672   }
4673   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4674 
4675   // Now scan the complement of the collection set.
4676   G1CodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots);
4677 
4678   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
4679 
4680   _process_strong_tasks->all_tasks_completed();
4681 }
4682 
4683 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4684 private:
4685   BoolObjectClosure* _is_alive;
4686   int _initial_string_table_size;
4687   int _initial_symbol_table_size;
4688 
4689   bool  _process_strings;
4690   int _strings_processed;
4691   int _strings_removed;
4692 
4693   bool  _process_symbols;
4694   int _symbols_processed;
4695   int _symbols_removed;
4696 
4697 public:
4698   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4699     AbstractGangTask("String/Symbol Unlinking"),
4700     _is_alive(is_alive),
4701     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4702     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4703 
4704     _initial_string_table_size = StringTable::the_table()->table_size();
4705     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4706     if (process_strings) {
4707       StringTable::clear_parallel_claimed_index();
4708     }
4709     if (process_symbols) {
4710       SymbolTable::clear_parallel_claimed_index();
4711     }
4712   }
4713 
4714   ~G1StringSymbolTableUnlinkTask() {
4715     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4716               err_msg("claim value %d after unlink less than initial string table size %d",
4717                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4718     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4719               err_msg("claim value %d after unlink less than initial symbol table size %d",
4720                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4721 
4722     if (G1TraceStringSymbolTableScrubbing) {
4723       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4724                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4725                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4726                              strings_processed(), strings_removed(),
4727                              symbols_processed(), symbols_removed());
4728     }
4729   }
4730 
4731   void work(uint worker_id) {
4732     int strings_processed = 0;
4733     int strings_removed = 0;
4734     int symbols_processed = 0;
4735     int symbols_removed = 0;
4736     if (_process_strings) {
4737       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4738       Atomic::add(strings_processed, &_strings_processed);
4739       Atomic::add(strings_removed, &_strings_removed);
4740     }
4741     if (_process_symbols) {
4742       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4743       Atomic::add(symbols_processed, &_symbols_processed);
4744       Atomic::add(symbols_removed, &_symbols_removed);
4745     }
4746   }
4747 
4748   size_t strings_processed() const { return (size_t)_strings_processed; }
4749   size_t strings_removed()   const { return (size_t)_strings_removed; }
4750 
4751   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4752   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4753 };
4754 
4755 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4756 private:
4757   static Monitor* _lock;
4758 
4759   BoolObjectClosure* const _is_alive;
4760   const bool               _unloading_occurred;
4761   const uint               _num_workers;
4762 
4763   // Variables used to claim nmethods.
4764   nmethod* _first_nmethod;
4765   volatile nmethod* _claimed_nmethod;
4766 
4767   // The list of nmethods that need to be processed by the second pass.
4768   volatile nmethod* _postponed_list;
4769   volatile uint     _num_entered_barrier;
4770 
4771  public:
4772   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4773       _is_alive(is_alive),
4774       _unloading_occurred(unloading_occurred),
4775       _num_workers(num_workers),
4776       _first_nmethod(NULL),
4777       _claimed_nmethod(NULL),
4778       _postponed_list(NULL),
4779       _num_entered_barrier(0)
4780   {
4781     nmethod::increase_unloading_clock();
4782     // Get first alive nmethod
4783     NMethodIterator iter = NMethodIterator();
4784     if(iter.next_alive()) {
4785       _first_nmethod = iter.method();
4786     }
4787     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4788   }
4789 
4790   ~G1CodeCacheUnloadingTask() {
4791     CodeCache::verify_clean_inline_caches();
4792 
4793     CodeCache::set_needs_cache_clean(false);
4794     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4795 
4796     CodeCache::verify_icholder_relocations();
4797   }
4798 
4799  private:
4800   void add_to_postponed_list(nmethod* nm) {
4801       nmethod* old;
4802       do {
4803         old = (nmethod*)_postponed_list;
4804         nm->set_unloading_next(old);
4805       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4806   }
4807 
4808   void clean_nmethod(nmethod* nm) {
4809     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4810 
4811     if (postponed) {
4812       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4813       add_to_postponed_list(nm);
4814     }
4815 
4816     // Mark that this thread has been cleaned/unloaded.
4817     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4818     nm->set_unloading_clock(nmethod::global_unloading_clock());
4819   }
4820 
4821   void clean_nmethod_postponed(nmethod* nm) {
4822     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4823   }
4824 
4825   static const int MaxClaimNmethods = 16;
4826 
4827   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4828     nmethod* first;
4829     NMethodIterator last;
4830 
4831     do {
4832       *num_claimed_nmethods = 0;
4833 
4834       first = (nmethod*)_claimed_nmethod;
4835       last = NMethodIterator(first);
4836 
4837       if (first != NULL) {
4838 
4839         for (int i = 0; i < MaxClaimNmethods; i++) {
4840           if (!last.next_alive()) {
4841             break;
4842           }
4843           claimed_nmethods[i] = last.method();
4844           (*num_claimed_nmethods)++;
4845         }
4846       }
4847 
4848     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4849   }
4850 
4851   nmethod* claim_postponed_nmethod() {
4852     nmethod* claim;
4853     nmethod* next;
4854 
4855     do {
4856       claim = (nmethod*)_postponed_list;
4857       if (claim == NULL) {
4858         return NULL;
4859       }
4860 
4861       next = claim->unloading_next();
4862 
4863     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4864 
4865     return claim;
4866   }
4867 
4868  public:
4869   // Mark that we're done with the first pass of nmethod cleaning.
4870   void barrier_mark(uint worker_id) {
4871     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4872     _num_entered_barrier++;
4873     if (_num_entered_barrier == _num_workers) {
4874       ml.notify_all();
4875     }
4876   }
4877 
4878   // See if we have to wait for the other workers to
4879   // finish their first-pass nmethod cleaning work.
4880   void barrier_wait(uint worker_id) {
4881     if (_num_entered_barrier < _num_workers) {
4882       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4883       while (_num_entered_barrier < _num_workers) {
4884           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4885       }
4886     }
4887   }
4888 
4889   // Cleaning and unloading of nmethods. Some work has to be postponed
4890   // to the second pass, when we know which nmethods survive.
4891   void work_first_pass(uint worker_id) {
4892     // The first nmethods is claimed by the first worker.
4893     if (worker_id == 0 && _first_nmethod != NULL) {
4894       clean_nmethod(_first_nmethod);
4895       _first_nmethod = NULL;
4896     }
4897 
4898     int num_claimed_nmethods;
4899     nmethod* claimed_nmethods[MaxClaimNmethods];
4900 
4901     while (true) {
4902       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4903 
4904       if (num_claimed_nmethods == 0) {
4905         break;
4906       }
4907 
4908       for (int i = 0; i < num_claimed_nmethods; i++) {
4909         clean_nmethod(claimed_nmethods[i]);
4910       }
4911     }
4912 
4913     // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
4914     // Need to retire the buffers now that this thread has stopped cleaning nmethods.
4915     MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
4916   }
4917 
4918   void work_second_pass(uint worker_id) {
4919     nmethod* nm;
4920     // Take care of postponed nmethods.
4921     while ((nm = claim_postponed_nmethod()) != NULL) {
4922       clean_nmethod_postponed(nm);
4923     }
4924   }
4925 };
4926 
4927 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4928 
4929 class G1KlassCleaningTask : public StackObj {
4930   BoolObjectClosure*                      _is_alive;
4931   volatile jint                           _clean_klass_tree_claimed;
4932   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4933 
4934  public:
4935   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4936       _is_alive(is_alive),
4937       _clean_klass_tree_claimed(0),
4938       _klass_iterator() {
4939   }
4940 
4941  private:
4942   bool claim_clean_klass_tree_task() {
4943     if (_clean_klass_tree_claimed) {
4944       return false;
4945     }
4946 
4947     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4948   }
4949 
4950   InstanceKlass* claim_next_klass() {
4951     Klass* klass;
4952     do {
4953       klass =_klass_iterator.next_klass();
4954     } while (klass != NULL && !klass->oop_is_instance());
4955 
4956     return (InstanceKlass*)klass;
4957   }
4958 
4959 public:
4960 
4961   void clean_klass(InstanceKlass* ik) {
4962     ik->clean_implementors_list(_is_alive);
4963     ik->clean_method_data(_is_alive);
4964 
4965     // G1 specific cleanup work that has
4966     // been moved here to be done in parallel.
