1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMark.hpp"
  28 #include "gc/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1IHOPControl.hpp"
  32 #include "gc/g1/g1ErgoVerbose.hpp"
  33 #include "gc/g1/g1GCPhaseTimes.hpp"
  34 #include "gc/g1/g1Log.hpp"
  35 #include "gc/g1/heapRegion.inline.hpp"
  36 #include "gc/g1/heapRegionRemSet.hpp"
  37 #include "gc/shared/gcPolicyCounters.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/mutexLocker.hpp"
  41 #include "utilities/debug.hpp"
  42 
  43 // Different defaults for different number of GC threads
  44 // They were chosen by running GCOld and SPECjbb on debris with different
  45 //   numbers of GC threads and choosing them based on the results
  46 
  47 // all the same
  48 static double rs_length_diff_defaults[] = {
  49   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  50 };
  51 
  52 static double cost_per_card_ms_defaults[] = {
  53   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  54 };
  55 
  56 // all the same
  57 static double young_cards_per_entry_ratio_defaults[] = {
  58   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  59 };
  60 
  61 static double cost_per_entry_ms_defaults[] = {
  62   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  63 };
  64 
  65 static double cost_per_byte_ms_defaults[] = {
  66   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  67 };
  68 
  69 // these should be pretty consistent
  70 static double constant_other_time_ms_defaults[] = {
  71   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  72 };
  73 
  74 
  75 static double young_other_cost_per_region_ms_defaults[] = {
  76   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  77 };
  78 
  79 static double non_young_other_cost_per_region_ms_defaults[] = {
  80   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  81 };
  82 
  83 G1CollectorPolicy::G1CollectorPolicy() :
  84   _predictor(G1ConfidencePercent / 100.0),
  85   _parallel_gc_threads(ParallelGCThreads),
  86 
  87   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  88   _stop_world_start(0.0),
  89 
  90   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  91   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  92 
  93   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _prev_collection_pause_end_ms(0.0),
  95   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _cost_scan_hcc_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 104   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 105   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 106   _non_young_other_cost_per_region_ms_seq(
 107                                          new TruncatedSeq(TruncatedSeqLength)),
 108 
 109   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 110   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 111 
 112   _pause_time_target_ms((double) MaxGCPauseMillis),
 113 
 114   _recent_prev_end_times_for_all_gcs_sec(
 115                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 116 
 117   _recent_avg_pause_time_ratio(0.0),
 118   _rs_lengths_prediction(0),
 119   _max_survivor_regions(0),
 120 
 121   _eden_used_bytes_before_gc(0),
 122   _survivor_used_bytes_before_gc(0),
 123   _heap_used_bytes_before_gc(0),
 124   _metaspace_used_bytes_before_gc(0),
 125   _eden_capacity_bytes_before_gc(0),
 126   _heap_capacity_bytes_before_gc(0),
 127 
 128   _eden_cset_region_length(0),
 129   _survivor_cset_region_length(0),
 130   _old_cset_region_length(0),
 131 
 132   _collection_set(NULL),
 133   _collection_set_bytes_used_before(0),
 134 
 135   // Incremental CSet attributes
 136   _inc_cset_build_state(Inactive),
 137   _inc_cset_head(NULL),
 138   _inc_cset_tail(NULL),
 139   _inc_cset_bytes_used_before(0),
 140   _inc_cset_max_finger(NULL),
 141   _inc_cset_recorded_rs_lengths(0),
 142   _inc_cset_recorded_rs_lengths_diffs(0),
 143   _inc_cset_predicted_elapsed_time_ms(0.0),
 144   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 145 
 146   // add here any more surv rate groups
 147   _recorded_survivor_regions(0),
 148   _recorded_survivor_head(NULL),
 149   _recorded_survivor_tail(NULL),
 150   _survivors_age_table(true),
 151 
 152   _gc_overhead_perc(0.0),
 153 
 154   _last_old_allocated_bytes(0),
 155   _ihop_control(NULL),
 156   _initial_mark_to_mixed() {
 157 
 158   // SurvRateGroups below must be initialized after the predictor because they
 159   // indirectly use it through this object passed to their constructor.
 160   _short_lived_surv_rate_group =
 161     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 162   _survivor_surv_rate_group =
 163     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
 164 
 165   // Set up the region size and associated fields. Given that the
 166   // policy is created before the heap, we have to set this up here,
 167   // so it's done as soon as possible.
 168 
 169   // It would have been natural to pass initial_heap_byte_size() and
 170   // max_heap_byte_size() to setup_heap_region_size() but those have
 171   // not been set up at this point since they should be aligned with
 172   // the region size. So, there is a circular dependency here. We base
 173   // the region size on the heap size, but the heap size should be
 174   // aligned with the region size. To get around this we use the
 175   // unaligned values for the heap.
 176   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 177   HeapRegionRemSet::setup_remset_size();
 178 
 179   G1ErgoVerbose::initialize();
 180   if (PrintAdaptiveSizePolicy) {
 181     // Currently, we only use a single switch for all the heuristics.
 182     G1ErgoVerbose::set_enabled(true);
 183     // Given that we don't currently have a verboseness level
 184     // parameter, we'll hardcode this to high. This can be easily
 185     // changed in the future.
 186     G1ErgoVerbose::set_level(ErgoHigh);
 187   } else {
 188     G1ErgoVerbose::set_enabled(false);
 189   }
 190 
 191   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 192   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 193 
 194   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 195 
 196   int index = MIN2(_parallel_gc_threads - 1, 7);
 197 
 198   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 199   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 200   _cost_scan_hcc_seq->add(0.0);
 201   _young_cards_per_entry_ratio_seq->add(
 202                                   young_cards_per_entry_ratio_defaults[index]);
 203   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 204   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 205   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 206   _young_other_cost_per_region_ms_seq->add(
 207                                young_other_cost_per_region_ms_defaults[index]);
 208   _non_young_other_cost_per_region_ms_seq->add(
 209                            non_young_other_cost_per_region_ms_defaults[index]);
 210 
 211   // Below, we might need to calculate the pause time target based on
 212   // the pause interval. When we do so we are going to give G1 maximum
 213   // flexibility and allow it to do pauses when it needs to. So, we'll
 214   // arrange that the pause interval to be pause time target + 1 to
 215   // ensure that a) the pause time target is maximized with respect to
 216   // the pause interval and b) we maintain the invariant that pause
 217   // time target < pause interval. If the user does not want this
 218   // maximum flexibility, they will have to set the pause interval
 219   // explicitly.
 220 
 221   // First make sure that, if either parameter is set, its value is
 222   // reasonable.
 223   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 224     if (MaxGCPauseMillis < 1) {
 225       vm_exit_during_initialization("MaxGCPauseMillis should be "
 226                                     "greater than 0");
 227     }
 228   }
 229   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 230     if (GCPauseIntervalMillis < 1) {
 231       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 232                                     "greater than 0");
 233     }
 234   }
 235 
 236   // Then, if the pause time target parameter was not set, set it to
 237   // the default value.
 238   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 239     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 240       // The default pause time target in G1 is 200ms
 241       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 242     } else {
 243       // We do not allow the pause interval to be set without the
 244       // pause time target
 245       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 246                                     "without setting MaxGCPauseMillis");
 247     }
 248   }
 249 
 250   // Then, if the interval parameter was not set, set it according to
 251   // the pause time target (this will also deal with the case when the
 252   // pause time target is the default value).
 253   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 254     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 255   }
 256 
 257   // Finally, make sure that the two parameters are consistent.
 258   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 259     char buffer[256];
 260     jio_snprintf(buffer, 256,
 261                  "MaxGCPauseMillis (%u) should be less than "
 262                  "GCPauseIntervalMillis (%u)",
 263                  MaxGCPauseMillis, GCPauseIntervalMillis);
 264     vm_exit_during_initialization(buffer);
 265   }
 266 
 267   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 268   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 269   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 270 
 271   // start conservatively (around 50ms is about right)
 272   _concurrent_mark_remark_times_ms->add(0.05);
 273   _concurrent_mark_cleanup_times_ms->add(0.20);
 274   _tenuring_threshold = MaxTenuringThreshold;
 275 
 276   assert(GCTimeRatio > 0,
 277          "we should have set it to a default value set_g1_gc_flags() "
 278          "if a user set it to 0");
 279   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 280 
 281   uintx reserve_perc = G1ReservePercent;
 282   // Put an artificial ceiling on this so that it's not set to a silly value.
 283   if (reserve_perc > 50) {
 284     reserve_perc = 50;
 285     warning("G1ReservePercent is set to a value that is too large, "
 286             "it's been updated to " UINTX_FORMAT, reserve_perc);
 287   }
 288   _reserve_factor = (double) reserve_perc / 100.0;
 289   // This will be set when the heap is expanded
 290   // for the first time during initialization.
 291   _reserve_regions = 0;
 292 
 293   _collectionSetChooser = new CollectionSetChooser();
 294 }
 295 
 296 G1CollectorPolicy::~G1CollectorPolicy() {
 297   if (_ihop_control != NULL) {
 298     delete _ihop_control;
 299   }
 300 }
 301 
 302 double G1CollectorPolicy::get_new_prediction(TruncatedSeq const* seq) const {
 303   return _predictor.get_new_prediction(seq);
 304 }
 305 
 306 void G1CollectorPolicy::initialize_alignments() {
 307   _space_alignment = HeapRegion::GrainBytes;
 308   size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
 309   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 310   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 311 }
 312 
 313 void G1CollectorPolicy::initialize_flags() {
 314   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 315     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 316   }
 317 
 318   if (SurvivorRatio < 1) {
 319     vm_exit_during_initialization("Invalid survivor ratio specified");
 320   }
 321   CollectorPolicy::initialize_flags();
 322   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 323 }
 324 
 325 void G1CollectorPolicy::post_heap_initialize() {
 326   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 327   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 328   if (max_young_size != MaxNewSize) {
 329     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 330   }
 331 
 332   _ihop_control = create_ihop_control();
 333 }
 334 
 335 G1CollectorState* G1CollectorPolicy::collector_state() const { return _g1->collector_state(); }
 336 
 337 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 338         _min_desired_young_length(0), _max_desired_young_length(0) {
 339   if (FLAG_IS_CMDLINE(NewRatio)) {
 340     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 341       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 342     } else {
 343       _sizer_kind = SizerNewRatio;
 344       _adaptive_size = false;
 345       return;
 346     }
 347   }
 348 
 349   if (NewSize > MaxNewSize) {
 350     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 351       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 352               "A new max generation size of " SIZE_FORMAT "k will be used.",
 353               NewSize/K, MaxNewSize/K, NewSize/K);
 354     }
 355     MaxNewSize = NewSize;
 356   }
 357 
 358   if (FLAG_IS_CMDLINE(NewSize)) {
 359     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 360                                      1U);
 361     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 362       _max_desired_young_length =
 363                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 364                                   1U);
 365       _sizer_kind = SizerMaxAndNewSize;
 366       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 367     } else {
 368       _sizer_kind = SizerNewSizeOnly;
 369     }
 370   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 371     _max_desired_young_length =
 372                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 373                                   1U);
 374     _sizer_kind = SizerMaxNewSizeOnly;
 375   }
 376 }
 377 
 378 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 379   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 380   return MAX2(1U, default_value);
 381 }
 382 
 383 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 384   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 385   return MAX2(1U, default_value);
 386 }
 387 
 388 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 389   assert(number_of_heap_regions > 0, "Heap must be initialized");
 390 
 391   switch (_sizer_kind) {
 392     case SizerDefaults:
 393       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 394       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 395       break;
 396     case SizerNewSizeOnly:
 397       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 398       *max_young_length = MAX2(*min_young_length, *max_young_length);
 399       break;
 400     case SizerMaxNewSizeOnly:
 401       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 402       *min_young_length = MIN2(*min_young_length, *max_young_length);
 403       break;
 404     case SizerMaxAndNewSize:
 405       // Do nothing. Values set on the command line, don't update them at runtime.
