1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1HeapRegionTraceType.hpp"
  30 #include "gc/g1/g1OopClosures.inline.hpp"
  31 #include "gc/g1/heapRegion.inline.hpp"
  32 #include "gc/g1/heapRegionBounds.inline.hpp"
  33 #include "gc/g1/heapRegionManager.inline.hpp"
  34 #include "gc/g1/heapRegionRemSet.hpp"
  35 #include "gc/g1/heapRegionTracer.hpp"
  36 #include "gc/shared/genOopClosures.inline.hpp"
  37 #include "gc/shared/space.inline.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/iterator.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/atomic.hpp"
  43 #include "runtime/orderAccess.inline.hpp"
  44 
  45 int    HeapRegion::LogOfHRGrainBytes = 0;
  46 int    HeapRegion::LogOfHRGrainWords = 0;
  47 size_t HeapRegion::GrainBytes        = 0;
  48 size_t HeapRegion::GrainWords        = 0;
  49 size_t HeapRegion::CardsPerRegion    = 0;
  50 
  51 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  52                                  HeapRegion* hr,
  53                                  G1ParPushHeapRSClosure* cl,
  54                                  CardTableModRefBS::PrecisionStyle precision) :
  55   DirtyCardToOopClosure(hr, cl, precision, NULL),
  56   _hr(hr), _rs_scan(cl), _g1(g1) { }
  57 
  58 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  59                                       HeapWord* bottom,
  60                                       HeapWord* top) {
  61   G1CollectedHeap* g1h = _g1;
  62   size_t oop_size;
  63   HeapWord* cur = bottom;
  64 
  65   // Start filtering what we add to the remembered set. If the object is
  66   // not considered dead, either because it is marked (in the mark bitmap)
  67   // or it was allocated after marking finished, then we add it. Otherwise
  68   // we can safely ignore the object.
  69   if (!g1h->is_obj_dead(oop(cur))) {
  70     oop_size = oop(cur)->oop_iterate_size(_rs_scan, mr);
  71   } else {
  72     oop_size = _hr->block_size(cur);
  73   }
  74 
  75   cur += oop_size;
  76 
  77   if (cur < top) {
  78     oop cur_oop = oop(cur);
  79     oop_size = _hr->block_size(cur);
  80     HeapWord* next_obj = cur + oop_size;
  81     while (next_obj < top) {
  82       // Keep filtering the remembered set.
  83       if (!g1h->is_obj_dead(cur_oop)) {
  84         // Bottom lies entirely below top, so we can call the
  85         // non-memRegion version of oop_iterate below.
  86         cur_oop->oop_iterate(_rs_scan);
  87       }
  88       cur = next_obj;
  89       cur_oop = oop(cur);
  90       oop_size = _hr->block_size(cur);
  91       next_obj = cur + oop_size;
  92     }
  93 
  94     // Last object. Need to do dead-obj filtering here too.
  95     if (!g1h->is_obj_dead(oop(cur))) {
  96       oop(cur)->oop_iterate(_rs_scan, mr);
  97     }
  98   }
  99 }
 100 
 101 size_t HeapRegion::max_region_size() {
 102   return HeapRegionBounds::max_size();
 103 }
 104 
 105 size_t HeapRegion::min_region_size_in_words() {
 106   return HeapRegionBounds::min_size() >> LogHeapWordSize;
 107 }
 108 
 109 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 110   size_t region_size = G1HeapRegionSize;
 111   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 112     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 113     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
 114                        HeapRegionBounds::min_size());
 115   }
 116 
 117   int region_size_log = log2_long((jlong) region_size);
 118   // Recalculate the region size to make sure it's a power of
 119   // 2. This means that region_size is the largest power of 2 that's
 120   // <= what we've calculated so far.
 121   region_size = ((size_t)1 << region_size_log);
 122 
 123   // Now make sure that we don't go over or under our limits.
 124   if (region_size < HeapRegionBounds::min_size()) {
 125     region_size = HeapRegionBounds::min_size();
 126   } else if (region_size > HeapRegionBounds::max_size()) {
 127     region_size = HeapRegionBounds::max_size();
 128   }
 129 
 130   // And recalculate the log.
 131   region_size_log = log2_long((jlong) region_size);
 132 
 133   // Now, set up the globals.
