1 /*
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #if !defined(__clang_major__) && defined(__GNUC__)
26 // FIXME, formats have issues. Disable this macro definition, compile, and study warnings for more information.
27 #define ATTRIBUTE_PRINTF(x,y)
28 #endif
29
30 #include "precompiled.hpp"
31 #include "classfile/metadataOnStackMark.hpp"
32 #include "classfile/stringTable.hpp"
33 #include "code/codeCache.hpp"
34 #include "code/icBuffer.hpp"
35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
43 #include "gc_implementation/g1/g1EvacFailure.hpp"
44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
45 #include "gc_implementation/g1/g1Log.hpp"
46 #include "gc_implementation/g1/g1MarkSweep.hpp"
47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
51 #include "gc_implementation/g1/g1RootProcessor.hpp"
52 #include "gc_implementation/g1/g1StringDedup.hpp"
53 #include "gc_implementation/g1/g1YCTypes.hpp"
54 #include "gc_implementation/g1/heapRegion.inline.hpp"
55 #include "gc_implementation/g1/heapRegionRemSet.hpp"
56 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
57 #include "gc_implementation/g1/vm_operations_g1.hpp"
58 #include "gc_implementation/shared/gcHeapSummary.hpp"
59 #include "gc_implementation/shared/gcTimer.hpp"
60 #include "gc_implementation/shared/gcTrace.hpp"
61 #include "gc_implementation/shared/gcTraceTime.hpp"
62 #include "gc_implementation/shared/isGCActiveMark.hpp"
63 #include "memory/allocation.hpp"
64 #include "memory/gcLocker.inline.hpp"
65 #include "memory/generationSpec.hpp"
66 #include "memory/iterator.hpp"
67 #include "memory/referenceProcessor.hpp"
68 #include "oops/oop.inline.hpp"
69 #include "runtime/atomic.inline.hpp"
70 #include "runtime/orderAccess.inline.hpp"
71 #include "runtime/vmThread.hpp"
72 #include "utilities/globalDefinitions.hpp"
73
74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
75
76 // turn it on so that the contents of the young list (scan-only /
77 // to-be-collected) are printed at "strategic" points before / during
78 // / after the collection --- this is useful for debugging
79 #define YOUNG_LIST_VERBOSE 0
80 // CURRENT STATUS
81 // This file is under construction. Search for "FIXME".
82
83 // INVARIANTS/NOTES
84 //
85 // All allocation activity covered by the G1CollectedHeap interface is
86 // serialized by acquiring the HeapLock. This happens in mem_allocate
87 // and allocate_new_tlab, which are the "entry" points to the
88 // allocation code from the rest of the JVM. (Note that this does not
89 // apply to TLAB allocation, which is not part of this interface: it
90 // is done by clients of this interface.)
91
92 // Local to this file.
93
94 class RefineCardTableEntryClosure: public CardTableEntryClosure {
95 bool _concurrent;
96 public:
97 RefineCardTableEntryClosure() : _concurrent(true) { }
98
99 bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
100 bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
101 // This path is executed by the concurrent refine or mutator threads,
102 // concurrently, and so we do not care if card_ptr contains references
103 // that point into the collection set.
104 assert(!oops_into_cset, "should be");
105
106 if (_concurrent && SuspendibleThreadSet::should_yield()) {
107 // Caller will actually yield.
108 return false;
109 }
110 // Otherwise, we finished successfully; return true.
111 return true;
112 }
113
114 void set_concurrent(bool b) { _concurrent = b; }
115 };
116
117
118 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
119 private:
120 size_t _num_processed;
121
122 public:
123 RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
124
125 bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
126 *card_ptr = CardTableModRefBS::dirty_card_val();
127 _num_processed++;
128 return true;
129 }
130
131 size_t num_processed() const { return _num_processed; }
132 };
133
134 YoungList::YoungList(G1CollectedHeap* g1h) :
135 _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
136 _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
137 guarantee(check_list_empty(false), "just making sure...");
138 }
139
140 void YoungList::push_region(HeapRegion *hr) {
141 assert(!hr->is_young(), "should not already be young");
142 assert(hr->get_next_young_region() == NULL, "cause it should!");
143
144 hr->set_next_young_region(_head);
145 _head = hr;
146
147 _g1h->g1_policy()->set_region_eden(hr, (int) _length);
148 ++_length;
149 }
150
151 void YoungList::add_survivor_region(HeapRegion* hr) {
152 assert(hr->is_survivor(), "should be flagged as survivor region");
153 assert(hr->get_next_young_region() == NULL, "cause it should!");
154
155 hr->set_next_young_region(_survivor_head);
156 if (_survivor_head == NULL) {
157 _survivor_tail = hr;
158 }
159 _survivor_head = hr;
160 ++_survivor_length;
161 }
162
163 void YoungList::empty_list(HeapRegion* list) {
164 while (list != NULL) {
165 HeapRegion* next = list->get_next_young_region();
166 list->set_next_young_region(NULL);
167 list->uninstall_surv_rate_group();
168 // This is called before a Full GC and all the non-empty /
169 // non-humongous regions at the end of the Full GC will end up as
170 // old anyway.
171 list->set_old();
172 list = next;
173 }
174 }
175
176 void YoungList::empty_list() {
177 assert(check_list_well_formed(), "young list should be well formed");
178
179 empty_list(_head);
180 _head = NULL;
181 _length = 0;
182
183 empty_list(_survivor_head);
184 _survivor_head = NULL;
185 _survivor_tail = NULL;
186 _survivor_length = 0;
187
188 _last_sampled_rs_lengths = 0;
189
190 assert(check_list_empty(false), "just making sure...");
191 }
192
193 bool YoungList::check_list_well_formed() {
194 bool ret = true;
195
196 uint length = 0;
197 HeapRegion* curr = _head;
198 HeapRegion* last = NULL;
199 while (curr != NULL) {
200 if (!curr->is_young()) {
201 gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
202 "incorrectly tagged (y: %d, surv: %d)",
203 curr->bottom(), curr->end(),
204 curr->is_young(), curr->is_survivor());
205 ret = false;
206 }
207 ++length;
208 last = curr;
209 curr = curr->get_next_young_region();
210 }
211 ret = ret && (length == _length);
212
213 if (!ret) {
214 gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
215 gclog_or_tty->print_cr("### list has %u entries, _length is %u",
216 length, _length);
217 }
218
219 return ret;
220 }
221
222 bool YoungList::check_list_empty(bool check_sample) {
223 bool ret = true;
224
225 if (_length != 0) {
226 gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
227 _length);
228 ret = false;
229 }
230 if (check_sample && _last_sampled_rs_lengths != 0) {
231 gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
232 ret = false;
233 }
234 if (_head != NULL) {
235 gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
236 ret = false;
237 }
238 if (!ret) {
239 gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
240 }
241
242 return ret;
243 }
244
245 void
246 YoungList::rs_length_sampling_init() {
247 _sampled_rs_lengths = 0;
248 _curr = _head;
249 }
250
251 bool
252 YoungList::rs_length_sampling_more() {
253 return _curr != NULL;
254 }
255
256 void
257 YoungList::rs_length_sampling_next() {
258 assert( _curr != NULL, "invariant" );
259 size_t rs_length = _curr->rem_set()->occupied();
260
261 _sampled_rs_lengths += rs_length;
262
263 // The current region may not yet have been added to the
264 // incremental collection set (it gets added when it is
265 // retired as the current allocation region).
266 if (_curr->in_collection_set()) {
267 // Update the collection set policy information for this region
268 _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
269 }
270
271 _curr = _curr->get_next_young_region();
272 if (_curr == NULL) {
273 _last_sampled_rs_lengths = _sampled_rs_lengths;
274 // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
275 }
276 }
277
278 void
279 YoungList::reset_auxilary_lists() {
280 guarantee( is_empty(), "young list should be empty" );
281 assert(check_list_well_formed(), "young list should be well formed");
282
283 // Add survivor regions to SurvRateGroup.
284 _g1h->g1_policy()->note_start_adding_survivor_regions();
285 _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
286
287 int young_index_in_cset = 0;
288 for (HeapRegion* curr = _survivor_head;
289 curr != NULL;
290 curr = curr->get_next_young_region()) {
291 _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
292
293 // The region is a non-empty survivor so let's add it to
294 // the incremental collection set for the next evacuation
295 // pause.
296 _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
297 young_index_in_cset += 1;
298 }
299 assert((uint) young_index_in_cset == _survivor_length, "post-condition");
300 _g1h->g1_policy()->note_stop_adding_survivor_regions();
301
302 _head = _survivor_head;
303 _length = _survivor_length;
304 if (_survivor_head != NULL) {
305 assert(_survivor_tail != NULL, "cause it shouldn't be");
306 assert(_survivor_length > 0, "invariant");
307 _survivor_tail->set_next_young_region(NULL);
308 }
309
310 // Don't clear the survivor list handles until the start of
311 // the next evacuation pause - we need it in order to re-tag
312 // the survivor regions from this evacuation pause as 'young'
313 // at the start of the next.
314
315 _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
316
317 assert(check_list_well_formed(), "young list should be well formed");
318 }
319
320 void YoungList::print() {
321 HeapRegion* lists[] = {_head, _survivor_head};
322 const char* names[] = {"YOUNG", "SURVIVOR"};
323
324 for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
325 gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
326 HeapRegion *curr = lists[list];
327 if (curr == NULL)
328 gclog_or_tty->print_cr(" empty");
329 while (curr != NULL) {
330 gclog_or_tty->print_cr(" "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
331 HR_FORMAT_PARAMS(curr),
332 curr->prev_top_at_mark_start(),
333 curr->next_top_at_mark_start(),
334 curr->age_in_surv_rate_group_cond());
335 curr = curr->get_next_young_region();
336 }
337 }
338
339 gclog_or_tty->cr();
340 }
341
342 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
343 HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
344 }
345
346 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
347 // The from card cache is not the memory that is actually committed. So we cannot
348 // take advantage of the zero_filled parameter.
349 reset_from_card_cache(start_idx, num_regions);
350 }
351
352 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
353 {
354 // Claim the right to put the region on the dirty cards region list
355 // by installing a self pointer.
356 HeapRegion* next = hr->get_next_dirty_cards_region();
357 if (next == NULL) {
358 HeapRegion* res = (HeapRegion*)
359 Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
360 NULL);
361 if (res == NULL) {
362 HeapRegion* head;
363 do {
364 // Put the region to the dirty cards region list.
365 head = _dirty_cards_region_list;
366 next = (HeapRegion*)
367 Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
368 if (next == head) {
369 assert(hr->get_next_dirty_cards_region() == hr,
370 "hr->get_next_dirty_cards_region() != hr");
371 if (next == NULL) {
372 // The last region in the list points to itself.
373 hr->set_next_dirty_cards_region(hr);
374 } else {
375 hr->set_next_dirty_cards_region(next);
376 }
377 }
378 } while (next != head);
379 }
380 }
381 }
382
383 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
384 {
385 HeapRegion* head;
386 HeapRegion* hr;
387 do {
388 head = _dirty_cards_region_list;
389 if (head == NULL) {
390 return NULL;
391 }
392 HeapRegion* new_head = head->get_next_dirty_cards_region();
393 if (head == new_head) {
394 // The last region.
395 new_head = NULL;
396 }
397 hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
398 head);
399 } while (hr != head);
400 assert(hr != NULL, "invariant");
401 hr->set_next_dirty_cards_region(NULL);
402 return hr;
403 }
404
405 #ifdef ASSERT
406 // A region is added to the collection set as it is retired
407 // so an address p can point to a region which will be in the
408 // collection set but has not yet been retired. This method
409 // therefore is only accurate during a GC pause after all
410 // regions have been retired. It is used for debugging
411 // to check if an nmethod has references to objects that can
412 // be move during a partial collection. Though it can be
413 // inaccurate, it is sufficient for G1 because the conservative
414 // implementation of is_scavengable() for G1 will indicate that
415 // all nmethods must be scanned during a partial collection.
416 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
417 if (p == NULL) {
418 return false;
419 }
420 return heap_region_containing(p)->in_collection_set();
421 }
422 #endif
423
424 // Returns true if the reference points to an object that
425 // can move in an incremental collection.
426 bool G1CollectedHeap::is_scavengable(const void* p) {
427 HeapRegion* hr = heap_region_containing(p);
428 return !hr->is_humongous();
429 }
430
431 // Private class members.
432
433 G1CollectedHeap* G1CollectedHeap::_g1h;
434
435 // Private methods.
436
437 HeapRegion*
438 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
439 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
440 while (!_secondary_free_list.is_empty() || free_regions_coming()) {
441 if (!_secondary_free_list.is_empty()) {
442 if (G1ConcRegionFreeingVerbose) {
443 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
444 "secondary_free_list has %u entries",
445 _secondary_free_list.length());
446 }
447 // It looks as if there are free regions available on the
448 // secondary_free_list. Let's move them to the free_list and try
449 // again to allocate from it.
450 append_secondary_free_list();
451
452 assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
453 "empty we should have moved at least one entry to the free_list");
454 HeapRegion* res = _hrm.allocate_free_region(is_old);
455 if (G1ConcRegionFreeingVerbose) {
456 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
457 "allocated "HR_FORMAT" from secondary_free_list",
458 HR_FORMAT_PARAMS(res));
459 }
460 return res;
461 }
462
463 // Wait here until we get notified either when (a) there are no
464 // more free regions coming or (b) some regions have been moved on
465 // the secondary_free_list.
466 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
467 }
468
469 if (G1ConcRegionFreeingVerbose) {
470 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
471 "could not allocate from secondary_free_list");
472 }
473 return NULL;
474 }
475
476 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
477 assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
478 "the only time we use this to allocate a humongous region is "
479 "when we are allocating a single humongous region");
480
481 HeapRegion* res;
482 if (G1StressConcRegionFreeing) {
483 if (!_secondary_free_list.is_empty()) {
484 if (G1ConcRegionFreeingVerbose) {
485 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
486 "forced to look at the secondary_free_list");
487 }
488 res = new_region_try_secondary_free_list(is_old);
489 if (res != NULL) {
490 return res;
491 }
492 }
493 }
494
495 res = _hrm.allocate_free_region(is_old);
496
497 if (res == NULL) {
498 if (G1ConcRegionFreeingVerbose) {
499 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
500 "res == NULL, trying the secondary_free_list");
501 }
502 res = new_region_try_secondary_free_list(is_old);
503 }
504 if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
505 // Currently, only attempts to allocate GC alloc regions set
506 // do_expand to true. So, we should only reach here during a
507 // safepoint. If this assumption changes we might have to
508 // reconsider the use of _expand_heap_after_alloc_failure.
509 assert(SafepointSynchronize::is_at_safepoint(), "invariant");
510
511 ergo_verbose1(ErgoHeapSizing,
512 "attempt heap expansion",
513 ergo_format_reason("region allocation request failed")
514 ergo_format_byte("allocation request"),
515 word_size * HeapWordSize);
516 if (expand(word_size * HeapWordSize)) {
517 // Given that expand() succeeded in expanding the heap, and we
518 // always expand the heap by an amount aligned to the heap
519 // region size, the free list should in theory not be empty.
520 // In either case allocate_free_region() will check for NULL.
521 res = _hrm.allocate_free_region(is_old);
522 } else {
523 _expand_heap_after_alloc_failure = false;
524 }
525 }
526 return res;
527 }
528
529 HeapWord*
530 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
531 uint num_regions,
532 size_t word_size,
533 AllocationContext_t context) {
534 assert(first != G1_NO_HRM_INDEX, "pre-condition");
535 assert(is_humongous(word_size), "word_size should be humongous");
536 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
537
538 // Index of last region in the series + 1.
539 uint last = first + num_regions;
540
541 // We need to initialize the region(s) we just discovered. This is
542 // a bit tricky given that it can happen concurrently with
543 // refinement threads refining cards on these regions and
544 // potentially wanting to refine the BOT as they are scanning
545 // those cards (this can happen shortly after a cleanup; see CR
546 // 6991377). So we have to set up the region(s) carefully and in
547 // a specific order.
548
549 // The word size sum of all the regions we will allocate.
550 size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
551 assert(word_size <= word_size_sum, "sanity");
552
553 // This will be the "starts humongous" region.
554 HeapRegion* first_hr = region_at(first);
555 // The header of the new object will be placed at the bottom of
556 // the first region.
557 HeapWord* new_obj = first_hr->bottom();
558 // This will be the new end of the first region in the series that
559 // should also match the end of the last region in the series.
560 HeapWord* new_end = new_obj + word_size_sum;
561 // This will be the new top of the first region that will reflect
562 // this allocation.
563 HeapWord* new_top = new_obj + word_size;
564
565 // First, we need to zero the header of the space that we will be
566 // allocating. When we update top further down, some refinement
567 // threads might try to scan the region. By zeroing the header we
568 // ensure that any thread that will try to scan the region will
569 // come across the zero klass word and bail out.
570 //
571 // NOTE: It would not have been correct to have used
572 // CollectedHeap::fill_with_object() and make the space look like
573 // an int array. The thread that is doing the allocation will
574 // later update the object header to a potentially different array
575 // type and, for a very short period of time, the klass and length
576 // fields will be inconsistent. This could cause a refinement
577 // thread to calculate the object size incorrectly.
578 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
579
580 // We will set up the first region as "starts humongous". This
581 // will also update the BOT covering all the regions to reflect
582 // that there is a single object that starts at the bottom of the
583 // first region.
584 first_hr->set_starts_humongous(new_top, new_end);
585 first_hr->set_allocation_context(context);
586 // Then, if there are any, we will set up the "continues
587 // humongous" regions.
588 HeapRegion* hr = NULL;
589 for (uint i = first + 1; i < last; ++i) {
590 hr = region_at(i);
591 hr->set_continues_humongous(first_hr);
592 hr->set_allocation_context(context);
593 }
594 // If we have "continues humongous" regions (hr != NULL), then the
595 // end of the last one should match new_end.
596 assert(hr == NULL || hr->end() == new_end, "sanity");
597
598 // Up to this point no concurrent thread would have been able to
599 // do any scanning on any region in this series. All the top
600 // fields still point to bottom, so the intersection between
601 // [bottom,top] and [card_start,card_end] will be empty. Before we
602 // update the top fields, we'll do a storestore to make sure that
603 // no thread sees the update to top before the zeroing of the
604 // object header and the BOT initialization.
605 OrderAccess::storestore();
606
607 // Now that the BOT and the object header have been initialized,
608 // we can update top of the "starts humongous" region.
609 assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
610 "new_top should be in this region");
611 first_hr->set_top(new_top);
612 if (_hr_printer.is_active()) {
613 HeapWord* bottom = first_hr->bottom();
614 HeapWord* end = first_hr->orig_end();
615 if ((first + 1) == last) {
616 // the series has a single humongous region
617 _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
618 } else {
619 // the series has more than one humongous regions
620 _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
621 }
622 }
623
624 // Now, we will update the top fields of the "continues humongous"
625 // regions. The reason we need to do this is that, otherwise,
626 // these regions would look empty and this will confuse parts of
627 // G1. For example, the code that looks for a consecutive number
628 // of empty regions will consider them empty and try to
629 // re-allocate them. We can extend is_empty() to also include
630 // !is_continues_humongous(), but it is easier to just update the top
631 // fields here. The way we set top for all regions (i.e., top ==
632 // end for all regions but the last one, top == new_top for the
633 // last one) is actually used when we will free up the humongous
634 // region in free_humongous_region().
635 hr = NULL;
636 for (uint i = first + 1; i < last; ++i) {
637 hr = region_at(i);
638 if ((i + 1) == last) {
639 // last continues humongous region
640 assert(hr->bottom() < new_top && new_top <= hr->end(),
641 "new_top should fall on this region");
642 hr->set_top(new_top);
643 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
644 } else {
645 // not last one
646 assert(new_top > hr->end(), "new_top should be above this region");
647 hr->set_top(hr->end());
648 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
649 }
650 }
651 // If we have continues humongous regions (hr != NULL), then the
652 // end of the last one should match new_end and its top should
653 // match new_top.
654 assert(hr == NULL ||
655 (hr->end() == new_end && hr->top() == new_top), "sanity");
656 check_bitmaps("Humongous Region Allocation", first_hr);
657
658 assert(first_hr->used() == word_size * HeapWordSize, "invariant");
659 _allocator->increase_used(first_hr->used());
660 _humongous_set.add(first_hr);
661
662 return new_obj;
663 }
664
665 // If could fit into free regions w/o expansion, try.
666 // Otherwise, if can expand, do so.
667 // Otherwise, if using ex regions might help, try with ex given back.
668 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
669 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
670
671 verify_region_sets_optional();
672
673 uint first = G1_NO_HRM_INDEX;
674 uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
675
676 if (obj_regions == 1) {
677 // Only one region to allocate, try to use a fast path by directly allocating
678 // from the free lists. Do not try to expand here, we will potentially do that
679 // later.
680 HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
681 if (hr != NULL) {
682 first = hr->hrm_index();
683 }
684 } else {
685 // We can't allocate humongous regions spanning more than one region while
686 // cleanupComplete() is running, since some of the regions we find to be
687 // empty might not yet be added to the free list. It is not straightforward
688 // to know in which list they are on so that we can remove them. We only
689 // need to do this if we need to allocate more than one region to satisfy the
690 // current humongous allocation request. If we are only allocating one region
691 // we use the one-region region allocation code (see above), that already
692 // potentially waits for regions from the secondary free list.
693 wait_while_free_regions_coming();
694 append_secondary_free_list_if_not_empty_with_lock();
695
696 // Policy: Try only empty regions (i.e. already committed first). Maybe we
697 // are lucky enough to find some.
698 first = _hrm.find_contiguous_only_empty(obj_regions);
699 if (first != G1_NO_HRM_INDEX) {
700 _hrm.allocate_free_regions_starting_at(first, obj_regions);
701 }
702 }
703
704 if (first == G1_NO_HRM_INDEX) {
705 // Policy: We could not find enough regions for the humongous object in the
706 // free list. Look through the heap to find a mix of free and uncommitted regions.
707 // If so, try expansion.
708 first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
709 if (first != G1_NO_HRM_INDEX) {
710 // We found something. Make sure these regions are committed, i.e. expand
711 // the heap. Alternatively we could do a defragmentation GC.
712 ergo_verbose1(ErgoHeapSizing,
713 "attempt heap expansion",
714 ergo_format_reason("humongous allocation request failed")
715 ergo_format_byte("allocation request"),
716 word_size * HeapWordSize);
717
718 _hrm.expand_at(first, obj_regions);
719 g1_policy()->record_new_heap_size(num_regions());
720
721 #ifdef ASSERT
722 for (uint i = first; i < first + obj_regions; ++i) {
723 HeapRegion* hr = region_at(i);
724 assert(hr->is_free(), "sanity");
725 assert(hr->is_empty(), "sanity");
726 assert(is_on_master_free_list(hr), "sanity");
727 }
728 #endif
729 _hrm.allocate_free_regions_starting_at(first, obj_regions);
730 } else {
731 // Policy: Potentially trigger a defragmentation GC.
732 }
733 }
734
735 HeapWord* result = NULL;
736 if (first != G1_NO_HRM_INDEX) {
737 result = humongous_obj_allocate_initialize_regions(first, obj_regions,
738 word_size, context);
739 assert(result != NULL, "it should always return a valid result");
740
741 // A successful humongous object allocation changes the used space
742 // information of the old generation so we need to recalculate the
743 // sizes and update the jstat counters here.
744 g1mm()->update_sizes();
745 }
746
747 verify_region_sets_optional();
748
749 return result;
750 }
751
752 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
753 assert_heap_not_locked_and_not_at_safepoint();
754 assert(!is_humongous(word_size), "we do not allow humongous TLABs");
755
756 uint dummy_gc_count_before;
757 uint dummy_gclocker_retry_count = 0;
758 return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
759 }
760
761 HeapWord*
762 G1CollectedHeap::mem_allocate(size_t word_size,
763 bool* gc_overhead_limit_was_exceeded) {
764 assert_heap_not_locked_and_not_at_safepoint();
765
766 // Loop until the allocation is satisfied, or unsatisfied after GC.
767 for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
768 uint gc_count_before;
769
770 HeapWord* result = NULL;
771 if (!is_humongous(word_size)) {
772 result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
773 } else {
774 result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
775 }
776 if (result != NULL) {
777 return result;
778 }
779
780 // Create the garbage collection operation...
781 VM_G1CollectForAllocation op(gc_count_before, word_size);
782 op.set_allocation_context(AllocationContext::current());
783
784 // ...and get the VM thread to execute it.
785 VMThread::execute(&op);
786
787 if (op.prologue_succeeded() && op.pause_succeeded()) {
788 // If the operation was successful we'll return the result even
789 // if it is NULL. If the allocation attempt failed immediately
790 // after a Full GC, it's unlikely we'll be able to allocate now.
791 HeapWord* result = op.result();
792 if (result != NULL && !is_humongous(word_size)) {
793 // Allocations that take place on VM operations do not do any
794 // card dirtying and we have to do it here. We only have to do
795 // this for non-humongous allocations, though.
796 dirty_young_block(result, word_size);
797 }
798 return result;
799 } else {
800 if (gclocker_retry_count > GCLockerRetryAllocationCount) {
801 return NULL;
802 }
803 assert(op.result() == NULL,
804 "the result should be NULL if the VM op did not succeed");
805 }
806
807 // Give a warning if we seem to be looping forever.
808 if ((QueuedAllocationWarningCount > 0) &&
809 (try_count % QueuedAllocationWarningCount == 0)) {
810 warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
811 }
812 }
813
814 ShouldNotReachHere();
815 return NULL;
816 }
817
818 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
819 AllocationContext_t context,
820 uint* gc_count_before_ret,
821 uint* gclocker_retry_count_ret) {
822 // Make sure you read the note in attempt_allocation_humongous().
823
824 assert_heap_not_locked_and_not_at_safepoint();
825 assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
826 "be called for humongous allocation requests");
827
828 // We should only get here after the first-level allocation attempt
829 // (attempt_allocation()) failed to allocate.
830
831 // We will loop until a) we manage to successfully perform the
832 // allocation or b) we successfully schedule a collection which
833 // fails to perform the allocation. b) is the only case when we'll
834 // return NULL.
835 HeapWord* result = NULL;
836 for (int try_count = 1; /* we'll return */; try_count += 1) {
837 bool should_try_gc;
838 uint gc_count_before;
839
840 {
841 MutexLockerEx x(Heap_lock);
842 result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
843 false /* bot_updates */);
844 if (result != NULL) {
845 return result;
846 }
847
848 // If we reach here, attempt_allocation_locked() above failed to
849 // allocate a new region. So the mutator alloc region should be NULL.