 406       break;
 407     case SizerNewRatio:
 408       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 409       *max_young_length = *min_young_length;
 410       break;
 411     default:
 412       ShouldNotReachHere();
 413   }
 414 
 415   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 416 }
 417 
 418 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 419   // We need to pass the desired values because recalculation may not update these
 420   // values in some cases.
 421   uint temp = _min_desired_young_length;
 422   uint result = _max_desired_young_length;
 423   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 424   return result;
 425 }
 426 
 427 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 428   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 429           &_max_desired_young_length);
 430 }
 431 
 432 void G1CollectorPolicy::init() {
 433   // Set aside an initial future to_space.
 434   _g1 = G1CollectedHeap::heap();
 435 
 436   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 437 
 438   initialize_gc_policy_counters();
 439 
 440   if (adaptive_young_list_length()) {
 441     _young_list_fixed_length = 0;
 442   } else {
 443     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 444   }
 445   _free_regions_at_end_of_collection = _g1->num_free_regions();
 446 
 447   update_young_list_max_and_target_length();
 448   // We may immediately start allocating regions and placing them on the
 449   // collection set list. Initialize the per-collection set info
 450   start_incremental_cset_building();
 451 }
 452 
 453 void G1CollectorPolicy::note_gc_start(uint num_active_workers) {
 454   phase_times()->note_gc_start(num_active_workers);
 455 }
 456 
 457 // Create the jstat counters for the policy.
 458 void G1CollectorPolicy::initialize_gc_policy_counters() {
 459   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 460 }
 461 
 462 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 463                                          double base_time_ms,
 464                                          uint base_free_regions,
 465                                          double target_pause_time_ms) const {
 466   if (young_length >= base_free_regions) {
 467     // end condition 1: not enough space for the young regions
 468     return false;
 469   }
 470 
 471   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 472   size_t bytes_to_copy =
 473                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 474   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 475   double young_other_time_ms = predict_young_other_time_ms(young_length);
 476   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 477   if (pause_time_ms > target_pause_time_ms) {
 478     // end condition 2: prediction is over the target pause time
 479     return false;
 480   }
 481 
 482   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 483 
 484   // When copying, we will likely need more bytes free than is live in the region.
 485   // Add some safety margin to factor in the confidence of our guess, and the
 486   // natural expected waste.
 487   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 488   // of the calculation: the lower the confidence, the more headroom.
 489   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 490   // copying due to anticipated waste in the PLABs.
 491   double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 492   size_t expected_bytes_to_copy = safety_factor * bytes_to_copy;
 493 
 494   if (expected_bytes_to_copy > free_bytes) {
 495     // end condition 3: out-of-space
 496     return false;
 497   }
 498 
 499   // success!
 500   return true;
 501 }
 502 
 503 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 504   // re-calculate the necessary reserve
 505   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 506   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 507   // smaller than 1.0) we'll get 1.
 508   _reserve_regions = (uint) ceil(reserve_regions_d);
 509 
 510   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 511 }
 512 
 513 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 514                                                        uint base_min_length) const {
 515   uint desired_min_length = 0;
 516   if (adaptive_young_list_length()) {
 517     if (_alloc_rate_ms_seq->num() > 3) {
 518       double now_sec = os::elapsedTime();
 519       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 520       double alloc_rate_ms = predict_alloc_rate_ms();
 521       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 522     } else {
 523       // otherwise we don't have enough info to make the prediction
 524     }
 525   }
 526   desired_min_length += base_min_length;
 527   // make sure we don't go below any user-defined minimum bound
 528   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 529 }
 530 
 531 uint G1CollectorPolicy::calculate_young_list_desired_max_length() const {
 532   // Here, we might want to also take into account any additional
 533   // constraints (i.e., user-defined minimum bound). Currently, we
 534   // effectively don't set this bound.
 535   return _young_gen_sizer->max_desired_young_length();
 536 }
 537 
 538 void G1CollectorPolicy::update_young_list_max_and_target_length(size_t* unbounded_target_length) {
 539   update_young_list_max_and_target_length(get_new_prediction(_rs_lengths_seq), unbounded_target_length);
 540 }
 541 
 542 void G1CollectorPolicy::update_young_list_max_and_target_length(size_t rs_lengths, size_t* unbounded_target_length) {
 543   update_young_list_target_length(rs_lengths, unbounded_target_length);
 544   update_max_gc_locker_expansion();
 545 }
 546 
 547 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths, size_t* unbounded_target_length) {
 548   _young_list_target_length = bounded_young_list_target_length(rs_lengths, unbounded_target_length);
 549 }
 550 
 551 void G1CollectorPolicy::update_young_list_target_length() {
 552   update_young_list_target_length(get_new_prediction(_rs_lengths_seq));
 553 }
 554 
 555 uint G1CollectorPolicy::bounded_young_list_target_length(size_t rs_lengths, size_t* unbounded_target_length) const {
 556   // Calculate the absolute and desired min bounds.
 557 
 558   // This is how many young regions we already have (currently: the survivors).
 559   uint base_min_length = recorded_survivor_regions();
 560   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 561   // This is the absolute minimum young length. Ensure that we
 562   // will at least have one eden region available for allocation.
 563   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 564   // If we shrank the young list target it should not shrink below the current size.
 565   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 566   // Calculate the absolute and desired max bounds.
 567 
 568   uint desired_max_length = calculate_young_list_desired_max_length();
 569 
 570   uint young_list_target_length = 0;
 571   if (adaptive_young_list_length()) {
 572     if (collector_state()->gcs_are_young()) {
 573       young_list_target_length =
 574                         calculate_young_list_target_length(rs_lengths,
 575                                                            base_min_length,
 576                                                            desired_min_length,
 577                                                            desired_max_length);
 578     } else {
 579       // Don't calculate anything and let the code below bound it to
 580       // the desired_min_length, i.e., do the next GC as soon as
 581       // possible to maximize how many old regions we can add to it.
 582     }
 583   } else {
 584     // The user asked for a fixed young gen so we'll fix the young gen
 585     // whether the next GC is young or mixed.
 586     young_list_target_length = _young_list_fixed_length;
 587   }
 588 
 589   if (unbounded_target_length != NULL) {
 590     *unbounded_target_length = young_list_target_length;    
 591   }
 592   
 593   // We will try our best not to "eat" into the reserve.
 594   uint absolute_max_length = 0;
 595   if (_free_regions_at_end_of_collection > _reserve_regions) {
 596     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 597   }
 598   if (desired_max_length > absolute_max_length) {
 599     desired_max_length = absolute_max_length;
 600   }
 601 
 602   // Make sure we don't go over the desired max length, nor under the
 603   // desired min length. In case they clash, desired_min_length wins
 604   // which is why that test is second.
 605   if (young_list_target_length > desired_max_length) {
 606     young_list_target_length = desired_max_length;
 607   }
 608   if (young_list_target_length < desired_min_length) {
 609     young_list_target_length = desired_min_length;
 610   }
 611 
 612   assert(young_list_target_length > recorded_survivor_regions(),
 613          "we should be able to allocate at least one eden region");
 614   assert(young_list_target_length >= absolute_min_length, "post-condition");
 615 
 616   return young_list_target_length;
 617 }
 618 
 619 uint
 620 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 621                                                      uint base_min_length,
 622                                                      uint desired_min_length,
 623                                                      uint desired_max_length) const {
 624   assert(adaptive_young_list_length(), "pre-condition");
 625   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 626 
 627   // In case some edge-condition makes the desired max length too small...
 628   if (desired_max_length <= desired_min_length) {
 629     return desired_min_length;
 630   }
 631 
 632   // We'll adjust min_young_length and max_young_length not to include
 633   // the already allocated young regions (i.e., so they reflect the
 634   // min and max eden regions we'll allocate). The base_min_length
 635   // will be reflected in the predictions by the
 636   // survivor_regions_evac_time prediction.
 637   assert(desired_min_length > base_min_length, "invariant");
 638   uint min_young_length = desired_min_length - base_min_length;
 639   assert(desired_max_length > base_min_length, "invariant");
 640   uint max_young_length = desired_max_length - base_min_length;
 641 
 642   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 643   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 644   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 645   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 646   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 647   double base_time_ms =
 648     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 649     survivor_regions_evac_time;
 650   uint available_free_regions = _free_regions_at_end_of_collection;
 651   uint base_free_regions = 0;
 652   if (available_free_regions > _reserve_regions) {
 653     base_free_regions = available_free_regions - _reserve_regions;
 654   }
 655 
 656   // Here, we will make sure that the shortest young length that
 657   // makes sense fits within the target pause time.
 658 
 659   if (predict_will_fit(min_young_length, base_time_ms,
 660                        base_free_regions, target_pause_time_ms)) {
 661     // The shortest young length will fit into the target pause time;
 662     // we'll now check whether the absolute maximum number of young
 663     // regions will fit in the target pause time. If not, we'll do
 664     // a binary search between min_young_length and max_young_length.
 665     if (predict_will_fit(max_young_length, base_time_ms,
 666                          base_free_regions, target_pause_time_ms)) {
 667       // The maximum young length will fit into the target pause time.
 668       // We are done so set min young length to the maximum length (as
 669       // the result is assumed to be returned in min_young_length).
 670       min_young_length = max_young_length;
 671     } else {
 672       // The maximum possible number of young regions will not fit within
 673       // the target pause time so we'll search for the optimal
 674       // length. The loop invariants are:
 675       //
 676       // min_young_length < max_young_length
 677       // min_young_length is known to fit into the target pause time
 678       // max_young_length is known not to fit into the target pause time
 679       //
 680       // Going into the loop we know the above hold as we've just
 681       // checked them. Every time around the loop we check whether
 682       // the middle value between min_young_length and
 683       // max_young_length fits into the target pause time. If it
 684       // does, it becomes the new min. If it doesn't, it becomes
 685       // the new max. This way we maintain the loop invariants.
 686 
 687       assert(min_young_length < max_young_length, "invariant");
 688       uint diff = (max_young_length - min_young_length) / 2;
 689       while (diff > 0) {
 690         uint young_length = min_young_length + diff;
 691         if (predict_will_fit(young_length, base_time_ms,
 692                              base_free_regions, target_pause_time_ms)) {
 693           min_young_length = young_length;
 694         } else {
 695           max_young_length = young_length;
 696         }
 697         assert(min_young_length <  max_young_length, "invariant");
 698         diff = (max_young_length - min_young_length) / 2;
 699       }
 700       // The results is min_young_length which, according to the
 701       // loop invariants, should fit within the target pause time.
 702 
 703       // These are the post-conditions of the binary search above:
 704       assert(min_young_length < max_young_length,
 705              "otherwise we should have discovered that max_young_length "
 706              "fits into the pause target and not done the binary search");
 707       assert(predict_will_fit(min_young_length, base_time_ms,
 708                               base_free_regions, target_pause_time_ms),
 709              "min_young_length, the result of the binary search, should "
 710              "fit into the pause target");
 711       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 712                                base_free_regions, target_pause_time_ms),
 713              "min_young_length, the result of the binary search, should be "
 714              "optimal, so no larger length should fit into the pause target");
 715     }
 716   } else {
 717     // Even the minimum length doesn't fit into the pause time
 718     // target, return it as the result nevertheless.
 719   }
 720   return base_min_length + min_young_length;
 721 }
 722 
 723 double G1CollectorPolicy::predict_survivor_regions_evac_time() const {
 724   double survivor_regions_evac_time = 0.0;
 725   for (HeapRegion * r = _recorded_survivor_head;
 726        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 727        r = r->get_next_young_region()) {
 728     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 729   }
 730   return survivor_regions_evac_time;
 731 }
 732 
 733 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 734   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 735 
 736   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 737   if (rs_lengths > _rs_lengths_prediction) {
 738     // add 10% to avoid having to recalculate often
 739     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 740     update_rs_lengths_prediction(rs_lengths_prediction);
 741 
 742     update_young_list_max_and_target_length(rs_lengths_prediction);
 743   }
 744 }
 745 
 746 void G1CollectorPolicy::update_rs_lengths_prediction() {
 747   update_rs_lengths_prediction(get_new_prediction(_rs_lengths_seq));
 748 }
 749 
 750 void G1CollectorPolicy::update_rs_lengths_prediction(size_t prediction) {
 751   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 752     _rs_lengths_prediction = prediction;
 753   }
 754 }
 755 
 756 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 757                                                bool is_tlab,
 758                                                bool* gc_overhead_limit_was_exceeded) {
 759   guarantee(false, "Not using this policy feature yet.");
 760   return NULL;
 761 }
 762 
 763 // This method controls how a collector handles one or more
 764 // of its generations being fully allocated.
 765 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 766                                                        bool is_tlab) {
 767   guarantee(false, "Not using this policy feature yet.");
 768   return NULL;
 769 }
 770 
 771 
 772 #ifndef PRODUCT
 773 bool G1CollectorPolicy::verify_young_ages() {
 774   HeapRegion* head = _g1->young_list()->first_region();
 775   return
 776     verify_young_ages(head, _short_lived_surv_rate_group);
 777   // also call verify_young_ages on any additional surv rate groups
 778 }
 779 
 780 bool
 781 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 782                                      SurvRateGroup *surv_rate_group) {
 783   guarantee( surv_rate_group != NULL, "pre-condition" );
 784 
 785   const char* name = surv_rate_group->name();
 786   bool ret = true;
 787   int prev_age = -1;
 788 
 789   for (HeapRegion* curr = head;
 790        curr != NULL;
 791        curr = curr->get_next_young_region()) {
 792     SurvRateGroup* group = curr->surv_rate_group();
 793     if (group == NULL && !curr->is_survivor()) {
 794       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 795       ret = false;
 796     }
 797 
 798     if (surv_rate_group == group) {
 799       int age = curr->age_in_surv_rate_group();
 800 
 801       if (age < 0) {
 802         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 803         ret = false;
 804       }
 805 
 806       if (age <= prev_age) {
 807         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 808                                "(%d, %d)", name, age, prev_age);
 809         ret = false;
 810       }
 811       prev_age = age;
 812     }
 813   }
 814 
 815   return ret;
 816 }
 817 #endif // PRODUCT
 818 
 819 void G1CollectorPolicy::record_full_collection_start() {
 820   _full_collection_start_sec = os::elapsedTime();
 821   record_heap_size_info_at_start(true /* full */);
 822   // Release the future to-space so that it is available for compaction into.
 823   collector_state()->set_full_collection(true);
 824 }
 825 
 826 void G1CollectorPolicy::record_full_collection_end() {
 827   // Consider this like a collection pause for the purposes of allocation
 828   // since last pause.
 829   double end_sec = os::elapsedTime();
 830   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 831   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 832 
 833   _trace_old_gen_time_data.record_full_collection(full_gc_time_ms);
 834 
 835   update_recent_gc_times(end_sec, full_gc_time_ms);
 836 
 837   collector_state()->set_full_collection(false);
 838 
 839   // "Nuke" the heuristics that control the young/mixed GC
 840   // transitions and make sure we start with young GCs after the Full GC.
 841   collector_state()->set_gcs_are_young(true);
 842   collector_state()->set_last_young_gc(false);
 843   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 844   collector_state()->set_during_initial_mark_pause(false);
 845   collector_state()->set_in_marking_window(false);
 846   collector_state()->set_in_marking_window_im(false);
 847 
 848   _short_lived_surv_rate_group->start_adding_regions();
 849   // also call this on any additional surv rate groups
 850 
 851   record_survivor_regions(0, NULL, NULL);
 852 
 853   _free_regions_at_end_of_collection = _g1->num_free_regions();
 854   // Reset survivors SurvRateGroup.
 855   _survivor_surv_rate_group->reset();
 856   update_young_list_max_and_target_length();
 857   update_rs_lengths_prediction();
 858   _collectionSetChooser->clear();
 859 
 860   _last_old_allocated_bytes = 0;
 861 
 862   record_pause(FullGC, _full_collection_start_sec, end_sec);
 863 }
 864 
 865 void G1CollectorPolicy::record_stop_world_start() {
 866   _stop_world_start = os::elapsedTime();
 867 }
 868 
 869 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 870   // We only need to do this here as the policy will only be applied
 871   // to the GC we're about to start. so, no point is calculating this
 872   // every time we calculate / recalculate the target young length.
 873   update_survivors_policy();
 874 
 875   assert(_g1->used() == _g1->recalculate_used(),
 876          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 877          _g1->used(), _g1->recalculate_used());
 878 
 879   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 880   _trace_young_gen_time_data.record_start_collection(s_w_t_ms);
 881   _stop_world_start = 0.0;
 882 
 883   record_heap_size_info_at_start(false /* full */);
 884 
 885   phase_times()->record_cur_collection_start_sec(start_time_sec);
 886   _pending_cards = _g1->pending_card_num();
 887 
 888   _collection_set_bytes_used_before = 0;
 889   _bytes_copied_during_gc = 0;
 890 
 891   collector_state()->set_last_gc_was_young(false);
 892 
 893   // do that for any other surv rate groups
 894   _short_lived_surv_rate_group->stop_adding_regions();
 895   _survivors_age_table.clear();
 896 
 897   assert( verify_young_ages(), "region age verification" );
 898 }
 899 
 900 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 901                                                    mark_init_elapsed_time_ms) {
 902   collector_state()->set_during_marking(true);
 903   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 904   collector_state()->set_during_initial_mark_pause(false);
 905   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 906 }
 907 
 908 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 909   _mark_remark_start_sec = os::elapsedTime();
 910   collector_state()->set_during_marking(false);
 911 }
 912 
 913 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 914   double end_time_sec = os::elapsedTime();
 915   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 916   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 917   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 918   _prev_collection_pause_end_ms += elapsed_time_ms;
 919 
 920   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 921 }
 922 
 923 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 924   _mark_cleanup_start_sec = os::elapsedTime();
 925 }
 926 
 927 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 928   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 929                                                               "skip last young-only gc");
 930   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 931   // We abort the marking phase.
 932   if (!should_continue_with_reclaim) {
 933     abort_time_to_mixed_tracking();
 934   }
 935   collector_state()->set_in_marking_window(false);
 936 }
 937 
 938 void G1CollectorPolicy::record_concurrent_pause() {
 939   if (_stop_world_start > 0.0) {
 940     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 941     _trace_young_gen_time_data.record_yield_time(yield_ms);
 942   }
 943 }
 944 
 945 double G1CollectorPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 946   return phase_times()->average_time_ms(phase);
 947 }
 948 
 949 double G1CollectorPolicy::young_other_time_ms() const {
 950   return phase_times()->young_cset_choice_time_ms() +
 951          phase_times()->young_free_cset_time_ms();
 952 }
 953 
 954 double G1CollectorPolicy::non_young_other_time_ms() const {
 955   return phase_times()->non_young_cset_choice_time_ms() +
 956          phase_times()->non_young_free_cset_time_ms();
 957 
 958 }
 959 
 960 double G1CollectorPolicy::other_time_ms(double pause_time_ms) const {
 961   return pause_time_ms -
 962          average_time_ms(G1GCPhaseTimes::UpdateRS) -
 963          average_time_ms(G1GCPhaseTimes::ScanRS) -
 964          average_time_ms(G1GCPhaseTimes::ObjCopy) -
 965          average_time_ms(G1GCPhaseTimes::Termination);
 966 }
 967 
 968 double G1CollectorPolicy::constant_other_time_ms(double pause_time_ms) const {
 969   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 970 }
 971 
 972 bool G1CollectorPolicy::about_to_start_mixed_phase() const {
 973   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 974 }
 975 
 976 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 977   if (about_to_start_mixed_phase()) {
 978     return false;
 979   }
 980 
 981   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 982 
 983   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 984   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 985   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 986 
 987   if (marking_request_bytes > marking_initiating_used_threshold) {
 988     if (collector_state()->gcs_are_young() && !collector_state()->last_young_gc()) {
 989       ergo_verbose5(ErgoConcCycles,
 990         "request concurrent cycle initiation",
 991         ergo_format_reason("occupancy higher than threshold")
 992         ergo_format_byte("occupancy")
 993         ergo_format_byte("allocation request")
 994         ergo_format_byte_perc("threshold")
 995         ergo_format_str("source"),
 996         cur_used_bytes,
 997         alloc_byte_size,
 998         marking_initiating_used_threshold,
 999         (double) marking_initiating_used_threshold / _g1->capacity() * 100,
1000         source);
1001       return true;
1002     } else {
1003       ergo_verbose5(ErgoConcCycles,
1004         "do not request concurrent cycle initiation",
1005         ergo_format_reason("still doing mixed collections")
1006         ergo_format_byte("occupancy")
1007         ergo_format_byte("allocation request")
1008         ergo_format_byte_perc("threshold")
1009         ergo_format_str("source"),
1010         cur_used_bytes,
1011         alloc_byte_size,
1012         marking_initiating_used_threshold,
1013         (double) InitiatingHeapOccupancyPercent,
1014         source);
1015     }
1016   }
1017 
1018   return false;
1019 }
1020 
1021 // Anything below that is considered to be zero
1022 #define MIN_TIMER_GRANULARITY 0.0000001
1023 
1024 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned) {
1025   double end_time_sec = os::elapsedTime();
1026   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
1027          "otherwise, the subtraction below does not make sense");
1028   size_t cur_used_bytes = _g1->used();
1029   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
1030   bool last_pause_included_initial_mark = false;
1031   bool update_stats = !_g1->evacuation_failed();
1032 
1033 #ifndef PRODUCT
1034   if (G1YoungSurvRateVerbose) {
1035     gclog_or_tty->cr();
1036     _short_lived_surv_rate_group->print();
1037     // do that for any other surv rate groups too
1038   }
1039 #endif // PRODUCT
1040 
1041   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
1042 
1043   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
1044   if (last_pause_included_initial_mark) {
1045     record_concurrent_mark_init_end(0.0);
1046   } else {
1047     maybe_start_marking();
1048   }
1049 
1050   double app_time_ms = 1.0;
1051 
1052   if (update_stats) {
1053     _trace_young_gen_time_data.record_end_collection(pause_time_ms, phase_times());
1054     // this is where we update the allocation rate of the application
1055     app_time_ms =
1056       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
1057     if (app_time_ms < MIN_TIMER_GRANULARITY) {
1058       // This usually happens due to the timer not having the required
1059       // granularity. Some Linuxes are the usual culprits.
1060       // We'll just set it to something (arbitrarily) small.
1061       app_time_ms = 1.0;
1062     }
1063     // We maintain the invariant that all objects allocated by mutator
1064     // threads will be allocated out of eden regions. So, we can use
1065     // the eden region number allocated since the previous GC to
1066     // calculate the application's allocate rate. The only exception
1067     // to that is humongous objects that are allocated separately. But
1068     // given that humongous object allocations do not really affect
1069     // either the pause's duration nor when the next pause will take
1070     // place we can safely ignore them here.
1071     uint regions_allocated = eden_cset_region_length();
1072     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1073     _alloc_rate_ms_seq->add(alloc_rate_ms);
1074 
1075     double interval_ms =
1076       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1077     update_recent_gc_times(end_time_sec, pause_time_ms);
1078     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1079     if (recent_avg_pause_time_ratio() < 0.0 ||
1080         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1081       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1082       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1083       if (_recent_avg_pause_time_ratio < 0.0) {
1084         _recent_avg_pause_time_ratio = 0.0;
1085       } else {
1086         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1087         _recent_avg_pause_time_ratio = 1.0;
1088       }
1089     }
1090   }
1091 
1092   bool new_in_marking_window = collector_state()->in_marking_window();
1093   bool new_in_marking_window_im = false;
1094   if (last_pause_included_initial_mark) {
1095     new_in_marking_window = true;
1096     new_in_marking_window_im = true;
1097   }
1098 
1099   if (collector_state()->last_young_gc()) {
1100     // This is supposed to to be the "last young GC" before we start
1101     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1102     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
1103 
1104     if (next_gc_should_be_mixed("start mixed GCs",
1105                                 "do not start mixed GCs")) {
1106       collector_state()->set_gcs_are_young(false);
1107     } else {
1108       // We aborted the mixed GC phase early.
1109       abort_time_to_mixed_tracking();
1110     }
1111 
1112     collector_state()->set_last_young_gc(false);
1113   }
1114 
1115   if (!collector_state()->last_gc_was_young()) {
1116     // This is a mixed GC. Here we decide whether to continue doing
1117     // mixed GCs or not.
1118     if (!next_gc_should_be_mixed("continue mixed GCs",
1119                                  "do not continue mixed GCs")) {
1120       collector_state()->set_gcs_are_young(true);
1121 
1122       maybe_start_marking();
1123     }
1124   }
1125 
1126   _short_lived_surv_rate_group->start_adding_regions();
1127   // Do that for any other surv rate groups
1128 
1129   if (update_stats) {
1130     double cost_per_card_ms = 0.0;
1131     double cost_scan_hcc = average_time_ms(G1GCPhaseTimes::ScanHCC);
1132     if (_pending_cards > 0) {
1133       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - cost_scan_hcc) / (double) _pending_cards;
1134       _cost_per_card_ms_seq->add(cost_per_card_ms);
1135     }
1136     _cost_scan_hcc_seq->add(cost_scan_hcc);
1137 
1138     double cost_per_entry_ms = 0.0;
1139     if (cards_scanned > 10) {
1140       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
1141       if (collector_state()->last_gc_was_young()) {
1142         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1143       } else {
1144         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1145       }
1146     }
1147 
1148     if (_max_rs_lengths > 0) {
1149       double cards_per_entry_ratio =
1150         (double) cards_scanned / (double) _max_rs_lengths;
1151       if (collector_state()->last_gc_was_young()) {
1152         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1153       } else {
1154         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1155       }
1156     }
1157 
1158     // This is defensive. For a while _max_rs_lengths could get
1159     // smaller than _recorded_rs_lengths which was causing
1160     // rs_length_diff to get very large and mess up the RSet length
1161     // predictions. The reason was unsafe concurrent updates to the
1162     // _inc_cset_recorded_rs_lengths field which the code below guards
1163     // against (see CR 7118202). This bug has now been fixed (see CR
1164     // 7119027). However, I'm still worried that
1165     // _inc_cset_recorded_rs_lengths might still end up somewhat
1166     // inaccurate. The concurrent refinement thread calculates an
1167     // RSet's length concurrently with other CR threads updating it
1168     // which might cause it to calculate the length incorrectly (if,
1169     // say, it's in mid-coarsening). So I'll leave in the defensive
1170     // conditional below just in case.
1171     size_t rs_length_diff = 0;
1172     if (_max_rs_lengths > _recorded_rs_lengths) {
1173       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1174     }
1175     _rs_length_diff_seq->add((double) rs_length_diff);
1176 
1177     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1178     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1179     double cost_per_byte_ms = 0.0;
1180 
1181     if (copied_bytes > 0) {
1182       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
1183       if (collector_state()->in_marking_window()) {
1184         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1185       } else {
1186         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1187       }
1188     }
1189 
1190     if (young_cset_region_length() > 0) {
1191       _young_other_cost_per_region_ms_seq->add(young_other_time_ms() /
1192                                                young_cset_region_length());
1193     }
1194 
1195     if (old_cset_region_length() > 0) {
1196       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms() /
1197                                                    old_cset_region_length());
1198     }
1199 
1200     _constant_other_time_ms_seq->add(constant_other_time_ms(pause_time_ms));
1201 
1202     _pending_cards_seq->add((double) _pending_cards);
1203     _rs_lengths_seq->add((double) _max_rs_lengths);
1204   }
1205 
1206   collector_state()->set_in_marking_window(new_in_marking_window);
1207   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1208   _free_regions_at_end_of_collection = _g1->num_free_regions();
1209   // IHOP control wants to know the expected young gen length if it were not
1210   // restrained by the heap reserve. Using the actual length would make the
1211   // prediction too small and the limit the young gen every time we get to the
1212   // predicted target occupancy.
1213   size_t last_unrestrained_young_length = 0;
1214   update_young_list_max_and_target_length(&last_unrestrained_young_length);
1215   update_rs_lengths_prediction();
1216 
1217   double marking_to_mixed_time = -1.0;
1218   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
1219     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
1220     assert(marking_to_mixed_time > 0.0,
1221            "Initial mark to mixed time must be larger than zero but is %.3f",
1222            marking_to_mixed_time);
1223   }
1224   // Only update IHOP information on regular GCs.
1225   if (update_stats) {
1226     update_ihop_statistics(marking_to_mixed_time,
1227                            app_time_ms / 1000.0,
1228                            _last_old_allocated_bytes,
1229                            last_unrestrained_young_length * HeapRegion::GrainBytes);
1230   }
1231   _last_old_allocated_bytes = 0;
1232 
1233   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1234   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1235 
1236   double scan_hcc_time_ms = average_time_ms(G1GCPhaseTimes::ScanHCC);
1237 
1238   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
1239     ergo_verbose2(ErgoTiming,
1240                   "adjust concurrent refinement thresholds",
1241                   ergo_format_reason("Scanning the HCC expected to take longer than Update RS time goal")
1242                   ergo_format_ms("Update RS time goal")
1243                   ergo_format_ms("Scan HCC time"),
1244                   update_rs_time_goal_ms,
1245                   scan_hcc_time_ms);
1246 
1247     update_rs_time_goal_ms = 0;
1248   } else {
1249     update_rs_time_goal_ms -= scan_hcc_time_ms;
1250   }
1251   adjust_concurrent_refinement(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
1252                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
1253                                update_rs_time_goal_ms);
1254 
1255   _collectionSetChooser->verify();
1256 }
1257 
1258 G1IHOPControl* G1CollectorPolicy::create_ihop_control() const {
1259   return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent,
1260                                  G1CollectedHeap::heap()->max_capacity());
1261 }
1262 
1263 void G1CollectorPolicy::update_ihop_statistics(double marking_time,
1264                                                double mutator_time_s,
1265                                                size_t mutator_alloc_bytes,
1266                                                size_t young_gen_size) {
1267   bool report = false;
1268 
1269   // To avoid using really small times that may be caused by e.g. back-to-back gcs
1270   // we filter them out.
1271   double const min_valid_time = 1e-6;
1272 
1273   if (marking_time > min_valid_time) {
1274     _ihop_control->update_time_to_mixed(marking_time);
1275     report = true;
1276   }
1277 
1278   // As an approximation for the young gc promotion rates during marking we use
1279   // all of them. In many applications there are only a few if any young gcs during
1280   // marking, which makes any prediction useless. This increases the accuracy of the
1281   // prediction.
1282   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
1283     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
1284     report = true;
1285   }
1286 
1287   if (report) {
1288     report_ihop_statistics();
1289   }
1290 }
1291 
1292 void G1CollectorPolicy::report_ihop_statistics() {
1293   _ihop_control->print();
1294 }
1295 
1296 #define EXT_SIZE_FORMAT "%.1f%s"
1297 #define EXT_SIZE_PARAMS(bytes)                                  \
1298   byte_size_in_proper_unit((double)(bytes)),                    \
1299   proper_unit_for_byte_size((bytes))
1300 
1301 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1302   YoungList* young_list = _g1->young_list();
1303   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1304   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1305   _heap_capacity_bytes_before_gc = _g1->capacity();
1306   _heap_used_bytes_before_gc = _g1->used();
1307   _cur_collection_pause_used_regions_at_start = _g1->num_used_regions();
1308 
1309   _eden_capacity_bytes_before_gc =
1310          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1311 
1312   if (full) {
1313     _metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();
1314   }
1315 }
1316 
1317 void G1CollectorPolicy::print_heap_transition(size_t bytes_before) const {
1318   size_t bytes_after = _g1->used();
1319   size_t capacity = _g1->capacity();
1320 
1321   gclog_or_tty->print(" " SIZE_FORMAT "%s->" SIZE_FORMAT "%s(" SIZE_FORMAT "%s)",
1322       byte_size_in_proper_unit(bytes_before),
1323       proper_unit_for_byte_size(bytes_before),
1324       byte_size_in_proper_unit(bytes_after),
1325       proper_unit_for_byte_size(bytes_after),
1326       byte_size_in_proper_unit(capacity),
1327       proper_unit_for_byte_size(capacity));
1328 }
1329 
1330 void G1CollectorPolicy::print_heap_transition() const {
1331   print_heap_transition(_heap_used_bytes_before_gc);
1332 }
1333 
1334 void G1CollectorPolicy::print_detailed_heap_transition(bool full) const {
1335   YoungList* young_list = _g1->young_list();
1336 
1337   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1338   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1339   size_t heap_used_bytes_after_gc = _g1->used();
1340 
1341   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1342   size_t eden_capacity_bytes_after_gc =
1343     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1344 
1345   gclog_or_tty->print(
1346     "   [Eden: " EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")->" EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ") "
1347     "Survivors: " EXT_SIZE_FORMAT "->" EXT_SIZE_FORMAT " "
1348     "Heap: " EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")->"
1349     EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")]",
1350     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1351     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1352     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1353     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1354     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1355     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1356     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1357     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1358     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1359     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1360 
1361   if (full) {
1362     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1363   }
1364 
1365   gclog_or_tty->cr();
1366 }
1367 
1368 void G1CollectorPolicy::print_phases(double pause_time_sec) {
1369   phase_times()->print(pause_time_sec);
1370 }
1371 
1372 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1373                                                      double update_rs_processed_buffers,
1374                                                      double goal_ms) {
1375   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1376   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1377 
1378   if (G1UseAdaptiveConcRefinement) {
1379     const int k_gy = 3, k_gr = 6;
1380     const double inc_k = 1.1, dec_k = 0.9;
1381 
1382     int g = cg1r->green_zone();
1383     if (update_rs_time > goal_ms) {
1384       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1385     } else {
1386       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1387         g = (int)MAX2(g * inc_k, g + 1.0);
1388       }
1389     }
1390     // Change the refinement threads params
1391     cg1r->set_green_zone(g);
1392     cg1r->set_yellow_zone(g * k_gy);
1393     cg1r->set_red_zone(g * k_gr);
1394     cg1r->reinitialize_threads();
1395 
1396     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * _predictor.sigma()), 1);
1397     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1398                                     cg1r->yellow_zone());
1399     // Change the barrier params
1400     dcqs.set_process_completed_threshold(processing_threshold);
1401     dcqs.set_max_completed_queue(cg1r->red_zone());
1402   }
1403 
1404   int curr_queue_size = dcqs.completed_buffers_num();
1405   if (curr_queue_size >= cg1r->yellow_zone()) {
1406     dcqs.set_completed_queue_padding(curr_queue_size);
1407   } else {
1408     dcqs.set_completed_queue_padding(0);
1409   }
1410   dcqs.notify_if_necessary();
1411 }
1412 
1413 size_t G1CollectorPolicy::predict_rs_length_diff() const {
1414   return (size_t) get_new_prediction(_rs_length_diff_seq);
1415 }
1416 
1417 double G1CollectorPolicy::predict_alloc_rate_ms() const {
1418   return get_new_prediction(_alloc_rate_ms_seq);
1419 }
1420 
1421 double G1CollectorPolicy::predict_cost_per_card_ms() const {
1422   return get_new_prediction(_cost_per_card_ms_seq);
1423 }
1424 
1425 double G1CollectorPolicy::predict_scan_hcc_ms() const {
1426   return get_new_prediction(_cost_scan_hcc_seq);
1427 }
1428 
1429 double G1CollectorPolicy::predict_rs_update_time_ms(size_t pending_cards) const {
1430   return pending_cards * predict_cost_per_card_ms() + predict_scan_hcc_ms();
1431 }
1432 
1433 double G1CollectorPolicy::predict_young_cards_per_entry_ratio() const {
1434   return get_new_prediction(_young_cards_per_entry_ratio_seq);
1435 }
1436 
1437 double G1CollectorPolicy::predict_mixed_cards_per_entry_ratio() const {
1438   if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
1439     return predict_young_cards_per_entry_ratio();
1440   } else {
1441     return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
1442   }
1443 }
1444 
1445 size_t G1CollectorPolicy::predict_young_card_num(size_t rs_length) const {
1446   return (size_t) (rs_length * predict_young_cards_per_entry_ratio());
1447 }
1448 
1449 size_t G1CollectorPolicy::predict_non_young_card_num(size_t rs_length) const {
1450   return (size_t)(rs_length * predict_mixed_cards_per_entry_ratio());
1451 }
1452 
1453 double G1CollectorPolicy::predict_rs_scan_time_ms(size_t card_num) const {
1454   if (collector_state()->gcs_are_young()) {
1455     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1456   } else {
1457     return predict_mixed_rs_scan_time_ms(card_num);
1458   }
1459 }
1460 
1461 double G1CollectorPolicy::predict_mixed_rs_scan_time_ms(size_t card_num) const {
1462   if (_mixed_cost_per_entry_ms_seq->num() < 3) {
1463     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1464   } else {
1465     return card_num * get_new_prediction(_mixed_cost_per_entry_ms_seq);
1466   }
1467 }
1468 
1469 double G1CollectorPolicy::predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const {
1470   if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
1471     return (1.1 * bytes_to_copy) * get_new_prediction(_cost_per_byte_ms_seq);
1472   } else {
1473     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_during_cm_seq);
1474   }
1475 }
1476 
1477 double G1CollectorPolicy::predict_object_copy_time_ms(size_t bytes_to_copy) const {
1478   if (collector_state()->during_concurrent_mark()) {
1479     return predict_object_copy_time_ms_during_cm(bytes_to_copy);
1480   } else {
1481     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_seq);
1482   }
1483 }
1484 
1485 double G1CollectorPolicy::predict_constant_other_time_ms() const {
1486   return get_new_prediction(_constant_other_time_ms_seq);
1487 }
1488 
1489 double G1CollectorPolicy::predict_young_other_time_ms(size_t young_num) const {
1490   return young_num * get_new_prediction(_young_other_cost_per_region_ms_seq);
1491 }
1492 
1493 double G1CollectorPolicy::predict_non_young_other_time_ms(size_t non_young_num) const {
1494   return non_young_num * get_new_prediction(_non_young_other_cost_per_region_ms_seq);
1495 }
1496 
1497 double G1CollectorPolicy::predict_remark_time_ms() const {
1498   return get_new_prediction(_concurrent_mark_remark_times_ms);
1499 }
1500 
1501 double G1CollectorPolicy::predict_cleanup_time_ms() const {
1502   return get_new_prediction(_concurrent_mark_cleanup_times_ms);
1503 }
1504 
1505 double G1CollectorPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
1506   TruncatedSeq* seq = surv_rate_group->get_seq(age);
1507   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
1508   double pred = get_new_prediction(seq);
1509   if (pred > 1.0) {
1510     pred = 1.0;
1511   }
1512   return pred;
1513 }
1514 
1515 double G1CollectorPolicy::predict_yg_surv_rate(int age) const {
1516   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
1517 }
1518 
1519 double G1CollectorPolicy::accum_yg_surv_rate_pred(int age) const {
1520   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
1521 }
1522 
1523 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1524                                                        size_t scanned_cards) const {
1525   return
1526     predict_rs_update_time_ms(pending_cards) +
1527     predict_rs_scan_time_ms(scanned_cards) +
1528     predict_constant_other_time_ms();
1529 }
1530 
1531 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1532   size_t rs_length = predict_rs_length_diff();
1533   size_t card_num;
1534   if (collector_state()->gcs_are_young()) {
1535     card_num = predict_young_card_num(rs_length);
1536   } else {
1537     card_num = predict_non_young_card_num(rs_length);
1538   }
1539   return predict_base_elapsed_time_ms(pending_cards, card_num);
1540 }
1541 
1542 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
1543   size_t bytes_to_copy;
1544   if (hr->is_marked())
1545     bytes_to_copy = hr->max_live_bytes();
1546   else {
1547     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1548     int age = hr->age_in_surv_rate_group();
1549     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1550     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
1551   }
1552   return bytes_to_copy;
1553 }
1554 
1555 double G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1556                                                          bool for_young_gc) const {
1557   size_t rs_length = hr->rem_set()->occupied();
1558   size_t card_num;
1559 
1560   // Predicting the number of cards is based on which type of GC
1561   // we're predicting for.
1562   if (for_young_gc) {
1563     card_num = predict_young_card_num(rs_length);
1564   } else {
1565     card_num = predict_non_young_card_num(rs_length);
1566   }
1567   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1568 
1569   double region_elapsed_time_ms =
1570     predict_rs_scan_time_ms(card_num) +
1571     predict_object_copy_time_ms(bytes_to_copy);
1572 
1573   // The prediction of the "other" time for this region is based
1574   // upon the region type and NOT the GC type.
1575   if (hr->is_young()) {
1576     region_elapsed_time_ms += predict_young_other_time_ms(1);
1577   } else {
1578     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1579   }
1580   return region_elapsed_time_ms;
1581 }
1582 
1583 void G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1584                                                  uint survivor_cset_region_length) {
1585   _eden_cset_region_length     = eden_cset_region_length;
1586   _survivor_cset_region_length = survivor_cset_region_length;
1587   _old_cset_region_length      = 0;
1588 }
1589 
1590 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1591   _recorded_rs_lengths = rs_lengths;
1592 }
1593 
1594 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1595                                                double elapsed_ms) {
1596   _recent_gc_times_ms->add(elapsed_ms);
1597   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1598   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1599 }
1600 
1601 size_t G1CollectorPolicy::expansion_amount() const {
1602   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1603   double threshold = _gc_overhead_perc;
1604   if (recent_gc_overhead > threshold) {
1605     // We will double the existing space, or take
1606     // G1ExpandByPercentOfAvailable % of the available expansion
1607     // space, whichever is smaller, bounded below by a minimum
1608     // expansion (unless that's all that's left.)
1609     const size_t min_expand_bytes = 1*M;
1610     size_t reserved_bytes = _g1->max_capacity();
1611     size_t committed_bytes = _g1->capacity();
1612     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1613     size_t expand_bytes;
1614     size_t expand_bytes_via_pct =
1615       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1616     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1617     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1618     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1619 
1620     ergo_verbose5(ErgoHeapSizing,
1621                   "attempt heap expansion",
1622                   ergo_format_reason("recent GC overhead higher than "
1623                                      "threshold after GC")
1624                   ergo_format_perc("recent GC overhead")
1625                   ergo_format_perc("threshold")
1626                   ergo_format_byte("uncommitted")
1627                   ergo_format_byte_perc("calculated expansion amount"),
1628                   recent_gc_overhead, threshold,
1629                   uncommitted_bytes,
1630                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1631 
1632     return expand_bytes;
1633   } else {
1634     return 0;
1635   }
1636 }
1637 
1638 void G1CollectorPolicy::print_tracing_info() const {
1639   _trace_young_gen_time_data.print();
1640   _trace_old_gen_time_data.print();
1641 }
1642 
1643 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1644 #ifndef PRODUCT
1645   _short_lived_surv_rate_group->print_surv_rate_summary();
1646   // add this call for any other surv rate groups
1647 #endif // PRODUCT
1648 }
1649 
1650 bool G1CollectorPolicy::is_young_list_full() const {
1651   uint young_list_length = _g1->young_list()->length();
1652   uint young_list_target_length = _young_list_target_length;
1653   return young_list_length >= young_list_target_length;
1654 }
1655 
1656 bool G1CollectorPolicy::can_expand_young_list() const {
1657   uint young_list_length = _g1->young_list()->length();
1658   uint young_list_max_length = _young_list_max_length;
1659   return young_list_length < young_list_max_length;
1660 }
1661 
1662 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1663   uint expansion_region_num = 0;
1664   if (GCLockerEdenExpansionPercent > 0) {
1665     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1666     double expansion_region_num_d = perc * (double) _young_list_target_length;
1667     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1668     // less than 1.0) we'll get 1.
1669     expansion_region_num = (uint) ceil(expansion_region_num_d);
1670   } else {
1671     assert(expansion_region_num == 0, "sanity");
1672   }
1673   _young_list_max_length = _young_list_target_length + expansion_region_num;
1674   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1675 }
1676 
1677 // Calculates survivor space parameters.
1678 void G1CollectorPolicy::update_survivors_policy() {
1679   double max_survivor_regions_d =
1680                  (double) _young_list_target_length / (double) SurvivorRatio;
1681   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1682   // smaller than 1.0) we'll get 1.
1683   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1684 
1685   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1686         HeapRegion::GrainWords * _max_survivor_regions, counters());
1687 }
1688 
1689 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1690   // We actually check whether we are marking here and not if we are in a
1691   // reclamation phase. This means that we will schedule a concurrent mark
1692   // even while we are still in the process of reclaiming memory.
1693   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1694   if (!during_cycle) {
1695     ergo_verbose1(ErgoConcCycles,
1696                   "request concurrent cycle initiation",
1697                   ergo_format_reason("requested by GC cause")
1698                   ergo_format_str("GC cause"),
1699                   GCCause::to_string(gc_cause));
1700     collector_state()->set_initiate_conc_mark_if_possible(true);
1701     return true;
1702   } else {
1703     ergo_verbose1(ErgoConcCycles,
1704                   "do not request concurrent cycle initiation",
1705                   ergo_format_reason("concurrent cycle already in progress")
1706                   ergo_format_str("GC cause"),
1707                   GCCause::to_string(gc_cause));
1708     return false;
1709   }
1710 }
1711 
1712 void G1CollectorPolicy::decide_on_conc_mark_initiation() {
1713   // We are about to decide on whether this pause will be an
1714   // initial-mark pause.
1715 
1716   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1717   // will set it here if we have to. However, it should be cleared by
1718   // the end of the pause (it's only set for the duration of an
1719   // initial-mark pause).
1720   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1721 
1722   if (collector_state()->initiate_conc_mark_if_possible()) {
1723     // We had noticed on a previous pause that the heap occupancy has
1724     // gone over the initiating threshold and we should start a
1725     // concurrent marking cycle. So we might initiate one.
1726 
1727     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
1728       // Initiate a new initial mark only if there is no marking or reclamation going
1729       // on.
1730 
1731       collector_state()->set_during_initial_mark_pause(true);
1732       // And we can now clear initiate_conc_mark_if_possible() as
1733       // we've already acted on it.
1734       collector_state()->set_initiate_conc_mark_if_possible(false);
1735 
1736       ergo_verbose0(ErgoConcCycles,
1737                   "initiate concurrent cycle",
1738                   ergo_format_reason("concurrent cycle initiation requested"));
1739     } else {
1740       // The concurrent marking thread is still finishing up the
1741       // previous cycle. If we start one right now the two cycles
1742       // overlap. In particular, the concurrent marking thread might
1743       // be in the process of clearing the next marking bitmap (which
1744       // we will use for the next cycle if we start one). Starting a
1745       // cycle now will be bad given that parts of the marking
1746       // information might get cleared by the marking thread. And we
1747       // cannot wait for the marking thread to finish the cycle as it
1748       // periodically yields while clearing the next marking bitmap
1749       // and, if it's in a yield point, it's waiting for us to
1750       // finish. So, at this point we will not start a cycle and we'll
1751       // let the concurrent marking thread complete the last one.
1752       ergo_verbose0(ErgoConcCycles,
1753                     "do not initiate concurrent cycle",
1754                     ergo_format_reason("concurrent cycle already in progress"));
1755     }
1756   }
1757 }
1758 
1759 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1760   G1CollectedHeap* _g1h;
1761   CSetChooserParUpdater _cset_updater;
1762 
1763 public:
1764   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1765                            uint chunk_size) :
1766     _g1h(G1CollectedHeap::heap()),
1767     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1768 
1769   bool doHeapRegion(HeapRegion* r) {
1770     // Do we have any marking information for this region?
1771     if (r->is_marked()) {
1772       // We will skip any region that's currently used as an old GC
1773       // alloc region (we should not consider those for collection
1774       // before we fill them up).
1775       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1776         _cset_updater.add_region(r);
1777       }
1778     }
1779     return false;
1780   }
1781 };
1782 
1783 class ParKnownGarbageTask: public AbstractGangTask {
1784   CollectionSetChooser* _hrSorted;
1785   uint _chunk_size;
1786   G1CollectedHeap* _g1;
1787   HeapRegionClaimer _hrclaimer;
1788 
1789 public:
1790   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1791       AbstractGangTask("ParKnownGarbageTask"),
1792       _hrSorted(hrSorted), _chunk_size(chunk_size),
1793       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1794 
1795   void work(uint worker_id) {
1796     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1797     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1798   }
1799 };
1800 
1801 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const {
1802   assert(n_workers > 0, "Active gc workers should be greater than 0");
1803   const uint overpartition_factor = 4;
1804   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1805   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1806 }
1807 
1808 void G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1809   _collectionSetChooser->clear();
1810 
1811   WorkGang* workers = _g1->workers();
1812   uint n_workers = workers->active_workers();
1813 
1814   uint n_regions = _g1->num_regions();
1815   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1816   _collectionSetChooser->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1817   ParKnownGarbageTask par_known_garbage_task(_collectionSetChooser, chunk_size, n_workers);
1818   workers->run_task(&par_known_garbage_task);
1819 
1820   _collectionSetChooser->sort_regions();
1821 
1822   double end_sec = os::elapsedTime();
1823   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1824   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1825   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1826   _prev_collection_pause_end_ms += elapsed_time_ms;
1827 
1828   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1829 }
1830 
1831 // Add the heap region at the head of the non-incremental collection set
1832 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1833   assert(_inc_cset_build_state == Active, "Precondition");
1834   assert(hr->is_old(), "the region should be old");
1835 
1836   assert(!hr->in_collection_set(), "should not already be in the CSet");
1837   _g1->register_old_region_with_cset(hr);
1838   hr->set_next_in_collection_set(_collection_set);
1839   _collection_set = hr;
1840   _collection_set_bytes_used_before += hr->used();
1841   size_t rs_length = hr->rem_set()->occupied();
1842   _recorded_rs_lengths += rs_length;
1843   _old_cset_region_length += 1;
1844 }
1845 
1846 // Initialize the per-collection-set information
1847 void G1CollectorPolicy::start_incremental_cset_building() {
1848   assert(_inc_cset_build_state == Inactive, "Precondition");
1849 
1850   _inc_cset_head = NULL;
1851   _inc_cset_tail = NULL;
1852   _inc_cset_bytes_used_before = 0;
1853 
1854   _inc_cset_max_finger = 0;
1855   _inc_cset_recorded_rs_lengths = 0;
1856   _inc_cset_recorded_rs_lengths_diffs = 0;
1857   _inc_cset_predicted_elapsed_time_ms = 0.0;
1858   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1859   _inc_cset_build_state = Active;
1860 }
1861 
1862 void G1CollectorPolicy::finalize_incremental_cset_building() {
1863   assert(_inc_cset_build_state == Active, "Precondition");
1864   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1865 
1866   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1867   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1868   // that adds a new region to the CSet. Further updates by the
1869   // concurrent refinement thread that samples the young RSet lengths
1870   // are accumulated in the *_diffs fields. Here we add the diffs to
1871   // the "main" fields.
1872 
1873   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1874     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1875   } else {
1876     // This is defensive. The diff should in theory be always positive
1877     // as RSets can only grow between GCs. However, given that we
1878     // sample their size concurrently with other threads updating them
1879     // it's possible that we might get the wrong size back, which
1880     // could make the calculations somewhat inaccurate.
1881     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1882     if (_inc_cset_recorded_rs_lengths >= diffs) {
1883       _inc_cset_recorded_rs_lengths -= diffs;
1884     } else {
1885       _inc_cset_recorded_rs_lengths = 0;
1886     }
1887   }
1888   _inc_cset_predicted_elapsed_time_ms +=
1889                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1890 
1891   _inc_cset_recorded_rs_lengths_diffs = 0;
1892   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1893 }
1894 
1895 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1896   // This routine is used when:
1897   // * adding survivor regions to the incremental cset at the end of an
1898   //   evacuation pause,
1899   // * adding the current allocation region to the incremental cset
1900   //   when it is retired, and
1901   // * updating existing policy information for a region in the
1902   //   incremental cset via young list RSet sampling.
1903   // Therefore this routine may be called at a safepoint by the
1904   // VM thread, or in-between safepoints by mutator threads (when
1905   // retiring the current allocation region) or a concurrent
1906   // refine thread (RSet sampling).
1907 
1908   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1909   size_t used_bytes = hr->used();
1910   _inc_cset_recorded_rs_lengths += rs_length;
1911   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1912   _inc_cset_bytes_used_before += used_bytes;
1913 
1914   // Cache the values we have added to the aggregated information
1915   // in the heap region in case we have to remove this region from
1916   // the incremental collection set, or it is updated by the
1917   // rset sampling code
1918   hr->set_recorded_rs_length(rs_length);
1919   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1920 }
1921 
1922 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1923                                                      size_t new_rs_length) {
1924   // Update the CSet information that is dependent on the new RS length
1925   assert(hr->is_young(), "Precondition");
1926   assert(!SafepointSynchronize::is_at_safepoint(),
1927                                                "should not be at a safepoint");
1928 
1929   // We could have updated _inc_cset_recorded_rs_lengths and
1930   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1931   // that atomically, as this code is executed by a concurrent
1932   // refinement thread, potentially concurrently with a mutator thread
1933   // allocating a new region and also updating the same fields. To
1934   // avoid the atomic operations we accumulate these updates on two
1935   // separate fields (*_diffs) and we'll just add them to the "main"
1936   // fields at the start of a GC.
1937 
1938   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1939   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1940   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1941 
1942   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1943   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1944   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1945   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1946 
1947   hr->set_recorded_rs_length(new_rs_length);
1948   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1949 }
1950 
1951 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1952   assert(hr->is_young(), "invariant");
1953   assert(hr->young_index_in_cset() > -1, "should have already been set");
1954   assert(_inc_cset_build_state == Active, "Precondition");
1955 
1956   // We need to clear and set the cached recorded/cached collection set
1957   // information in the heap region here (before the region gets added
1958   // to the collection set). An individual heap region's cached values
1959   // are calculated, aggregated with the policy collection set info,
1960   // and cached in the heap region here (initially) and (subsequently)
1961   // by the Young List sampling code.
1962 
1963   size_t rs_length = hr->rem_set()->occupied();
1964   add_to_incremental_cset_info(hr, rs_length);
1965 
1966   HeapWord* hr_end = hr->end();
1967   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1968 
1969   assert(!hr->in_collection_set(), "invariant");
1970   _g1->register_young_region_with_cset(hr);
1971   assert(hr->next_in_collection_set() == NULL, "invariant");
1972 }
1973 
1974 // Add the region at the RHS of the incremental cset
1975 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1976   // We should only ever be appending survivors at the end of a pause
1977   assert(hr->is_survivor(), "Logic");
1978 
1979   // Do the 'common' stuff
1980   add_region_to_incremental_cset_common(hr);
1981 
1982   // Now add the region at the right hand side
1983   if (_inc_cset_tail == NULL) {
1984     assert(_inc_cset_head == NULL, "invariant");
1985     _inc_cset_head = hr;
1986   } else {
1987     _inc_cset_tail->set_next_in_collection_set(hr);
1988   }
1989   _inc_cset_tail = hr;
1990 }
1991 
1992 // Add the region to the LHS of the incremental cset
1993 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1994   // Survivors should be added to the RHS at the end of a pause
1995   assert(hr->is_eden(), "Logic");
1996 
1997   // Do the 'common' stuff
1998   add_region_to_incremental_cset_common(hr);
1999 
2000   // Add the region at the left hand side
2001   hr->set_next_in_collection_set(_inc_cset_head);
2002   if (_inc_cset_head == NULL) {
2003     assert(_inc_cset_tail == NULL, "Invariant");
2004     _inc_cset_tail = hr;
2005   }
2006   _inc_cset_head = hr;
2007 }
2008 
2009 #ifndef PRODUCT
2010 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
2011   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
2012 
2013   st->print_cr("\nCollection_set:");
2014   HeapRegion* csr = list_head;
2015   while (csr != NULL) {
2016     HeapRegion* next = csr->next_in_collection_set();
2017     assert(csr->in_collection_set(), "bad CS");
2018     st->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
2019                  HR_FORMAT_PARAMS(csr),
2020                  p2i(csr->prev_top_at_mark_start()), p2i(csr->next_top_at_mark_start()),
2021                  csr->age_in_surv_rate_group_cond());
2022     csr = next;
2023   }
2024 }
2025 #endif // !PRODUCT
2026 
2027 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
2028   // Returns the given amount of reclaimable bytes (that represents
2029   // the amount of reclaimable space still to be collected) as a
2030   // percentage of the current heap capacity.
2031   size_t capacity_bytes = _g1->capacity();
2032   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
2033 }
2034 
2035 void G1CollectorPolicy::maybe_start_marking() {
2036   if (need_to_start_conc_mark("end of GC")) {
2037     // Note: this might have already been set, if during the last
2038     // pause we decided to start a cycle but at the beginning of
2039     // this pause we decided to postpone it. That's OK.
2040     collector_state()->set_initiate_conc_mark_if_possible(true);
2041   }
2042 }
2043 
2044 G1CollectorPolicy::PauseKind G1CollectorPolicy::young_gc_pause_kind() const {
2045   assert(!collector_state()->full_collection(), "must be");
2046   if (collector_state()->during_initial_mark_pause()) {
2047     assert(collector_state()->last_gc_was_young(), "must be");
2048     assert(!collector_state()->last_young_gc(), "must be");
2049     return InitialMarkGC;
2050   } else if (collector_state()->last_young_gc()) {
2051     assert(!collector_state()->during_initial_mark_pause(), "must be");
2052     assert(collector_state()->last_gc_was_young(), "must be");   
2053     return LastYoungGC;
2054   } else if (!collector_state()->last_gc_was_young()) {
2055     assert(!collector_state()->during_initial_mark_pause(), "must be");
2056     assert(!collector_state()->last_young_gc(), "must be");
2057     return MixedGC;
2058   } else {
2059     assert(collector_state()->last_gc_was_young(), "must be");
2060     assert(!collector_state()->during_initial_mark_pause(), "must be");
2061     assert(!collector_state()->last_young_gc(), "must be");
2062     return YoungOnlyGC;
2063   }
2064 }
2065 
2066 void G1CollectorPolicy::record_pause(PauseKind kind, double start, double end) {
2067   // Manage the MMU tracker. For some reason it ignores Full GCs.
2068   if (kind != FullGC) {
2069     _mmu_tracker->add_pause(start, end);
2070   }
2071   // Manage the mutator time tracking from initial mark to first mixed gc.
2072   switch (kind) {
2073     case FullGC:
2074       abort_time_to_mixed_tracking();
2075       break;
2076     case Cleanup:
2077     case Remark:
2078     case YoungOnlyGC:
2079     case LastYoungGC:
2080       _initial_mark_to_mixed.add_pause(end - start);
2081       break;
2082     case InitialMarkGC:
2083       _initial_mark_to_mixed.record_initial_mark_end(end);
2084       break;
2085     case MixedGC:
2086       _initial_mark_to_mixed.record_mixed_gc_start(start);
2087       break;
2088     default:
2089       ShouldNotReachHere();
2090   }
2091 }
2092 
2093 void G1CollectorPolicy::abort_time_to_mixed_tracking() {
2094   _initial_mark_to_mixed.reset();
2095 }
2096 
2097 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
2098                                                 const char* false_action_str) const {
2099   CollectionSetChooser* cset_chooser = _collectionSetChooser;
2100   if (cset_chooser->is_empty()) {
2101     ergo_verbose0(ErgoMixedGCs,
2102                   false_action_str,
2103                   ergo_format_reason("candidate old regions not available"));
2104     return false;
2105   }
2106 
2107   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
2108   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2109   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2110   double threshold = (double) G1HeapWastePercent;
2111   if (reclaimable_perc <= threshold) {
2112     ergo_verbose4(ErgoMixedGCs,
2113               false_action_str,
2114               ergo_format_reason("reclaimable percentage not over threshold")
2115               ergo_format_region("candidate old regions")
2116               ergo_format_byte_perc("reclaimable")
2117               ergo_format_perc("threshold"),
2118               cset_chooser->remaining_regions(),
2119               reclaimable_bytes,
2120               reclaimable_perc, threshold);
2121     return false;
2122   }
2123 
2124   ergo_verbose4(ErgoMixedGCs,
2125                 true_action_str,
2126                 ergo_format_reason("candidate old regions available")
2127                 ergo_format_region("candidate old regions")
2128                 ergo_format_byte_perc("reclaimable")
2129                 ergo_format_perc("threshold"),
2130                 cset_chooser->remaining_regions(),
2131                 reclaimable_bytes,
2132                 reclaimable_perc, threshold);
2133   return true;
2134 }
2135 
2136 uint G1CollectorPolicy::calc_min_old_cset_length() const {
2137   // The min old CSet region bound is based on the maximum desired
2138   // number of mixed GCs after a cycle. I.e., even if some old regions
2139   // look expensive, we should add them to the CSet anyway to make
2140   // sure we go through the available old regions in no more than the
2141   // maximum desired number of mixed GCs.
2142   //
2143   // The calculation is based on the number of marked regions we added
2144   // to the CSet chooser in the first place, not how many remain, so
2145   // that the result is the same during all mixed GCs that follow a cycle.
2146 
2147   const size_t region_num = (size_t) _collectionSetChooser->length();
2148   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
2149   size_t result = region_num / gc_num;
2150   // emulate ceiling
2151   if (result * gc_num < region_num) {
2152     result += 1;
2153   }
2154   return (uint) result;
2155 }
2156 
2157 uint G1CollectorPolicy::calc_max_old_cset_length() const {
2158   // The max old CSet region bound is based on the threshold expressed
2159   // as a percentage of the heap size. I.e., it should bound the
2160   // number of old regions added to the CSet irrespective of how many
2161   // of them are available.
2162 
2163   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
2164   const size_t region_num = g1h->num_regions();
2165   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
2166   size_t result = region_num * perc / 100;
2167   // emulate ceiling
2168   if (100 * result < region_num * perc) {
2169     result += 1;
2170   }
2171   return (uint) result;
2172 }
2173 
2174 
2175 double G1CollectorPolicy::finalize_young_cset_part(double target_pause_time_ms) {
2176   double young_start_time_sec = os::elapsedTime();
2177 
2178   YoungList* young_list = _g1->young_list();
2179   finalize_incremental_cset_building();
2180 
2181   guarantee(target_pause_time_ms > 0.0,
2182             "target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
2183   guarantee(_collection_set == NULL, "Precondition");
2184 
2185   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2186   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
2187 
2188   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
2189                 "start choosing CSet",
2190                 ergo_format_size("_pending_cards")
2191                 ergo_format_ms("predicted base time")
2192                 ergo_format_ms("remaining time")
2193                 ergo_format_ms("target pause time"),
2194                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
2195 
2196   collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
2197 
2198   if (collector_state()->last_gc_was_young()) {
2199     _trace_young_gen_time_data.increment_young_collection_count();
2200   } else {
2201     _trace_young_gen_time_data.increment_mixed_collection_count();
2202   }
2203 
2204   // The young list is laid with the survivor regions from the previous
2205   // pause are appended to the RHS of the young list, i.e.
2206   //   [Newly Young Regions ++ Survivors from last pause].
2207 
2208   uint survivor_region_length = young_list->survivor_length();
2209   uint eden_region_length = young_list->eden_length();
2210   init_cset_region_lengths(eden_region_length, survivor_region_length);
2211 
2212   HeapRegion* hr = young_list->first_survivor_region();
2213   while (hr != NULL) {
2214     assert(hr->is_survivor(), "badly formed young list");
2215     // There is a convention that all the young regions in the CSet
2216     // are tagged as "eden", so we do this for the survivors here. We
2217     // use the special set_eden_pre_gc() as it doesn't check that the
2218     // region is free (which is not the case here).
2219     hr->set_eden_pre_gc();
2220     hr = hr->get_next_young_region();
2221   }
2222 
2223   // Clear the fields that point to the survivor list - they are all young now.
2224   young_list->clear_survivors();
2225 
2226   _collection_set = _inc_cset_head;
2227   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2228   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
2229 
2230   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
2231                 "add young regions to CSet",
2232                 ergo_format_region("eden")
2233                 ergo_format_region("survivors")
2234                 ergo_format_ms("predicted young region time")
2235                 ergo_format_ms("target pause time"),
2236                 eden_region_length, survivor_region_length,
2237                 _inc_cset_predicted_elapsed_time_ms,
2238                 target_pause_time_ms);
2239 
2240   // The number of recorded young regions is the incremental
2241   // collection set's current size
2242   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2243 
2244   double young_end_time_sec = os::elapsedTime();
2245   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
2246 
2247   return time_remaining_ms;
2248 }
2249 
2250 void G1CollectorPolicy::finalize_old_cset_part(double time_remaining_ms) {
2251   double non_young_start_time_sec = os::elapsedTime();
2252   double predicted_old_time_ms = 0.0;
2253 
2254 
2255   if (!collector_state()->gcs_are_young()) {
2256     CollectionSetChooser* cset_chooser = _collectionSetChooser;
2257     cset_chooser->verify();
2258     const uint min_old_cset_length = calc_min_old_cset_length();
2259     const uint max_old_cset_length = calc_max_old_cset_length();
2260 
2261     uint expensive_region_num = 0;
2262     bool check_time_remaining = adaptive_young_list_length();
2263 
2264     HeapRegion* hr = cset_chooser->peek();
2265     while (hr != NULL) {
2266       if (old_cset_region_length() >= max_old_cset_length) {
2267         // Added maximum number of old regions to the CSet.
2268         ergo_verbose2(ErgoCSetConstruction,
2269                       "finish adding old regions to CSet",
2270                       ergo_format_reason("old CSet region num reached max")
2271                       ergo_format_region("old")
2272                       ergo_format_region("max"),
2273                       old_cset_region_length(), max_old_cset_length);
2274         break;
2275       }
2276 
2277 
2278       // Stop adding regions if the remaining reclaimable space is
2279       // not above G1HeapWastePercent.
2280       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2281       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2282       double threshold = (double) G1HeapWastePercent;
2283       if (reclaimable_perc <= threshold) {
2284         // We've added enough old regions that the amount of uncollected
2285         // reclaimable space is at or below the waste threshold. Stop
2286         // adding old regions to the CSet.
2287         ergo_verbose5(ErgoCSetConstruction,
2288                       "finish adding old regions to CSet",
2289                       ergo_format_reason("reclaimable percentage not over threshold")
2290                       ergo_format_region("old")
2291                       ergo_format_region("max")
2292                       ergo_format_byte_perc("reclaimable")
2293                       ergo_format_perc("threshold"),
2294                       old_cset_region_length(),
2295                       max_old_cset_length,
2296                       reclaimable_bytes,
2297                       reclaimable_perc, threshold);
2298         break;
2299       }
2300 
2301       double predicted_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
2302       if (check_time_remaining) {
2303         if (predicted_time_ms > time_remaining_ms) {
2304           // Too expensive for the current CSet.
2305 
2306           if (old_cset_region_length() >= min_old_cset_length) {
2307             // We have added the minimum number of old regions to the CSet,
2308             // we are done with this CSet.
2309             ergo_verbose4(ErgoCSetConstruction,
2310                           "finish adding old regions to CSet",
2311                           ergo_format_reason("predicted time is too high")
2312                           ergo_format_ms("predicted time")
2313                           ergo_format_ms("remaining time")
2314                           ergo_format_region("old")
2315                           ergo_format_region("min"),
2316                           predicted_time_ms, time_remaining_ms,
2317                           old_cset_region_length(), min_old_cset_length);
2318             break;
2319           }
2320 
2321           // We'll add it anyway given that we haven't reached the
2322           // minimum number of old regions.
2323           expensive_region_num += 1;
2324         }
2325       } else {
2326         if (old_cset_region_length() >= min_old_cset_length) {
2327           // In the non-auto-tuning case, we'll finish adding regions
2328           // to the CSet if we reach the minimum.
2329           ergo_verbose2(ErgoCSetConstruction,
2330                         "finish adding old regions to CSet",
2331                         ergo_format_reason("old CSet region num reached min")
2332                         ergo_format_region("old")
2333                         ergo_format_region("min"),
2334                         old_cset_region_length(), min_old_cset_length);
2335           break;
2336         }
2337       }
2338 
2339       // We will add this region to the CSet.
2340       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2341       predicted_old_time_ms += predicted_time_ms;
2342       cset_chooser->pop(); // already have region via peek()
2343       _g1->old_set_remove(hr);
2344       add_old_region_to_cset(hr);
2345 
2346       hr = cset_chooser->peek();
2347     }
2348     if (hr == NULL) {
2349       ergo_verbose0(ErgoCSetConstruction,
2350                     "finish adding old regions to CSet",
2351                     ergo_format_reason("candidate old regions not available"));
2352     }
2353 
2354     if (expensive_region_num > 0) {
2355       // We print the information once here at the end, predicated on
2356       // whether we added any apparently expensive regions or not, to
2357       // avoid generating output per region.
2358       ergo_verbose4(ErgoCSetConstruction,
2359                     "added expensive regions to CSet",
2360                     ergo_format_reason("old CSet region num not reached min")
2361                     ergo_format_region("old")
2362                     ergo_format_region("expensive")
2363                     ergo_format_region("min")
2364                     ergo_format_ms("remaining time"),
2365                     old_cset_region_length(),
2366                     expensive_region_num,
2367                     min_old_cset_length,
2368                     time_remaining_ms);
2369     }
2370 
2371     cset_chooser->verify();
2372   }
2373 
2374   stop_incremental_cset_building();
2375 
2376   ergo_verbose3(ErgoCSetConstruction,
2377                 "finish choosing CSet",
2378                 ergo_format_region("old")
2379                 ergo_format_ms("predicted old region time")
2380                 ergo_format_ms("time remaining"),
2381                 old_cset_region_length(),
2382                 predicted_old_time_ms, time_remaining_ms);
2383 
2384   double non_young_end_time_sec = os::elapsedTime();
2385   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2386 }
2387 
2388 void TraceYoungGenTimeData::record_start_collection(double time_to_stop_the_world_ms) {
2389   if(TraceYoungGenTime) {
2390     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2391   }
2392 }
2393 
2394 void TraceYoungGenTimeData::record_yield_time(double yield_time_ms) {
2395   if(TraceYoungGenTime) {
2396     _all_yield_times_ms.add(yield_time_ms);
2397   }
2398 }
2399 
2400 void TraceYoungGenTimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2401   if(TraceYoungGenTime) {
2402     _total.add(pause_time_ms);
2403     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2404     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2405     _parallel.add(phase_times->cur_collection_par_time_ms());
2406     _ext_root_scan.add(phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan));
2407     _satb_filtering.add(phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering));
2408     _update_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS));
2409     _scan_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::ScanRS));
2410     _obj_copy.add(phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy));
2411     _termination.add(phase_times->average_time_ms(G1GCPhaseTimes::Termination));
2412 
2413     double parallel_known_time = phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan) +
2414       phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering) +
2415       phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS) +
2416       phase_times->average_time_ms(G1GCPhaseTimes::ScanRS) +
2417       phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy) +
2418       phase_times->average_time_ms(G1GCPhaseTimes::Termination);
2419 
2420     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2421     _parallel_other.add(parallel_other_time);
2422     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2423   }
2424 }
2425 
2426 void TraceYoungGenTimeData::increment_young_collection_count() {
2427   if(TraceYoungGenTime) {
2428     ++_young_pause_num;
2429   }
2430 }
2431 
2432 void TraceYoungGenTimeData::increment_mixed_collection_count() {
2433   if(TraceYoungGenTime) {
2434     ++_mixed_pause_num;
2435   }
2436 }
2437 
2438 void TraceYoungGenTimeData::print_summary(const char* str,
2439                                           const NumberSeq* seq) const {
2440   double sum = seq->sum();
2441   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2442                 str, sum / 1000.0, seq->avg());
2443 }
2444 
2445 void TraceYoungGenTimeData::print_summary_sd(const char* str,
2446                                              const NumberSeq* seq) const {
2447   print_summary(str, seq);
2448   gclog_or_tty->print_cr("%45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2449                 "(num", seq->num(), seq->sd(), seq->maximum());
2450 }
2451 
2452 void TraceYoungGenTimeData::print() const {
2453   if (!TraceYoungGenTime) {
2454     return;
2455   }
2456 
2457   gclog_or_tty->print_cr("ALL PAUSES");
2458   print_summary_sd("   Total", &_total);
2459   gclog_or_tty->cr();
2460   gclog_or_tty->cr();
2461   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2462   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2463   gclog_or_tty->cr();
2464 
2465   gclog_or_tty->print_cr("EVACUATION PAUSES");
2466 
2467   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2468     gclog_or_tty->print_cr("none");
2469   } else {
2470     print_summary_sd("   Evacuation Pauses", &_total);
2471     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2472     print_summary("      Parallel Time", &_parallel);
2473     print_summary("         Ext Root Scanning", &_ext_root_scan);
2474     print_summary("         SATB Filtering", &_satb_filtering);
2475     print_summary("         Update RS", &_update_rs);
2476     print_summary("         Scan RS", &_scan_rs);
2477     print_summary("         Object Copy", &_obj_copy);
2478     print_summary("         Termination", &_termination);
2479     print_summary("         Parallel Other", &_parallel_other);
2480     print_summary("      Clear CT", &_clear_ct);
2481     print_summary("      Other", &_other);
2482   }
2483   gclog_or_tty->cr();
2484 
2485   gclog_or_tty->print_cr("MISC");
2486   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2487   print_summary_sd("   Yields", &_all_yield_times_ms);
2488 }
2489 
2490 void TraceOldGenTimeData::record_full_collection(double full_gc_time_ms) {
2491   if (TraceOldGenTime) {
2492     _all_full_gc_times.add(full_gc_time_ms);
2493   }
2494 }
2495 
2496 void TraceOldGenTimeData::print() const {
2497   if (!TraceOldGenTime) {
2498     return;
2499   }
2500 
2501   if (_all_full_gc_times.num() > 0) {
2502     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2503       _all_full_gc_times.num(),
2504       _all_full_gc_times.sum() / 1000.0);
2505     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2506     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2507       _all_full_gc_times.sd(),
2508       _all_full_gc_times.maximum());
2509   }
2510 }