 134   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 135   LogOfHRGrainBytes = region_size_log;
 136 
 137   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 138   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 139 
 140   guarantee(GrainBytes == 0, "we should only set it once");
 141   // The cast to int is safe, given that we've bounded region_size by
 142   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 143   GrainBytes = region_size;
 144   log_info(gc, heap)("Heap region size: " SIZE_FORMAT "M", GrainBytes / M);
 145 
 146   guarantee(GrainWords == 0, "we should only set it once");
 147   GrainWords = GrainBytes >> LogHeapWordSize;
 148   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 149 
 150   guarantee(CardsPerRegion == 0, "we should only set it once");
 151   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 152 
 153   if (G1HeapRegionSize != GrainBytes) {
 154     FLAG_SET_ERGO(size_t, G1HeapRegionSize, GrainBytes);
 155   }
 156 }
 157 
 158 void HeapRegion::reset_after_compaction() {
 159   G1ContiguousSpace::reset_after_compaction();
 160   // After a compaction the mark bitmap is invalid, so we must
 161   // treat all objects as being inside the unmarked area.
 162   zero_marked_bytes();
 163   init_top_at_mark_start();
 164 }
 165 
 166 void HeapRegion::hr_clear(bool keep_remset, bool clear_space, bool locked) {
 167   assert(_humongous_start_region == NULL,
 168          "we should have already filtered out humongous regions");
 169   assert(!in_collection_set(),
 170          "Should not clear heap region %u in the collection set", hrm_index());
 171 
 172   set_allocation_context(AllocationContext::system());
 173   set_young_index_in_cset(-1);
 174   uninstall_surv_rate_group();
 175   set_free();
 176   reset_pre_dummy_top();
 177 
 178   if (!keep_remset) {
 179     if (locked) {
 180       rem_set()->clear_locked();
 181     } else {
 182       rem_set()->clear();
 183     }
 184   }
 185 
 186   zero_marked_bytes();
 187 
 188   init_top_at_mark_start();
 189   _gc_time_stamp = G1CollectedHeap::heap()->get_gc_time_stamp();
 190   if (clear_space) clear(SpaceDecorator::Mangle);
 191 }
 192 
 193 void HeapRegion::par_clear() {
 194   assert(used() == 0, "the region should have been already cleared");
 195   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 196   HeapRegionRemSet* hrrs = rem_set();
 197   hrrs->clear();
 198   CardTableModRefBS* ct_bs =
 199     barrier_set_cast<CardTableModRefBS>(G1CollectedHeap::heap()->barrier_set());
 200   ct_bs->clear(MemRegion(bottom(), end()));
 201 }
 202 
 203 void HeapRegion::calc_gc_efficiency() {
 204   // GC efficiency is the ratio of how much space would be
 205   // reclaimed over how long we predict it would take to reclaim it.
 206   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 207   G1Policy* g1p = g1h->g1_policy();
 208 
 209   // Retrieve a prediction of the elapsed time for this region for
 210   // a mixed gc because the region will only be evacuated during a
 211   // mixed gc.
 212   double region_elapsed_time_ms =
 213     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 214   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 215 }
 216 
 217 void HeapRegion::set_free() {
 218   report_region_type_change(G1HeapRegionTraceType::Free);
 219   _type.set_free();
 220 }
 221 
 222 void HeapRegion::set_eden() {
 223   report_region_type_change(G1HeapRegionTraceType::Eden);
 224   _type.set_eden();
 225 }
 226 
 227 void HeapRegion::set_eden_pre_gc() {
 228   report_region_type_change(G1HeapRegionTraceType::Eden);
 229   _type.set_eden_pre_gc();
 230 }
 231 
 232 void HeapRegion::set_survivor() {
 233   report_region_type_change(G1HeapRegionTraceType::Survivor);
 234   _type.set_survivor();
 235 }
 236 
 237 void HeapRegion::set_old() {
 238   report_region_type_change(G1HeapRegionTraceType::Old);
 239   _type.set_old();
 240 }
 241 
 242 void HeapRegion::set_archive() {
 243   report_region_type_change(G1HeapRegionTraceType::Archive);
 244   _type.set_archive();
 245 }
 246 
 247 void HeapRegion::set_starts_humongous(HeapWord* obj_top, size_t fill_size) {
 248   assert(!is_humongous(), "sanity / pre-condition");
 249   assert(top() == bottom(), "should be empty");
 250 
 251   report_region_type_change(G1HeapRegionTraceType::StartsHumongous);
 252   _type.set_starts_humongous();
 253   _humongous_start_region = this;
 254 
 255   _bot_part.set_for_starts_humongous(obj_top, fill_size);
 256 }
 257 
 258 void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
 259   assert(!is_humongous(), "sanity / pre-condition");
 260   assert(top() == bottom(), "should be empty");