4967     ik->clean_dependent_nmethods();
4968     if (JvmtiExport::has_redefined_a_class()) {
4969       InstanceKlass::purge_previous_versions(ik);
4970     }
4971   }
4972 
4973   void work() {
4974     ResourceMark rm;
4975 
4976     // One worker will clean the subklass/sibling klass tree.
4977     if (claim_clean_klass_tree_task()) {
4978       Klass::clean_subklass_tree(_is_alive);
4979     }
4980 
4981     // All workers will help cleaning the classes,
4982     InstanceKlass* klass;
4983     while ((klass = claim_next_klass()) != NULL) {
4984       clean_klass(klass);
4985     }
4986   }
4987 };
4988 
4989 // To minimize the remark pause times, the tasks below are done in parallel.
4990 class G1ParallelCleaningTask : public AbstractGangTask {
4991 private:
4992   G1StringSymbolTableUnlinkTask _string_symbol_task;
4993   G1CodeCacheUnloadingTask      _code_cache_task;
4994   G1KlassCleaningTask           _klass_cleaning_task;
4995 
4996 public:
4997   // The constructor is run in the VMThread.
4998   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4999       AbstractGangTask("Parallel Cleaning"),
5000       _string_symbol_task(is_alive, process_strings, process_symbols),
5001       _code_cache_task(num_workers, is_alive, unloading_occurred),
5002       _klass_cleaning_task(is_alive) {
5003   }
5004 
5005   void pre_work_verification() {
5006     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5007   }
5008 
5009   void post_work_verification() {
5010     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5011   }
5012 
5013   // The parallel work done by all worker threads.
5014   void work(uint worker_id) {
5015     pre_work_verification();
5016 
5017     // Do first pass of code cache cleaning.
5018     _code_cache_task.work_first_pass(worker_id);
5019 
5020     // Let the threads mark that the first pass is done.
5021     _code_cache_task.barrier_mark(worker_id);
5022 
5023     // Clean the Strings and Symbols.
5024     _string_symbol_task.work(worker_id);
5025 
5026     // Wait for all workers to finish the first code cache cleaning pass.
5027     _code_cache_task.barrier_wait(worker_id);
5028 
5029     // Do the second code cache cleaning work, which realize on
5030     // the liveness information gathered during the first pass.
5031     _code_cache_task.work_second_pass(worker_id);
5032 
5033     // Clean all klasses that were not unloaded.
5034     _klass_cleaning_task.work();
5035 
5036     post_work_verification();
5037   }
5038 };
5039 
5040 
5041 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5042                                         bool process_strings,
5043                                         bool process_symbols,
5044                                         bool class_unloading_occurred) {
5045   uint n_workers = workers()->active_workers();
5046 
5047   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5048                                         n_workers, class_unloading_occurred);
5049   set_par_threads(n_workers);
5050   workers()->run_task(&g1_unlink_task);
5051   set_par_threads(0);
5052 }
5053 
5054 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5055                                                      bool process_strings, bool process_symbols) {
5056   {
5057     uint n_workers = _g1h->workers()->active_workers();
5058     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5059     set_par_threads(n_workers);
5060     workers()->run_task(&g1_unlink_task);
5061     set_par_threads(0);
5062   }
5063 
5064   if (G1StringDedup::is_enabled()) {
5065     G1StringDedup::unlink(is_alive);
5066   }
5067 }
5068 
5069 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5070  private:
5071   DirtyCardQueueSet* _queue;
5072  public:
5073   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5074 
5075   virtual void work(uint worker_id) {
5076     double start_time = os::elapsedTime();
5077 
5078     RedirtyLoggedCardTableEntryClosure cl;
5079     _queue->par_apply_closure_to_all_completed_buffers(&cl);
5080 
5081     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
5082     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
5083     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
5084   }
5085 };
5086 
5087 void G1CollectedHeap::redirty_logged_cards() {
5088   double redirty_logged_cards_start = os::elapsedTime();
5089 
5090   uint n_workers = _g1h->workers()->active_workers();
5091 
5092   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5093   dirty_card_queue_set().reset_for_par_iteration();
5094   set_par_threads(n_workers);
5095   workers()->run_task(&redirty_task);
5096   set_par_threads(0);
5097 
5098   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5099   dcq.merge_bufferlists(&dirty_card_queue_set());
5100   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5101 
5102   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5103 }
5104 
5105 // Weak Reference Processing support
5106 
5107 // An always "is_alive" closure that is used to preserve referents.
5108 // If the object is non-null then it's alive.  Used in the preservation
5109 // of referent objects that are pointed to by reference objects
5110 // discovered by the CM ref processor.
5111 class G1AlwaysAliveClosure: public BoolObjectClosure {
5112   G1CollectedHeap* _g1;
5113 public:
5114   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5115   bool do_object_b(oop p) {
5116     if (p != NULL) {
5117       return true;
5118     }
5119     return false;
5120   }
5121 };
5122 
5123 bool G1STWIsAliveClosure::do_object_b(oop p) {
5124   // An object is reachable if it is outside the collection set,
5125   // or is inside and copied.
5126   return !_g1->obj_in_cs(p) || p->is_forwarded();
5127 }
5128 
5129 // Non Copying Keep Alive closure
5130 class G1KeepAliveClosure: public OopClosure {
5131   G1CollectedHeap* _g1;
5132 public:
5133   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5134   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5135   void do_oop(oop* p) {
5136     oop obj = *p;
5137     assert(obj != NULL, "the caller should have filtered out NULL values");
5138 
5139     const InCSetState cset_state = _g1->in_cset_state(obj);
5140     if (!cset_state.is_in_cset_or_humongous()) {
5141       return;
5142     }
5143     if (cset_state.is_in_cset()) {
5144       assert( obj->is_forwarded(), "invariant" );
5145       *p = obj->forwardee();
5146     } else {
5147       assert(!obj->is_forwarded(), "invariant" );
5148       assert(cset_state.is_humongous(),
5149              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5150       _g1->set_humongous_is_live(obj);
5151     }
5152   }
5153 };
5154 
5155 // Copying Keep Alive closure - can be called from both
5156 // serial and parallel code as long as different worker
5157 // threads utilize different G1ParScanThreadState instances
5158 // and different queues.
5159 
5160 class G1CopyingKeepAliveClosure: public OopClosure {
5161   G1CollectedHeap*         _g1h;
5162   OopClosure*              _copy_non_heap_obj_cl;
5163   G1ParScanThreadState*    _par_scan_state;
5164 
5165 public:
5166   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5167                             OopClosure* non_heap_obj_cl,
5168                             G1ParScanThreadState* pss):
5169     _g1h(g1h),
5170     _copy_non_heap_obj_cl(non_heap_obj_cl),
5171     _par_scan_state(pss)
5172   {}
5173 
5174   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5175   virtual void do_oop(      oop* p) { do_oop_work(p); }
5176 
5177   template <class T> void do_oop_work(T* p) {
5178     oop obj = oopDesc::load_decode_heap_oop(p);
5179 
5180     if (_g1h->is_in_cset_or_humongous(obj)) {
5181       // If the referent object has been forwarded (either copied
5182       // to a new location or to itself in the event of an
5183       // evacuation failure) then we need to update the reference
5184       // field and, if both reference and referent are in the G1
5185       // heap, update the RSet for the referent.
5186       //
5187       // If the referent has not been forwarded then we have to keep
5188       // it alive by policy. Therefore we have copy the referent.
5189       //
5190       // If the reference field is in the G1 heap then we can push
5191       // on the PSS queue. When the queue is drained (after each
5192       // phase of reference processing) the object and it's followers
5193       // will be copied, the reference field set to point to the
5194       // new location, and the RSet updated. Otherwise we need to
5195       // use the the non-heap or metadata closures directly to copy
5196       // the referent object and update the pointer, while avoiding
5197       // updating the RSet.
5198 
5199       if (_g1h->is_in_g1_reserved(p)) {
5200         _par_scan_state->push_on_queue(p);
5201       } else {
5202         assert(!Metaspace::contains((const void*)p),
5203                err_msg("Unexpectedly found a pointer from metadata: "
5204                               PTR_FORMAT, p));
5205         _copy_non_heap_obj_cl->do_oop(p);
5206       }
5207     }
5208   }
5209 };
5210 
5211 // Serial drain queue closure. Called as the 'complete_gc'
5212 // closure for each discovered list in some of the
5213 // reference processing phases.
