1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP
  26 #define SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP
  27 
  28 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/heapRegion.hpp"
  31 #include "gc/shared/space.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 
  35 inline HeapWord* G1ContiguousSpace::allocate_impl(size_t min_word_size,
  36                                                   size_t desired_word_size,
  37                                                   size_t* actual_size) {
  38   HeapWord* obj = top();
  39   size_t available = pointer_delta(end(), obj);
  40   size_t want_to_allocate = MIN2(available, desired_word_size);
  41   if (want_to_allocate >= min_word_size) {
  42     HeapWord* new_top = obj + want_to_allocate;
  43     set_top(new_top);
  44     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
  45     *actual_size = want_to_allocate;
  46     return obj;
  47   } else {
  48     return NULL;
  49   }
  50 }
  51 
  52 inline HeapWord* G1ContiguousSpace::par_allocate_impl(size_t min_word_size,
  53                                                       size_t desired_word_size,
  54                                                       size_t* actual_size) {
  55   do {
  56     HeapWord* obj = top();
  57     size_t available = pointer_delta(end(), obj);
  58     size_t want_to_allocate = MIN2(available, desired_word_size);
  59     if (want_to_allocate >= min_word_size) {
  60       HeapWord* new_top = obj + want_to_allocate;
  61       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
  62       // result can be one of two:
  63       //  the old top value: the exchange succeeded
  64       //  otherwise: the new value of the top is returned.
  65       if (result == obj) {
  66         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
  67         *actual_size = want_to_allocate;
  68         return obj;
  69       }
  70     } else {
  71       return NULL;
  72     }
  73   } while (true);
  74 }
  75 
  76 inline HeapWord* G1ContiguousSpace::allocate(size_t min_word_size,
  77                                              size_t desired_word_size,
  78                                              size_t* actual_size) {
  79   HeapWord* res = allocate_impl(min_word_size, desired_word_size, actual_size);
  80   if (res != NULL) {
  81     _bot_part.alloc_block(res, *actual_size);
  82   }
  83   return res;
  84 }
  85 
  86 inline HeapWord* G1ContiguousSpace::allocate(size_t word_size) {
  87   size_t temp;
  88   return allocate(word_size, word_size, &temp);
  89 }
  90 
  91 inline HeapWord* G1ContiguousSpace::par_allocate(size_t word_size) {
  92   size_t temp;
  93   return par_allocate(word_size, word_size, &temp);
  94 }
  95 
  96 // Because of the requirement of keeping "_offsets" up to date with the
  97 // allocations, we sequentialize these with a lock.  Therefore, best if
  98 // this is used for larger LAB allocations only.
  99 inline HeapWord* G1ContiguousSpace::par_allocate(size_t min_word_size,
 100                                                  size_t desired_word_size,
 101                                                  size_t* actual_size) {
 102   MutexLocker x(&_par_alloc_lock);
 103   return allocate(min_word_size, desired_word_size, actual_size);
 104 }
 105 
 106 inline HeapWord* G1ContiguousSpace::block_start(const void* p) {
 107   return _bot_part.block_start(p);
 108 }
 109 
 110 inline HeapWord*
 111 G1ContiguousSpace::block_start_const(const void* p) const {
 112   return _bot_part.block_start_const(p);
 113 }
 114 
 115 inline bool HeapRegion::is_obj_dead_with_size(const oop obj, G1CMBitMapRO* prev_bitmap, size_t* size) const {
 116   HeapWord* addr = (HeapWord*) obj;
 117 
 118   assert(addr < top(), "must be");
 119   assert(!is_archive(), "Archive regions should not have references into interesting regions.");
 120   assert(!is_humongous(), "Humongous objects not handled here");
 121   bool obj_is_dead = is_obj_dead(obj, prev_bitmap);
 122 
 123   if (ClassUnloadingWithConcurrentMark && obj_is_dead) {
 124     assert(!block_is_obj(addr), "must be");
 125     *size = block_size_using_bitmap(addr, prev_bitmap);
 126   } else {
 127     assert(block_is_obj(addr), "must be");
 128     *size = obj->size();
 129   }
 130   return obj_is_dead;
 131 }
 132 
 133 inline bool
 134 HeapRegion::block_is_obj(const HeapWord* p) const {
 135   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 136 
 137   if (!this->is_in(p)) {
 138     assert(is_continues_humongous(), "This case can only happen for humongous regions");
 139     return (p == humongous_start_region()->bottom());
 140   }
 141   if (ClassUnloadingWithConcurrentMark) {
 142     return !g1h->is_obj_dead(oop(p), this);
 143   }