 261   assert(first_hr->is_starts_humongous(), "pre-condition");
 262 
 263   report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous);
 264   _type.set_continues_humongous();
 265   _humongous_start_region = first_hr;
 266 
 267   _bot_part.set_object_can_span(true);
 268 }
 269 
 270 void HeapRegion::clear_humongous() {
 271   assert(is_humongous(), "pre-condition");
 272 
 273   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 274   _humongous_start_region = NULL;
 275 
 276   _bot_part.set_object_can_span(false);
 277 }
 278 
 279 HeapRegion::HeapRegion(uint hrm_index,
 280                        G1BlockOffsetTable* bot,
 281                        MemRegion mr) :
 282     G1ContiguousSpace(bot),
 283     _hrm_index(hrm_index),
 284     _allocation_context(AllocationContext::system()),
 285     _humongous_start_region(NULL),
 286     _evacuation_failed(false),
 287     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 288     _next(NULL), _prev(NULL),
 289 #ifdef ASSERT
 290     _containing_set(NULL),
 291 #endif // ASSERT
 292      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 293     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0)
 294 {
 295   _rem_set = new HeapRegionRemSet(bot, this);
 296 
 297   initialize(mr);
 298 }
 299 
 300 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 301   assert(_rem_set->is_empty(), "Remembered set must be empty");
 302 
 303   G1ContiguousSpace::initialize(mr, clear_space, mangle_space);
 304 
 305   hr_clear(false /*par*/, false /*clear_space*/);
 306   set_top(bottom());
 307   record_timestamp();
 308 }
 309 
 310 void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) {
 311   HeapRegionTracer::send_region_type_change(_hrm_index,
 312                                             get_trace_type(),
 313                                             to,
 314                                             (uintptr_t)bottom(),
 315                                             used(),
 316                                             (uint)allocation_context());
 317 }
 318 
 319 CompactibleSpace* HeapRegion::next_compaction_space() const {
 320   return G1CollectedHeap::heap()->next_compaction_region(this);
 321 }
 322 
 323 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 324                                                     bool during_conc_mark) {
 325   // We always recreate the prev marking info and we'll explicitly
 326   // mark all objects we find to be self-forwarded on the prev
 327   // bitmap. So all objects need to be below PTAMS.
 328   _prev_marked_bytes = 0;
 329 
 330   if (during_initial_mark) {
 331     // During initial-mark, we'll also explicitly mark all objects
 332     // we find to be self-forwarded on the next bitmap. So all
 333     // objects need to be below NTAMS.
 334     _next_top_at_mark_start = top();
 335     _next_marked_bytes = 0;
 336   } else if (during_conc_mark) {
 337     // During concurrent mark, all objects in the CSet (including
 338     // the ones we find to be self-forwarded) are implicitly live.
 339     // So all objects need to be above NTAMS.
 340     _next_top_at_mark_start = bottom();
 341     _next_marked_bytes = 0;
 342   }
 343 }
 344 
 345 void HeapRegion::note_self_forwarding_removal_end(size_t marked_bytes) {
 346   assert(marked_bytes <= used(),
 347          "marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used());
 348   _prev_top_at_mark_start = top();
 349   _prev_marked_bytes = marked_bytes;
 350 }
 351 
 352 // Code roots support
 353 
 354 void HeapRegion::add_strong_code_root(nmethod* nm) {
 355   HeapRegionRemSet* hrrs = rem_set();
 356   hrrs->add_strong_code_root(nm);
 357 }
 358 
 359 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
 360   assert_locked_or_safepoint(CodeCache_lock);
 361   HeapRegionRemSet* hrrs = rem_set();
 362   hrrs->add_strong_code_root_locked(nm);
 363 }
 364 
 365 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 366   HeapRegionRemSet* hrrs = rem_set();
 367   hrrs->remove_strong_code_root(nm);
 368 }
 369 
 370 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 371   HeapRegionRemSet* hrrs = rem_set();
 372   hrrs->strong_code_roots_do(blk);
 373 }
 374 
 375 class VerifyStrongCodeRootOopClosure: public OopClosure {
 376   const HeapRegion* _hr;
 377   bool _failures;
 378   bool _has_oops_in_region;
 379 
 380   template <class T> void do_oop_work(T* p) {
 381     T heap_oop = oopDesc::load_heap_oop(p);
 382     if (!oopDesc::is_null(heap_oop)) {
 383       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 384 
 385       // Note: not all the oops embedded in the nmethod are in the
 386       // current region. We only look at those which are.