5214 
5215 class G1STWDrainQueueClosure: public VoidClosure {
5216 protected:
5217   G1CollectedHeap* _g1h;
5218   G1ParScanThreadState* _par_scan_state;
5219 
5220   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5221 
5222 public:
5223   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5224     _g1h(g1h),
5225     _par_scan_state(pss)
5226   { }
5227 
5228   void do_void() {
5229     G1ParScanThreadState* const pss = par_scan_state();
5230     pss->trim_queue();
5231   }
5232 };
5233 
5234 // Parallel Reference Processing closures
5235 
5236 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5237 // processing during G1 evacuation pauses.
5238 
5239 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5240 private:
5241   G1CollectedHeap*   _g1h;
5242   RefToScanQueueSet* _queues;
5243   FlexibleWorkGang*  _workers;
5244   int                _active_workers;
5245 
5246 public:
5247   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5248                         FlexibleWorkGang* workers,
5249                         RefToScanQueueSet *task_queues,
5250                         int n_workers) :
5251     _g1h(g1h),
5252     _queues(task_queues),
5253     _workers(workers),
5254     _active_workers(n_workers)
5255   {
5256     assert(n_workers > 0, "shouldn't call this otherwise");
5257   }
5258 
5259   // Executes the given task using concurrent marking worker threads.
5260   virtual void execute(ProcessTask& task);
5261   virtual void execute(EnqueueTask& task);
5262 };
5263 
5264 // Gang task for possibly parallel reference processing
5265 
5266 class G1STWRefProcTaskProxy: public AbstractGangTask {
5267   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5268   ProcessTask&     _proc_task;
5269   G1CollectedHeap* _g1h;
5270   RefToScanQueueSet *_task_queues;
5271   ParallelTaskTerminator* _terminator;
5272 
5273 public:
5274   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5275                      G1CollectedHeap* g1h,
5276                      RefToScanQueueSet *task_queues,
5277                      ParallelTaskTerminator* terminator) :
5278     AbstractGangTask("Process reference objects in parallel"),
5279     _proc_task(proc_task),
5280     _g1h(g1h),
5281     _task_queues(task_queues),
5282     _terminator(terminator)
5283   {}
5284 
5285   virtual void work(uint worker_id) {
5286     // The reference processing task executed by a single worker.
5287     ResourceMark rm;
5288     HandleMark   hm;
5289 
5290     G1STWIsAliveClosure is_alive(_g1h);
5291 
5292     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5293     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5294 
5295     pss.set_evac_failure_closure(&evac_failure_cl);
5296 
5297     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5298 
5299     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5300 
5301     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5302 
5303     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5304       // We also need to mark copied objects.
5305       copy_non_heap_cl = &copy_mark_non_heap_cl;
5306     }
5307 
5308     // Keep alive closure.
5309     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5310 
5311     // Complete GC closure
5312     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5313 
5314     // Call the reference processing task's work routine.
5315     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5316 
5317     // Note we cannot assert that the refs array is empty here as not all
5318     // of the processing tasks (specifically phase2 - pp2_work) execute
5319     // the complete_gc closure (which ordinarily would drain the queue) so
5320     // the queue may not be empty.
5321   }
5322 };
5323 
5324 // Driver routine for parallel reference processing.
5325 // Creates an instance of the ref processing gang
5326 // task and has the worker threads execute it.
5327 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5328   assert(_workers != NULL, "Need parallel worker threads.");
5329 
5330   ParallelTaskTerminator terminator(_active_workers, _queues);
5331   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5332 
5333   _g1h->set_par_threads(_active_workers);
5334   _workers->run_task(&proc_task_proxy);
5335   _g1h->set_par_threads(0);
5336 }
5337 
5338 // Gang task for parallel reference enqueueing.
5339 
5340 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5341   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5342   EnqueueTask& _enq_task;
5343 
5344 public:
5345   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5346     AbstractGangTask("Enqueue reference objects in parallel"),
5347     _enq_task(enq_task)
5348   { }
5349 
5350   virtual void work(uint worker_id) {
5351     _enq_task.work(worker_id);
5352   }
5353 };
5354 
5355 // Driver routine for parallel reference enqueueing.
5356 // Creates an instance of the ref enqueueing gang
5357 // task and has the worker threads execute it.
5358 
5359 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5360   assert(_workers != NULL, "Need parallel worker threads.");
5361 
5362   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5363 
5364   _g1h->set_par_threads(_active_workers);
5365   _workers->run_task(&enq_task_proxy);
5366   _g1h->set_par_threads(0);
5367 }
5368 
5369 // End of weak reference support closures
5370 
5371 // Abstract task used to preserve (i.e. copy) any referent objects
5372 // that are in the collection set and are pointed to by reference
5373 // objects discovered by the CM ref processor.
5374 
5375 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5376 protected:
5377   G1CollectedHeap* _g1h;
5378   RefToScanQueueSet      *_queues;
5379   ParallelTaskTerminator _terminator;
5380   uint _n_workers;
5381 
5382 public:
5383   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5384     AbstractGangTask("ParPreserveCMReferents"),
5385     _g1h(g1h),
5386     _queues(task_queues),
5387     _terminator(workers, _queues),
5388     _n_workers(workers)
5389   { }
5390 
5391   void work(uint worker_id) {
5392     ResourceMark rm;
5393     HandleMark   hm;
5394 
5395     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5396     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5397 
5398     pss.set_evac_failure_closure(&evac_failure_cl);
5399 
5400     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5401 
5402     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5403 
5404     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5405 
5406     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5407 
5408     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5409       // We also need to mark copied objects.
5410       copy_non_heap_cl = &copy_mark_non_heap_cl;
5411     }
5412 
5413     // Is alive closure
5414     G1AlwaysAliveClosure always_alive(_g1h);
5415 
5416     // Copying keep alive closure. Applied to referent objects that need
5417     // to be copied.
5418     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5419 
5420     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5421 
5422     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5423     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5424 
5425     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5426     // So this must be true - but assert just in case someone decides to
5427     // change the worker ids.
5428     assert(0 <= worker_id && worker_id < limit, "sanity");
5429     assert(!rp->discovery_is_atomic(), "check this code");
5430 
5431     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5432     for (uint idx = worker_id; idx < limit; idx += stride) {
5433       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5434 
5435       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5436       while (iter.has_next()) {
5437         // Since discovery is not atomic for the CM ref processor, we
5438         // can see some null referent objects.
5439         iter.load_ptrs(DEBUG_ONLY(true));
5440         oop ref = iter.obj();
5441 
5442         // This will filter nulls.
5443         if (iter.is_referent_alive()) {
5444           iter.make_referent_alive();
5445         }
5446         iter.move_to_next();
5447       }
5448     }
5449 
5450     // Drain the queue - which may cause stealing
5451     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5452     drain_queue.do_void();
5453     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5454     assert(pss.queue_is_empty(), "should be");
5455   }
5456 };
5457 
5458 // Weak Reference processing during an evacuation pause (part 1).
5459 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5460   double ref_proc_start = os::elapsedTime();
5461 
5462   ReferenceProcessor* rp = _ref_processor_stw;
5463   assert(rp->discovery_enabled(), "should have been enabled");
5464 
5465   // Any reference objects, in the collection set, that were 'discovered'
5466   // by the CM ref processor should have already been copied (either by
5467   // applying the external root copy closure to the discovered lists, or
5468   // by following an RSet entry).
5469   //
5470   // But some of the referents, that are in the collection set, that these
5471   // reference objects point to may not have been copied: the STW ref
5472   // processor would have seen that the reference object had already
5473   // been 'discovered' and would have skipped discovering the reference,
5474   // but would not have treated the reference object as a regular oop.
5475   // As a result the copy closure would not have been applied to the
5476   // referent object.
5477   //
5478   // We need to explicitly copy these referent objects - the references
5479   // will be processed at the end of remarking.
5480   //
5481   // We also need to do this copying before we process the reference
5482   // objects discovered by the STW ref processor in case one of these
5483   // referents points to another object which is also referenced by an
5484   // object discovered by the STW ref processor.