850 assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
851
852 if (GC_locker::is_active_and_needs_gc()) {
853 if (g1_policy()->can_expand_young_list()) {
854 // No need for an ergo verbose message here,
855 // can_expand_young_list() does this when it returns true.
856 result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
857 false /* bot_updates */);
858 if (result != NULL) {
859 return result;
860 }
861 }
862 should_try_gc = false;
863 } else {
864 // The GCLocker may not be active but the GCLocker initiated
865 // GC may not yet have been performed (GCLocker::needs_gc()
866 // returns true). In this case we do not try this GC and
867 // wait until the GCLocker initiated GC is performed, and
868 // then retry the allocation.
869 if (GC_locker::needs_gc()) {
870 should_try_gc = false;
871 } else {
872 // Read the GC count while still holding the Heap_lock.
873 gc_count_before = total_collections();
874 should_try_gc = true;
875 }
876 }
877 }
878
879 if (should_try_gc) {
880 bool succeeded;
881 result = do_collection_pause(word_size, gc_count_before, &succeeded,
882 GCCause::_g1_inc_collection_pause);
883 if (result != NULL) {
884 assert(succeeded, "only way to get back a non-NULL result");
885 return result;
886 }
887
888 if (succeeded) {
889 // If we get here we successfully scheduled a collection which
890 // failed to allocate. No point in trying to allocate
891 // further. We'll just return NULL.
892 MutexLockerEx x(Heap_lock);
893 *gc_count_before_ret = total_collections();
894 return NULL;
895 }
896 } else {
897 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
898 MutexLockerEx x(Heap_lock);
899 *gc_count_before_ret = total_collections();
900 return NULL;
901 }
902 // The GCLocker is either active or the GCLocker initiated
903 // GC has not yet been performed. Stall until it is and
904 // then retry the allocation.
905 GC_locker::stall_until_clear();
906 (*gclocker_retry_count_ret) += 1;
907 }
908
909 // We can reach here if we were unsuccessful in scheduling a
910 // collection (because another thread beat us to it) or if we were
911 // stalled due to the GC locker. In either can we should retry the
912 // allocation attempt in case another thread successfully
913 // performed a collection and reclaimed enough space. We do the
914 // first attempt (without holding the Heap_lock) here and the
915 // follow-on attempt will be at the start of the next loop
916 // iteration (after taking the Heap_lock).
917 result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
918 false /* bot_updates */);
919 if (result != NULL) {
920 return result;
921 }
922
923 // Give a warning if we seem to be looping forever.
924 if ((QueuedAllocationWarningCount > 0) &&
925 (try_count % QueuedAllocationWarningCount == 0)) {
926 warning("G1CollectedHeap::attempt_allocation_slow() "
927 "retries %d times", try_count);
928 }
929 }
930
931 ShouldNotReachHere();
932 return NULL;
933 }
934
935 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
936 uint* gc_count_before_ret,
937 uint* gclocker_retry_count_ret) {
938 // The structure of this method has a lot of similarities to
939 // attempt_allocation_slow(). The reason these two were not merged
940 // into a single one is that such a method would require several "if
941 // allocation is not humongous do this, otherwise do that"
942 // conditional paths which would obscure its flow. In fact, an early
943 // version of this code did use a unified method which was harder to
944 // follow and, as a result, it had subtle bugs that were hard to
945 // track down. So keeping these two methods separate allows each to
946 // be more readable. It will be good to keep these two in sync as
947 // much as possible.
948
949 assert_heap_not_locked_and_not_at_safepoint();
950 assert(is_humongous(word_size), "attempt_allocation_humongous() "
951 "should only be called for humongous allocations");
952
953 // Humongous objects can exhaust the heap quickly, so we should check if we
954 // need to start a marking cycle at each humongous object allocation. We do
955 // the check before we do the actual allocation. The reason for doing it
956 // before the allocation is that we avoid having to keep track of the newly
957 // allocated memory while we do a GC.
958 if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
959 word_size)) {
960 collect(GCCause::_g1_humongous_allocation);
961 }
962
963 // We will loop until a) we manage to successfully perform the
964 // allocation or b) we successfully schedule a collection which
965 // fails to perform the allocation. b) is the only case when we'll
966 // return NULL.
967 HeapWord* result = NULL;
968 for (int try_count = 1; /* we'll return */; try_count += 1) {
969 bool should_try_gc;
970 uint gc_count_before;
971
972 {
973 MutexLockerEx x(Heap_lock);
974
975 // Given that humongous objects are not allocated in young
976 // regions, we'll first try to do the allocation without doing a
977 // collection hoping that there's enough space in the heap.
978 result = humongous_obj_allocate(word_size, AllocationContext::current());
979 if (result != NULL) {
980 return result;
981 }
982
983 if (GC_locker::is_active_and_needs_gc()) {
984 should_try_gc = false;
985 } else {
986 // The GCLocker may not be active but the GCLocker initiated
987 // GC may not yet have been performed (GCLocker::needs_gc()
988 // returns true). In this case we do not try this GC and
989 // wait until the GCLocker initiated GC is performed, and
990 // then retry the allocation.
991 if (GC_locker::needs_gc()) {
992 should_try_gc = false;
993 } else {
994 // Read the GC count while still holding the Heap_lock.
995 gc_count_before = total_collections();
996 should_try_gc = true;
997 }
998 }
999 }
1000
1001 if (should_try_gc) {
1002 // If we failed to allocate the humongous object, we should try to
1003 // do a collection pause (if we're allowed) in case it reclaims
1004 // enough space for the allocation to succeed after the pause.
1005
1006 bool succeeded;
1007 result = do_collection_pause(word_size, gc_count_before, &succeeded,
1008 GCCause::_g1_humongous_allocation);
1009 if (result != NULL) {
1010 assert(succeeded, "only way to get back a non-NULL result");
1011 return result;
1012 }
1013
1014 if (succeeded) {
1015 // If we get here we successfully scheduled a collection which
1016 // failed to allocate. No point in trying to allocate
1017 // further. We'll just return NULL.
1018 MutexLockerEx x(Heap_lock);
1019 *gc_count_before_ret = total_collections();
1020 return NULL;
1021 }
1022 } else {
1023 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1024 MutexLockerEx x(Heap_lock);
1025 *gc_count_before_ret = total_collections();
1026 return NULL;
1027 }
1028 // The GCLocker is either active or the GCLocker initiated
1029 // GC has not yet been performed. Stall until it is and
1030 // then retry the allocation.
1031 GC_locker::stall_until_clear();
1032 (*gclocker_retry_count_ret) += 1;
1033 }
1034
1035 // We can reach here if we were unsuccessful in scheduling a
1036 // collection (because another thread beat us to it) or if we were
1037 // stalled due to the GC locker. In either can we should retry the
1038 // allocation attempt in case another thread successfully
1039 // performed a collection and reclaimed enough space. Give a
1040 // warning if we seem to be looping forever.
1041
1042 if ((QueuedAllocationWarningCount > 0) &&
1043 (try_count % QueuedAllocationWarningCount == 0)) {
1044 warning("G1CollectedHeap::attempt_allocation_humongous() "
1045 "retries %d times", try_count);
1046 }
1047 }
1048
1049 ShouldNotReachHere();
1050 return NULL;
1051 }
1052
1053 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1054 AllocationContext_t context,
1055 bool expect_null_mutator_alloc_region) {
1056 assert_at_safepoint(true /* should_be_vm_thread */);
1057 assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1058 !expect_null_mutator_alloc_region,
1059 "the current alloc region was unexpectedly found to be non-NULL");
1060
1061 if (!is_humongous(word_size)) {
1062 return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1063 false /* bot_updates */);
1064 } else {
1065 HeapWord* result = humongous_obj_allocate(word_size, context);
1066 if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1067 g1_policy()->set_initiate_conc_mark_if_possible();
1068 }
1069 return result;
1070 }
1071
1072 ShouldNotReachHere();
1073 }
1074
1075 class PostMCRemSetClearClosure: public HeapRegionClosure {
1076 G1CollectedHeap* _g1h;
1077 ModRefBarrierSet* _mr_bs;
1078 public:
1079 PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1080 _g1h(g1h), _mr_bs(mr_bs) {}
1081
1082 bool doHeapRegion(HeapRegion* r) {
1083 HeapRegionRemSet* hrrs = r->rem_set();
1084
1085 if (r->is_continues_humongous()) {
1086 // We'll assert that the strong code root list and RSet is empty
1087 assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1088 assert(hrrs->occupied() == 0, "RSet should be empty");
1089 return false;
1090 }
1091
1092 _g1h->reset_gc_time_stamps(r);
1093 hrrs->clear();
1094 // You might think here that we could clear just the cards
1095 // corresponding to the used region. But no: if we leave a dirty card
1096 // in a region we might allocate into, then it would prevent that card
1097 // from being enqueued, and cause it to be missed.
1098 // Re: the performance cost: we shouldn't be doing full GC anyway!
1099 _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1100
1101 return false;
1102 }
1103 };
1104
1105 void G1CollectedHeap::clear_rsets_post_compaction() {
1106 PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1107 heap_region_iterate(&rs_clear);
1108 }
1109
1110 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1111 G1CollectedHeap* _g1h;
1112 UpdateRSOopClosure _cl;
1113 int _worker_i;
1114 public:
1115 RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1116 _cl(g1->g1_rem_set(), worker_i),
1117 _worker_i(worker_i),
1118 _g1h(g1)
1119 { }
1120
1121 bool doHeapRegion(HeapRegion* r) {
1122 if (!r->is_continues_humongous()) {
1123 _cl.set_from(r);
1124 r->oop_iterate(&_cl);
1125 }
1126 return false;
1127 }
1128 };
1129
1130 class ParRebuildRSTask: public AbstractGangTask {
1131 G1CollectedHeap* _g1;
1132 HeapRegionClaimer _hrclaimer;
1133
1134 public:
1135 ParRebuildRSTask(G1CollectedHeap* g1) :
1136 AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1137
1138 void work(uint worker_id) {
1139 RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1140 _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1141 }
1142 };
1143
1144 class PostCompactionPrinterClosure: public HeapRegionClosure {
1145 private:
1146 G1HRPrinter* _hr_printer;
1147 public:
1148 bool doHeapRegion(HeapRegion* hr) {
1149 assert(!hr->is_young(), "not expecting to find young regions");
1150 if (hr->is_free()) {
1151 // We only generate output for non-empty regions.
1152 } else if (hr->is_starts_humongous()) {
1153 if (hr->region_num() == 1) {
1154 // single humongous region
1155 _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1156 } else {
1157 _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1158 }
1159 } else if (hr->is_continues_humongous()) {
1160 _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1161 } else if (hr->is_old()) {
1162 _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1163 } else {
1164 ShouldNotReachHere();
1165 }
1166 return false;
1167 }
1168
1169 PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1170 : _hr_printer(hr_printer) { }
1171 };
1172
1173 void G1CollectedHeap::print_hrm_post_compaction() {
1174 PostCompactionPrinterClosure cl(hr_printer());
1175 heap_region_iterate(&cl);
1176 }
1177
1178 bool G1CollectedHeap::do_collection(bool explicit_gc,
1179 bool clear_all_soft_refs,
1180 size_t word_size) {
1181 assert_at_safepoint(true /* should_be_vm_thread */);
1182
1183 if (GC_locker::check_active_before_gc()) {
1184 return false;
1185 }
1186
1187 STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1188 gc_timer->register_gc_start();
1189
1190 SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1191 gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1192
1193 SvcGCMarker sgcm(SvcGCMarker::FULL);
1194 ResourceMark rm;
1195
1196 print_heap_before_gc();
1197 trace_heap_before_gc(gc_tracer);
1198
1199 size_t metadata_prev_used = MetaspaceAux::used_bytes();
1200
1201 verify_region_sets_optional();
1202
1203 const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1204 collector_policy()->should_clear_all_soft_refs();
1205
1206 ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1207
1208 {
1209 IsGCActiveMark x;
1210
1211 // Timing
1212 assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1213 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1214
1215 {
1216 GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1217 TraceCollectorStats tcs(g1mm()->full_collection_counters());
1218 TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1219
1220 g1_policy()->record_full_collection_start();
1221
1222 // Note: When we have a more flexible GC logging framework that
1223 // allows us to add optional attributes to a GC log record we
1224 // could consider timing and reporting how long we wait in the
1225 // following two methods.
1226 wait_while_free_regions_coming();
1227 // If we start the compaction before the CM threads finish
1228 // scanning the root regions we might trip them over as we'll
1229 // be moving objects / updating references. So let's wait until
1230 // they are done. By telling them to abort, they should complete
1231 // early.
1232 _cm->root_regions()->abort();
1233 _cm->root_regions()->wait_until_scan_finished();
1234 append_secondary_free_list_if_not_empty_with_lock();
1235
1236 gc_prologue(true);
1237 increment_total_collections(true /* full gc */);
1238 increment_old_marking_cycles_started();
1239
1240 assert(used() == recalculate_used(), "Should be equal");
1241
1242 verify_before_gc();
1243
1244 check_bitmaps("Full GC Start");
1245 pre_full_gc_dump(gc_timer);
1246
1247 COMPILER2_PRESENT(DerivedPointerTable::clear());
1248
1249 // Disable discovery and empty the discovered lists
1250 // for the CM ref processor.
1251 ref_processor_cm()->disable_discovery();
1252 ref_processor_cm()->abandon_partial_discovery();
1253 ref_processor_cm()->verify_no_references_recorded();
1254
1255 // Abandon current iterations of concurrent marking and concurrent
1256 // refinement, if any are in progress. We have to do this before
1257 // wait_until_scan_finished() below.
1258 concurrent_mark()->abort();
1259
1260 // Make sure we'll choose a new allocation region afterwards.
1261 _allocator->release_mutator_alloc_region();
1262 _allocator->abandon_gc_alloc_regions();
1263 g1_rem_set()->cleanupHRRS();
1264
1265 // We should call this after we retire any currently active alloc
1266 // regions so that all the ALLOC / RETIRE events are generated
1267 // before the start GC event.
1268 _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1269
1270 // We may have added regions to the current incremental collection
1271 // set between the last GC or pause and now. We need to clear the
1272 // incremental collection set and then start rebuilding it afresh
1273 // after this full GC.
1274 abandon_collection_set(g1_policy()->inc_cset_head());
1275 g1_policy()->clear_incremental_cset();
1276 g1_policy()->stop_incremental_cset_building();
1277
1278 tear_down_region_sets(false /* free_list_only */);
1279 g1_policy()->set_gcs_are_young(true);
1280
1281 // See the comments in g1CollectedHeap.hpp and
1282 // G1CollectedHeap::ref_processing_init() about
1283 // how reference processing currently works in G1.
1284
1285 // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1286 ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1287
1288 // Temporarily clear the STW ref processor's _is_alive_non_header field.
1289 ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1290
1291 ref_processor_stw()->enable_discovery();
1292 ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1293
1294 // Do collection work
1295 {
1296 HandleMark hm; // Discard invalid handles created during gc
1297 G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1298 }
1299
1300 assert(num_free_regions() == 0, "we should not have added any free regions");
1301 rebuild_region_sets(false /* free_list_only */);
1302
1303 // Enqueue any discovered reference objects that have
1304 // not been removed from the discovered lists.
1305 ref_processor_stw()->enqueue_discovered_references();
1306
1307 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1308
1309 MemoryService::track_memory_usage();
1310
1311 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1312 ref_processor_stw()->verify_no_references_recorded();
1313
1314 // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1315 ClassLoaderDataGraph::purge();
1316 MetaspaceAux::verify_metrics();
1317
1318 // Note: since we've just done a full GC, concurrent
1319 // marking is no longer active. Therefore we need not
1320 // re-enable reference discovery for the CM ref processor.
1321 // That will be done at the start of the next marking cycle.
1322 assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1323 ref_processor_cm()->verify_no_references_recorded();
1324
1325 reset_gc_time_stamp();
1326 // Since everything potentially moved, we will clear all remembered
1327 // sets, and clear all cards. Later we will rebuild remembered
1328 // sets. We will also reset the GC time stamps of the regions.
1329 clear_rsets_post_compaction();
1330 check_gc_time_stamps();
1331
1332 // Resize the heap if necessary.
1333 resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1334
1335 if (_hr_printer.is_active()) {
1336 // We should do this after we potentially resize the heap so
1337 // that all the COMMIT / UNCOMMIT events are generated before
1338 // the end GC event.
1339
1340 print_hrm_post_compaction();
1341 _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1342 }
1343
1344 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1345 if (hot_card_cache->use_cache()) {
1346 hot_card_cache->reset_card_counts();
1347 hot_card_cache->reset_hot_cache();
1348 }
1349
1350 // Rebuild remembered sets of all regions.
1351 uint n_workers =
1352 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1353 workers()->active_workers(),
1354 Threads::number_of_non_daemon_threads());
1355 assert(UseDynamicNumberOfGCThreads ||
1356 n_workers == workers()->total_workers(),
1357 "If not dynamic should be using all the workers");
1358 workers()->set_active_workers(n_workers);
1359 // Set parallel threads in the heap (_n_par_threads) only
1360 // before a parallel phase and always reset it to 0 after
1361 // the phase so that the number of parallel threads does
1362 // no get carried forward to a serial phase where there
1363 // may be code that is "possibly_parallel".
1364 set_par_threads(n_workers);
1365
1366 ParRebuildRSTask rebuild_rs_task(this);
1367 assert(UseDynamicNumberOfGCThreads ||
1368 workers()->active_workers() == workers()->total_workers(),
1369 "Unless dynamic should use total workers");
1370 // Use the most recent number of active workers
1371 assert(workers()->active_workers() > 0,
1372 "Active workers not properly set");
1373 set_par_threads(workers()->active_workers());
1374 workers()->run_task(&rebuild_rs_task);
1375 set_par_threads(0);
1376
1377 // Rebuild the strong code root lists for each region
1378 rebuild_strong_code_roots();
1379
1380 if (true) { // FIXME
1381 MetaspaceGC::compute_new_size();
1382 }
1383
1384 #ifdef TRACESPINNING
1385 ParallelTaskTerminator::print_termination_counts();
1386 #endif
1387
1388 // Discard all rset updates
1389 JavaThread::dirty_card_queue_set().abandon_logs();
1390 assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1391
1392 _young_list->reset_sampled_info();
1393 // At this point there should be no regions in the
1394 // entire heap tagged as young.
1395 assert(check_young_list_empty(true /* check_heap */),
1396 "young list should be empty at this point");
1397
1398 // Update the number of full collections that have been completed.
1399 increment_old_marking_cycles_completed(false /* concurrent */);
1400
1401 _hrm.verify_optional();
1402 verify_region_sets_optional();
1403
1404 verify_after_gc();
1405
1406 // Clear the previous marking bitmap, if needed for bitmap verification.
1407 // Note we cannot do this when we clear the next marking bitmap in
1408 // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1409 // objects marked during a full GC against the previous bitmap.
1410 // But we need to clear it before calling check_bitmaps below since
1411 // the full GC has compacted objects and updated TAMS but not updated
1412 // the prev bitmap.
1413 if (G1VerifyBitmaps) {
1414 ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1415 }
1416 check_bitmaps("Full GC End");
1417
1418 // Start a new incremental collection set for the next pause
1419 assert(g1_policy()->collection_set() == NULL, "must be");
1420 g1_policy()->start_incremental_cset_building();
1421
1422 clear_cset_fast_test();
1423
1424 _allocator->init_mutator_alloc_region();
1425
1426 g1_policy()->record_full_collection_end();
1427
1428 if (G1Log::fine()) {
1429 g1_policy()->print_heap_transition();
1430 }
1431
1432 // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1433 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1434 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1435 // before any GC notifications are raised.
1436 g1mm()->update_sizes();
1437
1438 gc_epilogue(true);
1439 }
1440
1441 if (G1Log::finer()) {
1442 g1_policy()->print_detailed_heap_transition(true /* full */);
1443 }
1444
1445 print_heap_after_gc();
1446 trace_heap_after_gc(gc_tracer);
1447
1448 post_full_gc_dump(gc_timer);
1449
1450 gc_timer->register_gc_end();
1451 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1452 }
1453
1454 return true;
1455 }
1456
1457 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1458 // do_collection() will return whether it succeeded in performing
1459 // the GC. Currently, there is no facility on the
1460 // do_full_collection() API to notify the caller than the collection
1461 // did not succeed (e.g., because it was locked out by the GC
1462 // locker). So, right now, we'll ignore the return value.
1463 bool dummy = do_collection(true, /* explicit_gc */
1464 clear_all_soft_refs,
1465 0 /* word_size */);
1466 }
1467
1468 // This code is mostly copied from TenuredGeneration.
1469 void
1470 G1CollectedHeap::
1471 resize_if_necessary_after_full_collection(size_t word_size) {
1472 // Include the current allocation, if any, and bytes that will be
1473 // pre-allocated to support collections, as "used".
1474 const size_t used_after_gc = used();
1475 const size_t capacity_after_gc = capacity();
1476 const size_t free_after_gc = capacity_after_gc - used_after_gc;
1477
1478 // This is enforced in arguments.cpp.
1479 assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1480 "otherwise the code below doesn't make sense");
1481
1482 // We don't have floating point command-line arguments
1483 const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1484 const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1485 const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1486 const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1487
1488 const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1489 const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1490
1491 // We have to be careful here as these two calculations can overflow
1492 // 32-bit size_t's.
1493 double used_after_gc_d = (double) used_after_gc;
1494 double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1495 double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1496
1497 // Let's make sure that they are both under the max heap size, which
1498 // by default will make them fit into a size_t.
1499 double desired_capacity_upper_bound = (double) max_heap_size;
1500 minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1501 desired_capacity_upper_bound);
1502 maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1503 desired_capacity_upper_bound);
1504
1505 // We can now safely turn them into size_t's.
1506 size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1507 size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1508
1509 // This assert only makes sense here, before we adjust them
1510 // with respect to the min and max heap size.
1511 assert(minimum_desired_capacity <= maximum_desired_capacity,
1512 err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1513 "maximum_desired_capacity = "SIZE_FORMAT,
1514 minimum_desired_capacity, maximum_desired_capacity));
1515
1516 // Should not be greater than the heap max size. No need to adjust
1517 // it with respect to the heap min size as it's a lower bound (i.e.,
1518 // we'll try to make the capacity larger than it, not smaller).
1519 minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1520 // Should not be less than the heap min size. No need to adjust it
1521 // with respect to the heap max size as it's an upper bound (i.e.,
1522 // we'll try to make the capacity smaller than it, not greater).
1523 maximum_desired_capacity = MAX2(maximum_desired_capacity, min_heap_size);
1524
1525 if (capacity_after_gc < minimum_desired_capacity) {
1526 // Don't expand unless it's significant
1527 size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1528 ergo_verbose4(ErgoHeapSizing,
1529 "attempt heap expansion",
1530 ergo_format_reason("capacity lower than "
1531 "min desired capacity after Full GC")
1532 ergo_format_byte("capacity")
1533 ergo_format_byte("occupancy")
1534 ergo_format_byte_perc("min desired capacity"),
1535 capacity_after_gc, used_after_gc,
1536 minimum_desired_capacity, (double) MinHeapFreeRatio);
1537 expand(expand_bytes);
1538
1539 // No expansion, now see if we want to shrink
1540 } else if (capacity_after_gc > maximum_desired_capacity) {
1541 // Capacity too large, compute shrinking size
1542 size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1543 ergo_verbose4(ErgoHeapSizing,
1544 "attempt heap shrinking",
1545 ergo_format_reason("capacity higher than "
1546 "max desired capacity after Full GC")
1547 ergo_format_byte("capacity")
1548 ergo_format_byte("occupancy")
1549 ergo_format_byte_perc("max desired capacity"),
1550 capacity_after_gc, used_after_gc,
1551 maximum_desired_capacity, (double) MaxHeapFreeRatio);
1552 shrink(shrink_bytes);
1553 }
1554 }
1555
1556
1557 HeapWord*
1558 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1559 AllocationContext_t context,
1560 bool* succeeded) {
1561 assert_at_safepoint(true /* should_be_vm_thread */);
1562
1563 *succeeded = true;
1564 // Let's attempt the allocation first.
1565 HeapWord* result =
1566 attempt_allocation_at_safepoint(word_size,
1567 context,
1568 false /* expect_null_mutator_alloc_region */);
1569 if (result != NULL) {
1570 assert(*succeeded, "sanity");
1571 return result;
1572 }
1573
1574 // In a G1 heap, we're supposed to keep allocation from failing by
1575 // incremental pauses. Therefore, at least for now, we'll favor
1576 // expansion over collection. (This might change in the future if we can
1577 // do something smarter than full collection to satisfy a failed alloc.)
1578 result = expand_and_allocate(word_size, context);
1579 if (result != NULL) {
1580 assert(*succeeded, "sanity");
1581 return result;
1582 }
1583
1584 // Expansion didn't work, we'll try to do a Full GC.
1585 bool gc_succeeded = do_collection(false, /* explicit_gc */
1586 false, /* clear_all_soft_refs */
1587 word_size);
1588 if (!gc_succeeded) {
1589 *succeeded = false;
1590 return NULL;
1591 }
1592
1593 // Retry the allocation
1594 result = attempt_allocation_at_safepoint(word_size,
1595 context,
1596 true /* expect_null_mutator_alloc_region */);
1597 if (result != NULL) {
1598 assert(*succeeded, "sanity");
1599 return result;
1600 }
1601
1602 // Then, try a Full GC that will collect all soft references.
1603 gc_succeeded = do_collection(false, /* explicit_gc */
1604 true, /* clear_all_soft_refs */
1605 word_size);
1606 if (!gc_succeeded) {
1607 *succeeded = false;
1608 return NULL;
1609 }
1610
1611 // Retry the allocation once more
1612 result = attempt_allocation_at_safepoint(word_size,
1613 context,
1614 true /* expect_null_mutator_alloc_region */);
1615 if (result != NULL) {
1616 assert(*succeeded, "sanity");
1617 return result;
1618 }
1619
1620 assert(!collector_policy()->should_clear_all_soft_refs(),
1621 "Flag should have been handled and cleared prior to this point");
1622
1623 // What else? We might try synchronous finalization later. If the total
1624 // space available is large enough for the allocation, then a more
1625 // complete compaction phase than we've tried so far might be
1626 // appropriate.
1627 assert(*succeeded, "sanity");
1628 return NULL;
1629 }
1630
1631 // Attempting to expand the heap sufficiently
1632 // to support an allocation of the given "word_size". If
1633 // successful, perform the allocation and return the address of the
1634 // allocated block, or else "NULL".