 387       if (_hr->is_in(obj)) {
 388         // Object is in the region. Check that its less than top
 389         if (_hr->top() <= (HeapWord*)obj) {
 390           // Object is above top
 391           log_error(gc, verify)("Object " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ") is above top " PTR_FORMAT,
 392                                p2i(obj), p2i(_hr->bottom()), p2i(_hr->end()), p2i(_hr->top()));
 393           _failures = true;
 394           return;
 395         }
 396         // Nmethod has at least one oop in the current region
 397         _has_oops_in_region = true;
 398       }
 399     }
 400   }
 401 
 402 public:
 403   VerifyStrongCodeRootOopClosure(const HeapRegion* hr):
 404     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 405 
 406   void do_oop(narrowOop* p) { do_oop_work(p); }
 407   void do_oop(oop* p)       { do_oop_work(p); }
 408 
 409   bool failures()           { return _failures; }
 410   bool has_oops_in_region() { return _has_oops_in_region; }
 411 };
 412 
 413 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 414   const HeapRegion* _hr;
 415   bool _failures;
 416 public:
 417   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 418     _hr(hr), _failures(false) {}
 419 
 420   void do_code_blob(CodeBlob* cb) {
 421     nmethod* nm = (cb == NULL) ? NULL : cb->as_compiled_method()->as_nmethod_or_null();
 422     if (nm != NULL) {
 423       // Verify that the nemthod is live
 424       if (!nm->is_alive()) {
 425         log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod " PTR_FORMAT " in its strong code roots",
 426                               p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 427         _failures = true;
 428       } else {
 429         VerifyStrongCodeRootOopClosure oop_cl(_hr);
 430         nm->oops_do(&oop_cl);
 431         if (!oop_cl.has_oops_in_region()) {
 432           log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod " PTR_FORMAT " in its strong code roots with no pointers into region",
 433                                 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 434           _failures = true;
 435         } else if (oop_cl.failures()) {
 436           log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has other failures for nmethod " PTR_FORMAT,
 437                                 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 438           _failures = true;
 439         }
 440       }
 441     }
 442   }
 443 
 444   bool failures()       { return _failures; }
 445 };
 446 
 447 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 448   if (!G1VerifyHeapRegionCodeRoots) {
 449     // We're not verifying code roots.
 450     return;
 451   }
 452   if (vo == VerifyOption_G1UseMarkWord) {
 453     // Marking verification during a full GC is performed after class
 454     // unloading, code cache unloading, etc so the strong code roots
 455     // attached to each heap region are in an inconsistent state. They won't
 456     // be consistent until the strong code roots are rebuilt after the
 457     // actual GC. Skip verifying the strong code roots in this particular
 458     // time.
 459     assert(VerifyDuringGC, "only way to get here");
 460     return;
 461   }
 462 
 463   HeapRegionRemSet* hrrs = rem_set();
 464   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 465 
 466   // if this region is empty then there should be no entries
 467   // on its strong code root list
 468   if (is_empty()) {
 469     if (strong_code_roots_length > 0) {
 470       log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] is empty but has " SIZE_FORMAT " code root entries",
 471                             p2i(bottom()), p2i(end()), strong_code_roots_length);
 472       *failures = true;
 473     }
 474     return;
 475   }
 476 
 477   if (is_continues_humongous()) {
 478     if (strong_code_roots_length > 0) {
 479       log_error(gc, verify)("region " HR_FORMAT " is a continuation of a humongous region but has " SIZE_FORMAT " code root entries",
 480                             HR_FORMAT_PARAMS(this), strong_code_roots_length);
 481       *failures = true;
 482     }
 483     return;
 484   }
 485 
 486   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 487   strong_code_roots_do(&cb_cl);
 488 
 489   if (cb_cl.failures()) {
 490     *failures = true;
 491   }
 492 }
 493 
 494 void HeapRegion::print() const { print_on(tty); }
 495 void HeapRegion::print_on(outputStream* st) const {
 496   st->print("|%4u", this->_hrm_index);
 497   st->print("|" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT,
 498             p2i(bottom()), p2i(top()), p2i(end()));
 499   st->print("|%3d%%", (int) ((double) used() * 100 / capacity()));
 500   st->print("|%2s", get_short_type_str());
 501   if (in_collection_set()) {
 502     st->print("|CS");
 503   } else {
 504     st->print("|  ");
 505   }
 506   st->print("|TS%3u", _gc_time_stamp);
 507   st->print("|AC%3u", allocation_context());
 508   st->print_cr("|TAMS " PTR_FORMAT ", " PTR_FORMAT "|",
 509                p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()));
 510 }
 511 
 512 class G1VerificationClosure : public OopClosure {
 513 protected:
 514   G1CollectedHeap* _g1h;
 515   CardTableModRefBS* _bs;
 516   oop _containing_obj;
 517   bool _failures;
 518   int _n_failures;
 519   VerifyOption _vo;
 520 public:
 521   // _vo == UsePrevMarking -> use "prev" marking information,
 522   // _vo == UseNextMarking -> use "next" marking information,
 523   // _vo == UseMarkWord    -> use mark word from object header.
 524   G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 525     _g1h(g1h), _bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
 526     _containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo) {
 527   }
 528 
 529   void set_containing_obj(oop obj) {
 530     _containing_obj = obj;
 531   }
 532 
 533   bool failures() { return _failures; }
 534   int n_failures() { return _n_failures; }
 535 
 536   void print_object(outputStream* out, oop obj) {
 537 #ifdef PRODUCT
 538     Klass* k = obj->klass();
 539     const char* class_name = k->external_name();
 540     out->print_cr("class name %s", class_name);
 541 #else // PRODUCT
 542     obj->print_on(out);
 543 #endif // PRODUCT
 544   }
 545 };
 546 
 547 class VerifyLiveClosure : public G1VerificationClosure {
 548 public:
 549   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 550   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 551   virtual void do_oop(oop* p) { do_oop_work(p); }
 552 
 553   template <class T>
 554   void do_oop_work(T* p) {
 555     assert(_containing_obj != NULL, "Precondition");
 556     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 557       "Precondition");
 558     verify_liveness(p);
 559   }
 560 
 561   template <class T>
 562   void verify_liveness(T* p) {
 563     T heap_oop = oopDesc::load_heap_oop(p);
 564     Log(gc, verify) log;
 565     if (!oopDesc::is_null(heap_oop)) {
 566       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 567       bool failed = false;
 568       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 569         MutexLockerEx x(ParGCRareEvent_lock,
 570           Mutex::_no_safepoint_check_flag);
 571 
 572         if (!_failures) {
 573           log.error("----------");
 574         }
 575         ResourceMark rm;
 576         if (!_g1h->is_in_closed_subset(obj)) {
 577           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 578           log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
 579             p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
 580           print_object(log.error_stream(), _containing_obj);
 581           log.error("points to obj " PTR_FORMAT " not in the heap", p2i(obj));
 582         } else {
 583           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 584           HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj);
 585           log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
 586             p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
 587           print_object(log.error_stream(), _containing_obj);
 588           log.error("points to dead obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
 589             p2i(obj), p2i(to->bottom()), p2i(to->end()));
 590           print_object(log.error_stream(), obj);
 591         }
 592         log.error("----------");
 593         _failures = true;
 594         failed = true;
 595         _n_failures++;
 596       }
 597     }
 598   }
 599 };
 600 
 601 class VerifyRemSetClosure : public G1VerificationClosure {
 602 public:
 603   VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 604   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 605   virtual void do_oop(oop* p) { do_oop_work(p); }
 606 
 607   template <class T>
 608   void do_oop_work(T* p) {
 609     assert(_containing_obj != NULL, "Precondition");
 610     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 611       "Precondition");
 612     verify_remembered_set(p);
 613   }
 614 
 615   template <class T>
 616   void verify_remembered_set(T* p) {
 617     T heap_oop = oopDesc::load_heap_oop(p);
 618     Log(gc, verify) log;
 619     if (!oopDesc::is_null(heap_oop)) {
 620       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 621       HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 622       HeapRegion* to = _g1h->heap_region_containing(obj);
 623       if (from != NULL && to != NULL &&
 624         from != to &&
 625         !to->is_pinned()) {
 626         jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 627         jbyte cv_field = *_bs->byte_for_const(p);
 628         const jbyte dirty = CardTableModRefBS::dirty_card_val();
 629 
 630         bool is_bad = !(from->is_young()
 631           || to->rem_set()->contains_reference(p)
 632           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 633           (_containing_obj->is_objArray() ?