5485 
5486   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5487 
5488   set_par_threads(no_of_gc_workers);
5489   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5490                                                  no_of_gc_workers,
5491                                                  _task_queues);
5492 
5493   workers()->run_task(&keep_cm_referents);
5494 
5495   set_par_threads(0);
5496 
5497   // Closure to test whether a referent is alive.
5498   G1STWIsAliveClosure is_alive(this);
5499 
5500   // Even when parallel reference processing is enabled, the processing
5501   // of JNI refs is serial and performed serially by the current thread
5502   // rather than by a worker. The following PSS will be used for processing
5503   // JNI refs.
5504 
5505   // Use only a single queue for this PSS.
5506   G1ParScanThreadState            pss(this, 0, NULL);
5507 
5508   // We do not embed a reference processor in the copying/scanning
5509   // closures while we're actually processing the discovered
5510   // reference objects.
5511   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5512 
5513   pss.set_evac_failure_closure(&evac_failure_cl);
5514 
5515   assert(pss.queue_is_empty(), "pre-condition");
5516 
5517   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5518 
5519   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5520 
5521   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5522 
5523   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5524     // We also need to mark copied objects.
5525     copy_non_heap_cl = &copy_mark_non_heap_cl;
5526   }
5527 
5528   // Keep alive closure.
5529   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5530 
5531   // Serial Complete GC closure
5532   G1STWDrainQueueClosure drain_queue(this, &pss);
5533 
5534   // Setup the soft refs policy...
5535   rp->setup_policy(false);
5536 
5537   ReferenceProcessorStats stats;
5538   if (!rp->processing_is_mt()) {
5539     // Serial reference processing...
5540     stats = rp->process_discovered_references(&is_alive,
5541                                               &keep_alive,
5542                                               &drain_queue,
5543                                               NULL,
5544                                               _gc_timer_stw,
5545                                               _gc_tracer_stw->gc_id());
5546   } else {
5547     // Parallel reference processing
5548     assert(rp->num_q() == no_of_gc_workers, "sanity");
5549     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5550 
5551     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5552     stats = rp->process_discovered_references(&is_alive,
5553                                               &keep_alive,
5554                                               &drain_queue,
5555                                               &par_task_executor,
5556                                               _gc_timer_stw,
5557                                               _gc_tracer_stw->gc_id());
5558   }
5559 
5560   _gc_tracer_stw->report_gc_reference_stats(stats);
5561 
5562   // We have completed copying any necessary live referent objects.
5563   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5564 
5565   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5566   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5567 }
5568 
5569 // Weak Reference processing during an evacuation pause (part 2).
5570 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5571   double ref_enq_start = os::elapsedTime();
5572 
5573   ReferenceProcessor* rp = _ref_processor_stw;
5574   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5575 
5576   // Now enqueue any remaining on the discovered lists on to
5577   // the pending list.
5578   if (!rp->processing_is_mt()) {
5579     // Serial reference processing...
5580     rp->enqueue_discovered_references();
5581   } else {
5582     // Parallel reference enqueueing
5583 
5584     assert(no_of_gc_workers == workers()->active_workers(),
5585            "Need to reset active workers");
5586     assert(rp->num_q() == no_of_gc_workers, "sanity");
5587     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5588 
5589     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5590     rp->enqueue_discovered_references(&par_task_executor);
5591   }
5592 
5593   rp->verify_no_references_recorded();
5594   assert(!rp->discovery_enabled(), "should have been disabled");
5595 
5596   // FIXME
5597   // CM's reference processing also cleans up the string and symbol tables.
5598   // Should we do that here also? We could, but it is a serial operation
5599   // and could significantly increase the pause time.
5600 
5601   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5602   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5603 }
5604 
5605 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5606   _expand_heap_after_alloc_failure = true;
5607   _evacuation_failed = false;
5608 
5609   // Should G1EvacuationFailureALot be in effect for this GC?
5610   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5611 
5612   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5613 
5614   // Disable the hot card cache.
5615   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5616   hot_card_cache->reset_hot_cache_claimed_index();
5617   hot_card_cache->set_use_cache(false);
5618 
5619   uint n_workers;
5620   n_workers =
5621     AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5622                                    workers()->active_workers(),
5623                                    Threads::number_of_non_daemon_threads());
5624   assert(UseDynamicNumberOfGCThreads ||
5625          n_workers == workers()->total_workers(),
5626          "If not dynamic should be using all the  workers");
5627   workers()->set_active_workers(n_workers);
5628   set_par_threads(n_workers);
5629 
5630   G1ParTask g1_par_task(this, _task_queues);
5631 
5632   init_for_evac_failure(NULL);
5633 
5634   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5635   double start_par_time_sec = os::elapsedTime();
5636   double end_par_time_sec;
5637 
5638   {
5639     StrongRootsScope srs(this);
5640     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5641     if (g1_policy()->during_initial_mark_pause()) {
5642       ClassLoaderDataGraph::clear_claimed_marks();
5643     }
5644 
5645      // The individual threads will set their evac-failure closures.
5646      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5647      // These tasks use ShareHeap::_process_strong_tasks
5648      assert(UseDynamicNumberOfGCThreads ||
5649             workers()->active_workers() == workers()->total_workers(),
5650             "If not dynamic should be using all the  workers");
5651     workers()->run_task(&g1_par_task);
5652     end_par_time_sec = os::elapsedTime();
5653 
5654     // Closing the inner scope will execute the destructor
5655     // for the StrongRootsScope object. We record the current
5656     // elapsed time before closing the scope so that time
5657     // taken for the SRS destructor is NOT included in the
5658     // reported parallel time.
5659   }
5660 
5661   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5662   g1_policy()->phase_times()->record_par_time(par_time_ms);
5663 
5664   double code_root_fixup_time_ms =
5665         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5666   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5667 
5668   set_par_threads(0);
5669 
5670   // Process any discovered reference objects - we have
5671   // to do this _before_ we retire the GC alloc regions
5672   // as we may have to copy some 'reachable' referent
5673   // objects (and their reachable sub-graphs) that were
5674   // not copied during the pause.
5675   process_discovered_references(n_workers);
5676 
5677   if (G1StringDedup::is_enabled()) {
5678     G1STWIsAliveClosure is_alive(this);
5679     G1KeepAliveClosure keep_alive(this);
5680     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5681   }
5682 
5683   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5684   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5685 
5686   // Reset and re-enable the hot card cache.
5687   // Note the counts for the cards in the regions in the
5688   // collection set are reset when the collection set is freed.
5689   hot_card_cache->reset_hot_cache();
5690   hot_card_cache->set_use_cache(true);
5691 
5692   purge_code_root_memory();
5693 
5694   finalize_for_evac_failure();
5695 
5696   if (evacuation_failed()) {
5697     remove_self_forwarding_pointers();
5698 
5699     // Reset the G1EvacuationFailureALot counters and flags
5700     // Note: the values are reset only when an actual
5701     // evacuation failure occurs.
5702     NOT_PRODUCT(reset_evacuation_should_fail();)
5703   }
5704 
5705   // Enqueue any remaining references remaining on the STW
5706   // reference processor's discovered lists. We need to do
5707   // this after the card table is cleaned (and verified) as
5708   // the act of enqueueing entries on to the pending list
5709   // will log these updates (and dirty their associated
5710   // cards). We need these updates logged to update any
5711   // RSets.
5712   enqueue_discovered_references(n_workers);
5713 
5714   redirty_logged_cards();
5715   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5716 }
5717 
5718 void G1CollectedHeap::free_region(HeapRegion* hr,
5719                                   FreeRegionList* free_list,
5720                                   bool par,
5721                                   bool locked) {
5722   assert(!hr->is_free(), "the region should not be free");
5723   assert(!hr->is_empty(), "the region should not be empty");
5724   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5725   assert(free_list != NULL, "pre-condition");
5726 
5727   if (G1VerifyBitmaps) {
5728     MemRegion mr(hr->bottom(), hr->end());
5729     concurrent_mark()->clearRangePrevBitmap(mr);
5730   }
5731 
5732   // Clear the card counts for this region.
5733   // Note: we only need to do this if the region is not young
5734   // (since we don't refine cards in young regions).