 144   return p < top();
 145 }
 146 
 147 inline size_t HeapRegion::block_size_using_bitmap(const HeapWord* addr, const G1CMBitMapRO* prev_bitmap) const {
 148   assert(ClassUnloadingWithConcurrentMark,
 149          "All blocks should be objects if class unloading isn't used, so this method should not be called. "
 150          "HR: [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ") "
 151          "addr: " PTR_FORMAT,
 152          p2i(bottom()), p2i(top()), p2i(end()), p2i(addr));
 153 
 154   // Old regions' dead objects may have dead classes
 155   // We need to find the next live object using the bitmap
 156   HeapWord* next = prev_bitmap->getNextMarkedWordAddress(addr, prev_top_at_mark_start());
 157 
 158   assert(next > addr, "must get the next live object");
 159   return pointer_delta(next, addr);    
 160 }
 161 
 162 inline bool HeapRegion::is_obj_dead(const oop obj, const G1CMBitMapRO* prev_bitmap) const {
 163   assert(is_in_reserved(obj), "Object " PTR_FORMAT " must be in region", p2i(obj));
 164   return !obj_allocated_since_prev_marking(obj) && !prev_bitmap->isMarked((HeapWord*)obj);
 165 }
 166 
 167 inline size_t HeapRegion::block_size(const HeapWord *addr) const {
 168   if (addr == top()) {
 169     return pointer_delta(end(), addr);
 170   }
 171 
 172   if (block_is_obj(addr)) {
 173     return oop(addr)->size();
 174   }
 175 
 176   return block_size_using_bitmap(addr, G1CollectedHeap::heap()->concurrent_mark()->prevMarkBitMap());
 177 }
 178 
 179 inline HeapWord* HeapRegion::par_allocate_no_bot_updates(size_t min_word_size,
 180                                                          size_t desired_word_size,
 181                                                          size_t* actual_word_size) {
 182   assert(is_young(), "we can only skip BOT updates on young regions");
 183   return par_allocate_impl(min_word_size, desired_word_size, actual_word_size);
 184 }
 185 
 186 inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t word_size) {
 187   size_t temp;
 188   return allocate_no_bot_updates(word_size, word_size, &temp);
 189 }
 190 
 191 inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t min_word_size,
 192                                                      size_t desired_word_size,
 193                                                      size_t* actual_word_size) {
 194   assert(is_young(), "we can only skip BOT updates on young regions");
 195   return allocate_impl(min_word_size, desired_word_size, actual_word_size);
 196 }
 197 
 198 inline void HeapRegion::note_start_of_marking() {
 199   _next_marked_bytes = 0;
 200   _next_top_at_mark_start = top();
 201 }
 202 
 203 inline void HeapRegion::note_end_of_marking() {
 204   _prev_top_at_mark_start = _next_top_at_mark_start;
 205   _prev_marked_bytes = _next_marked_bytes;
 206   _next_marked_bytes = 0;
 207 }
 208 
 209 inline void HeapRegion::note_start_of_copying(bool during_initial_mark) {
 210   if (is_survivor()) {
 211     // This is how we always allocate survivors.
 212     assert(_next_top_at_mark_start == bottom(), "invariant");
 213   } else {
 214     if (during_initial_mark) {
 215       // During initial-mark we'll explicitly mark any objects on old
 216       // regions that are pointed to by roots. Given that explicit
 217       // marks only make sense under NTAMS it'd be nice if we could
 218       // check that condition if we wanted to. Given that we don't
 219       // know where the top of this region will end up, we simply set
 220       // NTAMS to the end of the region so all marks will be below
 221       // NTAMS. We'll set it to the actual top when we retire this region.
 222       _next_top_at_mark_start = end();
 223     } else {
 224       // We could have re-used this old region as to-space over a
 225       // couple of GCs since the start of the concurrent marking
 226       // cycle. This means that [bottom,NTAMS) will contain objects
 227       // copied up to and including initial-mark and [NTAMS, top)
 228       // will contain objects copied during the concurrent marking cycle.
 229       assert(top() >= _next_top_at_mark_start, "invariant");
 230     }
 231   }
 232 }
 233 
 234 inline void HeapRegion::note_end_of_copying(bool during_initial_mark) {
 235   if (is_survivor()) {
 236     // This is how we always allocate survivors.
 237     assert(_next_top_at_mark_start == bottom(), "invariant");
 238   } else {
 239     if (during_initial_mark) {
 240       // See the comment for note_start_of_copying() for the details
 241       // on this.
 242       assert(_next_top_at_mark_start == end(), "pre-condition");
 243       _next_top_at_mark_start = top();
 244     } else {
 245       // See the comment for note_start_of_copying() for the details
 246       // on this.
 247       assert(top() >= _next_top_at_mark_start, "invariant");
 248     }
 249   }
 250 }
 251 
 252 inline bool HeapRegion::in_collection_set() const {
 253   return G1CollectedHeap::heap()->is_in_cset(this);
 254 }
 255 
 256 template <class Closure, bool is_gc_active>
 257 bool HeapRegion::do_oops_on_card_in_humongous(MemRegion mr,
 258                                               Closure* cl,
 259                                               G1CollectedHeap* g1h) {
 260   assert(is_humongous(), "precondition");
 261   HeapRegion* sr = humongous_start_region();
 262   oop obj = oop(sr->bottom());
 263 
 264   // If concurrent and klass_or_null is NULL, then space has been
 265   // allocated but the object has not yet been published by setting
 266   // the klass.  That can only happen if the card is stale.  However,
 267   // we've already set the card clean, so we must return failure,
 268   // since the allocating thread could have performed a write to the
 269   // card that might be missed otherwise.
 270   if (!is_gc_active && (obj->klass_or_null_acquire() == NULL)) {
 271     return false;
 272   }
 273 
 274   // We have a well-formed humongous object at the start of sr.
 275   // Only filler objects follow a humongous object in the containing
 276   // regions, and we can ignore those.  So only process the one
 277   // humongous object.
 278   if (!g1h->is_obj_dead(obj, sr)) {
 279     if (obj->is_objArray() || (sr->bottom() < mr.start())) {
 280       // objArrays are always marked precisely, so limit processing
 281       // with mr.  Non-objArrays might be precisely marked, and since
 282       // it's humongous it's worthwhile avoiding full processing.
 283       // However, the card could be stale and only cover filler
 284       // objects.  That should be rare, so not worth checking for;
 285       // instead let it fall out from the bounded iteration.
 286       obj->oop_iterate(cl, mr);
 287     } else {
 288       // If obj is not an objArray and mr contains the start of the
 289       // obj, then this could be an imprecise mark, and we need to
 290       // process the entire object.
 291       obj->oop_iterate(cl);
 292     }
 293   }
 294   return true;
 295 }
 296 
 297 template <bool is_gc_active, class Closure>
 298 bool HeapRegion::oops_on_card_seq_iterate_careful(MemRegion mr,
 299                                                   Closure* cl) {
 300   assert(MemRegion(bottom(), end()).contains(mr), "Card region not in heap region");
 301   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 302 
 303   // Special handling for humongous regions.
 304   if (is_humongous()) {
 305     return do_oops_on_card_in_humongous<Closure, is_gc_active>(mr, cl, g1h);
 306   }
 307   assert(is_old(), "precondition");
 308 
 309   // Because mr has been trimmed to what's been allocated in this
 310   // region, the parts of the heap that are examined here are always
 311   // parsable; there's no need to use klass_or_null to detect
 312   // in-progress allocation.
 313 
 314   // Cache the boundaries of the memory region in some const locals
 315   HeapWord* const start = mr.start();
 316   HeapWord* const end = mr.end();
 317 
 318   // Find the obj that extends onto mr.start().
 319   // Update BOT as needed while finding start of (possibly dead)
 320   // object containing the start of the region.
 321   HeapWord* cur = block_start(start);
 322 
 323 #ifdef ASSERT
 324   {
 325     assert(cur <= start,
 326            "cur: " PTR_FORMAT ", start: " PTR_FORMAT, p2i(cur), p2i(start));
 327     HeapWord* next = cur + block_size(cur);
 328     assert(start < next,
 329            "start: " PTR_FORMAT ", next: " PTR_FORMAT, p2i(start), p2i(next));
 330   }
 331 #endif
 332 
 333   G1CMBitMapRO* bitmap = g1h->concurrent_mark()->prevMarkBitMap();
 334   do {
 335     oop obj = oop(cur);
 336     assert(obj->is_oop(true), "Not an oop at " PTR_FORMAT, p2i(cur));
 337     assert(obj->klass_or_null() != NULL,
 338            "Unparsable heap at " PTR_FORMAT, p2i(cur));
 339 
 340     size_t size;
 341     bool is_dead = is_obj_dead_with_size(obj, bitmap, &size);
 342 
 343     cur += size;
 344     if (!is_dead) {
 345       // Process live object's references.
 346 
 347       // Non-objArrays are usually marked imprecise at the object
 348       // start, in which case we need to iterate over them in full.
 349       // objArrays are precisely marked, but can still be iterated
 350       // over in full if completely covered.
 351       if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
 352         obj->oop_iterate(cl);
 353       } else {
 354         obj->oop_iterate(cl, mr);
 355       }
 356     }
 357   } while (cur < end);
 358 
 359   return true;
 360 }
 361 
 362 #endif // SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP