/* * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP #define SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP #include "gc/g1/g1BlockOffsetTable.inline.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/heapRegion.hpp" #include "gc/shared/space.hpp" #include "oops/oop.inline.hpp" #include "runtime/atomic.hpp" inline HeapWord* G1ContiguousSpace::allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_size) { HeapWord* obj = top(); size_t available = pointer_delta(end(), obj); size_t want_to_allocate = MIN2(available, desired_word_size); if (want_to_allocate >= min_word_size) { HeapWord* new_top = obj + want_to_allocate; set_top(new_top); assert(is_aligned(obj) && is_aligned(new_top), "checking alignment"); *actual_size = want_to_allocate; return obj; } else { return NULL; } } inline HeapWord* G1ContiguousSpace::par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_size) { do { HeapWord* obj = top(); size_t available = pointer_delta(end(), obj); size_t want_to_allocate = MIN2(available, desired_word_size); if (want_to_allocate >= min_word_size) { HeapWord* new_top = obj + want_to_allocate; HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj); // result can be one of two: // the old top value: the exchange succeeded // otherwise: the new value of the top is returned. if (result == obj) { assert(is_aligned(obj) && is_aligned(new_top), "checking alignment"); *actual_size = want_to_allocate; return obj; } } else { return NULL; } } while (true); } inline HeapWord* G1ContiguousSpace::allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_size) { HeapWord* res = allocate_impl(min_word_size, desired_word_size, actual_size); if (res != NULL) { _bot_part.alloc_block(res, *actual_size); } return res; } inline HeapWord* G1ContiguousSpace::allocate(size_t word_size) { size_t temp; return allocate(word_size, word_size, &temp); } inline HeapWord* G1ContiguousSpace::par_allocate(size_t word_size) { size_t temp; return par_allocate(word_size, word_size, &temp); } // Because of the requirement of keeping "_offsets" up to date with the // allocations, we sequentialize these with a lock. Therefore, best if // this is used for larger LAB allocations only. inline HeapWord* G1ContiguousSpace::par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_size) { MutexLocker x(&_par_alloc_lock); return allocate(min_word_size, desired_word_size, actual_size); } inline HeapWord* G1ContiguousSpace::block_start(const void* p) { return _bot_part.block_start(p); } inline HeapWord* G1ContiguousSpace::block_start_const(const void* p) const { return _bot_part.block_start_const(p); } inline bool HeapRegion::is_obj_dead_with_size(const oop obj, G1CMBitMapRO* prev_bitmap, size_t* size) const { HeapWord* addr = (HeapWord*) obj; assert(addr < top(), "must be"); assert(!is_archive(), "Archive regions should not have references into interesting regions."); assert(!is_humongous(), "Humongous objects not handled here"); bool obj_is_dead = is_obj_dead(obj, prev_bitmap); if (ClassUnloadingWithConcurrentMark && obj_is_dead) { assert(!block_is_obj(addr), "must be"); *size = block_size_using_bitmap(addr, prev_bitmap); } else { assert(block_is_obj(addr), "must be"); *size = obj->size(); } return obj_is_dead; } inline bool HeapRegion::block_is_obj(const HeapWord* p) const { G1CollectedHeap* g1h = G1CollectedHeap::heap(); if (!this->is_in(p)) { assert(is_continues_humongous(), "This case can only happen for humongous regions"); return (p == humongous_start_region()->bottom()); } if (ClassUnloadingWithConcurrentMark) { return !g1h->is_obj_dead(oop(p), this); } return p < top(); } inline size_t HeapRegion::block_size_using_bitmap(const HeapWord* addr, const G1CMBitMapRO* prev_bitmap) const { assert(ClassUnloadingWithConcurrentMark, "All blocks should be objects if class unloading isn't used, so this method should not be called. " "HR: [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ") " "addr: " PTR_FORMAT, p2i(bottom()), p2i(top()), p2i(end()), p2i(addr)); // Old regions' dead objects may have dead classes // We need to find the next live object using the bitmap HeapWord* next = prev_bitmap->getNextMarkedWordAddress(addr, prev_top_at_mark_start()); assert(next > addr, "must get the next live object"); return pointer_delta(next, addr); } inline bool HeapRegion::is_obj_dead(const oop obj, const G1CMBitMapRO* prev_bitmap) const { assert(is_in_reserved(obj), "Object " PTR_FORMAT " must be in region", p2i(obj)); return !obj_allocated_since_prev_marking(obj) && !prev_bitmap->isMarked((HeapWord*)obj); } inline size_t HeapRegion::block_size(const HeapWord *addr) const { if (addr == top()) { return pointer_delta(end(), addr); } if (block_is_obj(addr)) { return oop(addr)->size(); } return block_size_using_bitmap(addr, G1CollectedHeap::heap()->concurrent_mark()->prevMarkBitMap()); } inline HeapWord* HeapRegion::par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size) { assert(is_young(), "we can only skip BOT updates on young regions"); return par_allocate_impl(min_word_size, desired_word_size, actual_word_size); } inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t word_size) { size_t temp; return allocate_no_bot_updates(word_size, word_size, &temp); } inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size) { assert(is_young(), "we can only skip BOT updates on young regions"); return allocate_impl(min_word_size, desired_word_size, actual_word_size); } inline void HeapRegion::note_start_of_marking() { _next_marked_bytes = 0; _next_top_at_mark_start = top(); } inline void HeapRegion::note_end_of_marking() { _prev_top_at_mark_start = _next_top_at_mark_start; _prev_marked_bytes = _next_marked_bytes; _next_marked_bytes = 0; } inline void HeapRegion::note_start_of_copying(bool during_initial_mark) { if (is_survivor()) { // This is how we always allocate survivors. assert(_next_top_at_mark_start == bottom(), "invariant"); } else { if (during_initial_mark) { // During initial-mark we'll explicitly mark any objects on old // regions that are pointed to by roots. Given that explicit // marks only make sense under NTAMS it'd be nice if we could // check that condition if we wanted to. Given that we don't // know where the top of this region will end up, we simply set // NTAMS to the end of the region so all marks will be below // NTAMS. We'll set it to the actual top when we retire this region. _next_top_at_mark_start = end(); } else { // We could have re-used this old region as to-space over a // couple of GCs since the start of the concurrent marking // cycle. This means that [bottom,NTAMS) will contain objects // copied up to and including initial-mark and [NTAMS, top) // will contain objects copied during the concurrent marking cycle. assert(top() >= _next_top_at_mark_start, "invariant"); } } } inline void HeapRegion::note_end_of_copying(bool during_initial_mark) { if (is_survivor()) { // This is how we always allocate survivors. assert(_next_top_at_mark_start == bottom(), "invariant"); } else { if (during_initial_mark) { // See the comment for note_start_of_copying() for the details // on this. assert(_next_top_at_mark_start == end(), "pre-condition"); _next_top_at_mark_start = top(); } else { // See the comment for note_start_of_copying() for the details // on this. assert(top() >= _next_top_at_mark_start, "invariant"); } } } inline bool HeapRegion::in_collection_set() const { return G1CollectedHeap::heap()->is_in_cset(this); } template bool HeapRegion::do_oops_on_card_in_humongous(MemRegion mr, Closure* cl, G1CollectedHeap* g1h) { assert(is_humongous(), "precondition"); HeapRegion* sr = humongous_start_region(); oop obj = oop(sr->bottom()); // If concurrent and klass_or_null is NULL, then space has been // allocated but the object has not yet been published by setting // the klass. That can only happen if the card is stale. However, // we've already set the card clean, so we must return failure, // since the allocating thread could have performed a write to the // card that might be missed otherwise. if (!is_gc_active && (obj->klass_or_null_acquire() == NULL)) { return false; } // We have a well-formed humongous object at the start of sr. // Only filler objects follow a humongous object in the containing // regions, and we can ignore those. So only process the one // humongous object. if (!g1h->is_obj_dead(obj, sr)) { if (obj->is_objArray() || (sr->bottom() < mr.start())) { // objArrays are always marked precisely, so limit processing // with mr. Non-objArrays might be precisely marked, and since // it's humongous it's worthwhile avoiding full processing. // However, the card could be stale and only cover filler // objects. That should be rare, so not worth checking for; // instead let it fall out from the bounded iteration. obj->oop_iterate(cl, mr); } else { // If obj is not an objArray and mr contains the start of the // obj, then this could be an imprecise mark, and we need to // process the entire object. obj->oop_iterate(cl); } } return true; } template bool HeapRegion::oops_on_card_seq_iterate_careful(MemRegion mr, Closure* cl) { assert(MemRegion(bottom(), end()).contains(mr), "Card region not in heap region"); G1CollectedHeap* g1h = G1CollectedHeap::heap(); // Special handling for humongous regions. if (is_humongous()) { return do_oops_on_card_in_humongous(mr, cl, g1h); } assert(is_old(), "precondition"); // Because mr has been trimmed to what's been allocated in this // region, the parts of the heap that are examined here are always // parsable; there's no need to use klass_or_null to detect // in-progress allocation. // Cache the boundaries of the memory region in some const locals HeapWord* const start = mr.start(); HeapWord* const end = mr.end(); // Find the obj that extends onto mr.start(). // Update BOT as needed while finding start of (possibly dead) // object containing the start of the region. HeapWord* cur = block_start(start); #ifdef ASSERT { assert(cur <= start, "cur: " PTR_FORMAT ", start: " PTR_FORMAT, p2i(cur), p2i(start)); HeapWord* next = cur + block_size(cur); assert(start < next, "start: " PTR_FORMAT ", next: " PTR_FORMAT, p2i(start), p2i(next)); } #endif G1CMBitMapRO* bitmap = g1h->concurrent_mark()->prevMarkBitMap(); do { oop obj = oop(cur); assert(obj->is_oop(true), "Not an oop at " PTR_FORMAT, p2i(cur)); assert(obj->klass_or_null() != NULL, "Unparsable heap at " PTR_FORMAT, p2i(cur)); size_t size; bool is_dead = is_obj_dead_with_size(obj, bitmap, &size); cur += size; if (!is_dead) { // Process live object's references. // Non-objArrays are usually marked imprecise at the object // start, in which case we need to iterate over them in full. // objArrays are precisely marked, but can still be iterated // over in full if completely covered. if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) { obj->oop_iterate(cl); } else { obj->oop_iterate(cl, mr); } } } while (cur < end); return true; } #endif // SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP