1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_HEAPREGIONREMSET_HPP
  26 #define SHARE_VM_GC_G1_HEAPREGIONREMSET_HPP
  27 
  28 #include "gc/g1/g1CodeCacheRemSet.hpp"
  29 #include "gc/g1/g1FromCardCache.hpp"
  30 #include "gc/g1/sparsePRT.hpp"
  31 
  32 // Remembered set for a heap region.  Represent a set of "cards" that
  33 // contain pointers into the owner heap region.  Cards are defined somewhat
  34 // abstractly, in terms of what the "BlockOffsetTable" in use can parse.
  35 
  36 class G1CollectedHeap;
  37 class G1BlockOffsetTable;
  38 class G1CardLiveData;
  39 class HeapRegion;
  40 class HeapRegionRemSetIterator;
  41 class PerRegionTable;
  42 class SparsePRT;
  43 class nmethod;
  44 
  45 // Essentially a wrapper around SparsePRTCleanupTask. See
  46 // sparsePRT.hpp for more details.
  47 class HRRSCleanupTask : public SparsePRTCleanupTask {
  48 };
  49 
  50 // The "_coarse_map" is a bitmap with one bit for each region, where set
  51 // bits indicate that the corresponding region may contain some pointer
  52 // into the owning region.
  53 
  54 // The "_fine_grain_entries" array is an open hash table of PerRegionTables
  55 // (PRTs), indicating regions for which we're keeping the RS as a set of
  56 // cards.  The strategy is to cap the size of the fine-grain table,
  57 // deleting an entry and setting the corresponding coarse-grained bit when
  58 // we would overflow this cap.
  59 
  60 // We use a mixture of locking and lock-free techniques here.  We allow
  61 // threads to locate PRTs without locking, but threads attempting to alter
  62 // a bucket list obtain a lock.  This means that any failing attempt to
  63 // find a PRT must be retried with the lock.  It might seem dangerous that
  64 // a read can find a PRT that is concurrently deleted.  This is all right,
  65 // because:
  66 //
  67 //   1) We only actually free PRT's at safe points (though we reuse them at
  68 //      other times).
  69 //   2) We find PRT's in an attempt to add entries.  If a PRT is deleted,
  70 //      it's _coarse_map bit is set, so the that we were attempting to add
  71 //      is represented.  If a deleted PRT is re-used, a thread adding a bit,
  72 //      thinking the PRT is for a different region, does no harm.
  73 
  74 class OtherRegionsTable {
  75   friend class HeapRegionRemSetIterator;
  76 
  77   G1CollectedHeap* _g1h;
  78   Mutex*           _m;
  79   HeapRegion*      _hr;
  80 
  81   // These are protected by "_m".
  82   CHeapBitMap _coarse_map;
  83   size_t      _n_coarse_entries;
  84   static jint _n_coarsenings;
  85 
  86   PerRegionTable** _fine_grain_regions;
  87   size_t           _n_fine_entries;
  88 
  89   // The fine grain remembered sets are doubly linked together using
  90   // their 'next' and 'prev' fields.
  91   // This allows fast bulk freeing of all the fine grain remembered
  92   // set entries, and fast finding of all of them without iterating
  93   // over the _fine_grain_regions table.
  94   PerRegionTable * _first_all_fine_prts;
  95   PerRegionTable * _last_all_fine_prts;
  96 
  97   // Used to sample a subset of the fine grain PRTs to determine which
  98   // PRT to evict and coarsen.
  99   size_t        _fine_eviction_start;
 100   static size_t _fine_eviction_stride;
 101   static size_t _fine_eviction_sample_size;
 102 
 103   SparsePRT   _sparse_table;
 104 
 105   // These are static after init.
 106   static size_t _max_fine_entries;
 107   static size_t _mod_max_fine_entries_mask;
 108 
 109   // Requires "prt" to be the first element of the bucket list appropriate
 110   // for "hr".  If this list contains an entry for "hr", return it,
 111   // otherwise return "NULL".
 112   PerRegionTable* find_region_table(size_t ind, HeapRegion* hr) const;
 113 
 114   // Find, delete, and return a candidate PerRegionTable, if any exists,
 115   // adding the deleted region to the coarse bitmap.  Requires the caller
 116   // to hold _m, and the fine-grain table to be full.
 117   PerRegionTable* delete_region_table();
 118 
 119   // link/add the given fine grain remembered set into the "all" list
 120   void link_to_all(PerRegionTable * prt);
 121   // unlink/remove the given fine grain remembered set into the "all" list
 122   void unlink_from_all(PerRegionTable * prt);
 123 
 124   bool contains_reference_locked(OopOrNarrowOopStar from) const;
 125 
 126 public:
 127   // Clear the from_card_cache entries for this region.
 128   void clear_fcc();
 129   // Create a new remembered set for the given heap region. The given mutex should
 130   // be used to ensure consistency.
 131   OtherRegionsTable(HeapRegion* hr, Mutex* m);
 132 
 133   // Returns the card index of the given within_region pointer relative to the bottom
 134   // of the given heap region.
 135   static CardIdx_t card_within_region(OopOrNarrowOopStar within_region, HeapRegion* hr);
 136   // Adds the reference from "from to this remembered set.
 137   void add_reference(OopOrNarrowOopStar from, uint tid);
 138 
 139   // Returns whether the remembered set contains the given reference.
 140   bool contains_reference(OopOrNarrowOopStar from) const;
 141 
 142   // Returns whether this remembered set (and all sub-sets) have an occupancy
 143   // that is less or equal than the given occupancy.
 144   bool occupancy_less_or_equal_than(size_t limit) const;
 145 
 146   // Returns whether this remembered set (and all sub-sets) does not contain any entry.
 147   bool is_empty() const;
 148 
 149   // Returns the number of cards contained in this remembered set.
 150   size_t occupied() const;
 151   size_t occ_fine() const;
 152   size_t occ_coarse() const;
 153   size_t occ_sparse() const;
 154 
 155   static jint n_coarsenings() { return _n_coarsenings; }
 156 
 157   // Returns size of the actual remembered set containers in bytes.
 158   size_t mem_size() const;
 159   // Returns the size of static data in bytes.
 160   static size_t static_mem_size();
 161   // Returns the size of the free list content in bytes.
 162   static size_t fl_mem_size();
 163 
 164   // Clear the entire contents of this remembered set.
 165   void clear();
 166 
 167   void do_cleanup_work(HRRSCleanupTask* hrrs_cleanup_task);
 168 };
 169 
 170 class HeapRegionRemSet : public CHeapObj<mtGC> {
 171   friend class VMStructs;
 172   friend class HeapRegionRemSetIterator;
 173 
 174 private:
 175   G1BlockOffsetTable* _bot;
 176 
 177   // A set of code blobs (nmethods) whose code contains pointers into
 178   // the region that owns this RSet.
 179   G1CodeRootSet _code_roots;
 180 
 181   Mutex _m;
 182 
 183   OtherRegionsTable _other_regions;
 184 
 185 public:
 186   HeapRegionRemSet(G1BlockOffsetTable* bot, HeapRegion* hr);
 187 
 188   static void setup_remset_size();
 189 
 190   bool cardset_is_empty() const {
 191     return _other_regions.is_empty();
 192   }
 193 
 194   bool is_empty() const {
 195     return (strong_code_roots_list_length() == 0) && cardset_is_empty();
 196   }
 197 
 198   bool occupancy_less_or_equal_than(size_t occ) const {
 199     return (strong_code_roots_list_length() == 0) && _other_regions.occupancy_less_or_equal_than(occ);
 200   }
 201 
 202   size_t occupied() {
 203     MutexLockerEx x(&_m, Mutex::_no_safepoint_check_flag);
 204     return occupied_locked();
 205   }
 206   size_t occupied_locked() {
 207     return _other_regions.occupied();
 208   }
 209   size_t occ_fine() const {
 210     return _other_regions.occ_fine();
 211   }
 212   size_t occ_coarse() const {
 213     return _other_regions.occ_coarse();
 214   }
 215   size_t occ_sparse() const {
 216     return _other_regions.occ_sparse();
 217   }
 218 
 219   static jint n_coarsenings() { return OtherRegionsTable::n_coarsenings(); }
 220 
 221 private:
 222   enum RemSetState {
 223     Untracked,
 224     Updating,
 225     Complete
 226   };
 227 
 228   RemSetState _state;
 229 
 230   static const char* _state_strings[];
 231   static const char* _short_state_strings[];
 232 public:
 233 
 234   const char* get_state_str() const { return _state_strings[_state]; }
 235   const char* get_short_state_str() const { return _short_state_strings[_state]; }
 236 
 237   bool is_tracked() { return _state != Untracked; }
 238   bool is_updating() { return _state == Updating; }
 239   bool is_complete() { return _state == Complete; }
 240 
 241   void set_state_empty() {
 242     guarantee(SafepointSynchronize::is_at_safepoint() || !is_tracked(), "Should only set to Untracked during safepoint but is %s.", get_state_str());
 243     if (_state == Untracked) {
 244       return;
 245     }
 246     _other_regions.clear_fcc();
 247     _state = Untracked;
 248   }
 249 
 250   void set_state_updating() {
 251     guarantee(SafepointSynchronize::is_at_safepoint() && !is_tracked(), "Should only set to Updating from Untracked during safepoint but is %s", get_state_str());
 252     _other_regions.clear_fcc();
 253     _state = Updating;
 254   }
 255 
 256   void set_state_complete() {
 257     _other_regions.clear_fcc();
 258     _state = Complete;
 259   }
 260 
 261   // Used in the sequential case.
 262   void add_reference(OopOrNarrowOopStar from) {
 263     add_reference(from, 0);
 264   }
 265 
 266   // Used in the parallel case.
 267   void add_reference(OopOrNarrowOopStar from, uint tid) {
 268     RemSetState state = _state;
 269     if (state == Untracked) {
 270       return;
 271     }
 272     _other_regions.add_reference(from, tid);
 273   }
 274 
 275   // The region is being reclaimed; clear its remset, and any mention of
 276   // entries for this region in other remsets.
 277   void clear(bool only_cardset = false);
 278   void clear_locked(bool only_cardset = false);
 279 
 280   // The actual # of bytes this hr_remset takes up.
 281   // Note also includes the strong code root set.
 282   size_t mem_size() {
 283     MutexLockerEx x(&_m, Mutex::_no_safepoint_check_flag);
 284     return _other_regions.mem_size()
 285       // This correction is necessary because the above includes the second
 286       // part.
 287       + (sizeof(HeapRegionRemSet) - sizeof(OtherRegionsTable))
 288       + strong_code_roots_mem_size();
 289   }
 290 
 291   // Returns the memory occupancy of all static data structures associated
 292   // with remembered sets.
 293   static size_t static_mem_size() {
 294     return OtherRegionsTable::static_mem_size() + G1CodeRootSet::static_mem_size();
 295   }
 296 
 297   // Returns the memory occupancy of all free_list data structures associated
 298   // with remembered sets.
 299   static size_t fl_mem_size() {
 300     return OtherRegionsTable::fl_mem_size();
 301   }
 302 
 303   bool contains_reference(OopOrNarrowOopStar from) const {
 304     return _other_regions.contains_reference(from);
 305   }
 306 
 307   // Routines for managing the list of code roots that point into
 308   // the heap region that owns this RSet.
 309   void add_strong_code_root(nmethod* nm);
 310   void add_strong_code_root_locked(nmethod* nm);
 311   void remove_strong_code_root(nmethod* nm);
 312 
 313   // Applies blk->do_code_blob() to each of the entries in
 314   // the strong code roots list
 315   void strong_code_roots_do(CodeBlobClosure* blk) const;
 316 
 317   void clean_strong_code_roots(HeapRegion* hr);
 318 
 319   // Returns the number of elements in the strong code roots list
 320   size_t strong_code_roots_list_length() const {
 321     return _code_roots.length();
 322   }
 323 
 324   // Returns true if the strong code roots contains the given
 325   // nmethod.