 634           cv_field == dirty
 635           : cv_obj == dirty || cv_field == dirty));
 636         if (is_bad) {
 637           MutexLockerEx x(ParGCRareEvent_lock,
 638             Mutex::_no_safepoint_check_flag);
 639 
 640           if (!_failures) {
 641             log.error("----------");
 642           }
 643           log.error("Missing rem set entry:");
 644           log.error("Field " PTR_FORMAT " of obj " PTR_FORMAT ", in region " HR_FORMAT,
 645             p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from));
 646           ResourceMark rm;
 647           _containing_obj->print_on(log.error_stream());
 648           log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT, p2i(obj), HR_FORMAT_PARAMS(to));
 649           if (obj->is_oop()) {
 650             obj->print_on(log.error_stream());
 651           }
 652           log.error("Obj head CTE = %d, field CTE = %d.", cv_obj, cv_field);
 653           log.error("----------");
 654           _failures = true;
 655           _n_failures++;
 656         }
 657       }
 658     }
 659   }
 660 };
 661 
 662 // Closure that applies the given two closures in sequence.
 663 class G1Mux2Closure : public OopClosure {
 664   OopClosure* _c1;
 665   OopClosure* _c2;
 666 public:
 667   G1Mux2Closure(OopClosure *c1, OopClosure *c2) { _c1 = c1; _c2 = c2; }
 668   template <class T> inline void do_oop_work(T* p) {
 669     // Apply first closure; then apply the second.
 670     _c1->do_oop(p);
 671     _c2->do_oop(p);
 672   }
 673   virtual inline void do_oop(oop* p) { do_oop_work(p); }
 674   virtual inline void do_oop(narrowOop* p) { do_oop_work(p); }
 675 };
 676 
 677 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 678 // We would need a mechanism to make that code skip dead objects.
 679 
 680 void HeapRegion::verify(VerifyOption vo,
 681                         bool* failures) const {
 682   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 683   *failures = false;
 684   HeapWord* p = bottom();
 685   HeapWord* prev_p = NULL;
 686   VerifyLiveClosure vl_cl(g1, vo);
 687   VerifyRemSetClosure vr_cl(g1, vo);
 688   bool is_region_humongous = is_humongous();
 689   size_t object_num = 0;
 690   while (p < top()) {
 691     oop obj = oop(p);
 692     size_t obj_size = block_size(p);
 693     object_num += 1;
 694 
 695     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 696       if (obj->is_oop()) {
 697         Klass* klass = obj->klass();
 698         bool is_metaspace_object = Metaspace::contains(klass) ||
 699                                    (vo == VerifyOption_G1UsePrevMarking &&
 700                                    ClassLoaderDataGraph::unload_list_contains(klass));
 701         if (!is_metaspace_object) {
 702           log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 703                                 "not metadata", p2i(klass), p2i(obj));
 704           *failures = true;
 705           return;
 706         } else if (!klass->is_klass()) {
 707           log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 708                                 "not a klass", p2i(klass), p2i(obj));
 709           *failures = true;
 710           return;
 711         } else {
 712           vl_cl.set_containing_obj(obj);
 713           if (!g1->collector_state()->full_collection() || G1VerifyRSetsDuringFullGC) {
 714             // verify liveness and rem_set
 715             vr_cl.set_containing_obj(obj);
 716             G1Mux2Closure mux(&vl_cl, &vr_cl);
 717             obj->oop_iterate_no_header(&mux);
 718 
 719             if (vr_cl.failures()) {
 720               *failures = true;
 721             }
 722             if (G1MaxVerifyFailures >= 0 &&
 723               vr_cl.n_failures() >= G1MaxVerifyFailures) {
 724               return;
 725             }
 726           } else {
 727             // verify only liveness
 728             obj->oop_iterate_no_header(&vl_cl);
 729           }
 730           if (vl_cl.failures()) {
 731             *failures = true;
 732           }
 733           if (G1MaxVerifyFailures >= 0 &&
 734               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 735             return;
 736           }
 737         }
 738       } else {
 739         log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
 740         *failures = true;
 741         return;
 742       }
 743     }
 744     prev_p = p;
 745     p += obj_size;
 746   }
 747 
 748   if (!is_young() && !is_empty()) {
 749     _bot_part.verify();
 750   }
 751 
 752   if (is_region_humongous) {