1635
1636 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1637 assert_at_safepoint(true /* should_be_vm_thread */);
1638
1639 verify_region_sets_optional();
1640
1641 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1642 ergo_verbose1(ErgoHeapSizing,
1643 "attempt heap expansion",
1644 ergo_format_reason("allocation request failed")
1645 ergo_format_byte("allocation request"),
1646 word_size * HeapWordSize);
1647 if (expand(expand_bytes)) {
1648 _hrm.verify_optional();
1649 verify_region_sets_optional();
1650 return attempt_allocation_at_safepoint(word_size,
1651 context,
1652 false /* expect_null_mutator_alloc_region */);
1653 }
1654 return NULL;
1655 }
1656
1657 bool G1CollectedHeap::expand(size_t expand_bytes) {
1658 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1659 aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1660 HeapRegion::GrainBytes);
1661 ergo_verbose2(ErgoHeapSizing,
1662 "expand the heap",
1663 ergo_format_byte("requested expansion amount")
1664 ergo_format_byte("attempted expansion amount"),
1665 expand_bytes, aligned_expand_bytes);
1666
1667 if (is_maximal_no_gc()) {
1668 ergo_verbose0(ErgoHeapSizing,
1669 "did not expand the heap",
1670 ergo_format_reason("heap already fully expanded"));
1671 return false;
1672 }
1673
1674 uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1675 assert(regions_to_expand > 0, "Must expand by at least one region");
1676
1677 uint expanded_by = _hrm.expand_by(regions_to_expand);
1678
1679 if (expanded_by > 0) {
1680 size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1681 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1682 g1_policy()->record_new_heap_size(num_regions());
1683 } else {
1684 ergo_verbose0(ErgoHeapSizing,
1685 "did not expand the heap",
1686 ergo_format_reason("heap expansion operation failed"));
1687 // The expansion of the virtual storage space was unsuccessful.
1688 // Let's see if it was because we ran out of swap.
1689 if (G1ExitOnExpansionFailure &&
1690 _hrm.available() >= regions_to_expand) {
1691 // We had head room...
1692 vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1693 }
1694 }
1695 return regions_to_expand > 0;
1696 }
1697
1698 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1699 size_t aligned_shrink_bytes =
1700 ReservedSpace::page_align_size_down(shrink_bytes);
1701 aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1702 HeapRegion::GrainBytes);
1703 uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1704
1705 uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1706 size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1707
1708 ergo_verbose3(ErgoHeapSizing,
1709 "shrink the heap",
1710 ergo_format_byte("requested shrinking amount")
1711 ergo_format_byte("aligned shrinking amount")
1712 ergo_format_byte("attempted shrinking amount"),
1713 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1714 if (num_regions_removed > 0) {
1715 g1_policy()->record_new_heap_size(num_regions());
1716 } else {
1717 ergo_verbose0(ErgoHeapSizing,
1718 "did not shrink the heap",
1719 ergo_format_reason("heap shrinking operation failed"));
1720 }
1721 }
1722
1723 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1724 verify_region_sets_optional();
1725
1726 // We should only reach here at the end of a Full GC which means we
1727 // should not not be holding to any GC alloc regions. The method
1728 // below will make sure of that and do any remaining clean up.
1729 _allocator->abandon_gc_alloc_regions();
1730
1731 // Instead of tearing down / rebuilding the free lists here, we
1732 // could instead use the remove_all_pending() method on free_list to
1733 // remove only the ones that we need to remove.
1734 tear_down_region_sets(true /* free_list_only */);
1735 shrink_helper(shrink_bytes);
1736 rebuild_region_sets(true /* free_list_only */);
1737
1738 _hrm.verify_optional();
1739 verify_region_sets_optional();
1740 }
1741
1742 // Public methods.
1743
1744 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1745 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1746 #endif // _MSC_VER
1747
1748
1749 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1750 SharedHeap(policy_),
1751 _g1_policy(policy_),
1752 _dirty_card_queue_set(false),
1753 _into_cset_dirty_card_queue_set(false),
1754 _is_alive_closure_cm(this),
1755 _is_alive_closure_stw(this),
1756 _ref_processor_cm(NULL),
1757 _ref_processor_stw(NULL),
1758 _bot_shared(NULL),
1759 _evac_failure_scan_stack(NULL),
1760 _mark_in_progress(false),
1761 _cg1r(NULL),
1762 _g1mm(NULL),
1763 _refine_cte_cl(NULL),
1764 _full_collection(false),
1765 _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1766 _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1767 _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1768 _humongous_is_live(),
1769 _has_humongous_reclaim_candidates(false),
1770 _free_regions_coming(false),
1771 _young_list(new YoungList(this)),
1772 _gc_time_stamp(0),
1773 _survivor_plab_stats(YoungPLABSize, PLABWeight),
1774 _old_plab_stats(OldPLABSize, PLABWeight),
1775 _expand_heap_after_alloc_failure(true),
1776 _surviving_young_words(NULL),
1777 _old_marking_cycles_started(0),
1778 _old_marking_cycles_completed(0),
1779 _concurrent_cycle_started(false),
1780 _heap_summary_sent(false),
1781 _in_cset_fast_test(),
1782 _dirty_cards_region_list(NULL),
1783 _worker_cset_start_region(NULL),
1784 _worker_cset_start_region_time_stamp(NULL),
1785 _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1786 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1787 _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1788 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1789
1790 _g1h = this;
1791
1792 _allocator = G1Allocator::create_allocator(_g1h);
1793 _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1794
1795 int n_queues = MAX2((int)ParallelGCThreads, 1);
1796 _task_queues = new RefToScanQueueSet(n_queues);
1797
1798 uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1799 assert(n_rem_sets > 0, "Invariant.");
1800
1801 _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1802 _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1803 _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1804
1805 for (int i = 0; i < n_queues; i++) {
1806 RefToScanQueue* q = new RefToScanQueue();
1807 q->initialize();
1808 _task_queues->register_queue(i, q);
1809 ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1810 }
1811 clear_cset_start_regions();
1812
1813 // Initialize the G1EvacuationFailureALot counters and flags.
1814 NOT_PRODUCT(reset_evacuation_should_fail();)
1815
1816 guarantee(_task_queues != NULL, "task_queues allocation failure.");
1817 }
1818
1819 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1820 size_t size,
1821 size_t translation_factor) {
1822 // Allocate a new reserved space, preferring to use large pages.
1823 ReservedSpace rs(size, true);
1824 G1RegionToSpaceMapper* result =
1825 G1RegionToSpaceMapper::create_mapper(rs,
1826 size,
1827 rs.alignment(),
1828 HeapRegion::GrainBytes,
1829 translation_factor,
1830 mtGC);
1831 if (TracePageSizes) {
1832 gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1833 description, rs.alignment(), p2i(rs.base()), rs.size(), rs.alignment(), size);
1834 }
1835 return result;
1836 }
1837
1838 jint G1CollectedHeap::initialize() {
1839 CollectedHeap::pre_initialize();
1840 os::enable_vtime();
1841
1842 G1Log::init();
1843
1844 // Necessary to satisfy locking discipline assertions.
1845
1846 MutexLocker x(Heap_lock);
1847
1848 // We have to initialize the printer before committing the heap, as
1849 // it will be used then.
1850 _hr_printer.set_active(G1PrintHeapRegions);
1851
1852 // While there are no constraints in the GC code that HeapWordSize
1853 // be any particular value, there are multiple other areas in the
1854 // system which believe this to be true (e.g. oop->object_size in some
1855 // cases incorrectly returns the size in wordSize units rather than
1856 // HeapWordSize).
1857 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1858
1859 size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1860 size_t max_byte_size = collector_policy()->max_heap_byte_size();
1861 size_t heap_alignment = collector_policy()->heap_alignment();
1862
1863 // Ensure that the sizes are properly aligned.
1864 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1865 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1866 Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1867
1868 _refine_cte_cl = new RefineCardTableEntryClosure();
1869
1870 _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1871
1872 // Reserve the maximum.
1873
1874 // When compressed oops are enabled, the preferred heap base
1875 // is calculated by subtracting the requested size from the
1876 // 32Gb boundary and using the result as the base address for
1877 // heap reservation. If the requested size is not aligned to
1878 // HeapRegion::GrainBytes (i.e. the alignment that is passed
1879 // into the ReservedHeapSpace constructor) then the actual
1880 // base of the reserved heap may end up differing from the
1881 // address that was requested (i.e. the preferred heap base).
1882 // If this happens then we could end up using a non-optimal
1883 // compressed oops mode.
1884
1885 ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1886 heap_alignment);
1887
1888 initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1889
1890 // Create the barrier set for the entire reserved region.
1891 G1SATBCardTableLoggingModRefBS* bs
1892 = new G1SATBCardTableLoggingModRefBS(reserved_region());
1893 bs->initialize();
1894 assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1895 set_barrier_set(bs);
1896
1897 // Also create a G1 rem set.
1898 _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1899
1900 // Carve out the G1 part of the heap.
1901
1902 ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1903 G1RegionToSpaceMapper* heap_storage =
1904 G1RegionToSpaceMapper::create_mapper(g1_rs,
1905 g1_rs.size(),
1906 UseLargePages ? os::large_page_size() : os::vm_page_size(),
1907 HeapRegion::GrainBytes,
1908 1,
1909 mtJavaHeap);
1910 heap_storage->set_mapping_changed_listener(&_listener);
1911
1912 // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1913 G1RegionToSpaceMapper* bot_storage =
1914 create_aux_memory_mapper("Block offset table",
1915 G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1916 G1BlockOffsetSharedArray::N_bytes);
1917
1918 ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1919 G1RegionToSpaceMapper* cardtable_storage =
1920 create_aux_memory_mapper("Card table",
1921 G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1922 G1BlockOffsetSharedArray::N_bytes);
1923
1924 G1RegionToSpaceMapper* card_counts_storage =
1925 create_aux_memory_mapper("Card counts table",
1926 G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1927 G1BlockOffsetSharedArray::N_bytes);
1928
1929 size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1930 G1RegionToSpaceMapper* prev_bitmap_storage =
1931 create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::mark_distance());
1932 G1RegionToSpaceMapper* next_bitmap_storage =
1933 create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::mark_distance());
1934
1935 _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1936 g1_barrier_set()->initialize(cardtable_storage);
1937 // Do later initialization work for concurrent refinement.
1938 _cg1r->init(card_counts_storage);
1939
1940 // 6843694 - ensure that the maximum region index can fit
1941 // in the remembered set structures.
1942 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1943 guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1944
1945 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1946 guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1947 guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1948 "too many cards per region");
1949
1950 FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1951
1952 _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1953
1954 _g1h = this;
1955
1956 _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1957 _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1958
1959 // Create the ConcurrentMark data structure and thread.
1960 // (Must do this late, so that "max_regions" is defined.)
1961 _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1962 if (_cm == NULL || !_cm->completed_initialization()) {
1963 vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1964 return JNI_ENOMEM;
1965 }
1966 _cmThread = _cm->cmThread();
1967
1968 // Initialize the from_card cache structure of HeapRegionRemSet.
1969 HeapRegionRemSet::init_heap(max_regions());
1970
1971 // Now expand into the initial heap size.
1972 if (!expand(init_byte_size)) {
1973 vm_shutdown_during_initialization("Failed to allocate initial heap.");
1974 return JNI_ENOMEM;
1975 }
1976
1977 // Perform any initialization actions delegated to the policy.
1978 g1_policy()->init();
1979
1980 JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1981 SATB_Q_FL_lock,
1982 G1SATBProcessCompletedThreshold,
1983 Shared_SATB_Q_lock);
1984
1985 JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1986 DirtyCardQ_CBL_mon,
1987 DirtyCardQ_FL_lock,
1988 concurrent_g1_refine()->yellow_zone(),
1989 concurrent_g1_refine()->red_zone(),
1990 Shared_DirtyCardQ_lock);
1991
1992 dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1993 DirtyCardQ_CBL_mon,
1994 DirtyCardQ_FL_lock,
1995 -1, // never trigger processing
1996 -1, // no limit on length
1997 Shared_DirtyCardQ_lock,
1998 &JavaThread::dirty_card_queue_set());
1999
2000 // Initialize the card queue set used to hold cards containing
2001 // references into the collection set.
2002 _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2003 DirtyCardQ_CBL_mon,
2004 DirtyCardQ_FL_lock,
2005 -1, // never trigger processing
2006 -1, // no limit on length
2007 Shared_DirtyCardQ_lock,
2008 &JavaThread::dirty_card_queue_set());
2009
2010 // Here we allocate the dummy HeapRegion that is required by the
2011 // G1AllocRegion class.
2012 HeapRegion* dummy_region = _hrm.get_dummy_region();
2013
2014 // We'll re-use the same region whether the alloc region will
2015 // require BOT updates or not and, if it doesn't, then a non-young
2016 // region will complain that it cannot support allocations without
2017 // BOT updates. So we'll tag the dummy region as eden to avoid that.
2018 dummy_region->set_eden();
2019 // Make sure it's full.
2020 dummy_region->set_top(dummy_region->end());
2021 G1AllocRegion::setup(this, dummy_region);
2022
2023 _allocator->init_mutator_alloc_region();
2024
2025 // Do create of the monitoring and management support so that
2026 // values in the heap have been properly initialized.
2027 _g1mm = new G1MonitoringSupport(this);
2028
2029 G1StringDedup::initialize();
2030
2031 return JNI_OK;
2032 }
2033
2034 void G1CollectedHeap::stop() {
2035 // Stop all concurrent threads. We do this to make sure these threads
2036 // do not continue to execute and access resources (e.g. gclog_or_tty)
2037 // that are destroyed during shutdown.
2038 _cg1r->stop();
2039 _cmThread->stop();
2040 if (G1StringDedup::is_enabled()) {
2041 G1StringDedup::stop();
2042 }
2043 }
2044
2045 void G1CollectedHeap::clear_humongous_is_live_table() {
2046 guarantee(G1EagerReclaimHumongousObjects, "Should only be called if true");
2047 _humongous_is_live.clear();
2048 }
2049
2050 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2051 return HeapRegion::max_region_size();
2052 }
2053
2054 void G1CollectedHeap::ref_processing_init() {
2055 // Reference processing in G1 currently works as follows:
2056 //
2057 // * There are two reference processor instances. One is
2058 // used to record and process discovered references
2059 // during concurrent marking; the other is used to
2060 // record and process references during STW pauses
2061 // (both full and incremental).
2062 // * Both ref processors need to 'span' the entire heap as
2063 // the regions in the collection set may be dotted around.
2064 //
2065 // * For the concurrent marking ref processor:
2066 // * Reference discovery is enabled at initial marking.
2067 // * Reference discovery is disabled and the discovered
2068 // references processed etc during remarking.
2069 // * Reference discovery is MT (see below).
2070 // * Reference discovery requires a barrier (see below).
2071 // * Reference processing may or may not be MT
2072 // (depending on the value of ParallelRefProcEnabled
2073 // and ParallelGCThreads).
2074 // * A full GC disables reference discovery by the CM
2075 // ref processor and abandons any entries on it's
2076 // discovered lists.
2077 //
2078 // * For the STW processor:
2079 // * Non MT discovery is enabled at the start of a full GC.
2080 // * Processing and enqueueing during a full GC is non-MT.
2081 // * During a full GC, references are processed after marking.
2082 //
2083 // * Discovery (may or may not be MT) is enabled at the start
2084 // of an incremental evacuation pause.
2085 // * References are processed near the end of a STW evacuation pause.
2086 // * For both types of GC:
2087 // * Discovery is atomic - i.e. not concurrent.
2088 // * Reference discovery will not need a barrier.
2089
2090 SharedHeap::ref_processing_init();
2091 MemRegion mr = reserved_region();
2092
2093 // Concurrent Mark ref processor
2094 _ref_processor_cm =
2095 new ReferenceProcessor(mr, // span
2096 ParallelRefProcEnabled && (ParallelGCThreads > 1),
2097 // mt processing
2098 (int) ParallelGCThreads,
2099 // degree of mt processing
2100 (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2101 // mt discovery
2102 (int) MAX2(ParallelGCThreads, ConcGCThreads),
2103 // degree of mt discovery
2104 false,
2105 // Reference discovery is not atomic
2106 &_is_alive_closure_cm);
2107 // is alive closure
2108 // (for efficiency/performance)
2109
2110 // STW ref processor
2111 _ref_processor_stw =
2112 new ReferenceProcessor(mr, // span
2113 ParallelRefProcEnabled && (ParallelGCThreads > 1),
2114 // mt processing
2115 MAX2((int)ParallelGCThreads, 1),
2116 // degree of mt processing
2117 (ParallelGCThreads > 1),
2118 // mt discovery
2119 MAX2((int)ParallelGCThreads, 1),
2120 // degree of mt discovery
2121 true,
2122 // Reference discovery is atomic
2123 &_is_alive_closure_stw);
2124 // is alive closure
2125 // (for efficiency/performance)
2126 }
2127
2128 size_t G1CollectedHeap::capacity() const {
2129 return _hrm.length() * HeapRegion::GrainBytes;
2130 }
2131
2132 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2133 assert(!hr->is_continues_humongous(), "pre-condition");
2134 hr->reset_gc_time_stamp();
2135 if (hr->is_starts_humongous()) {
2136 uint first_index = hr->hrm_index() + 1;
2137 uint last_index = hr->last_hc_index();
2138 for (uint i = first_index; i < last_index; i += 1) {
2139 HeapRegion* chr = region_at(i);
2140 assert(chr->is_continues_humongous(), "sanity");
2141 chr->reset_gc_time_stamp();
2142 }
2143 }
2144 }
2145
2146 #ifndef PRODUCT
2147 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2148 private:
2149 unsigned _gc_time_stamp;
2150 bool _failures;
2151
2152 public:
2153 CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2154 _gc_time_stamp(gc_time_stamp), _failures(false) { }
2155
2156 virtual bool doHeapRegion(HeapRegion* hr) {
2157 unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2158 if (_gc_time_stamp != region_gc_time_stamp) {
2159 gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2160 "expected %d", HR_FORMAT_PARAMS(hr),
2161 region_gc_time_stamp, _gc_time_stamp);
2162 _failures = true;
2163 }
2164 return false;
2165 }
2166
2167 bool failures() { return _failures; }
2168 };
2169
2170 void G1CollectedHeap::check_gc_time_stamps() {
2171 CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2172 heap_region_iterate(&cl);
2173 guarantee(!cl.failures(), "all GC time stamps should have been reset");
2174 }
2175 #endif // PRODUCT
2176
2177 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2178 DirtyCardQueue* into_cset_dcq,
2179 bool concurrent,
2180 uint worker_i) {
2181 // Clean cards in the hot card cache
2182 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2183 hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2184
2185 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2186 size_t n_completed_buffers = 0;
2187 while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2188 n_completed_buffers++;
2189 }
2190 g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2191 dcqs.clear_n_completed_buffers();
2192 assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2193 }
2194
2195
2196 // Computes the sum of the storage used by the various regions.
2197 size_t G1CollectedHeap::used() const {
2198 return _allocator->used();
2199 }
2200
2201 size_t G1CollectedHeap::used_unlocked() const {
2202 return _allocator->used_unlocked();
2203 }
2204
2205 class SumUsedClosure: public HeapRegionClosure {
2206 size_t _used;
2207 public:
2208 SumUsedClosure() : _used(0) {}
2209 bool doHeapRegion(HeapRegion* r) {
2210 if (!r->is_continues_humongous()) {
2211 _used += r->used();
2212 }
2213 return false;
2214 }
2215 size_t result() { return _used; }
2216 };
2217
2218 size_t G1CollectedHeap::recalculate_used() const {
2219 double recalculate_used_start = os::elapsedTime();
2220
2221 SumUsedClosure blk;
2222 heap_region_iterate(&blk);
2223
2224 g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2225 return blk.result();
2226 }
2227
2228 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2229 switch (cause) {
2230 case GCCause::_gc_locker: return GCLockerInvokesConcurrent;
2231 case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent;
2232 case GCCause::_g1_humongous_allocation: return true;
2233 case GCCause::_update_allocation_context_stats_inc: return true;
2234 case GCCause::_wb_conc_mark: return true;
2235 default: return false;
2236 }
2237 }
2238
2239 #ifndef PRODUCT
2240 void G1CollectedHeap::allocate_dummy_regions() {
2241 // Let's fill up most of the region
2242 size_t word_size = HeapRegion::GrainWords - 1024;
2243 // And as a result the region we'll allocate will be humongous.
2244 guarantee(is_humongous(word_size), "sanity");
2245
2246 for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2247 // Let's use the existing mechanism for the allocation
2248 HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2249 AllocationContext::system());
2250 if (dummy_obj != NULL) {
2251 MemRegion mr(dummy_obj, word_size);
2252 CollectedHeap::fill_with_object(mr);
2253 } else {
2254 // If we can't allocate once, we probably cannot allocate
2255 // again. Let's get out of the loop.
2256 break;
2257 }
2258 }
2259 }
2260 #endif // !PRODUCT
2261
2262 void G1CollectedHeap::increment_old_marking_cycles_started() {
2263 assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2264 _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2265 err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2266 _old_marking_cycles_started, _old_marking_cycles_completed));
2267
2268 _old_marking_cycles_started++;
2269 }
2270
2271 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2272 MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2273
2274 // We assume that if concurrent == true, then the caller is a
2275 // concurrent thread that was joined the Suspendible Thread
2276 // Set. If there's ever a cheap way to check this, we should add an
2277 // assert here.
2278
2279 // Given that this method is called at the end of a Full GC or of a
2280 // concurrent cycle, and those can be nested (i.e., a Full GC can
2281 // interrupt a concurrent cycle), the number of full collections
2282 // completed should be either one (in the case where there was no
2283 // nesting) or two (when a Full GC interrupted a concurrent cycle)
2284 // behind the number of full collections started.
2285
2286 // This is the case for the inner caller, i.e. a Full GC.
2287 assert(concurrent ||
2288 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2289 (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2290 err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2291 "is inconsistent with _old_marking_cycles_completed = %u",
2292 _old_marking_cycles_started, _old_marking_cycles_completed));
2293
2294 // This is the case for the outer caller, i.e. the concurrent cycle.
2295 assert(!concurrent ||
2296 (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2297 err_msg("for outer caller (concurrent cycle): "
2298 "_old_marking_cycles_started = %u "
2299 "is inconsistent with _old_marking_cycles_completed = %u",
2300 _old_marking_cycles_started, _old_marking_cycles_completed));
2301
2302 _old_marking_cycles_completed += 1;
2303
2304 // We need to clear the "in_progress" flag in the CM thread before
2305 // we wake up any waiters (especially when ExplicitInvokesConcurrent
2306 // is set) so that if a waiter requests another System.gc() it doesn't
2307 // incorrectly see that a marking cycle is still in progress.
2308 if (concurrent) {
2309 _cmThread->clear_in_progress();
2310 }
2311
2312 // This notify_all() will ensure that a thread that called
2313 // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2314 // and it's waiting for a full GC to finish will be woken up. It is
2315 // waiting in VM_G1IncCollectionPause::doit_epilogue().
2316 FullGCCount_lock->notify_all();
2317 }
2318
2319 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2320 _concurrent_cycle_started = true;
2321 _gc_timer_cm->register_gc_start(start_time);
2322
2323 _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2324 trace_heap_before_gc(_gc_tracer_cm);
2325 }
2326
2327 void G1CollectedHeap::register_concurrent_cycle_end() {
2328 if (_concurrent_cycle_started) {
2329 if (_cm->has_aborted()) {
2330 _gc_tracer_cm->report_concurrent_mode_failure();
2331 }
2332
2333 _gc_timer_cm->register_gc_end();
2334 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2335
2336 // Clear state variables to prepare for the next concurrent cycle.
2337 _concurrent_cycle_started = false;
2338 _heap_summary_sent = false;
2339 }
2340 }
2341
2342 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2343 if (_concurrent_cycle_started) {
2344 // This function can be called when:
2345 // the cleanup pause is run
2346 // the concurrent cycle is aborted before the cleanup pause.
2347 // the concurrent cycle is aborted after the cleanup pause,
2348 // but before the concurrent cycle end has been registered.
2349 // Make sure that we only send the heap information once.
2350 if (!_heap_summary_sent) {
2351 trace_heap_after_gc(_gc_tracer_cm);
2352 _heap_summary_sent = true;
2353 }
2354 }
2355 }
2356
2357 G1YCType G1CollectedHeap::yc_type() {
2358 bool is_young = g1_policy()->gcs_are_young();
2359 bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2360 bool is_during_mark = mark_in_progress();
2361
2362 if (is_initial_mark) {
2363 return InitialMark;
2364 } else if (is_during_mark) {
2365 return DuringMark;
2366 } else if (is_young) {
2367 return Normal;
2368 } else {
2369 return Mixed;
2370 }
2371 }
2372
2373 void G1CollectedHeap::collect(GCCause::Cause cause) {
2374 assert_heap_not_locked();
2375
2376 uint gc_count_before;
2377 uint old_marking_count_before;
2378 uint full_gc_count_before;
2379 bool retry_gc;
2380
2381 do {
2382 retry_gc = false;
2383
2384 {
2385 MutexLocker ml(Heap_lock);
2386
2387 // Read the GC count while holding the Heap_lock
2388 gc_count_before = total_collections();
2389 full_gc_count_before = total_full_collections();
2390 old_marking_count_before = _old_marking_cycles_started;
2391 }
2392
2393 if (should_do_concurrent_full_gc(cause)) {
2394 // Schedule an initial-mark evacuation pause that will start a
2395 // concurrent cycle. We're setting word_size to 0 which means that
2396 // we are not requesting a post-GC allocation.
2397 VM_G1IncCollectionPause op(gc_count_before,
2398 0, /* word_size */
2399 true, /* should_initiate_conc_mark */
2400 g1_policy()->max_pause_time_ms(),
2401 cause);
2402 op.set_allocation_context(AllocationContext::current());
2403
2404 VMThread::execute(&op);
2405 if (!op.pause_succeeded()) {
2406 if (old_marking_count_before == _old_marking_cycles_started) {
2407 retry_gc = op.should_retry_gc();
2408 } else {
2409 // A Full GC happened while we were trying to schedule the
2410 // initial-mark GC. No point in starting a new cycle given
2411 // that the whole heap was collected anyway.
2412 }
2413
2414 if (retry_gc) {
2415 if (GC_locker::is_active_and_needs_gc()) {
2416 GC_locker::stall_until_clear();
2417 }
2418 }
2419 }
2420 } else {
2421 if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2422 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2423
2424 // Schedule a standard evacuation pause. We're setting word_size
2425 // to 0 which means that we are not requesting a post-GC allocation.
2426 VM_G1IncCollectionPause op(gc_count_before,
2427 0, /* word_size */
2428 false, /* should_initiate_conc_mark */
2429 g1_policy()->max_pause_time_ms(),
2430 cause);
2431 VMThread::execute(&op);
2432 } else {
2433 // Schedule a Full GC.
2434 VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2435 VMThread::execute(&op);
2436 }
2437 }
2438 } while (retry_gc);
2439 }
2440
2441 bool G1CollectedHeap::is_in(const void* p) const {
2442 if (_hrm.reserved().contains(p)) {
2443 // Given that we know that p is in the reserved space,
2444 // heap_region_containing_raw() should successfully
2445 // return the containing region.
2446 HeapRegion* hr = heap_region_containing_raw(p);
2447 return hr->is_in(p);
2448 } else {
2449 return false;
2450 }
2451 }
2452
2453 #ifdef ASSERT
2454 bool G1CollectedHeap::is_in_exact(const void* p) const {
2455 bool contains = reserved_region().contains(p);
2456 bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2457 if (contains && available) {
2458 return true;
2459 } else {
2460 return false;
2461 }
2462 }
2463 #endif
2464
2465 // Iteration functions.
2466
2467 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2468
2469 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2470 ExtendedOopClosure* _cl;
2471 public:
2472 IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2473 bool doHeapRegion(HeapRegion* r) {
2474 if (!r->is_continues_humongous()) {
2475 r->oop_iterate(_cl);
2476 }
2477 return false;
2478 }
2479 };
2480
2481 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2482 IterateOopClosureRegionClosure blk(cl);
2483 heap_region_iterate(&blk);
2484 }
2485
2486 // Iterates an ObjectClosure over all objects within a HeapRegion.
2487
2488 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2489 ObjectClosure* _cl;
2490 public:
2491 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2492 bool doHeapRegion(HeapRegion* r) {
2493 if (!r->is_continues_humongous()) {
2494 r->object_iterate(_cl);
2495 }
2496 return false;
2497 }
2498 };
2499
2500 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2501 IterateObjectClosureRegionClosure blk(cl);
2502 heap_region_iterate(&blk);
2503 }
2504
2505 // Calls a SpaceClosure on a HeapRegion.
2506
2507 class SpaceClosureRegionClosure: public HeapRegionClosure {
2508 SpaceClosure* _cl;
2509 public:
2510 SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2511 bool doHeapRegion(HeapRegion* r) {
2512 _cl->do_space(r);
2513 return false;
2514 }
2515 };
2516
2517 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2518 SpaceClosureRegionClosure blk(cl);
2519 heap_region_iterate(&blk);
2520 }
2521
2522 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2523 _hrm.iterate(cl);
2524 }
2525
2526 void
2527 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2528 uint worker_id,
2529 HeapRegionClaimer *hrclaimer,
2530 bool concurrent) const {
2531 _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2532 }
2533
2534 // Clear the cached CSet starting regions and (more importantly)
2535 // the time stamps. Called when we reset the GC time stamp.
2536 void G1CollectedHeap::clear_cset_start_regions() {
2537 assert(_worker_cset_start_region != NULL, "sanity");
2538 assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2539
2540 int n_queues = MAX2((int)ParallelGCThreads, 1);
2541 for (int i = 0; i < n_queues; i++) {
2542 _worker_cset_start_region[i] = NULL;
2543 _worker_cset_start_region_time_stamp[i] = 0;
2544 }
2545 }
2546
2547 // Given the id of a worker, obtain or calculate a suitable
2548 // starting region for iterating over the current collection set.
2549 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2550 assert(get_gc_time_stamp() > 0, "should have been updated by now");
2551
2552 HeapRegion* result = NULL;
2553 unsigned gc_time_stamp = get_gc_time_stamp();
2554
2555 if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2556 // Cached starting region for current worker was set
2557 // during the current pause - so it's valid.
2558 // Note: the cached starting heap region may be NULL
2559 // (when the collection set is empty).
2560 result = _worker_cset_start_region[worker_i];
2561 assert(result == NULL || result->in_collection_set(), "sanity");
2562 return result;
2563 }
2564
2565 // The cached entry was not valid so let's calculate
2566 // a suitable starting heap region for this worker.
2567
2568 // We want the parallel threads to start their collection
2569 // set iteration at different collection set regions to
2570 // avoid contention.
2571 // If we have:
2572 // n collection set regions
2573 // p threads
2574 // Then thread t will start at region floor ((t * n) / p)
2575
2576 result = g1_policy()->collection_set();
2577 uint cs_size = g1_policy()->cset_region_length();
2578 uint active_workers = workers()->active_workers();
2579 assert(UseDynamicNumberOfGCThreads ||
2580 active_workers == workers()->total_workers(),
2581 "Unless dynamic should use total workers");
2582
2583 uint end_ind = (cs_size * worker_i) / active_workers;
2584 uint start_ind = 0;
2585
2586 if (worker_i > 0 &&
2587 _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2588 // Previous workers starting region is valid
2589 // so let's iterate from there
2590 start_ind = (cs_size * (worker_i - 1)) / active_workers;
2591 result = _worker_cset_start_region[worker_i - 1];
2592 }
2593
2594 for (uint i = start_ind; i < end_ind; i++) {
2595 result = result->next_in_collection_set();
2596 }
2597
2598 // Note: the calculated starting heap region may be NULL
2599 // (when the collection set is empty).
2600 assert(result == NULL || result->in_collection_set(), "sanity");
2601 assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2602 "should be updated only once per pause");
2603 _worker_cset_start_region[worker_i] = result;
2604 OrderAccess::storestore();
2605 _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2606 return result;
2607 }
2608
2609 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2610 HeapRegion* r = g1_policy()->collection_set();
2611 while (r != NULL) {
2612 HeapRegion* next = r->next_in_collection_set();
2613 if (cl->doHeapRegion(r)) {
2614 cl->incomplete();
2615 return;
2616 }
2617 r = next;
2618 }
2619 }
2620
2621 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2622 HeapRegionClosure *cl) {
2623 if (r == NULL) {
2624 // The CSet is empty so there's nothing to do.
2625 return;
2626 }
2627
2628 assert(r->in_collection_set(),
2629 "Start region must be a member of the collection set.");
2630 HeapRegion* cur = r;
2631 while (cur != NULL) {
2632 HeapRegion* next = cur->next_in_collection_set();
2633 if (cl->doHeapRegion(cur) && false) {
2634 cl->incomplete();
2635 return;
2636 }
2637 cur = next;
2638 }
2639 cur = g1_policy()->collection_set();
2640 while (cur != r) {
2641 HeapRegion* next = cur->next_in_collection_set();
2642 if (cl->doHeapRegion(cur) && false) {
2643 cl->incomplete();
2644 return;
2645 }
2646 cur = next;
2647 }
2648 }
2649
2650 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2651 HeapRegion* result = _hrm.next_region_in_heap(from);
2652 while (result != NULL && result->is_humongous()) {
2653 result = _hrm.next_region_in_heap(result);
2654 }
2655 return result;
2656 }
2657
2658 Space* G1CollectedHeap::space_containing(const void* addr) const {
2659 return heap_region_containing(addr);
2660 }
2661
2662 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2663 Space* sp = space_containing(addr);
2664 return sp->block_start(addr);
2665 }
2666
2667 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2668 Space* sp = space_containing(addr);
2669 return sp->block_size(addr);
2670 }
2671
2672 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2673 Space* sp = space_containing(addr);
2674 return sp->block_is_obj(addr);
2675 }
2676
2677 bool G1CollectedHeap::supports_tlab_allocation() const {
2678 return true;
2679 }
2680
2681 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2682 return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2683 }
2684
2685 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2686 return young_list()->eden_used_bytes();
2687 }
2688
2689 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2690 // must be smaller than the humongous object limit.
2691 size_t G1CollectedHeap::max_tlab_size() const {
2692 return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2693 }
2694
2695 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2696 // Return the remaining space in the cur alloc region, but not less than
2697 // the min TLAB size.
2698
2699 // Also, this value can be at most the humongous object threshold,
2700 // since we can't allow tlabs to grow big enough to accommodate
2701 // humongous objects.
2702
2703 HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2704 size_t max_tlab = max_tlab_size() * wordSize;
2705 if (hr == NULL) {
2706 return max_tlab;
2707 } else {
2708 return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2709 }
2710 }
2711
2712 size_t G1CollectedHeap::max_capacity() const {
2713 return _hrm.reserved().byte_size();
2714 }
2715
2716 jlong G1CollectedHeap::millis_since_last_gc() {
2717 // assert(false, "NYI");
2718 return 0;
2719 }
2720
2721 void G1CollectedHeap::prepare_for_verify() {
2722 if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2723 ensure_parsability(false);
2724 }
2725 g1_rem_set()->prepare_for_verify();
2726 }
2727
2728 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2729 VerifyOption vo) {
2730 switch (vo) {
2731 case VerifyOption_G1UsePrevMarking:
2732 return hr->obj_allocated_since_prev_marking(obj);
2733 case VerifyOption_G1UseNextMarking:
2734 return hr->obj_allocated_since_next_marking(obj);
2735 case VerifyOption_G1UseMarkWord:
2736 return false;
2737 default:
2738 ShouldNotReachHere();
2739 }
2740 return false; // keep some compilers happy
2741 }
2742
2743 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2744 switch (vo) {
2745 case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2746 case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2747 case VerifyOption_G1UseMarkWord: return NULL;
2748 default: ShouldNotReachHere();
2749 }
2750 return NULL; // keep some compilers happy
2751 }
2752
2753 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2754 switch (vo) {
2755 case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2756 case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2757 case VerifyOption_G1UseMarkWord: return obj->is_gc_marked();
2758 default: ShouldNotReachHere();
2759 }
2760 return false; // keep some compilers happy
2761 }
2762
2763 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2764 switch (vo) {
2765 case VerifyOption_G1UsePrevMarking: return "PTAMS";
2766 case VerifyOption_G1UseNextMarking: return "NTAMS";
2767 case VerifyOption_G1UseMarkWord: return "NONE";
2768 default: ShouldNotReachHere();
2769 }
2770 return NULL; // keep some compilers happy
2771 }
2772
2773 class VerifyRootsClosure: public OopClosure {
2774 private:
2775 G1CollectedHeap* _g1h;
2776 VerifyOption _vo;
2777 bool _failures;
2778 public:
2779 // _vo == UsePrevMarking -> use "prev" marking information,
2780 // _vo == UseNextMarking -> use "next" marking information,
2781 // _vo == UseMarkWord -> use mark word from object header.
2782 VerifyRootsClosure(VerifyOption vo) :
2783 _g1h(G1CollectedHeap::heap()),
2784 _vo(vo),
2785 _failures(false) { }
2786
2787 bool failures() { return _failures; }
2788
2789 template <class T> void do_oop_nv(T* p) {
2790 T heap_oop = oopDesc::load_heap_oop(p);
2791 if (!oopDesc::is_null(heap_oop)) {
2792 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2793 if (_g1h->is_obj_dead_cond(obj, _vo)) {
2794 gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2795 "points to dead obj "PTR_FORMAT, p, (void*) obj);
2796 if (_vo == VerifyOption_G1UseMarkWord) {
2797 gclog_or_tty->print_cr(" Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2798 }
2799 obj->print_on(gclog_or_tty);
2800 _failures = true;
2801 }
2802 }
2803 }
2804
2805 void do_oop(oop* p) { do_oop_nv(p); }
2806 void do_oop(narrowOop* p) { do_oop_nv(p); }
2807 };
2808
2809 class G1VerifyCodeRootOopClosure: public OopClosure {
2810 G1CollectedHeap* _g1h;
2811 OopClosure* _root_cl;
2812 nmethod* _nm;
2813 VerifyOption _vo;
2814 bool _failures;
2815
2816 template <class T> void do_oop_work(T* p) {
2817 // First verify that this root is live
2818 _root_cl->do_oop(p);
2819
2820 if (!G1VerifyHeapRegionCodeRoots) {
2821 // We're not verifying the code roots attached to heap region.
2822 return;
2823 }
2824
2825 // Don't check the code roots during marking verification in a full GC
2826 if (_vo == VerifyOption_G1UseMarkWord) {
2827 return;
2828 }
2829
2830 // Now verify that the current nmethod (which contains p) is
2831 // in the code root list of the heap region containing the
2832 // object referenced by p.
2833
2834 T heap_oop = oopDesc::load_heap_oop(p);
2835 if (!oopDesc::is_null(heap_oop)) {
2836 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2837
2838 // Now fetch the region containing the object
2839 HeapRegion* hr = _g1h->heap_region_containing(obj);
2840 HeapRegionRemSet* hrrs = hr->rem_set();
2841 // Verify that the strong code root list for this region
2842 // contains the nmethod
2843 if (!hrrs->strong_code_roots_list_contains(_nm)) {
2844 gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2845 "from nmethod "PTR_FORMAT" not in strong "
2846 "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2847 p, _nm, hr->bottom(), hr->end());
2848 _failures = true;
2849 }
2850 }
2851 }
2852
2853 public:
2854 G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2855 _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2856
2857 void do_oop(oop* p) { do_oop_work(p); }
2858 void do_oop(narrowOop* p) { do_oop_work(p); }
2859
2860 void set_nmethod(nmethod* nm) { _nm = nm; }
2861 bool failures() { return _failures; }
2862 };
2863
2864 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2865 G1VerifyCodeRootOopClosure* _oop_cl;
2866
2867 public:
2868 G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2869 _oop_cl(oop_cl) {}
2870
2871 void do_code_blob(CodeBlob* cb) {
2872 nmethod* nm = cb->as_nmethod_or_null();
2873 if (nm != NULL) {
2874 _oop_cl->set_nmethod(nm);
2875 nm->oops_do(_oop_cl);
2876 }
2877 }
2878 };
2879
2880 class YoungRefCounterClosure : public OopClosure {
2881 G1CollectedHeap* _g1h;
2882 int _count;
2883 public:
2884 YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2885 void do_oop(oop* p) { if (_g1h->is_in_young(*p)) { _count++; } }
2886 void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2887
2888 int count() { return _count; }
2889 void reset_count() { _count = 0; };
2890 };
2891
2892 class VerifyKlassClosure: public KlassClosure {
2893 YoungRefCounterClosure _young_ref_counter_closure;
2894 OopClosure *_oop_closure;
2895 public:
2896 VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2897 void do_klass(Klass* k) {
2898 k->oops_do(_oop_closure);
2899
2900 _young_ref_counter_closure.reset_count();
2901 k->oops_do(&_young_ref_counter_closure);
2902 if (_young_ref_counter_closure.count() > 0) {
2903 guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
2904 }
2905 }
2906 };
2907
2908 class VerifyLivenessOopClosure: public OopClosure {
2909 G1CollectedHeap* _g1h;
2910 VerifyOption _vo;
2911 public:
2912 VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2913 _g1h(g1h), _vo(vo)
2914 { }
2915 void do_oop(narrowOop *p) { do_oop_work(p); }
2916 void do_oop( oop *p) { do_oop_work(p); }
2917
2918 template <class T> void do_oop_work(T *p) {
2919 oop obj = oopDesc::load_decode_heap_oop(p);
2920 guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2921 "Dead object referenced by a not dead object");
2922 }
2923 };
2924
2925 class VerifyObjsInRegionClosure: public ObjectClosure {
2926 private:
2927 G1CollectedHeap* _g1h;
2928 size_t _live_bytes;
2929 HeapRegion *_hr;
2930 VerifyOption _vo;
2931 public:
2932 // _vo == UsePrevMarking -> use "prev" marking information,
2933 // _vo == UseNextMarking -> use "next" marking information,
2934 // _vo == UseMarkWord -> use mark word from object header.
2935 VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2936 : _live_bytes(0), _hr(hr), _vo(vo) {
2937 _g1h = G1CollectedHeap::heap();
2938 }
2939 void do_object(oop o) {
2940 VerifyLivenessOopClosure isLive(_g1h, _vo);
2941 assert(o != NULL, "Huh?");
2942 if (!_g1h->is_obj_dead_cond(o, _vo)) {
2943 // If the object is alive according to the mark word,
2944 // then verify that the marking information agrees.
2945 // Note we can't verify the contra-positive of the
2946 // above: if the object is dead (according to the mark
2947 // word), it may not be marked, or may have been marked
2948 // but has since became dead, or may have been allocated
2949 // since the last marking.
2950 if (_vo == VerifyOption_G1UseMarkWord) {
2951 guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2952 }
2953
2954 o->oop_iterate_no_header(&isLive);
2955 if (!_hr->obj_allocated_since_prev_marking(o)) {
2956 size_t obj_size = o->size(); // Make sure we don't overflow
2957 _live_bytes += (obj_size * HeapWordSize);
2958 }
2959 }
2960 }
2961 size_t live_bytes() { return _live_bytes; }
2962 };
2963
2964 class PrintObjsInRegionClosure : public ObjectClosure {
2965 HeapRegion *_hr;
2966 G1CollectedHeap *_g1;
2967 public:
2968 PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2969 _g1 = G1CollectedHeap::heap();
2970 };
2971
2972 void do_object(oop o) {
2973 if (o != NULL) {
2974 HeapWord *start = (HeapWord *) o;
2975 size_t word_sz = o->size();
2976 gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2977 " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2978 (void*) o, word_sz,
2979 _g1->isMarkedPrev(o),
2980 _g1->isMarkedNext(o),
2981 _hr->obj_allocated_since_prev_marking(o));
2982 HeapWord *end = start + word_sz;
2983 HeapWord *cur;
2984 int *val;
2985 for (cur = start; cur < end; cur++) {
2986 val = (int *) cur;
2987 gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
2988 }
2989 }
2990 }
2991 };
2992
2993 class VerifyRegionClosure: public HeapRegionClosure {
2994 private:
2995 bool _par;
2996 VerifyOption _vo;
2997 bool _failures;
2998 public:
2999 // _vo == UsePrevMarking -> use "prev" marking information,
3000 // _vo == UseNextMarking -> use "next" marking information,
3001 // _vo == UseMarkWord -> use mark word from object header.
3002 VerifyRegionClosure(bool par, VerifyOption vo)
3003 : _par(par),
3004 _vo(vo),
3005 _failures(false) {}
3006
3007 bool failures() {
3008 return _failures;
3009 }
3010
3011 bool doHeapRegion(HeapRegion* r) {
3012 if (!r->is_continues_humongous()) {
3013 bool failures = false;
3014 r->verify(_vo, &failures);
3015 if (failures) {
3016 _failures = true;
3017 } else {
3018 VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3019 r->object_iterate(¬_dead_yet_cl);
3020 if (_vo != VerifyOption_G1UseNextMarking) {
3021 if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3022 gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3023 "max_live_bytes "SIZE_FORMAT" "
3024 "< calculated "SIZE_FORMAT,
3025 r->bottom(), r->end(),
3026 r->max_live_bytes(),
3027 not_dead_yet_cl.live_bytes());
3028 _failures = true;
3029 }
3030 } else {
3031 // When vo == UseNextMarking we cannot currently do a sanity
3032 // check on the live bytes as the calculation has not been
3033 // finalized yet.
3034 }
3035 }
3036 }
3037 return false; // stop the region iteration if we hit a failure
3038 }
3039 };
3040
3041 // This is the task used for parallel verification of the heap regions
3042
3043 class G1ParVerifyTask: public AbstractGangTask {
3044 private:
3045 G1CollectedHeap* _g1h;
3046 VerifyOption _vo;
3047 bool _failures;
3048 HeapRegionClaimer _hrclaimer;
3049
3050 public:
3051 // _vo == UsePrevMarking -> use "prev" marking information,
3052 // _vo == UseNextMarking -> use "next" marking information,
3053 // _vo == UseMarkWord -> use mark word from object header.
3054 G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3055 AbstractGangTask("Parallel verify task"),
3056 _g1h(g1h),
3057 _vo(vo),
3058 _failures(false),
3059 _hrclaimer(g1h->workers()->active_workers()) {}
3060
3061 bool failures() {
3062 return _failures;
3063 }
3064
3065 void work(uint worker_id) {
3066 HandleMark hm;
3067 VerifyRegionClosure blk(true, _vo);
3068 _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3069 if (blk.failures()) {
3070 _failures = true;
3071 }
3072 }
3073 };
3074
3075 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3076 if (SafepointSynchronize::is_at_safepoint()) {
3077 assert(Thread::current()->is_VM_thread(),
3078 "Expected to be executed serially by the VM thread at this point");
3079
3080 if (!silent) { gclog_or_tty->print("Roots "); }
3081 VerifyRootsClosure rootsCl(vo);
3082 VerifyKlassClosure klassCl(this, &rootsCl);
3083 CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3084
3085 // We apply the relevant closures to all the oops in the
3086 // system dictionary, class loader data graph, the string table
3087 // and the nmethods in the code cache.
3088 G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3089 G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3090
3091 {
3092 G1RootProcessor root_processor(this);
3093 root_processor.process_all_roots(&rootsCl,
3094 &cldCl,
3095 &blobsCl);
3096 }
3097
3098 bool failures = rootsCl.failures() || codeRootsCl.failures();
3099
3100 if (vo != VerifyOption_G1UseMarkWord) {
3101 // If we're verifying during a full GC then the region sets
3102 // will have been torn down at the start of the GC. Therefore
3103 // verifying the region sets will fail. So we only verify
3104 // the region sets when not in a full GC.
3105 if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3106 verify_region_sets();
3107 }
3108
3109 if (!silent) { gclog_or_tty->print("HeapRegions "); }
3110 if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3111
3112 G1ParVerifyTask task(this, vo);
3113 assert(UseDynamicNumberOfGCThreads ||
3114 workers()->active_workers() == workers()->total_workers(),
3115 "If not dynamic should be using all the workers");
3116 int n_workers = workers()->active_workers();
3117 set_par_threads(n_workers);
3118 workers()->run_task(&task);
3119 set_par_threads(0);
3120 if (task.failures()) {
3121 failures = true;
3122 }
3123
3124 } else {
3125 VerifyRegionClosure blk(false, vo);
3126 heap_region_iterate(&blk);
3127 if (blk.failures()) {
3128 failures = true;
3129 }
3130 }
3131
3132 if (G1StringDedup::is_enabled()) {
3133 if (!silent) gclog_or_tty->print("StrDedup ");
3134 G1StringDedup::verify();
3135 }
3136
3137 if (failures) {
3138 gclog_or_tty->print_cr("Heap:");
3139 // It helps to have the per-region information in the output to
3140 // help us track down what went wrong. This is why we call
3141 // print_extended_on() instead of print_on().
3142 print_extended_on(gclog_or_tty);
3143 gclog_or_tty->cr();
3144 #ifndef PRODUCT
3145 if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3146 concurrent_mark()->print_reachable("at-verification-failure",
3147 vo, false /* all */);
3148 }
3149 #endif
3150 gclog_or_tty->flush();
3151 }
3152 guarantee(!failures, "there should not have been any failures");
3153 } else {
3154 if (!silent) {
3155 gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3156 if (G1StringDedup::is_enabled()) {
3157 gclog_or_tty->print(", StrDedup");
3158 }
3159 gclog_or_tty->print(") ");
3160 }
3161 }
3162 }
3163
3164 void G1CollectedHeap::verify(bool silent) {
3165 verify(silent, VerifyOption_G1UsePrevMarking);
3166 }
3167
3168 double G1CollectedHeap::verify(bool guard, const char* msg) {
3169 double verify_time_ms = 0.0;
3170
3171 if (guard && total_collections() >= VerifyGCStartAt) {
3172 double verify_start = os::elapsedTime();
3173 HandleMark hm; // Discard invalid handles created during verification
3174 prepare_for_verify();
3175 Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3176 verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3177 }
3178
3179 return verify_time_ms;
3180 }
3181
3182 void G1CollectedHeap::verify_before_gc() {
3183 double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3184 g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3185 }
3186
3187 void G1CollectedHeap::verify_after_gc() {
3188 double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3189 g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3190 }
3191
3192 class PrintRegionClosure: public HeapRegionClosure {
3193 outputStream* _st;
3194 public:
3195 PrintRegionClosure(outputStream* st) : _st(st) {}
3196 bool doHeapRegion(HeapRegion* r) {
3197 r->print_on(_st);
3198 return false;
3199 }
3200 };
3201
3202 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3203 const HeapRegion* hr,
3204 const VerifyOption vo) const {
3205 switch (vo) {
3206 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3207 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3208 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked();
3209 default: ShouldNotReachHere();
3210 }
3211 return false; // keep some compilers happy
3212 }
3213
3214 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3215 const VerifyOption vo) const {
3216 switch (vo) {
3217 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3218 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3219 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked();
3220 default: ShouldNotReachHere();
3221 }
3222 return false; // keep some compilers happy
3223 }
3224
3225 void G1CollectedHeap::print_on(outputStream* st) const {
3226 st->print(" %-20s", "garbage-first heap");
3227 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3228 capacity()/K, used_unlocked()/K);
3229 st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3230 _hrm.reserved().start(),
3231 _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3232 _hrm.reserved().end());
3233 st->cr();
3234 st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3235 uint young_regions = _young_list->length();
3236 st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3237 (size_t) young_regions * HeapRegion::GrainBytes / K);
3238 uint survivor_regions = g1_policy()->recorded_survivor_regions();
3239 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3240 (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3241 st->cr();
3242 MetaspaceAux::print_on(st);
3243 }
3244
3245 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3246 print_on(st);
3247
3248 // Print the per-region information.
3249 st->cr();
3250 st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3251 "HS=humongous(starts), HC=humongous(continues), "
3252 "CS=collection set, F=free, TS=gc time stamp, "
3253 "PTAMS=previous top-at-mark-start, "
3254 "NTAMS=next top-at-mark-start)");
3255 PrintRegionClosure blk(st);
3256 heap_region_iterate(&blk);
3257 }
3258
3259 void G1CollectedHeap::print_on_error(outputStream* st) const {
3260 this->CollectedHeap::print_on_error(st);
3261
3262 if (_cm != NULL) {
3263 st->cr();
3264 _cm->print_on_error(st);
3265 }
3266 }
3267
3268 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3269 workers()->print_worker_threads_on(st);
3270 _cmThread->print_on(st);
3271 st->cr();
3272 _cm->print_worker_threads_on(st);
3273 _cg1r->print_worker_threads_on(st);
3274 if (G1StringDedup::is_enabled()) {
3275 G1StringDedup::print_worker_threads_on(st);
3276 }
3277 }
3278
3279 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3280 workers()->threads_do(tc);
3281 tc->do_thread(_cmThread);
3282 _cg1r->threads_do(tc);
3283 if (G1StringDedup::is_enabled()) {
3284 G1StringDedup::threads_do(tc);
3285 }
3286 }
3287
3288 void G1CollectedHeap::print_tracing_info() const {
3289 // We'll overload this to mean "trace GC pause statistics."
3290 if (TraceYoungGenTime || TraceOldGenTime) {
3291 // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3292 // to that.
3293 g1_policy()->print_tracing_info();
3294 }
3295 if (G1SummarizeRSetStats) {
3296 g1_rem_set()->print_summary_info();
3297 }
3298 if (G1SummarizeConcMark) {
3299 concurrent_mark()->print_summary_info();
3300 }
3301 g1_policy()->print_yg_surv_rate_info();
3302 }
3303
3304 #ifndef PRODUCT
3305 // Helpful for debugging RSet issues.
3306
3307 class PrintRSetsClosure : public HeapRegionClosure {
3308 private:
3309 const char* _msg;
3310 size_t _occupied_sum;
3311
3312 public:
3313 bool doHeapRegion(HeapRegion* r) {
3314 HeapRegionRemSet* hrrs = r->rem_set();
3315 size_t occupied = hrrs->occupied();
3316 _occupied_sum += occupied;
3317
3318 gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3319 HR_FORMAT_PARAMS(r));
3320 if (occupied == 0) {
3321 gclog_or_tty->print_cr(" RSet is empty");
3322 } else {
3323 hrrs->print();
3324 }
3325 gclog_or_tty->print_cr("----------");
3326 return false;
3327 }
3328
3329 PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3330 gclog_or_tty->cr();
3331 gclog_or_tty->print_cr("========================================");
3332 gclog_or_tty->print_cr("%s", msg);
3333 gclog_or_tty->cr();
3334 }
3335
3336 ~PrintRSetsClosure() {
3337 gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3338 gclog_or_tty->print_cr("========================================");
3339 gclog_or_tty->cr();
3340 }
3341 };
3342
3343 void G1CollectedHeap::print_cset_rsets() {
3344 PrintRSetsClosure cl("Printing CSet RSets");
3345 collection_set_iterate(&cl);
3346 }
3347
3348 void G1CollectedHeap::print_all_rsets() {
3349 PrintRSetsClosure cl("Printing All RSets");;
3350 heap_region_iterate(&cl);
3351 }
3352 #endif // PRODUCT
3353
3354 G1CollectedHeap* G1CollectedHeap::heap() {
3355 assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3356 "not a garbage-first heap");
3357 return _g1h;
3358 }
3359
3360 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3361 // always_do_update_barrier = false;
3362 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3363 // Fill TLAB's and such
3364 accumulate_statistics_all_tlabs();
3365 ensure_parsability(true);
3366
3367 if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3368 (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3369 g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3370 }
3371 }
3372
3373 void G1CollectedHeap::gc_epilogue(bool full) {
3374
3375 if (G1SummarizeRSetStats &&
3376 (G1SummarizeRSetStatsPeriod > 0) &&
3377 // we are at the end of the GC. Total collections has already been increased.
3378 ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3379 g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3380 }
3381
3382 // FIXME: what is this about?
3383 // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3384 // is set.
3385 COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3386 "derived pointer present"));
3387 // always_do_update_barrier = true;
3388
3389 resize_all_tlabs();
3390 allocation_context_stats().update(full);
3391
3392 // We have just completed a GC. Update the soft reference
3393 // policy with the new heap occupancy
3394 Universe::update_heap_info_at_gc();
3395 }
3396
3397 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3398 uint gc_count_before,
3399 bool* succeeded,
3400 GCCause::Cause gc_cause) {
3401 assert_heap_not_locked_and_not_at_safepoint();
3402 g1_policy()->record_stop_world_start();
3403 VM_G1IncCollectionPause op(gc_count_before,
3404 word_size,
3405 false, /* should_initiate_conc_mark */
3406 g1_policy()->max_pause_time_ms(),
3407 gc_cause);
3408
3409 op.set_allocation_context(AllocationContext::current());
3410 VMThread::execute(&op);
3411
3412 HeapWord* result = op.result();
3413 bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3414 assert(result == NULL || ret_succeeded,
3415 "the result should be NULL if the VM did not succeed");
3416 *succeeded = ret_succeeded;
3417
3418 assert_heap_not_locked();
3419 return result;
3420 }
3421
3422 void
3423 G1CollectedHeap::doConcurrentMark() {
3424 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3425 if (!_cmThread->in_progress()) {
3426 _cmThread->set_started();
3427 CGC_lock->notify();
3428 }
3429 }
3430
3431 size_t G1CollectedHeap::pending_card_num() {
3432 size_t extra_cards = 0;
3433 JavaThread *curr = Threads::first();
3434 while (curr != NULL) {
3435 DirtyCardQueue& dcq = curr->dirty_card_queue();
3436 extra_cards += dcq.size();
3437 curr = curr->next();
3438 }
3439 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3440 size_t buffer_size = dcqs.buffer_size();
3441 size_t buffer_num = dcqs.completed_buffers_num();
3442
3443 // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3444 // in bytes - not the number of 'entries'. We need to convert
3445 // into a number of cards.
3446 return (buffer_size * buffer_num + extra_cards) / oopSize;
3447 }
3448
3449 size_t G1CollectedHeap::cards_scanned() {
3450 return g1_rem_set()->cardsScanned();
3451 }
3452
3453 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3454 HeapRegion* region = region_at(index);
3455 assert(region->is_starts_humongous(), "Must start a humongous object");
3456 return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3457 }
3458
3459 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3460 private:
3461 size_t _total_humongous;
3462 size_t _candidate_humongous;
3463
3464 DirtyCardQueue _dcq;
3465
3466 bool humongous_region_is_candidate(uint index) {
3467 HeapRegion* region = G1CollectedHeap::heap()->region_at(index);
3468 assert(region->is_starts_humongous(), "Must start a humongous object");
3469 HeapRegionRemSet* const rset = region->rem_set();
3470 bool const allow_stale_refs = G1EagerReclaimHumongousObjectsWithStaleRefs;
3471 return !oop(region->bottom())->is_objArray() &&
3472 ((allow_stale_refs && rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)) ||
3473 (!allow_stale_refs && rset->is_empty()));
3474 }
3475
3476 public:
3477 RegisterHumongousWithInCSetFastTestClosure()
3478 : _total_humongous(0),
3479 _candidate_humongous(0),
3480 _dcq(&JavaThread::dirty_card_queue_set()) {
3481 }
3482
3483 virtual bool doHeapRegion(HeapRegion* r) {
3484 if (!r->is_starts_humongous()) {
3485 return false;
3486 }
3487 G1CollectedHeap* g1h = G1CollectedHeap::heap();
3488
3489 uint region_idx = r->hrm_index();
3490 bool is_candidate = humongous_region_is_candidate(region_idx);
3491 // Is_candidate already filters out humongous object with large remembered sets.
3492 // If we have a humongous object with a few remembered sets, we simply flush these
3493 // remembered set entries into the DCQS. That will result in automatic
3494 // re-evaluation of their remembered set entries during the following evacuation
3495 // phase.
3496 if (is_candidate) {
3497 if (!r->rem_set()->is_empty()) {
3498 guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3499 "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3500 G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3501 HeapRegionRemSetIterator hrrs(r->rem_set());
3502 size_t card_index;
3503 while (hrrs.has_next(card_index)) {
3504 jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3505 // The remembered set might contain references to already freed
3506 // regions. Filter out such entries to avoid failing card table
3507 // verification.
3508 if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3509 if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3510 *card_ptr = CardTableModRefBS::dirty_card_val();
3511 _dcq.enqueue(card_ptr);
3512 }
3513 }
3514 }
3515 r->rem_set()->clear_locked();
3516 }
3517 assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3518 g1h->register_humongous_region_with_cset(region_idx);
3519 _candidate_humongous++;
3520 }
3521 _total_humongous++;
3522
3523 return false;
3524 }
3525
3526 size_t total_humongous() const { return _total_humongous; }
3527 size_t candidate_humongous() const { return _candidate_humongous; }
3528
3529 void flush_rem_set_entries() { _dcq.flush(); }
3530 };
3531
3532 void G1CollectedHeap::register_humongous_regions_with_cset() {
3533 if (!G1EagerReclaimHumongousObjects) {
3534 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3535 return;
3536 }
3537 double time = os::elapsed_counter();
3538
3539 RegisterHumongousWithInCSetFastTestClosure cl;
3540 heap_region_iterate(&cl);
3541
3542 time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3543 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3544 cl.total_humongous(),
3545 cl.candidate_humongous());
3546 _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3547
3548 if (_has_humongous_reclaim_candidates || G1TraceEagerReclaimHumongousObjects) {
3549 clear_humongous_is_live_table();
3550 }
3551
3552 // Finally flush all remembered set entries to re-check into the global DCQS.
3553 cl.flush_rem_set_entries();
3554 }
3555
3556 void
3557 G1CollectedHeap::setup_surviving_young_words() {
3558 assert(_surviving_young_words == NULL, "pre-condition");
3559 uint array_length = g1_policy()->young_cset_region_length();
3560 _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3561 if (_surviving_young_words == NULL) {
3562 vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3563 "Not enough space for young surv words summary.");
3564 }
3565 memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3566 #ifdef ASSERT
3567 for (uint i = 0; i < array_length; ++i) {
3568 assert( _surviving_young_words[i] == 0, "memset above" );
3569 }
3570 #endif // !ASSERT
3571 }
3572
3573 void
3574 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3575 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3576 uint array_length = g1_policy()->young_cset_region_length();
3577 for (uint i = 0; i < array_length; ++i) {
3578 _surviving_young_words[i] += surv_young_words[i];
3579 }
3580 }
3581
3582 void
3583 G1CollectedHeap::cleanup_surviving_young_words() {
3584 guarantee( _surviving_young_words != NULL, "pre-condition" );
3585 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3586 _surviving_young_words = NULL;
3587 }
3588
3589 #ifdef ASSERT
3590 class VerifyCSetClosure: public HeapRegionClosure {
3591 public:
3592 bool doHeapRegion(HeapRegion* hr) {
3593 // Here we check that the CSet region's RSet is ready for parallel
3594 // iteration. The fields that we'll verify are only manipulated
3595 // when the region is part of a CSet and is collected. Afterwards,
3596 // we reset these fields when we clear the region's RSet (when the
3597 // region is freed) so they are ready when the region is
3598 // re-allocated. The only exception to this is if there's an
3599 // evacuation failure and instead of freeing the region we leave
3600 // it in the heap. In that case, we reset these fields during
3601 // evacuation failure handling.
3602 guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3603
3604 // Here's a good place to add any other checks we'd like to
3605 // perform on CSet regions.
3606 return false;
3607 }
3608 };
3609 #endif // ASSERT
3610
3611 #if TASKQUEUE_STATS
3612 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3613 st->print_raw_cr("GC Task Stats");
3614 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3615 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3616 }
3617
3618 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3619 print_taskqueue_stats_hdr(st);
3620
3621 TaskQueueStats totals;
3622 const int n = workers()->total_workers();
3623 for (int i = 0; i < n; ++i) {
3624 st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3625 totals += task_queue(i)->stats;
3626 }
3627 st->print_raw("tot "); totals.print(st); st->cr();
3628
3629 DEBUG_ONLY(totals.verify());
3630 }
3631
3632 void G1CollectedHeap::reset_taskqueue_stats() {
3633 const int n = workers()->total_workers();
3634 for (int i = 0; i < n; ++i) {
3635 task_queue(i)->stats.reset();
3636 }
3637 }
3638 #endif // TASKQUEUE_STATS
3639
3640 void G1CollectedHeap::log_gc_header() {
3641 if (!G1Log::fine()) {
3642 return;
3643 }
3644
3645 gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3646
3647 GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3648 .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3649 .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3650
3651 gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3652 }
3653
3654 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3655 if (!G1Log::fine()) {
3656 return;
3657 }
3658
3659 if (G1Log::finer()) {
3660 if (evacuation_failed()) {
3661 gclog_or_tty->print(" (to-space exhausted)");
3662 }
3663 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3664 g1_policy()->phase_times()->note_gc_end();
3665 g1_policy()->phase_times()->print(pause_time_sec);
3666 g1_policy()->print_detailed_heap_transition();
3667 } else {
3668 if (evacuation_failed()) {
3669 gclog_or_tty->print("--");
3670 }
3671 g1_policy()->print_heap_transition();
3672 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3673 }
3674 gclog_or_tty->flush();
3675 }
3676
3677 bool
3678 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3679 assert_at_safepoint(true /* should_be_vm_thread */);
3680 guarantee(!is_gc_active(), "collection is not reentrant");
3681
3682 if (GC_locker::check_active_before_gc()) {
3683 return false;
3684 }
3685
3686 _gc_timer_stw->register_gc_start();
3687
3688 _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3689
3690 SvcGCMarker sgcm(SvcGCMarker::MINOR);
3691 ResourceMark rm;
3692
3693 print_heap_before_gc();
3694 trace_heap_before_gc(_gc_tracer_stw);
3695
3696 verify_region_sets_optional();
3697 verify_dirty_young_regions();
3698
3699 // This call will decide whether this pause is an initial-mark
3700 // pause. If it is, during_initial_mark_pause() will return true
3701 // for the duration of this pause.
3702 g1_policy()->decide_on_conc_mark_initiation();
3703
3704 // We do not allow initial-mark to be piggy-backed on a mixed GC.
3705 assert(!g1_policy()->during_initial_mark_pause() ||
3706 g1_policy()->gcs_are_young(), "sanity");
3707
3708 // We also do not allow mixed GCs during marking.
3709 assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3710
3711 // Record whether this pause is an initial mark. When the current
3712 // thread has completed its logging output and it's safe to signal
3713 // the CM thread, the flag's value in the policy has been reset.
3714 bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3715
3716 // Inner scope for scope based logging, timers, and stats collection
3717 {
3718 EvacuationInfo evacuation_info;
3719
3720 if (g1_policy()->during_initial_mark_pause()) {
3721 // We are about to start a marking cycle, so we increment the
3722 // full collection counter.
3723 increment_old_marking_cycles_started();
3724 register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3725 }
3726
3727 _gc_tracer_stw->report_yc_type(yc_type());
3728
3729 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3730
3731 uint active_workers = workers()->active_workers();
3732 double pause_start_sec = os::elapsedTime();
3733 g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3734 log_gc_header();
3735
3736 TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3737 TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3738
3739 // If the secondary_free_list is not empty, append it to the
3740 // free_list. No need to wait for the cleanup operation to finish;
3741 // the region allocation code will check the secondary_free_list
3742 // and wait if necessary. If the G1StressConcRegionFreeing flag is
3743 // set, skip this step so that the region allocation code has to
3744 // get entries from the secondary_free_list.
3745 if (!G1StressConcRegionFreeing) {
3746 append_secondary_free_list_if_not_empty_with_lock();
3747 }
3748
3749 assert(check_young_list_well_formed(), "young list should be well formed");
3750
3751 // Don't dynamically change the number of GC threads this early. A value of
3752 // 0 is used to indicate serial work. When parallel work is done,
3753 // it will be set.
3754
3755 { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3756 IsGCActiveMark x;
3757
3758 gc_prologue(false);
3759 increment_total_collections(false /* full gc */);
3760 increment_gc_time_stamp();
3761
3762 verify_before_gc();
3763
3764 check_bitmaps("GC Start");
3765
3766 COMPILER2_PRESENT(DerivedPointerTable::clear());
3767
3768 // Please see comment in g1CollectedHeap.hpp and
3769 // G1CollectedHeap::ref_processing_init() to see how
3770 // reference processing currently works in G1.
3771
3772 // Enable discovery in the STW reference processor
3773 ref_processor_stw()->enable_discovery();
3774
3775 {
3776 // We want to temporarily turn off discovery by the
3777 // CM ref processor, if necessary, and turn it back on
3778 // on again later if we do. Using a scoped
3779 // NoRefDiscovery object will do this.
3780 NoRefDiscovery no_cm_discovery(ref_processor_cm());
3781
3782 // Forget the current alloc region (we might even choose it to be part
3783 // of the collection set!).
3784 _allocator->release_mutator_alloc_region();
3785
3786 // We should call this after we retire the mutator alloc
3787 // region(s) so that all the ALLOC / RETIRE events are generated
3788 // before the start GC event.
3789 _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3790
3791 // This timing is only used by the ergonomics to handle our pause target.
3792 // It is unclear why this should not include the full pause. We will
3793 // investigate this in CR 7178365.
3794 //
3795 // Preserving the old comment here if that helps the investigation:
3796 //
3797 // The elapsed time induced by the start time below deliberately elides
3798 // the possible verification above.
3799 double sample_start_time_sec = os::elapsedTime();
3800
3801 #if YOUNG_LIST_VERBOSE
3802 gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3803 _young_list->print();
3804 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3805 #endif // YOUNG_LIST_VERBOSE
3806
3807 g1_policy()->record_collection_pause_start(sample_start_time_sec);
3808
3809 double scan_wait_start = os::elapsedTime();
3810 // We have to wait until the CM threads finish scanning the
3811 // root regions as it's the only way to ensure that all the
3812 // objects on them have been correctly scanned before we start
3813 // moving them during the GC.
3814 bool waited = _cm->root_regions()->wait_until_scan_finished();
3815 double wait_time_ms = 0.0;
3816 if (waited) {
3817 double scan_wait_end = os::elapsedTime();
3818 wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3819 }
3820 g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3821
3822 #if YOUNG_LIST_VERBOSE
3823 gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3824 _young_list->print();
3825 #endif // YOUNG_LIST_VERBOSE
3826
3827 if (g1_policy()->during_initial_mark_pause()) {
3828 concurrent_mark()->checkpointRootsInitialPre();
3829 }
3830
3831 #if YOUNG_LIST_VERBOSE
3832 gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3833 _young_list->print();
3834 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3835 #endif // YOUNG_LIST_VERBOSE
3836
3837 g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3838
3839 register_humongous_regions_with_cset();
3840
3841 assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3842
3843 _cm->note_start_of_gc();
3844 // We should not verify the per-thread SATB buffers given that
3845 // we have not filtered them yet (we'll do so during the
3846 // GC). We also call this after finalize_cset() to
3847 // ensure that the CSet has been finalized.
3848 _cm->verify_no_cset_oops(true /* verify_stacks */,
3849 true /* verify_enqueued_buffers */,
3850 false /* verify_thread_buffers */,
3851 true /* verify_fingers */);
3852
3853 if (_hr_printer.is_active()) {
3854 HeapRegion* hr = g1_policy()->collection_set();
3855 while (hr != NULL) {
3856 _hr_printer.cset(hr);
3857 hr = hr->next_in_collection_set();
3858 }
3859 }
3860
3861 #ifdef ASSERT
3862 VerifyCSetClosure cl;
3863 collection_set_iterate(&cl);
3864 #endif // ASSERT
3865
3866 setup_surviving_young_words();
3867
3868 // Initialize the GC alloc regions.
3869 _allocator->init_gc_alloc_regions(evacuation_info);
3870
3871 // Actually do the work...
3872 evacuate_collection_set(evacuation_info);
3873
3874 // We do this to mainly verify the per-thread SATB buffers
3875 // (which have been filtered by now) since we didn't verify
3876 // them earlier. No point in re-checking the stacks / enqueued
3877 // buffers given that the CSet has not changed since last time
3878 // we checked.
3879 _cm->verify_no_cset_oops(false /* verify_stacks */,
3880 false /* verify_enqueued_buffers */,
3881 true /* verify_thread_buffers */,
3882 true /* verify_fingers */);
3883
3884 free_collection_set(g1_policy()->collection_set(), evacuation_info);
3885
3886 eagerly_reclaim_humongous_regions();
3887
3888 g1_policy()->clear_collection_set();
3889
3890 cleanup_surviving_young_words();
3891
3892 // Start a new incremental collection set for the next pause.
3893 g1_policy()->start_incremental_cset_building();
3894
3895 clear_cset_fast_test();
3896
3897 _young_list->reset_sampled_info();
3898
3899 // Don't check the whole heap at this point as the
3900 // GC alloc regions from this pause have been tagged
3901 // as survivors and moved on to the survivor list.
3902 // Survivor regions will fail the !is_young() check.
3903 assert(check_young_list_empty(false /* check_heap */),
3904 "young list should be empty");
3905
3906 #if YOUNG_LIST_VERBOSE
3907 gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3908 _young_list->print();
3909 #endif // YOUNG_LIST_VERBOSE
3910
3911 g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3912 _young_list->first_survivor_region(),
3913 _young_list->last_survivor_region());
3914
3915 _young_list->reset_auxilary_lists();
3916
3917 if (evacuation_failed()) {
3918 _allocator->set_used(recalculate_used());
3919 uint n_queues = MAX2((int)ParallelGCThreads, 1);
3920 for (uint i = 0; i < n_queues; i++) {
3921 if (_evacuation_failed_info_array[i].has_failed()) {
3922 _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3923 }
3924 }
3925 } else {
3926 // The "used" of the the collection set have already been subtracted
3927 // when they were freed. Add in the bytes evacuated.
3928 _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3929 }
3930
3931 if (g1_policy()->during_initial_mark_pause()) {
3932 // We have to do this before we notify the CM threads that
3933 // they can start working to make sure that all the
3934 // appropriate initialization is done on the CM object.
3935 concurrent_mark()->checkpointRootsInitialPost();
3936 set_marking_started();
3937 // Note that we don't actually trigger the CM thread at
3938 // this point. We do that later when we're sure that
3939 // the current thread has completed its logging output.
3940 }
3941
3942 allocate_dummy_regions();
3943
3944 #if YOUNG_LIST_VERBOSE
3945 gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3946 _young_list->print();
3947 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3948 #endif // YOUNG_LIST_VERBOSE
3949
3950 _allocator->init_mutator_alloc_region();
3951
3952 {
3953 size_t expand_bytes = g1_policy()->expansion_amount();
3954 if (expand_bytes > 0) {
3955 size_t bytes_before = capacity();
3956 // No need for an ergo verbose message here,
3957 // expansion_amount() does this when it returns a value > 0.
3958 if (!expand(expand_bytes)) {
3959 // We failed to expand the heap. Cannot do anything about it.
3960 }
3961 }
3962 }
3963
3964 // We redo the verification but now wrt to the new CSet which
3965 // has just got initialized after the previous CSet was freed.
3966 _cm->verify_no_cset_oops(true /* verify_stacks */,
3967 true /* verify_enqueued_buffers */,
3968 true /* verify_thread_buffers */,
3969 true /* verify_fingers */);
3970 _cm->note_end_of_gc();
3971
3972 // This timing is only used by the ergonomics to handle our pause target.
3973 // It is unclear why this should not include the full pause. We will
3974 // investigate this in CR 7178365.
3975 double sample_end_time_sec = os::elapsedTime();
3976 double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3977 g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
3978
3979 MemoryService::track_memory_usage();
3980
3981 // In prepare_for_verify() below we'll need to scan the deferred
3982 // update buffers to bring the RSets up-to-date if
3983 // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3984 // the update buffers we'll probably need to scan cards on the
3985 // regions we just allocated to (i.e., the GC alloc
3986 // regions). However, during the last GC we called
3987 // set_saved_mark() on all the GC alloc regions, so card
3988 // scanning might skip the [saved_mark_word()...top()] area of
3989 // those regions (i.e., the area we allocated objects into
3990 // during the last GC). But it shouldn't. Given that
3991 // saved_mark_word() is conditional on whether the GC time stamp
3992 // on the region is current or not, by incrementing the GC time
3993 // stamp here we invalidate all the GC time stamps on all the
3994 // regions and saved_mark_word() will simply return top() for
3995 // all the regions. This is a nicer way of ensuring this rather
3996 // than iterating over the regions and fixing them. In fact, the
3997 // GC time stamp increment here also ensures that
3998 // saved_mark_word() will return top() between pauses, i.e.,
3999 // during concurrent refinement. So we don't need the
4000 // is_gc_active() check to decided which top to use when
4001 // scanning cards (see CR 7039627).
4002 increment_gc_time_stamp();
4003
4004 verify_after_gc();
4005 check_bitmaps("GC End");
4006
4007 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4008 ref_processor_stw()->verify_no_references_recorded();
4009
4010 // CM reference discovery will be re-enabled if necessary.
4011 }
4012
4013 // We should do this after we potentially expand the heap so
4014 // that all the COMMIT events are generated before the end GC
4015 // event, and after we retire the GC alloc regions so that all
4016 // RETIRE events are generated before the end GC event.
4017 _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4018
4019 #ifdef TRACESPINNING
4020 ParallelTaskTerminator::print_termination_counts();
4021 #endif
4022
4023 gc_epilogue(false);
4024 }
4025
4026 // Print the remainder of the GC log output.
4027 log_gc_footer(os::elapsedTime() - pause_start_sec);
4028
4029 // It is not yet to safe to tell the concurrent mark to
4030 // start as we have some optional output below. We don't want the
4031 // output from the concurrent mark thread interfering with this
4032 // logging output either.
4033
4034 _hrm.verify_optional();
4035 verify_region_sets_optional();
4036
4037 TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4038 TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4039
4040 print_heap_after_gc();
4041 trace_heap_after_gc(_gc_tracer_stw);
4042
4043 // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4044 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4045 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4046 // before any GC notifications are raised.
4047 g1mm()->update_sizes();
4048
4049 _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4050 _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4051 _gc_timer_stw->register_gc_end();
4052 _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4053 }
4054 // It should now be safe to tell the concurrent mark thread to start
4055 // without its logging output interfering with the logging output
4056 // that came from the pause.
4057
4058 if (should_start_conc_mark) {
4059 // CAUTION: after the doConcurrentMark() call below,
4060 // the concurrent marking thread(s) could be running
4061 // concurrently with us. Make sure that anything after
4062 // this point does not assume that we are the only GC thread
4063 // running. Note: of course, the actual marking work will
4064 // not start until the safepoint itself is released in
4065 // SuspendibleThreadSet::desynchronize().
4066 doConcurrentMark();
4067 }
4068
4069 return true;
4070 }
4071
4072 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4073 _drain_in_progress = false;
4074 set_evac_failure_closure(cl);
4075 _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4076 }
4077
4078 void G1CollectedHeap::finalize_for_evac_failure() {
4079 assert(_evac_failure_scan_stack != NULL &&
4080 _evac_failure_scan_stack->length() == 0,
4081 "Postcondition");
4082 assert(!_drain_in_progress, "Postcondition");
4083 delete _evac_failure_scan_stack;
4084 _evac_failure_scan_stack = NULL;
4085 }
4086
4087 void G1CollectedHeap::remove_self_forwarding_pointers() {
4088 double remove_self_forwards_start = os::elapsedTime();
4089
4090 set_par_threads();
4091 G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4092 workers()->run_task(&rsfp_task);
4093 set_par_threads(0);
4094
4095 // Now restore saved marks, if any.
4096 assert(_objs_with_preserved_marks.size() ==
4097 _preserved_marks_of_objs.size(), "Both or none.");
4098 while (!_objs_with_preserved_marks.is_empty()) {
4099 oop obj = _objs_with_preserved_marks.pop();
4100 markOop m = _preserved_marks_of_objs.pop();
4101 obj->set_mark(m);
4102 }
4103 _objs_with_preserved_marks.clear(true);
4104 _preserved_marks_of_objs.clear(true);
4105
4106 g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4107 }
4108
4109 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4110 _evac_failure_scan_stack->push(obj);
4111 }
4112
4113 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4114 assert(_evac_failure_scan_stack != NULL, "precondition");
4115
4116 while (_evac_failure_scan_stack->length() > 0) {
4117 oop obj = _evac_failure_scan_stack->pop();
4118 _evac_failure_closure->set_region(heap_region_containing(obj));
4119 obj->oop_iterate_backwards(_evac_failure_closure);
4120 }
4121 }
4122
4123 oop
4124 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4125 oop old) {
4126 assert(obj_in_cs(old),
4127 err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4128 (HeapWord*) old));
4129 markOop m = old->mark();
4130 oop forward_ptr = old->forward_to_atomic(old);
4131 if (forward_ptr == NULL) {
4132 // Forward-to-self succeeded.
4133 assert(_par_scan_state != NULL, "par scan state");
4134 OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4135 uint queue_num = _par_scan_state->queue_num();
4136
4137 _evacuation_failed = true;
4138 _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4139 if (_evac_failure_closure != cl) {
4140 MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4141 assert(!_drain_in_progress,
4142 "Should only be true while someone holds the lock.");
4143 // Set the global evac-failure closure to the current thread's.
4144 assert(_evac_failure_closure == NULL, "Or locking has failed.");
4145 set_evac_failure_closure(cl);
4146 // Now do the common part.
4147 handle_evacuation_failure_common(old, m);
4148 // Reset to NULL.
4149 set_evac_failure_closure(NULL);
4150 } else {
4151 // The lock is already held, and this is recursive.
4152 assert(_drain_in_progress, "This should only be the recursive case.");
4153 handle_evacuation_failure_common(old, m);
4154 }
4155 return old;
4156 } else {
4157 // Forward-to-self failed. Either someone else managed to allocate
4158 // space for this object (old != forward_ptr) or they beat us in
4159 // self-forwarding it (old == forward_ptr).
4160 assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4161 err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4162 "should not be in the CSet",
4163 (HeapWord*) old, (HeapWord*) forward_ptr));
4164 return forward_ptr;
4165 }
4166 }
4167
4168 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4169 preserve_mark_if_necessary(old, m);
4170
4171 HeapRegion* r = heap_region_containing(old);
4172 if (!r->evacuation_failed()) {
4173 r->set_evacuation_failed(true);
4174 _hr_printer.evac_failure(r);
4175 }
4176
4177 push_on_evac_failure_scan_stack(old);
4178
4179 if (!_drain_in_progress) {
4180 // prevent recursion in copy_to_survivor_space()
4181 _drain_in_progress = true;
4182 drain_evac_failure_scan_stack();
4183 _drain_in_progress = false;
4184 }
4185 }
4186
4187 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4188 assert(evacuation_failed(), "Oversaving!");
4189 // We want to call the "for_promotion_failure" version only in the
4190 // case of a promotion failure.
4191 if (m->must_be_preserved_for_promotion_failure(obj)) {
4192 _objs_with_preserved_marks.push(obj);
4193 _preserved_marks_of_objs.push(m);
4194 }
4195 }
4196
4197 void G1ParCopyHelper::mark_object(oop obj) {
4198 assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4199
4200 // We know that the object is not moving so it's safe to read its size.
4201 _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4202 }
4203
4204 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4205 assert(from_obj->is_forwarded(), "from obj should be forwarded");
4206 assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4207 assert(from_obj != to_obj, "should not be self-forwarded");
4208
4209 assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4210 assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4211
4212 // The object might be in the process of being copied by another
4213 // worker so we cannot trust that its to-space image is
4214 // well-formed. So we have to read its size from its from-space
4215 // image which we know should not be changing.
4216 _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4217 }
4218
4219 template <class T>
4220 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4221 if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4222 _scanned_klass->record_modified_oops();
4223 }
4224 }
4225
4226 template <G1Barrier barrier, G1Mark do_mark_object>
4227 template <class T>
4228 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4229 T heap_oop = oopDesc::load_heap_oop(p);
4230
4231 if (oopDesc::is_null(heap_oop)) {
4232 return;
4233 }
4234
4235 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4236
4237 assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4238
4239 const InCSetState state = _g1->in_cset_state(obj);
4240 if (state.is_in_cset()) {
4241 oop forwardee;
4242 markOop m = obj->mark();
4243 if (m->is_marked()) {
4244 forwardee = (oop) m->decode_pointer();
4245 } else {
4246 forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4247 }
4248 assert(forwardee != NULL, "forwardee should not be NULL");
4249 oopDesc::encode_store_heap_oop(p, forwardee);
4250 if (do_mark_object != G1MarkNone && forwardee != obj) {
4251 // If the object is self-forwarded we don't need to explicitly
4252 // mark it, the evacuation failure protocol will do so.
4253 mark_forwarded_object(obj, forwardee);
4254 }
4255
4256 if (barrier == G1BarrierKlass) {
4257 do_klass_barrier(p, forwardee);
4258 }
4259 } else {
4260 if (state.is_humongous()) {
4261 _g1->set_humongous_is_live(obj);
4262 }
4263 // The object is not in collection set. If we're a root scanning
4264 // closure during an initial mark pause then attempt to mark the object.
4265 if (do_mark_object == G1MarkFromRoot) {
4266 mark_object(obj);
4267 }
4268 }
4269
4270 if (barrier == G1BarrierEvac) {
4271 _par_scan_state->update_rs(_from, p, _worker_id);
4272 }
4273 }
4274
4275 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4276 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4277
4278 class G1ParEvacuateFollowersClosure : public VoidClosure {
4279 protected:
4280 G1CollectedHeap* _g1h;
4281 G1ParScanThreadState* _par_scan_state;
4282 RefToScanQueueSet* _queues;
4283 ParallelTaskTerminator* _terminator;
4284
4285 G1ParScanThreadState* par_scan_state() { return _par_scan_state; }
4286 RefToScanQueueSet* queues() { return _queues; }
4287 ParallelTaskTerminator* terminator() { return _terminator; }
4288
4289 public:
4290 G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4291 G1ParScanThreadState* par_scan_state,
4292 RefToScanQueueSet* queues,
4293 ParallelTaskTerminator* terminator)
4294 : _g1h(g1h), _par_scan_state(par_scan_state),
4295 _queues(queues), _terminator(terminator) {}
4296
4297 void do_void();
4298
4299 private:
4300 inline bool offer_termination();
4301 };
4302
4303 bool G1ParEvacuateFollowersClosure::offer_termination() {
4304 G1ParScanThreadState* const pss = par_scan_state();
4305 pss->start_term_time();
4306 const bool res = terminator()->offer_termination();
4307 pss->end_term_time();
4308 return res;
4309 }
4310
4311 void G1ParEvacuateFollowersClosure::do_void() {
4312 G1ParScanThreadState* const pss = par_scan_state();
4313 pss->trim_queue();
4314 do {
4315 pss->steal_and_trim_queue(queues());
4316 } while (!offer_termination());
4317 }
4318
4319 class G1KlassScanClosure : public KlassClosure {
4320 G1ParCopyHelper* _closure;
4321 bool _process_only_dirty;
4322 int _count;
4323 public:
4324 G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4325 : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4326 void do_klass(Klass* klass) {
4327 // If the klass has not been dirtied we know that there's
4328 // no references into the young gen and we can skip it.
4329 if (!_process_only_dirty || klass->has_modified_oops()) {
4330 // Clean the klass since we're going to scavenge all the metadata.
4331 klass->clear_modified_oops();
4332
4333 // Tell the closure that this klass is the Klass to scavenge
4334 // and is the one to dirty if oops are left pointing into the young gen.
4335 _closure->set_scanned_klass(klass);
4336
4337 klass->oops_do(_closure);
4338
4339 _closure->set_scanned_klass(NULL);
4340 }
4341 _count++;
4342 }
4343 };
4344
4345 class G1ParTask : public AbstractGangTask {
4346 protected:
4347 G1CollectedHeap* _g1h;
4348 RefToScanQueueSet *_queues;
4349 G1RootProcessor* _root_processor;
4350 ParallelTaskTerminator _terminator;
4351 uint _n_workers;
4352
4353 Mutex _stats_lock;
4354 Mutex* stats_lock() { return &_stats_lock; }
4355
4356 public:
4357 G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4358 : AbstractGangTask("G1 collection"),
4359 _g1h(g1h),
4360 _queues(task_queues),
4361 _root_processor(root_processor),
4362 _terminator(0, _queues),
4363 _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4364 {}
4365
4366 RefToScanQueueSet* queues() { return _queues; }
4367
4368 RefToScanQueue *work_queue(int i) {
4369 return queues()->queue(i);
4370 }
4371
4372 ParallelTaskTerminator* terminator() { return &_terminator; }
4373
4374 virtual void set_for_termination(int active_workers) {
4375 _root_processor->set_num_workers(active_workers);
4376 terminator()->reset_for_reuse(active_workers);
4377 _n_workers = active_workers;
4378 }
4379
4380 // Helps out with CLD processing.
4381 //
4382 // During InitialMark we need to:
4383 // 1) Scavenge all CLDs for the young GC.
4384 // 2) Mark all objects directly reachable from strong CLDs.
4385 template <G1Mark do_mark_object>
4386 class G1CLDClosure : public CLDClosure {
4387 G1ParCopyClosure<G1BarrierNone, do_mark_object>* _oop_closure;
4388 G1ParCopyClosure<G1BarrierKlass, do_mark_object> _oop_in_klass_closure;
4389 G1KlassScanClosure _klass_in_cld_closure;
4390 bool _claim;
4391
4392 public:
4393 G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4394 bool only_young, bool claim)
4395 : _oop_closure(oop_closure),
4396 _oop_in_klass_closure(oop_closure->g1(),
4397 oop_closure->pss(),
4398 oop_closure->rp()),
4399 _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4400 _claim(claim) {
4401
4402 }
4403
4404 void do_cld(ClassLoaderData* cld) {
4405 cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4406 }
4407 };
4408
4409 void work(uint worker_id) {
4410 if (worker_id >= _n_workers) return; // no work needed this round
4411
4412 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4413
4414 {
4415 ResourceMark rm;
4416 HandleMark hm;
4417
4418 ReferenceProcessor* rp = _g1h->ref_processor_stw();
4419
4420 G1ParScanThreadState pss(_g1h, worker_id, rp);
4421 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4422
4423 pss.set_evac_failure_closure(&evac_failure_cl);
4424
4425 bool only_young = _g1h->g1_policy()->gcs_are_young();
4426
4427 // Non-IM young GC.
4428 G1ParCopyClosure<G1BarrierNone, G1MarkNone> scan_only_root_cl(_g1h, &pss, rp);
4429 G1CLDClosure<G1MarkNone> scan_only_cld_cl(&scan_only_root_cl,
4430 only_young, // Only process dirty klasses.
4431 false); // No need to claim CLDs.
4432 // IM young GC.
4433 // Strong roots closures.
4434 G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot> scan_mark_root_cl(_g1h, &pss, rp);
4435 G1CLDClosure<G1MarkFromRoot> scan_mark_cld_cl(&scan_mark_root_cl,
4436 false, // Process all klasses.
4437 true); // Need to claim CLDs.
4438 // Weak roots closures.
4439 G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4440 G1CLDClosure<G1MarkPromotedFromRoot> scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4441 false, // Process all klasses.
4442 true); // Need to claim CLDs.
4443
4444 OopClosure* strong_root_cl;
4445 OopClosure* weak_root_cl;
4446 CLDClosure* strong_cld_cl;
4447 CLDClosure* weak_cld_cl;
4448
4449 bool trace_metadata = false;
4450
4451 if (_g1h->g1_policy()->during_initial_mark_pause()) {
4452 // We also need to mark copied objects.
4453 strong_root_cl = &scan_mark_root_cl;
4454 strong_cld_cl = &scan_mark_cld_cl;
4455 if (ClassUnloadingWithConcurrentMark) {
4456 weak_root_cl = &scan_mark_weak_root_cl;
4457 weak_cld_cl = &scan_mark_weak_cld_cl;
4458 trace_metadata = true;
4459 } else {
4460 weak_root_cl = &scan_mark_root_cl;
4461 weak_cld_cl = &scan_mark_cld_cl;
4462 }
4463 } else {
4464 strong_root_cl = &scan_only_root_cl;
4465 weak_root_cl = &scan_only_root_cl;
4466 strong_cld_cl = &scan_only_cld_cl;
4467 weak_cld_cl = &scan_only_cld_cl;
4468 }
4469
4470 pss.start_strong_roots();
4471
4472 _root_processor->evacuate_roots(strong_root_cl,
4473 weak_root_cl,
4474 strong_cld_cl,
4475 weak_cld_cl,
4476 trace_metadata,
4477 worker_id);
4478
4479 G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4480 _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4481 weak_root_cl,
4482 worker_id);
4483 pss.end_strong_roots();
4484
4485 {
4486 double start = os::elapsedTime();
4487 G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4488 evac.do_void();
4489 double elapsed_sec = os::elapsedTime() - start;
4490 double term_sec = pss.term_time();
4491 _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4492 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4493 _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4494 }
4495 _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4496 _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4497
4498 if (PrintTerminationStats) {
4499 MutexLocker x(stats_lock());
4500 pss.print_termination_stats(worker_id);
4501 }
4502
4503 assert(pss.queue_is_empty(), "should be empty");
4504
4505 // Close the inner scope so that the ResourceMark and HandleMark
4506 // destructors are executed here and are included as part of the
4507 // "GC Worker Time".
4508 }
4509 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4510 }
4511 };
4512
4513 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4514 private:
4515 BoolObjectClosure* _is_alive;
4516 int _initial_string_table_size;
4517 int _initial_symbol_table_size;
4518
4519 bool _process_strings;
4520 int _strings_processed;
4521 int _strings_removed;
4522
4523 bool _process_symbols;
4524 int _symbols_processed;
4525 int _symbols_removed;
4526
4527 public:
4528 G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4529 AbstractGangTask("String/Symbol Unlinking"),
4530 _is_alive(is_alive),
4531 _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4532 _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4533
4534 _initial_string_table_size = StringTable::the_table()->table_size();
4535 _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4536 if (process_strings) {
4537 StringTable::clear_parallel_claimed_index();
4538 }
4539 if (process_symbols) {
4540 SymbolTable::clear_parallel_claimed_index();
4541 }
4542 }
4543
4544 ~G1StringSymbolTableUnlinkTask() {
4545 guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4546 err_msg("claim value %d after unlink less than initial string table size %d",
4547 StringTable::parallel_claimed_index(), _initial_string_table_size));
4548 guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4549 err_msg("claim value %d after unlink less than initial symbol table size %d",
4550 SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4551
4552 if (G1TraceStringSymbolTableScrubbing) {
4553 gclog_or_tty->print_cr("Cleaned string and symbol table, "
4554 "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4555 "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4556 strings_processed(), strings_removed(),
4557 symbols_processed(), symbols_removed());
4558 }
4559 }
4560
4561 void work(uint worker_id) {
4562 int strings_processed = 0;
4563 int strings_removed = 0;
4564 int symbols_processed = 0;
4565 int symbols_removed = 0;
4566 if (_process_strings) {
4567 StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4568 Atomic::add(strings_processed, &_strings_processed);
4569 Atomic::add(strings_removed, &_strings_removed);
4570 }
4571 if (_process_symbols) {
4572 SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4573 Atomic::add(symbols_processed, &_symbols_processed);
4574 Atomic::add(symbols_removed, &_symbols_removed);
4575 }
4576 }
4577
4578 size_t strings_processed() const { return (size_t)_strings_processed; }
4579 size_t strings_removed() const { return (size_t)_strings_removed; }
4580
4581 size_t symbols_processed() const { return (size_t)_symbols_processed; }
4582 size_t symbols_removed() const { return (size_t)_symbols_removed; }
4583 };
4584
4585 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4586 private:
4587 static Monitor* _lock;
4588
4589 BoolObjectClosure* const _is_alive;
4590 const bool _unloading_occurred;
4591 const uint _num_workers;
4592
4593 // Variables used to claim nmethods.
4594 nmethod* _first_nmethod;
4595 volatile nmethod* _claimed_nmethod;
4596
4597 // The list of nmethods that need to be processed by the second pass.
4598 volatile nmethod* _postponed_list;
4599 volatile uint _num_entered_barrier;
4600
4601 public:
4602 G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4603 _is_alive(is_alive),
4604 _unloading_occurred(unloading_occurred),
4605 _num_workers(num_workers),
4606 _first_nmethod(NULL),
4607 _claimed_nmethod(NULL),
4608 _postponed_list(NULL),
4609 _num_entered_barrier(0)
4610 {
4611 nmethod::increase_unloading_clock();
4612 // Get first alive nmethod
4613 NMethodIterator iter = NMethodIterator();
4614 if(iter.next_alive()) {
4615 _first_nmethod = iter.method();
4616 }
4617 _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4618 }
4619
4620 ~G1CodeCacheUnloadingTask() {
4621 CodeCache::verify_clean_inline_caches();
4622
4623 CodeCache::set_needs_cache_clean(false);
4624 guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4625
4626 CodeCache::verify_icholder_relocations();
4627 }
4628
4629 private:
4630 void add_to_postponed_list(nmethod* nm) {
4631 nmethod* old;
4632 do {
4633 old = (nmethod*)_postponed_list;
4634 nm->set_unloading_next(old);
4635 } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4636 }
4637
4638 void clean_nmethod(nmethod* nm) {
4639 bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4640
4641 if (postponed) {
4642 // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4643 add_to_postponed_list(nm);
4644 }
4645
4646 // Mark that this thread has been cleaned/unloaded.
4647 // After this call, it will be safe to ask if this nmethod was unloaded or not.
4648 nm->set_unloading_clock(nmethod::global_unloading_clock());
4649 }
4650
4651 void clean_nmethod_postponed(nmethod* nm) {
4652 nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4653 }
4654
4655 static const int MaxClaimNmethods = 16;
4656
4657 void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4658 nmethod* first;
4659 NMethodIterator last;
4660
4661 do {
4662 *num_claimed_nmethods = 0;
4663
4664 first = (nmethod*)_claimed_nmethod;
4665 last = NMethodIterator(first);
4666
4667 if (first != NULL) {
4668
4669 for (int i = 0; i < MaxClaimNmethods; i++) {
4670 if (!last.next_alive()) {
4671 break;
4672 }
4673 claimed_nmethods[i] = last.method();
4674 (*num_claimed_nmethods)++;
4675 }
4676 }
4677
4678 } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4679 }
4680
4681 nmethod* claim_postponed_nmethod() {
4682 nmethod* claim;
4683 nmethod* next;
4684
4685 do {
4686 claim = (nmethod*)_postponed_list;
4687 if (claim == NULL) {
4688 return NULL;
4689 }
4690
4691 next = claim->unloading_next();
4692
4693 } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4694
4695 return claim;
4696 }
4697
4698 public:
4699 // Mark that we're done with the first pass of nmethod cleaning.
4700 void barrier_mark(uint worker_id) {
4701 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4702 _num_entered_barrier++;
4703 if (_num_entered_barrier == _num_workers) {
4704 ml.notify_all();
4705 }
4706 }
4707
4708 // See if we have to wait for the other workers to
4709 // finish their first-pass nmethod cleaning work.
4710 void barrier_wait(uint worker_id) {
4711 if (_num_entered_barrier < _num_workers) {
4712 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4713 while (_num_entered_barrier < _num_workers) {
4714 ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4715 }
4716 }
4717 }
4718
4719 // Cleaning and unloading of nmethods. Some work has to be postponed
4720 // to the second pass, when we know which nmethods survive.
4721 void work_first_pass(uint worker_id) {
4722 // The first nmethods is claimed by the first worker.
4723 if (worker_id == 0 && _first_nmethod != NULL) {
4724 clean_nmethod(_first_nmethod);
4725 _first_nmethod = NULL;
4726 }
4727
4728 int num_claimed_nmethods;
4729 nmethod* claimed_nmethods[MaxClaimNmethods];
4730
4731 while (true) {
4732 claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4733
4734 if (num_claimed_nmethods == 0) {
4735 break;
4736 }
4737
4738 for (int i = 0; i < num_claimed_nmethods; i++) {
4739 clean_nmethod(claimed_nmethods[i]);
4740 }
4741 }
4742 }
4743
4744 void work_second_pass(uint worker_id) {
4745 nmethod* nm;
4746 // Take care of postponed nmethods.
4747 while ((nm = claim_postponed_nmethod()) != NULL) {
4748 clean_nmethod_postponed(nm);
4749 }
4750 }
4751 };
4752
4753 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4754
4755 class G1KlassCleaningTask : public StackObj {
4756 BoolObjectClosure* _is_alive;
4757 volatile jint _clean_klass_tree_claimed;
4758 ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4759
4760 public:
4761 G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4762 _is_alive(is_alive),
4763 _clean_klass_tree_claimed(0),
4764 _klass_iterator() {
4765 }
4766
4767 private:
4768 bool claim_clean_klass_tree_task() {
4769 if (_clean_klass_tree_claimed) {
4770 return false;
4771 }
4772
4773 return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4774 }
4775
4776 InstanceKlass* claim_next_klass() {
4777 Klass* klass;
4778 do {
4779 klass =_klass_iterator.next_klass();
4780 } while (klass != NULL && !klass->oop_is_instance());
4781
4782 return (InstanceKlass*)klass;
4783 }
4784
4785 public:
4786
4787 void clean_klass(InstanceKlass* ik) {
4788 ik->clean_implementors_list(_is_alive);
4789 ik->clean_method_data(_is_alive);
4790
4791 // G1 specific cleanup work that has
4792 // been moved here to be done in parallel.
4793 ik->clean_dependent_nmethods();
4794 }
4795
4796 void work() {
4797 ResourceMark rm;
4798
4799 // One worker will clean the subklass/sibling klass tree.
4800 if (claim_clean_klass_tree_task()) {
4801 Klass::clean_subklass_tree(_is_alive);
4802 }
4803
4804 // All workers will help cleaning the classes,
4805 InstanceKlass* klass;
4806 while ((klass = claim_next_klass()) != NULL) {
4807 clean_klass(klass);
4808 }
4809 }
4810 };
4811
4812 // To minimize the remark pause times, the tasks below are done in parallel.
4813 class G1ParallelCleaningTask : public AbstractGangTask {
4814 private:
4815 G1StringSymbolTableUnlinkTask _string_symbol_task;
4816 G1CodeCacheUnloadingTask _code_cache_task;
4817 G1KlassCleaningTask _klass_cleaning_task;
4818
4819 public:
4820 // The constructor is run in the VMThread.
4821 G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4822 AbstractGangTask("Parallel Cleaning"),
4823 _string_symbol_task(is_alive, process_strings, process_symbols),
4824 _code_cache_task(num_workers, is_alive, unloading_occurred),
4825 _klass_cleaning_task(is_alive) {
4826 }
4827
4828 // The parallel work done by all worker threads.
4829 void work(uint worker_id) {
4830 // Do first pass of code cache cleaning.
4831 _code_cache_task.work_first_pass(worker_id);
4832
4833 // Let the threads mark that the first pass is done.
4834 _code_cache_task.barrier_mark(worker_id);
4835
4836 // Clean the Strings and Symbols.
4837 _string_symbol_task.work(worker_id);
4838
4839 // Wait for all workers to finish the first code cache cleaning pass.
4840 _code_cache_task.barrier_wait(worker_id);
4841
4842 // Do the second code cache cleaning work, which realize on
4843 // the liveness information gathered during the first pass.
4844 _code_cache_task.work_second_pass(worker_id);
4845
4846 // Clean all klasses that were not unloaded.
4847 _klass_cleaning_task.work();
4848 }
4849 };
4850
4851
4852 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4853 bool process_strings,
4854 bool process_symbols,
4855 bool class_unloading_occurred) {
4856 uint n_workers = workers()->active_workers();
4857
4858 G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4859 n_workers, class_unloading_occurred);
4860 set_par_threads(n_workers);
4861 workers()->run_task(&g1_unlink_task);
4862 set_par_threads(0);
4863 }
4864
4865 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4866 bool process_strings, bool process_symbols) {
4867 {
4868 uint n_workers = _g1h->workers()->active_workers();
4869 G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4870 set_par_threads(n_workers);
4871 workers()->run_task(&g1_unlink_task);
4872 set_par_threads(0);
4873 }
4874
4875 if (G1StringDedup::is_enabled()) {
4876 G1StringDedup::unlink(is_alive);
4877 }
4878 }
4879
4880 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4881 private:
4882 DirtyCardQueueSet* _queue;
4883 public:
4884 G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4885
4886 virtual void work(uint worker_id) {
4887 G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4888 G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4889
4890 RedirtyLoggedCardTableEntryClosure cl;
4891 _queue->par_apply_closure_to_all_completed_buffers(&cl);
4892
4893 phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4894 }
4895 };
4896
4897 void G1CollectedHeap::redirty_logged_cards() {
4898 double redirty_logged_cards_start = os::elapsedTime();
4899
4900 uint n_workers = _g1h->workers()->active_workers();
4901
4902 G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4903 dirty_card_queue_set().reset_for_par_iteration();
4904 set_par_threads(n_workers);
4905 workers()->run_task(&redirty_task);
4906 set_par_threads(0);
4907
4908 DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4909 dcq.merge_bufferlists(&dirty_card_queue_set());
4910 assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4911
4912 g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4913 }
4914
4915 // Weak Reference Processing support
4916
4917 // An always "is_alive" closure that is used to preserve referents.
4918 // If the object is non-null then it's alive. Used in the preservation
4919 // of referent objects that are pointed to by reference objects
4920 // discovered by the CM ref processor.
4921 class G1AlwaysAliveClosure: public BoolObjectClosure {
4922 G1CollectedHeap* _g1;
4923 public:
4924 G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4925 bool do_object_b(oop p) {
4926 if (p != NULL) {
4927 return true;
4928 }
4929 return false;
4930 }
4931 };
4932
4933 bool G1STWIsAliveClosure::do_object_b(oop p) {
4934 // An object is reachable if it is outside the collection set,
4935 // or is inside and copied.