5735   if (!hr->is_young()) {
5736     _cg1r->hot_card_cache()->reset_card_counts(hr);
5737   }
5738   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5739   free_list->add_ordered(hr);
5740 }
5741 
5742 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5743                                      FreeRegionList* free_list,
5744                                      bool par) {
5745   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5746   assert(free_list != NULL, "pre-condition");
5747 
5748   size_t hr_capacity = hr->capacity();
5749   // We need to read this before we make the region non-humongous,
5750   // otherwise the information will be gone.
5751   uint last_index = hr->last_hc_index();
5752   hr->clear_humongous();
5753   free_region(hr, free_list, par);
5754 
5755   uint i = hr->hrm_index() + 1;
5756   while (i < last_index) {
5757     HeapRegion* curr_hr = region_at(i);
5758     assert(curr_hr->is_continues_humongous(), "invariant");
5759     curr_hr->clear_humongous();
5760     free_region(curr_hr, free_list, par);
5761     i += 1;
5762   }
5763 }
5764 
5765 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5766                                        const HeapRegionSetCount& humongous_regions_removed) {
5767   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5768     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5769     _old_set.bulk_remove(old_regions_removed);
5770     _humongous_set.bulk_remove(humongous_regions_removed);
5771   }
5772 
5773 }
5774 
5775 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5776   assert(list != NULL, "list can't be null");
5777   if (!list->is_empty()) {
5778     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5779     _hrm.insert_list_into_free_list(list);
5780   }
5781 }
5782 
5783 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5784   _allocator->decrease_used(bytes);
5785 }
5786 
5787 class G1ParCleanupCTTask : public AbstractGangTask {
5788   G1SATBCardTableModRefBS* _ct_bs;
5789   G1CollectedHeap* _g1h;
5790   HeapRegion* volatile _su_head;
5791 public:
5792   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5793                      G1CollectedHeap* g1h) :
5794     AbstractGangTask("G1 Par Cleanup CT Task"),
5795     _ct_bs(ct_bs), _g1h(g1h) { }
5796 
5797   void work(uint worker_id) {
5798     HeapRegion* r;
5799     while (r = _g1h->pop_dirty_cards_region()) {
5800       clear_cards(r);
5801     }
5802   }
5803 
5804   void clear_cards(HeapRegion* r) {
5805     // Cards of the survivors should have already been dirtied.
5806     if (!r->is_survivor()) {
5807       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5808     }
5809   }
5810 };
5811 
5812 #ifndef PRODUCT
5813 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5814   G1CollectedHeap* _g1h;
5815   G1SATBCardTableModRefBS* _ct_bs;
5816 public:
5817   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5818     : _g1h(g1h), _ct_bs(ct_bs) { }
5819   virtual bool doHeapRegion(HeapRegion* r) {
5820     if (r->is_survivor()) {
5821       _g1h->verify_dirty_region(r);
5822     } else {
5823       _g1h->verify_not_dirty_region(r);
5824     }
5825     return false;
5826   }
5827 };
5828 
5829 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5830   // All of the region should be clean.
5831   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5832   MemRegion mr(hr->bottom(), hr->end());
5833   ct_bs->verify_not_dirty_region(mr);
5834 }
5835 
5836 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5837   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5838   // dirty allocated blocks as they allocate them. The thread that
5839   // retires each region and replaces it with a new one will do a
5840   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5841   // not dirty that area (one less thing to have to do while holding
5842   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5843   // is dirty.
5844   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5845   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5846   if (hr->is_young()) {
5847     ct_bs->verify_g1_young_region(mr);
5848   } else {
5849     ct_bs->verify_dirty_region(mr);
5850   }
5851 }
5852 
5853 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5854   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5855   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5856     verify_dirty_region(hr);
5857   }
5858 }
5859 
5860 void G1CollectedHeap::verify_dirty_young_regions() {
5861   verify_dirty_young_list(_young_list->first_region());
5862 }
5863 
5864 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5865                                                HeapWord* tams, HeapWord* end) {
5866   guarantee(tams <= end,
5867             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5868   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5869   if (result < end) {
5870     gclog_or_tty->cr();
5871     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5872                            bitmap_name, result);
5873     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5874                            bitmap_name, tams, end);
5875     return false;
5876   }
5877   return true;
5878 }
5879 
5880 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5881   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5882   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5883 
5884   HeapWord* bottom = hr->bottom();
5885   HeapWord* ptams  = hr->prev_top_at_mark_start();
5886   HeapWord* ntams  = hr->next_top_at_mark_start();
5887   HeapWord* end    = hr->end();
5888 
5889   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5890 
5891   bool res_n = true;
5892   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5893   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5894   // if we happen to be in that state.
5895   if (mark_in_progress() || !_cmThread->in_progress()) {
5896     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5897   }
5898   if (!res_p || !res_n) {
5899     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5900                            HR_FORMAT_PARAMS(hr));
5901     gclog_or_tty->print_cr("#### Caller: %s", caller);
5902     return false;
5903   }
5904   return true;
5905 }
5906 
5907 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5908   if (!G1VerifyBitmaps) return;
5909 
5910   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5911 }
5912 
5913 class G1VerifyBitmapClosure : public HeapRegionClosure {
5914 private:
5915   const char* _caller;
5916   G1CollectedHeap* _g1h;
5917   bool _failures;
5918 
5919 public:
5920   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5921     _caller(caller), _g1h(g1h), _failures(false) { }
5922 
5923   bool failures() { return _failures; }
5924 
5925   virtual bool doHeapRegion(HeapRegion* hr) {
5926     if (hr->is_continues_humongous()) return false;
5927 
5928     bool result = _g1h->verify_bitmaps(_caller, hr);
5929     if (!result) {
5930       _failures = true;
5931     }
5932     return false;
5933   }
5934 };
5935 
5936 void G1CollectedHeap::check_bitmaps(const char* caller) {
5937   if (!G1VerifyBitmaps) return;
5938 
5939   G1VerifyBitmapClosure cl(caller, this);
5940   heap_region_iterate(&cl);
5941   guarantee(!cl.failures(), "bitmap verification");
5942 }
5943 
5944 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5945  private:
5946   bool _failures;
5947  public:
5948   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5949 
5950   virtual bool doHeapRegion(HeapRegion* hr) {
5951     uint i = hr->hrm_index();
5952     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5953     if (hr->is_humongous()) {
5954       if (hr->in_collection_set()) {
5955         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5956         _failures = true;
5957         return true;
5958       }
5959       if (cset_state.is_in_cset()) {
5960         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5961         _failures = true;
5962         return true;
5963       }
5964       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5965         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5966         _failures = true;
5967         return true;
5968       }
5969     } else {
5970       if (cset_state.is_humongous()) {
5971         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5972         _failures = true;
5973         return true;
5974       }
5975       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5976         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5977                                hr->in_collection_set(), cset_state.value(), i);
5978         _failures = true;
5979         return true;
5980       }
5981       if (cset_state.is_in_cset()) {
5982         if (hr->is_young() != (cset_state.is_young())) {
5983           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5984                                  hr->is_young(), cset_state.value(), i);
5985           _failures = true;
5986           return true;
5987         }
5988         if (hr->is_old() != (cset_state.is_old())) {
5989           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5990                                  hr->is_old(), cset_state.value(), i);
5991           _failures = true;
5992           return true;
5993         }
5994       }
5995     }
5996     return false;
5997   }
5998 
5999   bool failures() const { return _failures; }
6000 };
6001 
6002 bool G1CollectedHeap::check_cset_fast_test() {
6003   G1CheckCSetFastTableClosure cl;
6004   _hrm.iterate(&cl);
6005   return !cl.failures();
6006 }
6007 #endif // PRODUCT
6008 
6009 void G1CollectedHeap::cleanUpCardTable() {
6010   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6011   double start = os::elapsedTime();
6012 
6013   {
6014     // Iterate over the dirty cards region list.
6015     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6016 
6017     set_par_threads();
6018     workers()->run_task(&cleanup_task);
6019     set_par_threads(0);
6020 #ifndef PRODUCT
6021     if (G1VerifyCTCleanup || VerifyAfterGC) {
6022       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6023       heap_region_iterate(&cleanup_verifier);
6024     }
6025 #endif
6026   }
6027 
6028   double elapsed = os::elapsedTime() - start;
6029   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6030 }
6031 
6032 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6033   size_t pre_used = 0;
6034   FreeRegionList local_free_list("Local List for CSet Freeing");
6035 
6036   double young_time_ms     = 0.0;
6037   double non_young_time_ms = 0.0;
6038 
6039   // Since the collection set is a superset of the the young list,
6040   // all we need to do to clear the young list is clear its
6041   // head and length, and unlink any young regions in the code below
6042   _young_list->clear();
6043 
6044   G1CollectorPolicy* policy = g1_policy();
6045 
6046   double start_sec = os::elapsedTime();
6047   bool non_young = true;
6048 
6049   HeapRegion* cur = cs_head;
6050   int age_bound = -1;
6051   size_t rs_lengths = 0;
6052 
6053   while (cur != NULL) {
6054     assert(!is_on_master_free_list(cur), "sanity");
6055     if (non_young) {
6056       if (cur->is_young()) {
6057         double end_sec = os::elapsedTime();
6058         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6059         non_young_time_ms += elapsed_ms;
6060 
6061         start_sec = os::elapsedTime();
6062         non_young = false;
6063       }
6064     } else {
6065       if (!cur->is_young()) {
6066         double end_sec = os::elapsedTime();
6067         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6068         young_time_ms += elapsed_ms;
6069 
6070         start_sec = os::elapsedTime();
6071         non_young = true;
6072       }
6073     }
6074 
6075     rs_lengths += cur->rem_set()->occupied_locked();
6076 
6077     HeapRegion* next = cur->next_in_collection_set();
6078     assert(cur->in_collection_set(), "bad CS");
6079     cur->set_next_in_collection_set(NULL);
6080     cur->set_in_collection_set(false);
6081 
6082     if (cur->is_young()) {
6083       int index = cur->young_index_in_cset();
6084       assert(index != -1, "invariant");
6085       assert((uint) index < policy->young_cset_region_length(), "invariant");
6086       size_t words_survived = _surviving_young_words[index];
6087       cur->record_surv_words_in_group(words_survived);
6088 
6089       // At this point the we have 'popped' cur from the collection set
6090       // (linked via next_in_collection_set()) but it is still in the
6091       // young list (linked via next_young_region()). Clear the
6092       // _next_young_region field.
6093       cur->set_next_young_region(NULL);
6094     } else {
6095       int index = cur->young_index_in_cset();
6096       assert(index == -1, "invariant");
6097     }
6098 
6099     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6100             (!cur->is_young() && cur->young_index_in_cset() == -1),
6101             "invariant" );
6102 
6103     if (!cur->evacuation_failed()) {
6104       MemRegion used_mr = cur->used_region();
6105 
6106       // And the region is empty.
6107       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6108       pre_used += cur->used();
6109       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6110     } else {
6111       cur->uninstall_surv_rate_group();
6112       if (cur->is_young()) {
6113         cur->set_young_index_in_cset(-1);
6114       }
6115       cur->set_evacuation_failed(false);
6116       // The region is now considered to be old.
6117       cur->set_old();
6118       _old_set.add(cur);
6119       evacuation_info.increment_collectionset_used_after(cur->used());
6120     }
6121     cur = next;
6122   }
6123 
6124   evacuation_info.set_regions_freed(local_free_list.length());
6125   policy->record_max_rs_lengths(rs_lengths);
6126   policy->cset_regions_freed();
6127 
6128   double end_sec = os::elapsedTime();
6129   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6130 
6131   if (non_young) {
6132     non_young_time_ms += elapsed_ms;
6133   } else {
6134     young_time_ms += elapsed_ms;
6135   }
6136 
6137   prepend_to_freelist(&local_free_list);
6138   decrement_summary_bytes(pre_used);
6139   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6140   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6141 }
6142 
6143 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6144  private:
6145   FreeRegionList* _free_region_list;
6146   HeapRegionSet* _proxy_set;
6147   HeapRegionSetCount _humongous_regions_removed;
6148   size_t _freed_bytes;
6149  public:
6150 
6151   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6152     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6153   }
6154 
6155   virtual bool doHeapRegion(HeapRegion* r) {
6156     if (!r->is_starts_humongous()) {
6157       return false;
6158     }
6159 
6160     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6161 
6162     oop obj = (oop)r->bottom();
6163     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6164 
6165     // The following checks whether the humongous object is live are sufficient.
6166     // The main additional check (in addition to having a reference from the roots
6167     // or the young gen) is whether the humongous object has a remembered set entry.
6168     //
6169     // A humongous object cannot be live if there is no remembered set for it
6170     // because:
6171     // - there can be no references from within humongous starts regions referencing
6172     // the object because we never allocate other objects into them.
6173     // (I.e. there are no intra-region references that may be missed by the
6174     // remembered set)
6175     // - as soon there is a remembered set entry to the humongous starts region
6176     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6177     // until the end of a concurrent mark.
6178     //
6179     // It is not required to check whether the object has been found dead by marking
6180     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6181     // all objects allocated during that time are considered live.
6182     // SATB marking is even more conservative than the remembered set.
6183     // So if at this point in the collection there is no remembered set entry,
6184     // nobody has a reference to it.
6185     // At the start of collection we flush all refinement logs, and remembered sets
6186     // are completely up-to-date wrt to references to the humongous object.
6187     //
6188     // Other implementation considerations:
6189     // - never consider object arrays at this time because they would pose
6190     // considerable effort for cleaning up the the remembered sets. This is
6191     // required because stale remembered sets might reference locations that
6192     // are currently allocated into.
6193     uint region_idx = r->hrm_index();
6194     if (g1h->humongous_is_live(region_idx) ||
6195         g1h->humongous_region_is_always_live(region_idx)) {
6196 
6197       if (G1TraceEagerReclaimHumongousObjects) {
6198         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6199                                region_idx,
6200                                obj->size()*HeapWordSize,
6201                                r->bottom(),
6202                                r->region_num(),
6203                                r->rem_set()->occupied(),
6204                                r->rem_set()->strong_code_roots_list_length(),
6205                                next_bitmap->isMarked(r->bottom()),
6206                                g1h->humongous_is_live(region_idx),
6207                                obj->is_objArray()
6208                               );
6209       }
6210 
6211       return false;
6212     }
6213 
6214     guarantee(!obj->is_objArray(),
6215               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6216                       r->bottom()));
6217 
6218     if (G1TraceEagerReclaimHumongousObjects) {
6219       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6220                              region_idx,
6221                              obj->size()*HeapWordSize,
6222                              r->bottom(),
6223                              r->region_num(),
6224                              r->rem_set()->occupied(),
6225                              r->rem_set()->strong_code_roots_list_length(),
6226                              next_bitmap->isMarked(r->bottom()),
6227                              g1h->humongous_is_live(region_idx),
6228                              obj->is_objArray()
6229                             );
6230     }
6231     // Need to clear mark bit of the humongous object if already set.
6232     if (next_bitmap->isMarked(r->bottom())) {
6233       next_bitmap->clear(r->bottom());
6234     }
6235     _freed_bytes += r->used();
6236     r->set_containing_set(NULL);
6237     _humongous_regions_removed.increment(1u, r->capacity());
6238     g1h->free_humongous_region(r, _free_region_list, false);
6239 
6240     return false;
6241   }
6242 
6243   HeapRegionSetCount& humongous_free_count() {
6244     return _humongous_regions_removed;
6245   }
6246 
6247   size_t bytes_freed() const {
6248     return _freed_bytes;
6249   }
6250 
6251   size_t humongous_reclaimed() const {
6252     return _humongous_regions_removed.length();
6253   }
6254 };
6255 
6256 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6257   assert_at_safepoint(true);
6258 
6259   if (!G1EagerReclaimHumongousObjects ||
6260       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6261     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6262     return;
6263   }
6264 
6265   double start_time = os::elapsedTime();
6266 
6267   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6268 
6269   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6270   heap_region_iterate(&cl);
6271 
6272   HeapRegionSetCount empty_set;
6273   remove_from_old_sets(empty_set, cl.humongous_free_count());
6274 
6275   G1HRPrinter* hr_printer = _g1h->hr_printer();
6276   if (hr_printer->is_active()) {
6277     FreeRegionListIterator iter(&local_cleanup_list);
6278     while (iter.more_available()) {
6279       HeapRegion* hr = iter.get_next();
6280       hr_printer->cleanup(hr);
6281     }
6282   }
6283 
6284   prepend_to_freelist(&local_cleanup_list);
6285   decrement_summary_bytes(cl.bytes_freed());
6286 
6287   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6288                                                                     cl.humongous_reclaimed());
6289 }
6290 
6291 // This routine is similar to the above but does not record
6292 // any policy statistics or update free lists; we are abandoning
6293 // the current incremental collection set in preparation of a
6294 // full collection. After the full GC we will start to build up
6295 // the incremental collection set again.
6296 // This is only called when we're doing a full collection
6297 // and is immediately followed by the tearing down of the young list.
6298 
6299 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6300   HeapRegion* cur = cs_head;
6301 
6302   while (cur != NULL) {
6303     HeapRegion* next = cur->next_in_collection_set();
6304     assert(cur->in_collection_set(), "bad CS");
6305     cur->set_next_in_collection_set(NULL);
6306     cur->set_in_collection_set(false);
6307     cur->set_young_index_in_cset(-1);
6308     cur = next;
6309   }
6310 }
6311 
6312 void G1CollectedHeap::set_free_regions_coming() {
6313   if (G1ConcRegionFreeingVerbose) {
6314     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6315                            "setting free regions coming");
6316   }
6317 
6318   assert(!free_regions_coming(), "pre-condition");
6319   _free_regions_coming = true;
6320 }
6321 
6322 void G1CollectedHeap::reset_free_regions_coming() {
6323   assert(free_regions_coming(), "pre-condition");
6324 
6325   {
6326     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6327     _free_regions_coming = false;
6328     SecondaryFreeList_lock->notify_all();
6329   }
6330 
6331   if (G1ConcRegionFreeingVerbose) {
6332     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6333                            "reset free regions coming");
6334   }
6335 }
6336 
6337 void G1CollectedHeap::wait_while_free_regions_coming() {
6338   // Most of the time we won't have to wait, so let's do a quick test
6339   // first before we take the lock.
6340   if (!free_regions_coming()) {
6341     return;
6342   }
6343 
6344   if (G1ConcRegionFreeingVerbose) {
6345     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6346                            "waiting for free regions");
6347   }
6348 
6349   {
6350     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6351     while (free_regions_coming()) {
6352       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6353     }
6354   }
6355 
6356   if (G1ConcRegionFreeingVerbose) {
6357     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6358                            "done waiting for free regions");
6359   }
6360 }
6361 
6362 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6363   assert(heap_lock_held_for_gc(),
6364               "the heap lock should already be held by or for this thread");
6365   _young_list->push_region(hr);
6366 }
6367 
6368 class NoYoungRegionsClosure: public HeapRegionClosure {
6369 private:
6370   bool _success;
6371 public:
6372   NoYoungRegionsClosure() : _success(true) { }
6373   bool doHeapRegion(HeapRegion* r) {
6374     if (r->is_young()) {
6375       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6376                              r->bottom(), r->end());
6377       _success = false;
6378     }
6379     return false;
6380   }
6381   bool success() { return _success; }
6382 };
6383 
6384 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6385   bool ret = _young_list->check_list_empty(check_sample);
6386 
6387   if (check_heap) {
6388     NoYoungRegionsClosure closure;
6389     heap_region_iterate(&closure);
6390     ret = ret && closure.success();
6391   }
6392 
6393   return ret;
6394 }
6395 
6396 class TearDownRegionSetsClosure : public HeapRegionClosure {
6397 private:
6398   HeapRegionSet *_old_set;
6399 
6400 public:
6401   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6402 
6403   bool doHeapRegion(HeapRegion* r) {
6404     if (r->is_old()) {
6405       _old_set->remove(r);
6406     } else {
6407       // We ignore free regions, we'll empty the free list afterwards.
6408       // We ignore young regions, we'll empty the young list afterwards.
6409       // We ignore humongous regions, we're not tearing down the
6410       // humongous regions set.
6411       assert(r->is_free() || r->is_young() || r->is_humongous(),
6412              "it cannot be another type");
6413     }
6414     return false;
6415   }
6416 
6417   ~TearDownRegionSetsClosure() {
6418     assert(_old_set->is_empty(), "post-condition");
6419   }
6420 };
6421 
6422 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6423   assert_at_safepoint(true /* should_be_vm_thread */);
6424 
6425   if (!free_list_only) {
6426     TearDownRegionSetsClosure cl(&_old_set);
6427     heap_region_iterate(&cl);
6428 
6429     // Note that emptying the _young_list is postponed and instead done as
6430     // the first step when rebuilding the regions sets again. The reason for
6431     // this is that during a full GC string deduplication needs to know if
6432     // a collected region was young or old when the full GC was initiated.
6433   }
6434   _hrm.remove_all_free_regions();
6435 }
6436 
6437 class RebuildRegionSetsClosure : public HeapRegionClosure {
6438 private:
6439   bool            _free_list_only;
6440   HeapRegionSet*   _old_set;
6441   HeapRegionManager*   _hrm;
6442   size_t          _total_used;
6443 
6444 public:
6445   RebuildRegionSetsClosure(bool free_list_only,
6446                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6447     _free_list_only(free_list_only),
6448     _old_set(old_set), _hrm(hrm), _total_used(0) {
6449     assert(_hrm->num_free_regions() == 0, "pre-condition");
6450     if (!free_list_only) {
6451       assert(_old_set->is_empty(), "pre-condition");
6452     }
6453   }
6454 
6455   bool doHeapRegion(HeapRegion* r) {
6456     if (r->is_continues_humongous()) {
6457       return false;
6458     }
6459 
6460     if (r->is_empty()) {
6461       // Add free regions to the free list
6462       r->set_free();
6463       r->set_allocation_context(AllocationContext::system());
6464       _hrm->insert_into_free_list(r);
6465     } else if (!_free_list_only) {
6466       assert(!r->is_young(), "we should not come across young regions");
6467 
6468       if (r->is_humongous()) {
6469         // We ignore humongous regions, we left the humongous set unchanged
6470       } else {
6471         // Objects that were compacted would have ended up on regions
6472         // that were previously old or free.
6473         assert(r->is_free() || r->is_old(), "invariant");
6474         // We now consider them old, so register as such.
6475         r->set_old();
6476         _old_set->add(r);
6477       }
6478       _total_used += r->used();
6479     }
6480 
6481     return false;
6482   }
6483 
6484   size_t total_used() {
6485     return _total_used;
6486   }
6487 };
6488 
6489 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6490   assert_at_safepoint(true /* should_be_vm_thread */);
6491 
6492   if (!free_list_only) {
6493     _young_list->empty_list();
6494   }
6495 
6496   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6497   heap_region_iterate(&cl);
6498 
6499   if (!free_list_only) {
6500     _allocator->set_used(cl.total_used());
6501   }
6502   assert(_allocator->used_unlocked() == recalculate_used(),
6503          err_msg("inconsistent _allocator->used_unlocked(), "
6504                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6505                  _allocator->used_unlocked(), recalculate_used()));
6506 }
6507 
6508 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6509   _refine_cte_cl->set_concurrent(concurrent);
6510 }
6511 
6512 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6513   HeapRegion* hr = heap_region_containing(p);
6514   return hr->is_in(p);
6515 }
6516 
6517 // Methods for the mutator alloc region
6518 
6519 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6520                                                       bool force) {
6521   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6522   assert(!force || g1_policy()->can_expand_young_list(),
6523          "if force is true we should be able to expand the young list");
6524   bool young_list_full = g1_policy()->is_young_list_full();
6525   if (force || !young_list_full) {
6526     HeapRegion* new_alloc_region = new_region(word_size,
6527                                               false /* is_old */,
6528                                               false /* do_expand */);
6529     if (new_alloc_region != NULL) {
6530       set_region_short_lived_locked(new_alloc_region);
6531       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6532       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6533       return new_alloc_region;
6534     }
6535   }
6536   return NULL;
6537 }
6538 
6539 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6540                                                   size_t allocated_bytes) {
6541   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6542   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6543 
6544   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6545   _allocator->increase_used(allocated_bytes);
6546   _hr_printer.retire(alloc_region);
6547   // We update the eden sizes here, when the region is retired,
6548   // instead of when it's allocated, since this is the point that its
6549   // used space has been recored in _summary_bytes_used.
6550   g1mm()->update_eden_size();
6551 }
6552 
6553 void G1CollectedHeap::set_par_threads() {
6554   // Don't change the number of workers.  Use the value previously set
6555   // in the workgroup.