 326   bool strong_code_roots_list_contains(nmethod* nm) {
 327     return _code_roots.contains(nm);
 328   }
 329 
 330   // Returns the amount of memory, in bytes, currently
 331   // consumed by the strong code roots.
 332   size_t strong_code_roots_mem_size();
 333 
 334   // Called during a stop-world phase to perform any deferred cleanups.
 335   static void cleanup();
 336 
 337   static void invalidate_from_card_cache(uint start_idx, size_t num_regions) {
 338     G1FromCardCache::invalidate(start_idx, num_regions);
 339   }
 340 
 341 #ifndef PRODUCT
 342   static void print_from_card_cache() {
 343     G1FromCardCache::print();
 344   }
 345 #endif
 346 
 347   // These are wrappers for the similarly-named methods on
 348   // SparsePRT. Look at sparsePRT.hpp for more details.
 349   static void reset_for_cleanup_tasks();
 350   void do_cleanup_work(HRRSCleanupTask* hrrs_cleanup_task);
 351   static void finish_cleanup_task(HRRSCleanupTask* hrrs_cleanup_task);
 352 
 353   // Run unit tests.
 354 #ifndef PRODUCT
 355   static void test();
 356 #endif
 357 };
 358 
 359 class HeapRegionRemSetIterator : public StackObj {
 360 private:
 361   // The region RSet over which we are iterating.
 362   HeapRegionRemSet* _hrrs;
 363 
 364   // Local caching of HRRS fields.
 365   const BitMap*             _coarse_map;
 366 
 367   G1BlockOffsetTable*       _bot;
 368   G1CollectedHeap*          _g1h;
 369 
 370   // The number of cards yielded since initialization.
 371   size_t _n_yielded_fine;
 372   size_t _n_yielded_coarse;
 373   size_t _n_yielded_sparse;
 374 
 375   // Indicates what granularity of table that we are currently iterating over.
 376   // We start iterating over the sparse table, progress to the fine grain
 377   // table, and then finish with the coarse table.
 378   enum IterState {
 379     Sparse,
 380     Fine,
 381     Coarse
 382   };
 383   IterState _is;
 384 
 385   // For both Coarse and Fine remembered set iteration this contains the
 386   // first card number of the heap region we currently iterate over.
 387   size_t _cur_region_card_offset;
 388 
 389   // Current region index for the Coarse remembered set iteration.
 390   int    _coarse_cur_region_index;
 391   size_t _coarse_cur_region_cur_card;
 392 
 393   bool coarse_has_next(size_t& card_index);
 394 
 395   // The PRT we are currently iterating over.
 396   PerRegionTable* _fine_cur_prt;
 397   // Card offset within the current PRT.
 398   size_t _cur_card_in_prt;
 399 
 400   // Update internal variables when switching to the given PRT.
 401   void switch_to_prt(PerRegionTable* prt);
 402   bool fine_has_next();
 403   bool fine_has_next(size_t& card_index);
 404 
 405   // The Sparse remembered set iterator.
 406   SparsePRTIter _sparse_iter;
 407 
 408 public:
 409   HeapRegionRemSetIterator(HeapRegionRemSet* hrrs);
 410 
 411   // If there remains one or more cards to be yielded, returns true and
 412   // sets "card_index" to one of those cards (which is then considered
 413   // yielded.)   Otherwise, returns false (and leaves "card_index"
 414   // undefined.)
 415   bool has_next(size_t& card_index);
 416 
 417   size_t n_yielded_fine() { return _n_yielded_fine; }
 418   size_t n_yielded_coarse() { return _n_yielded_coarse; }
 419   size_t n_yielded_sparse() { return _n_yielded_sparse; }
 420   size_t n_yielded() {
 421     return n_yielded_fine() + n_yielded_coarse() + n_yielded_sparse();
 422   }
 423 };
 424 
 425 #endif // SHARE_VM_GC_G1_HEAPREGIONREMSET_HPP