4936 return !_g1->obj_in_cs(p) || p->is_forwarded();
4937 }
4938
4939 // Non Copying Keep Alive closure
4940 class G1KeepAliveClosure: public OopClosure {
4941 G1CollectedHeap* _g1;
4942 public:
4943 G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4944 void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4945 void do_oop(oop* p) {
4946 oop obj = *p;
4947 assert(obj != NULL, "the caller should have filtered out NULL values");
4948
4949 const InCSetState cset_state = _g1->in_cset_state(obj);
4950 if (!cset_state.is_in_cset_or_humongous()) {
4951 return;
4952 }
4953 if (cset_state.is_in_cset()) {
4954 assert( obj->is_forwarded(), "invariant" );
4955 *p = obj->forwardee();
4956 } else {
4957 assert(!obj->is_forwarded(), "invariant" );
4958 assert(cset_state.is_humongous(),
4959 err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
4960 _g1->set_humongous_is_live(obj);
4961 }
4962 }
4963 };
4964
4965 // Copying Keep Alive closure - can be called from both
4966 // serial and parallel code as long as different worker
4967 // threads utilize different G1ParScanThreadState instances
4968 // and different queues.
4969
4970 class G1CopyingKeepAliveClosure: public OopClosure {
4971 G1CollectedHeap* _g1h;
4972 OopClosure* _copy_non_heap_obj_cl;
4973 G1ParScanThreadState* _par_scan_state;
4974
4975 public:
4976 G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4977 OopClosure* non_heap_obj_cl,
4978 G1ParScanThreadState* pss):
4979 _g1h(g1h),
4980 _copy_non_heap_obj_cl(non_heap_obj_cl),
4981 _par_scan_state(pss)
4982 {}
4983
4984 virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4985 virtual void do_oop( oop* p) { do_oop_work(p); }
4986
4987 template <class T> void do_oop_work(T* p) {
4988 oop obj = oopDesc::load_decode_heap_oop(p);
4989
4990 if (_g1h->is_in_cset_or_humongous(obj)) {
4991 // If the referent object has been forwarded (either copied
4992 // to a new location or to itself in the event of an
4993 // evacuation failure) then we need to update the reference
4994 // field and, if both reference and referent are in the G1
4995 // heap, update the RSet for the referent.
4996 //
4997 // If the referent has not been forwarded then we have to keep
4998 // it alive by policy. Therefore we have copy the referent.
4999 //
5000 // If the reference field is in the G1 heap then we can push
5001 // on the PSS queue. When the queue is drained (after each
5002 // phase of reference processing) the object and it's followers
5003 // will be copied, the reference field set to point to the
5004 // new location, and the RSet updated. Otherwise we need to
5005 // use the the non-heap or metadata closures directly to copy
5006 // the referent object and update the pointer, while avoiding
5007 // updating the RSet.
5008
5009 if (_g1h->is_in_g1_reserved(p)) {
5010 _par_scan_state->push_on_queue(p);
5011 } else {
5012 assert(!Metaspace::contains((const void*)p),
5013 err_msg("Unexpectedly found a pointer from metadata: "
5014 PTR_FORMAT, p));
5015 _copy_non_heap_obj_cl->do_oop(p);
5016 }
5017 }
5018 }
5019 };
5020
5021 // Serial drain queue closure. Called as the 'complete_gc'
5022 // closure for each discovered list in some of the
5023 // reference processing phases.
5024
5025 class G1STWDrainQueueClosure: public VoidClosure {
5026 protected:
5027 G1CollectedHeap* _g1h;
5028 G1ParScanThreadState* _par_scan_state;
5029
5030 G1ParScanThreadState* par_scan_state() { return _par_scan_state; }
5031
5032 public:
5033 G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5034 _g1h(g1h),
5035 _par_scan_state(pss)
5036 { }
5037
5038 void do_void() {
5039 G1ParScanThreadState* const pss = par_scan_state();
5040 pss->trim_queue();
5041 }
5042 };
5043
5044 // Parallel Reference Processing closures
5045
5046 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5047 // processing during G1 evacuation pauses.
5048
5049 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5050 private:
5051 G1CollectedHeap* _g1h;
5052 RefToScanQueueSet* _queues;
5053 FlexibleWorkGang* _workers;
5054 int _active_workers;
5055
5056 public:
5057 G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5058 FlexibleWorkGang* workers,
5059 RefToScanQueueSet *task_queues,
5060 int n_workers) :
5061 _g1h(g1h),
5062 _queues(task_queues),
5063 _workers(workers),
5064 _active_workers(n_workers)
5065 {
5066 assert(n_workers > 0, "shouldn't call this otherwise");
5067 }
5068
5069 // Executes the given task using concurrent marking worker threads.
5070 virtual void execute(ProcessTask& task);
5071 virtual void execute(EnqueueTask& task);
5072 };
5073
5074 // Gang task for possibly parallel reference processing
5075
5076 class G1STWRefProcTaskProxy: public AbstractGangTask {
5077 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5078 ProcessTask& _proc_task;
5079 G1CollectedHeap* _g1h;
5080 RefToScanQueueSet *_task_queues;
5081 ParallelTaskTerminator* _terminator;
5082
5083 public:
5084 G1STWRefProcTaskProxy(ProcessTask& proc_task,
5085 G1CollectedHeap* g1h,
5086 RefToScanQueueSet *task_queues,
5087 ParallelTaskTerminator* terminator) :
5088 AbstractGangTask("Process reference objects in parallel"),
5089 _proc_task(proc_task),
5090 _g1h(g1h),
5091 _task_queues(task_queues),
5092 _terminator(terminator)
5093 {}
5094
5095 virtual void work(uint worker_id) {
5096 // The reference processing task executed by a single worker.
5097 ResourceMark rm;
5098 HandleMark hm;
5099
5100 G1STWIsAliveClosure is_alive(_g1h);
5101
5102 G1ParScanThreadState pss(_g1h, worker_id, NULL);
5103 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5104
5105 pss.set_evac_failure_closure(&evac_failure_cl);
5106
5107 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL);
5108
5109 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5110
5111 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl;
5112
5113 if (_g1h->g1_policy()->during_initial_mark_pause()) {
5114 // We also need to mark copied objects.
5115 copy_non_heap_cl = ©_mark_non_heap_cl;
5116 }
5117
5118 // Keep alive closure.
5119 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5120
5121 // Complete GC closure
5122 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5123
5124 // Call the reference processing task's work routine.
5125 _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5126
5127 // Note we cannot assert that the refs array is empty here as not all
5128 // of the processing tasks (specifically phase2 - pp2_work) execute
5129 // the complete_gc closure (which ordinarily would drain the queue) so
5130 // the queue may not be empty.
5131 }
5132 };
5133
5134 // Driver routine for parallel reference processing.
5135 // Creates an instance of the ref processing gang
5136 // task and has the worker threads execute it.
5137 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5138 assert(_workers != NULL, "Need parallel worker threads.");
5139
5140 ParallelTaskTerminator terminator(_active_workers, _queues);
5141 G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5142
5143 _g1h->set_par_threads(_active_workers);
5144 _workers->run_task(&proc_task_proxy);
5145 _g1h->set_par_threads(0);
5146 }
5147
5148 // Gang task for parallel reference enqueueing.
5149
5150 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5151 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5152 EnqueueTask& _enq_task;
5153
5154 public:
5155 G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5156 AbstractGangTask("Enqueue reference objects in parallel"),
5157 _enq_task(enq_task)
5158 { }
5159
5160 virtual void work(uint worker_id) {
5161 _enq_task.work(worker_id);
5162 }
5163 };
5164
5165 // Driver routine for parallel reference enqueueing.
5166 // Creates an instance of the ref enqueueing gang
5167 // task and has the worker threads execute it.
5168
5169 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5170 assert(_workers != NULL, "Need parallel worker threads.");
5171
5172 G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5173
5174 _g1h->set_par_threads(_active_workers);
5175 _workers->run_task(&enq_task_proxy);
5176 _g1h->set_par_threads(0);
5177 }
5178
5179 // End of weak reference support closures
5180
5181 // Abstract task used to preserve (i.e. copy) any referent objects
5182 // that are in the collection set and are pointed to by reference
5183 // objects discovered by the CM ref processor.
5184
5185 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5186 protected:
5187 G1CollectedHeap* _g1h;
5188 RefToScanQueueSet *_queues;
5189 ParallelTaskTerminator _terminator;
5190 uint _n_workers;
5191
5192 public:
5193 G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5194 AbstractGangTask("ParPreserveCMReferents"),
5195 _g1h(g1h),
5196 _queues(task_queues),
5197 _terminator(workers, _queues),
5198 _n_workers(workers)
5199 { }
5200
5201 void work(uint worker_id) {
5202 ResourceMark rm;
5203 HandleMark hm;
5204
5205 G1ParScanThreadState pss(_g1h, worker_id, NULL);
5206 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5207
5208 pss.set_evac_failure_closure(&evac_failure_cl);
5209
5210 assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5211
5212 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL);
5213
5214 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5215
5216 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl;
5217
5218 if (_g1h->g1_policy()->during_initial_mark_pause()) {
5219 // We also need to mark copied objects.
5220 copy_non_heap_cl = ©_mark_non_heap_cl;
5221 }
5222
5223 // Is alive closure
5224 G1AlwaysAliveClosure always_alive(_g1h);
5225
5226 // Copying keep alive closure. Applied to referent objects that need
5227 // to be copied.
5228 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5229
5230 ReferenceProcessor* rp = _g1h->ref_processor_cm();
5231
5232 uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5233 uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5234
5235 // limit is set using max_num_q() - which was set using ParallelGCThreads.
5236 // So this must be true - but assert just in case someone decides to
5237 // change the worker ids.
5238 assert(worker_id < limit, "sanity");
5239 assert(!rp->discovery_is_atomic(), "check this code");
5240
5241 // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5242 for (uint idx = worker_id; idx < limit; idx += stride) {
5243 DiscoveredList& ref_list = rp->discovered_refs()[idx];
5244
5245 DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5246 while (iter.has_next()) {
5247 // Since discovery is not atomic for the CM ref processor, we
5248 // can see some null referent objects.
5249 iter.load_ptrs(DEBUG_ONLY(true));
5250 oop ref = iter.obj();
5251
5252 // This will filter nulls.
5253 if (iter.is_referent_alive()) {
5254 iter.make_referent_alive();
5255 }
5256 iter.move_to_next();
5257 }
5258 }
5259
5260 // Drain the queue - which may cause stealing
5261 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5262 drain_queue.do_void();
5263 // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5264 assert(pss.queue_is_empty(), "should be");
5265 }
5266 };
5267
5268 // Weak Reference processing during an evacuation pause (part 1).
5269 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5270 double ref_proc_start = os::elapsedTime();
5271
5272 ReferenceProcessor* rp = _ref_processor_stw;
5273 assert(rp->discovery_enabled(), "should have been enabled");
5274
5275 // Any reference objects, in the collection set, that were 'discovered'
5276 // by the CM ref processor should have already been copied (either by
5277 // applying the external root copy closure to the discovered lists, or
5278 // by following an RSet entry).
5279 //
5280 // But some of the referents, that are in the collection set, that these
5281 // reference objects point to may not have been copied: the STW ref
5282 // processor would have seen that the reference object had already
5283 // been 'discovered' and would have skipped discovering the reference,
5284 // but would not have treated the reference object as a regular oop.
5285 // As a result the copy closure would not have been applied to the
5286 // referent object.
5287 //
5288 // We need to explicitly copy these referent objects - the references
5289 // will be processed at the end of remarking.
5290 //
5291 // We also need to do this copying before we process the reference
5292 // objects discovered by the STW ref processor in case one of these
5293 // referents points to another object which is also referenced by an
5294 // object discovered by the STW ref processor.
5295
5296 assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5297
5298 set_par_threads(no_of_gc_workers);
5299 G1ParPreserveCMReferentsTask keep_cm_referents(this,
5300 no_of_gc_workers,
5301 _task_queues);
5302
5303 workers()->run_task(&keep_cm_referents);
5304
5305 set_par_threads(0);
5306
5307 // Closure to test whether a referent is alive.
5308 G1STWIsAliveClosure is_alive(this);
5309
5310 // Even when parallel reference processing is enabled, the processing
5311 // of JNI refs is serial and performed serially by the current thread
5312 // rather than by a worker. The following PSS will be used for processing
5313 // JNI refs.
5314
5315 // Use only a single queue for this PSS.
5316 G1ParScanThreadState pss(this, 0, NULL);
5317
5318 // We do not embed a reference processor in the copying/scanning
5319 // closures while we're actually processing the discovered
5320 // reference objects.
5321 G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5322
5323 pss.set_evac_failure_closure(&evac_failure_cl);
5324
5325 assert(pss.queue_is_empty(), "pre-condition");
5326
5327 G1ParScanExtRootClosure only_copy_non_heap_cl(this, &pss, NULL);
5328
5329 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5330
5331 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl;
5332
5333 if (_g1h->g1_policy()->during_initial_mark_pause()) {
5334 // We also need to mark copied objects.
5335 copy_non_heap_cl = ©_mark_non_heap_cl;
5336 }
5337
5338 // Keep alive closure.
5339 G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5340
5341 // Serial Complete GC closure
5342 G1STWDrainQueueClosure drain_queue(this, &pss);
5343
5344 // Setup the soft refs policy...
5345 rp->setup_policy(false);
5346
5347 ReferenceProcessorStats stats;
5348 if (!rp->processing_is_mt()) {
5349 // Serial reference processing...
5350 stats = rp->process_discovered_references(&is_alive,
5351 &keep_alive,
5352 &drain_queue,
5353 NULL,
5354 _gc_timer_stw,
5355 _gc_tracer_stw->gc_id());
5356 } else {
5357 // Parallel reference processing
5358 assert(rp->num_q() == no_of_gc_workers, "sanity");
5359 assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5360
5361 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5362 stats = rp->process_discovered_references(&is_alive,
5363 &keep_alive,
5364 &drain_queue,
5365 &par_task_executor,
5366 _gc_timer_stw,
5367 _gc_tracer_stw->gc_id());
5368 }
5369
5370 _gc_tracer_stw->report_gc_reference_stats(stats);
5371
5372 // We have completed copying any necessary live referent objects.
5373 assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5374
5375 double ref_proc_time = os::elapsedTime() - ref_proc_start;
5376 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5377 }
5378
5379 // Weak Reference processing during an evacuation pause (part 2).
5380 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5381 double ref_enq_start = os::elapsedTime();
5382
5383 ReferenceProcessor* rp = _ref_processor_stw;
5384 assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5385
5386 // Now enqueue any remaining on the discovered lists on to
5387 // the pending list.
5388 if (!rp->processing_is_mt()) {
5389 // Serial reference processing...
5390 rp->enqueue_discovered_references();
5391 } else {
5392 // Parallel reference enqueueing
5393
5394 assert(no_of_gc_workers == workers()->active_workers(),
5395 "Need to reset active workers");
5396 assert(rp->num_q() == no_of_gc_workers, "sanity");
5397 assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5398
5399 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5400 rp->enqueue_discovered_references(&par_task_executor);
5401 }
5402
5403 rp->verify_no_references_recorded();
5404 assert(!rp->discovery_enabled(), "should have been disabled");
5405
5406 // FIXME
5407 // CM's reference processing also cleans up the string and symbol tables.
5408 // Should we do that here also? We could, but it is a serial operation
5409 // and could significantly increase the pause time.
5410
5411 double ref_enq_time = os::elapsedTime() - ref_enq_start;
5412 g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5413 }
5414
5415 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5416 _expand_heap_after_alloc_failure = true;
5417 _evacuation_failed = false;
5418
5419 // Should G1EvacuationFailureALot be in effect for this GC?
5420 NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5421
5422 g1_rem_set()->prepare_for_oops_into_collection_set_do();
5423
5424 // Disable the hot card cache.
5425 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5426 hot_card_cache->reset_hot_cache_claimed_index();
5427 hot_card_cache->set_use_cache(false);
5428
5429 uint n_workers;
5430 n_workers =
5431 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5432 workers()->active_workers(),
5433 Threads::number_of_non_daemon_threads());
5434 assert(UseDynamicNumberOfGCThreads ||
5435 n_workers == workers()->total_workers(),
5436 "If not dynamic should be using all the workers");
5437 workers()->set_active_workers(n_workers);
5438 set_par_threads(n_workers);
5439
5440
5441 init_for_evac_failure(NULL);
5442
5443 assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5444 double start_par_time_sec = os::elapsedTime();
5445 double end_par_time_sec;
5446
5447 {
5448 G1RootProcessor root_processor(this);
5449 G1ParTask g1_par_task(this, _task_queues, &root_processor);
5450 // InitialMark needs claim bits to keep track of the marked-through CLDs.
5451 if (g1_policy()->during_initial_mark_pause()) {
5452 ClassLoaderDataGraph::clear_claimed_marks();
5453 }
5454
5455 // The individual threads will set their evac-failure closures.
5456 if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5457 // These tasks use ShareHeap::_process_strong_tasks
5458 assert(UseDynamicNumberOfGCThreads ||
5459 workers()->active_workers() == workers()->total_workers(),
5460 "If not dynamic should be using all the workers");
5461 workers()->run_task(&g1_par_task);
5462 end_par_time_sec = os::elapsedTime();
5463
5464 // Closing the inner scope will execute the destructor
5465 // for the G1RootProcessor object. We record the current
5466 // elapsed time before closing the scope so that time
5467 // taken for the destructor is NOT included in the
5468 // reported parallel time.
5469 }
5470
5471 G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5472
5473 double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5474 phase_times->record_par_time(par_time_ms);
5475
5476 double code_root_fixup_time_ms =
5477 (os::elapsedTime() - end_par_time_sec) * 1000.0;
5478 phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5479
5480 set_par_threads(0);
5481
5482 // Process any discovered reference objects - we have
5483 // to do this _before_ we retire the GC alloc regions
5484 // as we may have to copy some 'reachable' referent
5485 // objects (and their reachable sub-graphs) that were
5486 // not copied during the pause.
5487 process_discovered_references(n_workers);
5488
5489 if (G1StringDedup::is_enabled()) {
5490 double fixup_start = os::elapsedTime();
5491
5492 G1STWIsAliveClosure is_alive(this);
5493 G1KeepAliveClosure keep_alive(this);
5494 G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5495
5496 double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5497 phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5498 }
5499
5500 _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5501 g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5502
5503 // Reset and re-enable the hot card cache.
5504 // Note the counts for the cards in the regions in the
5505 // collection set are reset when the collection set is freed.
5506 hot_card_cache->reset_hot_cache();
5507 hot_card_cache->set_use_cache(true);
5508
5509 purge_code_root_memory();
5510
5511 finalize_for_evac_failure();
5512
5513 if (evacuation_failed()) {
5514 remove_self_forwarding_pointers();
5515
5516 // Reset the G1EvacuationFailureALot counters and flags
5517 // Note: the values are reset only when an actual
5518 // evacuation failure occurs.
5519 NOT_PRODUCT(reset_evacuation_should_fail();)
5520 }
5521
5522 // Enqueue any remaining references remaining on the STW
5523 // reference processor's discovered lists. We need to do
5524 // this after the card table is cleaned (and verified) as
5525 // the act of enqueueing entries on to the pending list
5526 // will log these updates (and dirty their associated
5527 // cards). We need these updates logged to update any
5528 // RSets.
5529 enqueue_discovered_references(n_workers);
5530
5531 redirty_logged_cards();
5532 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5533 }
5534
5535 void G1CollectedHeap::free_region(HeapRegion* hr,
5536 FreeRegionList* free_list,
5537 bool par,
5538 bool locked) {
5539 assert(!hr->is_free(), "the region should not be free");
5540 assert(!hr->is_empty(), "the region should not be empty");
5541 assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5542 assert(free_list != NULL, "pre-condition");
5543
5544 if (G1VerifyBitmaps) {
5545 MemRegion mr(hr->bottom(), hr->end());
5546 concurrent_mark()->clearRangePrevBitmap(mr);
5547 }
5548
5549 // Clear the card counts for this region.
5550 // Note: we only need to do this if the region is not young
5551 // (since we don't refine cards in young regions).
5552 if (!hr->is_young()) {
5553 _cg1r->hot_card_cache()->reset_card_counts(hr);
5554 }
5555 hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5556 free_list->add_ordered(hr);
5557 }
5558
5559 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5560 FreeRegionList* free_list,
5561 bool par) {
5562 assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5563 assert(free_list != NULL, "pre-condition");
5564
5565 size_t hr_capacity = hr->capacity();
5566 // We need to read this before we make the region non-humongous,
5567 // otherwise the information will be gone.
5568 uint last_index = hr->last_hc_index();
5569 hr->clear_humongous();
5570 free_region(hr, free_list, par);
5571
5572 uint i = hr->hrm_index() + 1;
5573 while (i < last_index) {
5574 HeapRegion* curr_hr = region_at(i);
5575 assert(curr_hr->is_continues_humongous(), "invariant");
5576 curr_hr->clear_humongous();
5577 free_region(curr_hr, free_list, par);
5578 i += 1;
5579 }
5580 }
5581
5582 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5583 const HeapRegionSetCount& humongous_regions_removed) {
5584 if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5585 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5586 _old_set.bulk_remove(old_regions_removed);
5587 _humongous_set.bulk_remove(humongous_regions_removed);
5588 }
5589
5590 }
5591
5592 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5593 assert(list != NULL, "list can't be null");
5594 if (!list->is_empty()) {
5595 MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5596 _hrm.insert_list_into_free_list(list);
5597 }
5598 }
5599
5600 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5601 _allocator->decrease_used(bytes);
5602 }
5603
5604 class G1ParCleanupCTTask : public AbstractGangTask {
5605 G1SATBCardTableModRefBS* _ct_bs;
5606 G1CollectedHeap* _g1h;
5607 HeapRegion* volatile _su_head;
5608 public:
5609 G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5610 G1CollectedHeap* g1h) :
5611 AbstractGangTask("G1 Par Cleanup CT Task"),
5612 _ct_bs(ct_bs), _g1h(g1h) { }
5613
5614 void work(uint worker_id) {
5615 HeapRegion* r;
5616 while (r = _g1h->pop_dirty_cards_region()) {
5617 clear_cards(r);
5618 }
5619 }
5620
5621 void clear_cards(HeapRegion* r) {
5622 // Cards of the survivors should have already been dirtied.
5623 if (!r->is_survivor()) {
5624 _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5625 }
5626 }
5627 };
5628
5629 #ifndef PRODUCT
5630 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5631 G1CollectedHeap* _g1h;
5632 G1SATBCardTableModRefBS* _ct_bs;
5633 public:
5634 G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5635 : _g1h(g1h), _ct_bs(ct_bs) { }
5636 virtual bool doHeapRegion(HeapRegion* r) {
5637 if (r->is_survivor()) {
5638 _g1h->verify_dirty_region(r);
5639 } else {
5640 _g1h->verify_not_dirty_region(r);
5641 }
5642 return false;
5643 }
5644 };
5645
5646 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5647 // All of the region should be clean.
5648 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5649 MemRegion mr(hr->bottom(), hr->end());
5650 ct_bs->verify_not_dirty_region(mr);
5651 }
5652
5653 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5654 // We cannot guarantee that [bottom(),end()] is dirty. Threads
5655 // dirty allocated blocks as they allocate them. The thread that
5656 // retires each region and replaces it with a new one will do a
5657 // maximal allocation to fill in [pre_dummy_top(),end()] but will
5658 // not dirty that area (one less thing to have to do while holding
5659 // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5660 // is dirty.
5661 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5662 MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5663 if (hr->is_young()) {
5664 ct_bs->verify_g1_young_region(mr);
5665 } else {
5666 ct_bs->verify_dirty_region(mr);
5667 }
5668 }
5669
5670 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5671 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5672 for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5673 verify_dirty_region(hr);
5674 }
5675 }
5676
5677 void G1CollectedHeap::verify_dirty_young_regions() {
5678 verify_dirty_young_list(_young_list->first_region());
5679 }
5680
5681 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5682 HeapWord* tams, HeapWord* end) {
5683 guarantee(tams <= end,
5684 err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5685 HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5686 if (result < end) {
5687 gclog_or_tty->cr();
5688 gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5689 bitmap_name, result);
5690 gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5691 bitmap_name, tams, end);
5692 return false;
5693 }
5694 return true;
5695 }
5696
5697 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5698 CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5699 CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5700
5701 HeapWord* bottom = hr->bottom();
5702 HeapWord* ptams = hr->prev_top_at_mark_start();
5703 HeapWord* ntams = hr->next_top_at_mark_start();
5704 HeapWord* end = hr->end();
5705
5706 bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5707
5708 bool res_n = true;
5709 // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5710 // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5711 // if we happen to be in that state.
5712 if (mark_in_progress() || !_cmThread->in_progress()) {
5713 res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5714 }
5715 if (!res_p || !res_n) {
5716 gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5717 HR_FORMAT_PARAMS(hr));
5718 gclog_or_tty->print_cr("#### Caller: %s", caller);
5719 return false;
5720 }
5721 return true;
5722 }
5723
5724 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5725 if (!G1VerifyBitmaps) return;
5726
5727 guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5728 }
5729
5730 class G1VerifyBitmapClosure : public HeapRegionClosure {
5731 private:
5732 const char* _caller;
5733 G1CollectedHeap* _g1h;
5734 bool _failures;
5735
5736 public:
5737 G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5738 _caller(caller), _g1h(g1h), _failures(false) { }
5739
5740 bool failures() { return _failures; }
5741
5742 virtual bool doHeapRegion(HeapRegion* hr) {
5743 if (hr->is_continues_humongous()) return false;
5744
5745 bool result = _g1h->verify_bitmaps(_caller, hr);
5746 if (!result) {
5747 _failures = true;
5748 }
5749 return false;
5750 }
5751 };
5752
5753 void G1CollectedHeap::check_bitmaps(const char* caller) {
5754 if (!G1VerifyBitmaps) return;
5755
5756 G1VerifyBitmapClosure cl(caller, this);
5757 heap_region_iterate(&cl);
5758 guarantee(!cl.failures(), "bitmap verification");
5759 }
5760
5761 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5762 private:
5763 bool _failures;
5764 public:
5765 G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5766
5767 virtual bool doHeapRegion(HeapRegion* hr) {
5768 uint i = hr->hrm_index();
5769 InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5770 if (hr->is_humongous()) {
5771 if (hr->in_collection_set()) {
5772 gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5773 _failures = true;
5774 return true;
5775 }
5776 if (cset_state.is_in_cset()) {
5777 gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5778 _failures = true;
5779 return true;
5780 }
5781 if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5782 gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5783 _failures = true;
5784 return true;
5785 }
5786 } else {
5787 if (cset_state.is_humongous()) {
5788 gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5789 _failures = true;
5790 return true;
5791 }
5792 if (hr->in_collection_set() != cset_state.is_in_cset()) {
5793 gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5794 hr->in_collection_set(), cset_state.value(), i);
5795 _failures = true;
5796 return true;
5797 }
5798 if (cset_state.is_in_cset()) {
5799 if (hr->is_young() != (cset_state.is_young())) {
5800 gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5801 hr->is_young(), cset_state.value(), i);
5802 _failures = true;
5803 return true;
5804 }
5805 if (hr->is_old() != (cset_state.is_old())) {
5806 gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5807 hr->is_old(), cset_state.value(), i);
5808 _failures = true;
5809 return true;
5810 }
5811 }
5812 }
5813 return false;
5814 }
5815
5816 bool failures() const { return _failures; }
5817 };
5818
5819 bool G1CollectedHeap::check_cset_fast_test() {
5820 G1CheckCSetFastTableClosure cl;
5821 _hrm.iterate(&cl);
5822 return !cl.failures();
5823 }
5824 #endif // PRODUCT
5825
5826 void G1CollectedHeap::cleanUpCardTable() {
5827 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5828 double start = os::elapsedTime();
5829
5830 {
5831 // Iterate over the dirty cards region list.