6556   uint n_workers = workers()->active_workers();
6557   assert(UseDynamicNumberOfGCThreads ||
6558            n_workers == workers()->total_workers(),
6559       "Otherwise should be using the total number of workers");
6560   if (n_workers == 0) {
6561     assert(false, "Should have been set in prior evacuation pause.");
6562     n_workers = ParallelGCThreads;
6563     workers()->set_active_workers(n_workers);
6564   }
6565   set_par_threads(n_workers);
6566 }
6567 
6568 // Methods for the GC alloc regions
6569 
6570 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6571                                                  uint count,
6572                                                  InCSetState dest) {
6573   assert(FreeList_lock->owned_by_self(), "pre-condition");
6574 
6575   if (count < g1_policy()->max_regions(dest)) {
6576     const bool is_survivor = (dest.is_young());
6577     HeapRegion* new_alloc_region = new_region(word_size,
6578                                               !is_survivor,
6579                                               true /* do_expand */);
6580     if (new_alloc_region != NULL) {
6581       // We really only need to do this for old regions given that we
6582       // should never scan survivors. But it doesn't hurt to do it
6583       // for survivors too.
6584       new_alloc_region->record_timestamp();
6585       if (is_survivor) {
6586         new_alloc_region->set_survivor();
6587         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6588         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6589       } else {
6590         new_alloc_region->set_old();
6591         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6592         check_bitmaps("Old Region Allocation", new_alloc_region);
6593       }
6594       bool during_im = g1_policy()->during_initial_mark_pause();
6595       new_alloc_region->note_start_of_copying(during_im);
6596       return new_alloc_region;
6597     }
6598   }
6599   return NULL;
6600 }
6601 
6602 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6603                                              size_t allocated_bytes,
6604                                              InCSetState dest) {
6605   bool during_im = g1_policy()->during_initial_mark_pause();
6606   alloc_region->note_end_of_copying(during_im);
6607   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6608   if (dest.is_young()) {
6609     young_list()->add_survivor_region(alloc_region);
6610   } else {
6611     _old_set.add(alloc_region);
6612   }
6613   _hr_printer.retire(alloc_region);
6614 }
6615 
6616 // Heap region set verification
6617 
6618 class VerifyRegionListsClosure : public HeapRegionClosure {
6619 private:
6620   HeapRegionSet*   _old_set;
6621   HeapRegionSet*   _humongous_set;
6622   HeapRegionManager*   _hrm;
6623 
6624 public:
6625   HeapRegionSetCount _old_count;
6626   HeapRegionSetCount _humongous_count;
6627   HeapRegionSetCount _free_count;
6628 
6629   VerifyRegionListsClosure(HeapRegionSet* old_set,
6630                            HeapRegionSet* humongous_set,
6631                            HeapRegionManager* hrm) :
6632     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6633     _old_count(), _humongous_count(), _free_count(){ }
6634 
6635   bool doHeapRegion(HeapRegion* hr) {
6636     if (hr->is_continues_humongous()) {
6637       return false;
6638     }
6639 
6640     if (hr->is_young()) {
6641       // TODO
6642     } else if (hr->is_starts_humongous()) {
6643       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6644       _humongous_count.increment(1u, hr->capacity());
6645     } else if (hr->is_empty()) {
6646       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6647       _free_count.increment(1u, hr->capacity());
6648     } else if (hr->is_old()) {
6649       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6650       _old_count.increment(1u, hr->capacity());
6651     } else {
6652       ShouldNotReachHere();
6653     }
6654     return false;
6655   }
6656 
6657   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6658     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6659     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6660         old_set->total_capacity_bytes(), _old_count.capacity()));
6661 
6662     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6663     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6664         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6665 
6666     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6667     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6668         free_list->total_capacity_bytes(), _free_count.capacity()));
6669   }
6670 };
6671 
6672 void G1CollectedHeap::verify_region_sets() {
6673   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6674 
6675   // First, check the explicit lists.
6676   _hrm.verify();
6677   {
6678     // Given that a concurrent operation might be adding regions to
6679     // the secondary free list we have to take the lock before
6680     // verifying it.
6681     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6682     _secondary_free_list.verify_list();
6683   }
6684 
6685   // If a concurrent region freeing operation is in progress it will
6686   // be difficult to correctly attributed any free regions we come
6687   // across to the correct free list given that they might belong to
6688   // one of several (free_list, secondary_free_list, any local lists,
6689   // etc.). So, if that's the case we will skip the rest of the
6690   // verification operation. Alternatively, waiting for the concurrent
6691   // operation to complete will have a non-trivial effect on the GC's
6692   // operation (no concurrent operation will last longer than the
6693   // interval between two calls to verification) and it might hide
6694   // any issues that we would like to catch during testing.
6695   if (free_regions_coming()) {
6696     return;
6697   }
6698 
6699   // Make sure we append the secondary_free_list on the free_list so
6700   // that all free regions we will come across can be safely
6701   // attributed to the free_list.
6702   append_secondary_free_list_if_not_empty_with_lock();
6703 
6704   // Finally, make sure that the region accounting in the lists is
6705   // consistent with what we see in the heap.
6706 
6707   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6708   heap_region_iterate(&cl);
6709   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6710 }
6711 
6712 // Optimized nmethod scanning
6713 
6714 class RegisterNMethodOopClosure: public OopClosure {
6715   G1CollectedHeap* _g1h;
6716   nmethod* _nm;
6717 
6718   template <class T> void do_oop_work(T* p) {
6719     T heap_oop = oopDesc::load_heap_oop(p);
6720     if (!oopDesc::is_null(heap_oop)) {
6721       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6722       HeapRegion* hr = _g1h->heap_region_containing(obj);
6723       assert(!hr->is_continues_humongous(),
6724              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6725                      " starting at "HR_FORMAT,
6726                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6727 
6728       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6729       hr->add_strong_code_root_locked(_nm);
6730     }
6731   }
6732 
6733 public:
6734   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6735     _g1h(g1h), _nm(nm) {}
6736 
6737   void do_oop(oop* p)       { do_oop_work(p); }
6738   void do_oop(narrowOop* p) { do_oop_work(p); }
6739 };
6740 
6741 class UnregisterNMethodOopClosure: public OopClosure {
6742   G1CollectedHeap* _g1h;
6743   nmethod* _nm;
6744 
6745   template <class T> void do_oop_work(T* p) {
6746     T heap_oop = oopDesc::load_heap_oop(p);
6747     if (!oopDesc::is_null(heap_oop)) {
6748       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6749       HeapRegion* hr = _g1h->heap_region_containing(obj);
6750       assert(!hr->is_continues_humongous(),
6751              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6752                      " starting at "HR_FORMAT,
6753                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6754 
6755       hr->remove_strong_code_root(_nm);
6756     }
6757   }
6758 
6759 public:
6760   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6761     _g1h(g1h), _nm(nm) {}
6762 
6763   void do_oop(oop* p)       { do_oop_work(p); }
6764   void do_oop(narrowOop* p) { do_oop_work(p); }
6765 };
6766 
6767 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6768   CollectedHeap::register_nmethod(nm);
6769 
6770   guarantee(nm != NULL, "sanity");
6771   RegisterNMethodOopClosure reg_cl(this, nm);
6772   nm->oops_do(&reg_cl);
6773 }
6774 
6775 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6776   CollectedHeap::unregister_nmethod(nm);
6777 
6778   guarantee(nm != NULL, "sanity");
6779   UnregisterNMethodOopClosure reg_cl(this, nm);
6780   nm->oops_do(&reg_cl, true);
6781 }
6782 
6783 void G1CollectedHeap::purge_code_root_memory() {
6784   double purge_start = os::elapsedTime();
6785   G1CodeRootSet::purge();
6786   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6787   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6788 }
6789 
6790 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6791   G1CollectedHeap* _g1h;
6792 
6793 public:
6794   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6795     _g1h(g1h) {}
6796 
6797   void do_code_blob(CodeBlob* cb) {
6798     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6799     if (nm == NULL) {
6800       return;
6801     }
6802 
6803     if (ScavengeRootsInCode) {
6804       _g1h->register_nmethod(nm);
6805     }
6806   }
6807 };
6808 
6809 void G1CollectedHeap::rebuild_strong_code_roots() {
6810   RebuildStrongCodeRootClosure blob_cl(this);
6811   CodeCache::blobs_do(&blob_cl);
6812 }