 753     oop obj = oop(this->humongous_start_region()->bottom());
 754     if ((HeapWord*)obj > bottom() || (HeapWord*)obj + obj->size() < bottom()) {
 755       log_error(gc, verify)("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj));
 756       *failures = true;
 757       return;
 758     }
 759   }
 760 
 761   if (!is_region_humongous && p != top()) {
 762     log_error(gc, verify)("end of last object " PTR_FORMAT " "
 763                           "does not match top " PTR_FORMAT, p2i(p), p2i(top()));
 764     *failures = true;
 765     return;
 766   }
 767 
 768   HeapWord* the_end = end();
 769   // Do some extra BOT consistency checking for addresses in the
 770   // range [top, end). BOT look-ups in this range should yield
 771   // top. No point in doing that if top == end (there's nothing there).
 772   if (p < the_end) {
 773     // Look up top
 774     HeapWord* addr_1 = p;
 775     HeapWord* b_start_1 = _bot_part.block_start_const(addr_1);
 776     if (b_start_1 != p) {
 777       log_error(gc, verify)("BOT look up for top: " PTR_FORMAT " "
 778                             " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 779                             p2i(addr_1), p2i(b_start_1), p2i(p));
 780       *failures = true;
 781       return;
 782     }
 783 
 784     // Look up top + 1
 785     HeapWord* addr_2 = p + 1;
 786     if (addr_2 < the_end) {
 787       HeapWord* b_start_2 = _bot_part.block_start_const(addr_2);
 788       if (b_start_2 != p) {
 789         log_error(gc, verify)("BOT look up for top + 1: " PTR_FORMAT " "
 790                               " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 791                               p2i(addr_2), p2i(b_start_2), p2i(p));
 792         *failures = true;
 793         return;
 794       }
 795     }
 796 
 797     // Look up an address between top and end
 798     size_t diff = pointer_delta(the_end, p) / 2;
 799     HeapWord* addr_3 = p + diff;
 800     if (addr_3 < the_end) {
 801       HeapWord* b_start_3 = _bot_part.block_start_const(addr_3);
 802       if (b_start_3 != p) {
 803         log_error(gc, verify)("BOT look up for top + diff: " PTR_FORMAT " "
 804                               " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 805                               p2i(addr_3), p2i(b_start_3), p2i(p));
 806         *failures = true;
 807         return;
 808       }
 809     }
 810 
 811     // Look up end - 1
 812     HeapWord* addr_4 = the_end - 1;
 813     HeapWord* b_start_4 = _bot_part.block_start_const(addr_4);
 814     if (b_start_4 != p) {
 815       log_error(gc, verify)("BOT look up for end - 1: " PTR_FORMAT " "
 816                             " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 817                             p2i(addr_4), p2i(b_start_4), p2i(p));
 818       *failures = true;
 819       return;
 820     }
 821   }
 822 
 823   verify_strong_code_roots(vo, failures);
 824 }
 825 
 826 void HeapRegion::verify() const {
 827   bool dummy = false;
 828   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 829 }
 830 
 831 void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const {
 832   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 833   *failures = false;
 834   HeapWord* p = bottom();
 835   HeapWord* prev_p = NULL;
 836   VerifyRemSetClosure vr_cl(g1, vo);
 837   while (p < top()) {
 838     oop obj = oop(p);
 839     size_t obj_size = block_size(p);
 840 
 841     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 842       if (obj->is_oop()) {
 843         vr_cl.set_containing_obj(obj);
 844         obj->oop_iterate_no_header(&vr_cl);
 845 
 846         if (vr_cl.failures()) {
 847           *failures = true;
 848         }
 849         if (G1MaxVerifyFailures >= 0 &&
 850           vr_cl.n_failures() >= G1MaxVerifyFailures) {
 851           return;
 852         }
 853       } else {
 854         log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
 855         *failures = true;
 856         return;
 857       }
 858     }
 859 
 860     prev_p = p;
 861     p += obj_size;
 862   }
 863 }
 864 
 865 void HeapRegion::verify_rem_set() const {
 866   bool failures = false;
 867   verify_rem_set(VerifyOption_G1UsePrevMarking, &failures);
 868   guarantee(!failures, "HeapRegion RemSet verification failed");
 869 }
 870 
 871 void HeapRegion::prepare_for_compaction(CompactPoint* cp) {
 872   scan_and_forward(this, cp);
 873 }
 874 
 875 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 876 // away eventually.
 877 
 878 void G1ContiguousSpace::clear(bool mangle_space) {
 879   set_top(bottom());
 880   _scan_top = bottom();
 881   CompactibleSpace::clear(mangle_space);
 882   reset_bot();
 883 }
 884 
 885 #ifndef PRODUCT
 886 void G1ContiguousSpace::mangle_unused_area() {
 887   mangle_unused_area_complete();
 888 }
 889 
 890 void G1ContiguousSpace::mangle_unused_area_complete() {
 891   SpaceMangler::mangle_region(MemRegion(top(), end()));
 892 }
 893 #endif
 894 
 895 void G1ContiguousSpace::print() const {
 896   print_short();
 897   tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 898                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 899                 p2i(bottom()), p2i(top()), p2i(_bot_part.threshold()), p2i(end()));
 900 }
 901 
 902 HeapWord* G1ContiguousSpace::initialize_threshold() {
 903   return _bot_part.initialize_threshold();
 904 }
 905 
 906 HeapWord* G1ContiguousSpace::cross_threshold(HeapWord* start,
 907                                                     HeapWord* end) {
 908   _bot_part.alloc_block(start, end);
 909   return _bot_part.threshold();
 910 }
 911 
 912 HeapWord* G1ContiguousSpace::scan_top() const {
 913   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 914   HeapWord* local_top = top();
 915   OrderAccess::loadload();
 916   const unsigned local_time_stamp = _gc_time_stamp;
 917   assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
 918   if (local_time_stamp < g1h->get_gc_time_stamp()) {
 919     return local_top;
 920   } else {
 921     return _scan_top;
 922   }
 923 }
 924 
 925 void G1ContiguousSpace::record_timestamp() {
 926   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 927   uint curr_gc_time_stamp = g1h->get_gc_time_stamp();
 928 
 929   if (_gc_time_stamp < curr_gc_time_stamp) {
 930     // Setting the time stamp here tells concurrent readers to look at
 931     // scan_top to know the maximum allowed address to look at.
 932 
 933     // scan_top should be bottom for all regions except for the
 934     // retained old alloc region which should have scan_top == top
 935     HeapWord* st = _scan_top;
 936     guarantee(st == _bottom || st == _top, "invariant");
 937 
 938     _gc_time_stamp = curr_gc_time_stamp;
 939   }
 940 }
 941 
 942 void G1ContiguousSpace::record_retained_region() {
 943   // scan_top is the maximum address where it's safe for the next gc to
 944   // scan this region.
 945   _scan_top = top();
 946 }
 947 
 948 void G1ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
 949   object_iterate(blk);
 950 }
 951 
 952 void G1ContiguousSpace::object_iterate(ObjectClosure* blk) {
 953   HeapWord* p = bottom();
 954   while (p < top()) {
 955     if (block_is_obj(p)) {
 956       blk->do_object(oop(p));
 957     }
 958     p += block_size(p);
 959   }
 960 }
 961 
 962 G1ContiguousSpace::G1ContiguousSpace(G1BlockOffsetTable* bot) :
 963   _bot_part(bot, this),
 964   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
 965   _gc_time_stamp(0)
 966 {
 967 }
 968 
 969 void G1ContiguousSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 970   CompactibleSpace::initialize(mr, clear_space, mangle_space);
 971   _top = bottom();
 972   _scan_top = bottom();
 973   set_saved_mark_word(NULL);
 974   reset_bot();
 975 }
 976