5832 G1ParCleanupCTTask cleanup_task(ct_bs, this);
5833
5834 set_par_threads();
5835 workers()->run_task(&cleanup_task);
5836 set_par_threads(0);
5837 #ifndef PRODUCT
5838 if (G1VerifyCTCleanup || VerifyAfterGC) {
5839 G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5840 heap_region_iterate(&cleanup_verifier);
5841 }
5842 #endif
5843 }
5844
5845 double elapsed = os::elapsedTime() - start;
5846 g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5847 }
5848
5849 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5850 size_t pre_used = 0;
5851 FreeRegionList local_free_list("Local List for CSet Freeing");
5852
5853 double young_time_ms = 0.0;
5854 double non_young_time_ms = 0.0;
5855
5856 // Since the collection set is a superset of the the young list,
5857 // all we need to do to clear the young list is clear its
5858 // head and length, and unlink any young regions in the code below
5859 _young_list->clear();
5860
5861 G1CollectorPolicy* policy = g1_policy();
5862
5863 double start_sec = os::elapsedTime();
5864 bool non_young = true;
5865
5866 HeapRegion* cur = cs_head;
5867 int age_bound = -1;
5868 size_t rs_lengths = 0;
5869
5870 while (cur != NULL) {
5871 assert(!is_on_master_free_list(cur), "sanity");
5872 if (non_young) {
5873 if (cur->is_young()) {
5874 double end_sec = os::elapsedTime();
5875 double elapsed_ms = (end_sec - start_sec) * 1000.0;
5876 non_young_time_ms += elapsed_ms;
5877
5878 start_sec = os::elapsedTime();
5879 non_young = false;
5880 }
5881 } else {
5882 if (!cur->is_young()) {
5883 double end_sec = os::elapsedTime();
5884 double elapsed_ms = (end_sec - start_sec) * 1000.0;
5885 young_time_ms += elapsed_ms;
5886
5887 start_sec = os::elapsedTime();
5888 non_young = true;
5889 }
5890 }
5891
5892 rs_lengths += cur->rem_set()->occupied_locked();
5893
5894 HeapRegion* next = cur->next_in_collection_set();
5895 assert(cur->in_collection_set(), "bad CS");
5896 cur->set_next_in_collection_set(NULL);
5897 clear_in_cset(cur);
5898
5899 if (cur->is_young()) {
5900 int index = cur->young_index_in_cset();
5901 assert(index != -1, "invariant");
5902 assert((uint) index < policy->young_cset_region_length(), "invariant");
5903 size_t words_survived = _surviving_young_words[index];
5904 cur->record_surv_words_in_group(words_survived);
5905
5906 // At this point the we have 'popped' cur from the collection set
5907 // (linked via next_in_collection_set()) but it is still in the
5908 // young list (linked via next_young_region()). Clear the
5909 // _next_young_region field.
5910 cur->set_next_young_region(NULL);
5911 } else {
5912 int index = cur->young_index_in_cset();
5913 assert(index == -1, "invariant");
5914 }
5915
5916 assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5917 (!cur->is_young() && cur->young_index_in_cset() == -1),
5918 "invariant" );
5919
5920 if (!cur->evacuation_failed()) {
5921 MemRegion used_mr = cur->used_region();
5922
5923 // And the region is empty.
5924 assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5925 pre_used += cur->used();
5926 free_region(cur, &local_free_list, false /* par */, true /* locked */);
5927 } else {
5928 cur->uninstall_surv_rate_group();
5929 if (cur->is_young()) {
5930 cur->set_young_index_in_cset(-1);
5931 }
5932 cur->set_evacuation_failed(false);
5933 // The region is now considered to be old.
5934 cur->set_old();
5935 _old_set.add(cur);
5936 evacuation_info.increment_collectionset_used_after(cur->used());
5937 }
5938 cur = next;
5939 }
5940
5941 evacuation_info.set_regions_freed(local_free_list.length());
5942 policy->record_max_rs_lengths(rs_lengths);
5943 policy->cset_regions_freed();
5944
5945 double end_sec = os::elapsedTime();
5946 double elapsed_ms = (end_sec - start_sec) * 1000.0;
5947
5948 if (non_young) {
5949 non_young_time_ms += elapsed_ms;
5950 } else {
5951 young_time_ms += elapsed_ms;
5952 }
5953
5954 prepend_to_freelist(&local_free_list);
5955 decrement_summary_bytes(pre_used);
5956 policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5957 policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5958 }
5959
5960 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5961 private:
5962 FreeRegionList* _free_region_list;
5963 HeapRegionSet* _proxy_set;
5964 HeapRegionSetCount _humongous_regions_removed;
5965 size_t _freed_bytes;
5966 public:
5967
5968 G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5969 _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5970 }
5971
5972 virtual bool doHeapRegion(HeapRegion* r) {
5973 if (!r->is_starts_humongous()) {
5974 return false;
5975 }
5976
5977 G1CollectedHeap* g1h = G1CollectedHeap::heap();
5978
5979 oop obj = (oop)r->bottom();
5980 CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5981
5982 // The following checks whether the humongous object is live are sufficient.
5983 // The main additional check (in addition to having a reference from the roots
5984 // or the young gen) is whether the humongous object has a remembered set entry.
5985 //
5986 // A humongous object cannot be live if there is no remembered set for it
5987 // because:
5988 // - there can be no references from within humongous starts regions referencing
5989 // the object because we never allocate other objects into them.
5990 // (I.e. there are no intra-region references that may be missed by the
5991 // remembered set)
5992 // - as soon there is a remembered set entry to the humongous starts region
5993 // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5994 // until the end of a concurrent mark.
5995 //
5996 // It is not required to check whether the object has been found dead by marking
5997 // or not, in fact it would prevent reclamation within a concurrent cycle, as
5998 // all objects allocated during that time are considered live.
5999 // SATB marking is even more conservative than the remembered set.
6000 // So if at this point in the collection there is no remembered set entry,
6001 // nobody has a reference to it.
6002 // At the start of collection we flush all refinement logs, and remembered sets
6003 // are completely up-to-date wrt to references to the humongous object.
6004 //
6005 // Other implementation considerations:
6006 // - never consider object arrays at this time because they would pose
6007 // considerable effort for cleaning up the the remembered sets. This is
6008 // required because stale remembered sets might reference locations that
6009 // are currently allocated into.
6010 uint region_idx = r->hrm_index();
6011 if (g1h->humongous_is_live(region_idx) ||
6012 g1h->humongous_region_is_always_live(region_idx)) {
6013
6014 if (G1TraceEagerReclaimHumongousObjects) {
6015 gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6016 region_idx,
6017 obj->size()*HeapWordSize,
6018 r->bottom(),
6019 r->region_num(),
6020 r->rem_set()->occupied(),
6021 r->rem_set()->strong_code_roots_list_length(),
6022 next_bitmap->isMarked(r->bottom()),
6023 g1h->humongous_is_live(region_idx),
6024 obj->is_objArray()
6025 );
6026 }
6027
6028 return false;
6029 }
6030
6031 guarantee(!obj->is_objArray(),
6032 err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6033 r->bottom()));
6034
6035 if (G1TraceEagerReclaimHumongousObjects) {
6036 gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6037 region_idx,
6038 obj->size()*HeapWordSize,
6039 r->bottom(),
6040 r->region_num(),
6041 r->rem_set()->occupied(),
6042 r->rem_set()->strong_code_roots_list_length(),
6043 next_bitmap->isMarked(r->bottom()),
6044 g1h->humongous_is_live(region_idx),
6045 obj->is_objArray()
6046 );
6047 }
6048 // Need to clear mark bit of the humongous object if already set.
6049 if (next_bitmap->isMarked(r->bottom())) {
6050 next_bitmap->clear(r->bottom());
6051 }
6052 _freed_bytes += r->used();
6053 r->set_containing_set(NULL);
6054 _humongous_regions_removed.increment(1u, r->capacity());
6055 g1h->free_humongous_region(r, _free_region_list, false);
6056
6057 return false;
6058 }
6059
6060 HeapRegionSetCount& humongous_free_count() {
6061 return _humongous_regions_removed;
6062 }
6063
6064 size_t bytes_freed() const {
6065 return _freed_bytes;
6066 }
6067
6068 size_t humongous_reclaimed() const {
6069 return _humongous_regions_removed.length();
6070 }
6071 };
6072
6073 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6074 assert_at_safepoint(true);
6075
6076 if (!G1EagerReclaimHumongousObjects ||
6077 (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6078 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6079 return;
6080 }
6081
6082 double start_time = os::elapsedTime();
6083
6084 FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6085
6086 G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6087 heap_region_iterate(&cl);
6088
6089 HeapRegionSetCount empty_set;
6090 remove_from_old_sets(empty_set, cl.humongous_free_count());
6091
6092 G1HRPrinter* hr_printer = _g1h->hr_printer();
6093 if (hr_printer->is_active()) {
6094 FreeRegionListIterator iter(&local_cleanup_list);
6095 while (iter.more_available()) {
6096 HeapRegion* hr = iter.get_next();
6097 hr_printer->cleanup(hr);
6098 }
6099 }
6100
6101 prepend_to_freelist(&local_cleanup_list);
6102 decrement_summary_bytes(cl.bytes_freed());
6103
6104 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6105 cl.humongous_reclaimed());
6106 }
6107
6108 // This routine is similar to the above but does not record
6109 // any policy statistics or update free lists; we are abandoning
6110 // the current incremental collection set in preparation of a
6111 // full collection. After the full GC we will start to build up
6112 // the incremental collection set again.
6113 // This is only called when we're doing a full collection
6114 // and is immediately followed by the tearing down of the young list.
6115
6116 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6117 HeapRegion* cur = cs_head;
6118
6119 while (cur != NULL) {
6120 HeapRegion* next = cur->next_in_collection_set();
6121 assert(cur->in_collection_set(), "bad CS");
6122 cur->set_next_in_collection_set(NULL);
6123 clear_in_cset(cur);
6124 cur->set_young_index_in_cset(-1);
6125 cur = next;
6126 }
6127 }
6128
6129 void G1CollectedHeap::set_free_regions_coming() {
6130 if (G1ConcRegionFreeingVerbose) {
6131 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6132 "setting free regions coming");
6133 }
6134
6135 assert(!free_regions_coming(), "pre-condition");
6136 _free_regions_coming = true;
6137 }
6138
6139 void G1CollectedHeap::reset_free_regions_coming() {
6140 assert(free_regions_coming(), "pre-condition");
6141
6142 {
6143 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6144 _free_regions_coming = false;
6145 SecondaryFreeList_lock->notify_all();
6146 }
6147
6148 if (G1ConcRegionFreeingVerbose) {
6149 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6150 "reset free regions coming");
6151 }
6152 }
6153
6154 void G1CollectedHeap::wait_while_free_regions_coming() {
6155 // Most of the time we won't have to wait, so let's do a quick test
6156 // first before we take the lock.
6157 if (!free_regions_coming()) {
6158 return;
6159 }
6160
6161 if (G1ConcRegionFreeingVerbose) {
6162 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6163 "waiting for free regions");
6164 }
6165
6166 {
6167 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6168 while (free_regions_coming()) {
6169 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6170 }
6171 }
6172
6173 if (G1ConcRegionFreeingVerbose) {
6174 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6175 "done waiting for free regions");
6176 }
6177 }
6178
6179 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6180 assert(heap_lock_held_for_gc(),
6181 "the heap lock should already be held by or for this thread");
6182 _young_list->push_region(hr);
6183 }
6184
6185 class NoYoungRegionsClosure: public HeapRegionClosure {
6186 private:
6187 bool _success;
6188 public:
6189 NoYoungRegionsClosure() : _success(true) { }
6190 bool doHeapRegion(HeapRegion* r) {
6191 if (r->is_young()) {
6192 gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6193 r->bottom(), r->end());
6194 _success = false;
6195 }
6196 return false;
6197 }
6198 bool success() { return _success; }
6199 };
6200
6201 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6202 bool ret = _young_list->check_list_empty(check_sample);
6203
6204 if (check_heap) {
6205 NoYoungRegionsClosure closure;
6206 heap_region_iterate(&closure);
6207 ret = ret && closure.success();
6208 }
6209
6210 return ret;
6211 }
6212
6213 class TearDownRegionSetsClosure : public HeapRegionClosure {
6214 private:
6215 HeapRegionSet *_old_set;
6216
6217 public:
6218 TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6219
6220 bool doHeapRegion(HeapRegion* r) {
6221 if (r->is_old()) {
6222 _old_set->remove(r);
6223 } else {
6224 // We ignore free regions, we'll empty the free list afterwards.
6225 // We ignore young regions, we'll empty the young list afterwards.
6226 // We ignore humongous regions, we're not tearing down the
6227 // humongous regions set.
6228 assert(r->is_free() || r->is_young() || r->is_humongous(),
6229 "it cannot be another type");
6230 }
6231 return false;
6232 }
6233
6234 ~TearDownRegionSetsClosure() {
6235 assert(_old_set->is_empty(), "post-condition");
6236 }
6237 };
6238
6239 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6240 assert_at_safepoint(true /* should_be_vm_thread */);
6241
6242 if (!free_list_only) {
6243 TearDownRegionSetsClosure cl(&_old_set);
6244 heap_region_iterate(&cl);
6245
6246 // Note that emptying the _young_list is postponed and instead done as
6247 // the first step when rebuilding the regions sets again. The reason for
6248 // this is that during a full GC string deduplication needs to know if
6249 // a collected region was young or old when the full GC was initiated.
6250 }
6251 _hrm.remove_all_free_regions();
6252 }
6253
6254 class RebuildRegionSetsClosure : public HeapRegionClosure {
6255 private:
6256 bool _free_list_only;
6257 HeapRegionSet* _old_set;
6258 HeapRegionManager* _hrm;
6259 size_t _total_used;
6260
6261 public:
6262 RebuildRegionSetsClosure(bool free_list_only,
6263 HeapRegionSet* old_set, HeapRegionManager* hrm) :
6264 _free_list_only(free_list_only),
6265 _old_set(old_set), _hrm(hrm), _total_used(0) {
6266 assert(_hrm->num_free_regions() == 0, "pre-condition");
6267 if (!free_list_only) {
6268 assert(_old_set->is_empty(), "pre-condition");
6269 }
6270 }
6271
6272 bool doHeapRegion(HeapRegion* r) {
6273 if (r->is_continues_humongous()) {
6274 return false;
6275 }
6276
6277 if (r->is_empty()) {
6278 // Add free regions to the free list
6279 r->set_free();
6280 r->set_allocation_context(AllocationContext::system());
6281 _hrm->insert_into_free_list(r);
6282 } else if (!_free_list_only) {
6283 assert(!r->is_young(), "we should not come across young regions");
6284
6285 if (r->is_humongous()) {
6286 // We ignore humongous regions, we left the humongous set unchanged
6287 } else {
6288 // Objects that were compacted would have ended up on regions
6289 // that were previously old or free.
6290 assert(r->is_free() || r->is_old(), "invariant");
6291 // We now consider them old, so register as such.
6292 r->set_old();
6293 _old_set->add(r);
6294 }
6295 _total_used += r->used();
6296 }
6297
6298 return false;
6299 }
6300
6301 size_t total_used() {
6302 return _total_used;
6303 }
6304 };
6305
6306 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6307 assert_at_safepoint(true /* should_be_vm_thread */);
6308
6309 if (!free_list_only) {
6310 _young_list->empty_list();
6311 }
6312
6313 RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6314 heap_region_iterate(&cl);
6315
6316 if (!free_list_only) {
6317 _allocator->set_used(cl.total_used());
6318 }
6319 assert(_allocator->used_unlocked() == recalculate_used(),
6320 err_msg("inconsistent _allocator->used_unlocked(), "
6321 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6322 _allocator->used_unlocked(), recalculate_used()));
6323 }
6324
6325 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6326 _refine_cte_cl->set_concurrent(concurrent);
6327 }
6328
6329 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6330 HeapRegion* hr = heap_region_containing(p);
6331 return hr->is_in(p);
6332 }
6333
6334 // Methods for the mutator alloc region
6335
6336 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6337 bool force) {
6338 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6339 assert(!force || g1_policy()->can_expand_young_list(),
6340 "if force is true we should be able to expand the young list");
6341 bool young_list_full = g1_policy()->is_young_list_full();
6342 if (force || !young_list_full) {
6343 HeapRegion* new_alloc_region = new_region(word_size,
6344 false /* is_old */,
6345 false /* do_expand */);
6346 if (new_alloc_region != NULL) {
6347 set_region_short_lived_locked(new_alloc_region);
6348 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6349 check_bitmaps("Mutator Region Allocation", new_alloc_region);
6350 return new_alloc_region;
6351 }
6352 }
6353 return NULL;
6354 }
6355
6356 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6357 size_t allocated_bytes) {
6358 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6359 assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6360
6361 g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6362 _allocator->increase_used(allocated_bytes);
6363 _hr_printer.retire(alloc_region);
6364 // We update the eden sizes here, when the region is retired,
6365 // instead of when it's allocated, since this is the point that its
6366 // used space has been recored in _summary_bytes_used.
6367 g1mm()->update_eden_size();
6368 }
6369
6370 void G1CollectedHeap::set_par_threads() {
6371 // Don't change the number of workers. Use the value previously set
6372 // in the workgroup.
6373 uint n_workers = workers()->active_workers();
6374 assert(UseDynamicNumberOfGCThreads ||
6375 n_workers == workers()->total_workers(),
6376 "Otherwise should be using the total number of workers");
6377 if (n_workers == 0) {
6378 assert(false, "Should have been set in prior evacuation pause.");
6379 n_workers = ParallelGCThreads;
6380 workers()->set_active_workers(n_workers);
6381 }
6382 set_par_threads(n_workers);
6383 }
6384
6385 // Methods for the GC alloc regions
6386
6387 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6388 uint count,
6389 InCSetState dest) {
6390 assert(FreeList_lock->owned_by_self(), "pre-condition");
6391
6392 if (count < g1_policy()->max_regions(dest)) {
6393 const bool is_survivor = (dest.is_young());
6394 HeapRegion* new_alloc_region = new_region(word_size,
6395 !is_survivor,
6396 true /* do_expand */);
6397 if (new_alloc_region != NULL) {
6398 // We really only need to do this for old regions given that we
6399 // should never scan survivors. But it doesn't hurt to do it
6400 // for survivors too.
6401 new_alloc_region->record_timestamp();
6402 if (is_survivor) {
6403 new_alloc_region->set_survivor();
6404 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6405 check_bitmaps("Survivor Region Allocation", new_alloc_region);
6406 } else {
6407 new_alloc_region->set_old();
6408 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6409 check_bitmaps("Old Region Allocation", new_alloc_region);
6410 }
6411 bool during_im = g1_policy()->during_initial_mark_pause();
6412 new_alloc_region->note_start_of_copying(during_im);
6413 return new_alloc_region;
6414 }
6415 }
6416 return NULL;
6417 }
6418
6419 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6420 size_t allocated_bytes,
6421 InCSetState dest) {
6422 bool during_im = g1_policy()->during_initial_mark_pause();
6423 alloc_region->note_end_of_copying(during_im);
6424 g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6425 if (dest.is_young()) {
6426 young_list()->add_survivor_region(alloc_region);
6427 } else {
6428 _old_set.add(alloc_region);
6429 }
6430 _hr_printer.retire(alloc_region);
6431 }
6432
6433 // Heap region set verification
6434
6435 class VerifyRegionListsClosure : public HeapRegionClosure {
6436 private:
6437 HeapRegionSet* _old_set;
6438 HeapRegionSet* _humongous_set;
6439 HeapRegionManager* _hrm;
6440
6441 public:
6442 HeapRegionSetCount _old_count;
6443 HeapRegionSetCount _humongous_count;
6444 HeapRegionSetCount _free_count;
6445
6446 VerifyRegionListsClosure(HeapRegionSet* old_set,
6447 HeapRegionSet* humongous_set,
6448 HeapRegionManager* hrm) :
6449 _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6450 _old_count(), _humongous_count(), _free_count(){ }
6451
6452 bool doHeapRegion(HeapRegion* hr) {
6453 if (hr->is_continues_humongous()) {
6454 return false;
6455 }
6456
6457 if (hr->is_young()) {
6458 // TODO
6459 } else if (hr->is_starts_humongous()) {
6460 assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6461 _humongous_count.increment(1u, hr->capacity());
6462 } else if (hr->is_empty()) {
6463 assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6464 _free_count.increment(1u, hr->capacity());
6465 } else if (hr->is_old()) {
6466 assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6467 _old_count.increment(1u, hr->capacity());
6468 } else {
6469 ShouldNotReachHere();
6470 }
6471 return false;
6472 }
6473
6474 void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6475 guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6476 guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6477 old_set->total_capacity_bytes(), _old_count.capacity()));
6478
6479 guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6480 guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6481 humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6482
6483 guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6484 guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6485 free_list->total_capacity_bytes(), _free_count.capacity()));
6486 }
6487 };
6488
6489 void G1CollectedHeap::verify_region_sets() {
6490 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6491
6492 // First, check the explicit lists.
6493 _hrm.verify();
6494 {
6495 // Given that a concurrent operation might be adding regions to
6496 // the secondary free list we have to take the lock before
6497 // verifying it.
6498 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6499 _secondary_free_list.verify_list();
6500 }
6501
6502 // If a concurrent region freeing operation is in progress it will
6503 // be difficult to correctly attributed any free regions we come
6504 // across to the correct free list given that they might belong to
6505 // one of several (free_list, secondary_free_list, any local lists,
6506 // etc.). So, if that's the case we will skip the rest of the
6507 // verification operation. Alternatively, waiting for the concurrent
6508 // operation to complete will have a non-trivial effect on the GC's
6509 // operation (no concurrent operation will last longer than the
6510 // interval between two calls to verification) and it might hide
6511 // any issues that we would like to catch during testing.
6512 if (free_regions_coming()) {
6513 return;
6514 }
6515
6516 // Make sure we append the secondary_free_list on the free_list so
6517 // that all free regions we will come across can be safely
6518 // attributed to the free_list.
6519 append_secondary_free_list_if_not_empty_with_lock();
6520
6521 // Finally, make sure that the region accounting in the lists is
6522 // consistent with what we see in the heap.
6523
6524 VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6525 heap_region_iterate(&cl);
6526 cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6527 }
6528
6529 // Optimized nmethod scanning
6530
6531 class RegisterNMethodOopClosure: public OopClosure {
6532 G1CollectedHeap* _g1h;
6533 nmethod* _nm;
6534
6535 template <class T> void do_oop_work(T* p) {
6536 T heap_oop = oopDesc::load_heap_oop(p);
6537 if (!oopDesc::is_null(heap_oop)) {
6538 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6539 HeapRegion* hr = _g1h->heap_region_containing(obj);
6540 assert(!hr->is_continues_humongous(),
6541 err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6542 " starting at "HR_FORMAT,
6543 _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6544
6545 // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6546 hr->add_strong_code_root_locked(_nm);
6547 }
6548 }
6549
6550 public:
6551 RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6552 _g1h(g1h), _nm(nm) {}
6553
6554 void do_oop(oop* p) { do_oop_work(p); }
6555 void do_oop(narrowOop* p) { do_oop_work(p); }
6556 };
6557
6558 class UnregisterNMethodOopClosure: public OopClosure {
6559 G1CollectedHeap* _g1h;
6560 nmethod* _nm;
6561
6562 template <class T> void do_oop_work(T* p) {
6563 T heap_oop = oopDesc::load_heap_oop(p);
6564 if (!oopDesc::is_null(heap_oop)) {
6565 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6566 HeapRegion* hr = _g1h->heap_region_containing(obj);
6567 assert(!hr->is_continues_humongous(),
6568 err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6569 " starting at "HR_FORMAT,
6570 _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6571
6572 hr->remove_strong_code_root(_nm);
6573 }
6574 }
6575
6576 public:
6577 UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6578 _g1h(g1h), _nm(nm) {}
6579
6580 void do_oop(oop* p) { do_oop_work(p); }
6581 void do_oop(narrowOop* p) { do_oop_work(p); }
6582 };
6583
6584 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6585 CollectedHeap::register_nmethod(nm);
6586
6587 guarantee(nm != NULL, "sanity");
6588 RegisterNMethodOopClosure reg_cl(this, nm);
6589 nm->oops_do(®_cl);
6590 }
6591
6592 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6593 CollectedHeap::unregister_nmethod(nm);
6594
6595 guarantee(nm != NULL, "sanity");
6596 UnregisterNMethodOopClosure reg_cl(this, nm);
6597 nm->oops_do(®_cl, true);
6598 }
6599
6600 void G1CollectedHeap::purge_code_root_memory() {
6601 double purge_start = os::elapsedTime();
6602 G1CodeRootSet::purge();
6603 double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6604 g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6605 }
6606
6607 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6608 G1CollectedHeap* _g1h;
6609
6610 public:
6611 RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6612 _g1h(g1h) {}
6613
6614 void do_code_blob(CodeBlob* cb) {
6615 nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6616 if (nm == NULL) {
6617 return;
6618 }
6619
6620 if (ScavengeRootsInCode) {
6621 _g1h->register_nmethod(nm);
6622 }
6623 }
6624 };
6625
6626 void G1CollectedHeap::rebuild_strong_code_roots() {
6627 RebuildStrongCodeRootClosure blob_cl(this);
6628 CodeCache::blobs_do(&blob_cl);
6629 }