1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1Log.hpp"
  43 #include "gc/g1/g1MarkSweep.hpp"
  44 #include "gc/g1/g1OopClosures.inline.hpp"
  45 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  46 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  47 #include "gc/g1/g1RemSet.inline.hpp"
  48 #include "gc/g1/g1RootClosures.hpp"
  49 #include "gc/g1/g1RootProcessor.hpp"
  50 #include "gc/g1/g1StringDedup.hpp"
  51 #include "gc/g1/g1YCTypes.hpp"
  52 #include "gc/g1/heapRegion.inline.hpp"
  53 #include "gc/g1/heapRegionRemSet.hpp"
  54 #include "gc/g1/heapRegionSet.inline.hpp"
  55 #include "gc/g1/suspendibleThreadSet.hpp"
  56 #include "gc/g1/vm_operations_g1.hpp"
  57 #include "gc/shared/gcHeapSummary.hpp"
  58 #include "gc/shared/gcId.hpp"
  59 #include "gc/shared/gcLocker.inline.hpp"
  60 #include "gc/shared/gcTimer.hpp"
  61 #include "gc/shared/gcTrace.hpp"
  62 #include "gc/shared/gcTraceTime.hpp"
  63 #include "gc/shared/generationSpec.hpp"
  64 #include "gc/shared/isGCActiveMark.hpp"
  65 #include "gc/shared/referenceProcessor.hpp"
  66 #include "gc/shared/taskqueue.inline.hpp"
  67 #include "memory/allocation.hpp"
  68 #include "memory/iterator.hpp"
  69 #include "oops/oop.inline.hpp"
  70 #include "runtime/atomic.inline.hpp"
  71 #include "runtime/init.hpp"
  72 #include "runtime/orderAccess.inline.hpp"
  73 #include "runtime/vmThread.hpp"
  74 #include "utilities/globalDefinitions.hpp"
  75 #include "utilities/stack.inline.hpp"
  76 
  77 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  78 
  79 // INVARIANTS/NOTES
  80 //
  81 // All allocation activity covered by the G1CollectedHeap interface is
  82 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  83 // and allocate_new_tlab, which are the "entry" points to the
  84 // allocation code from the rest of the JVM.  (Note that this does not
  85 // apply to TLAB allocation, which is not part of this interface: it
  86 // is done by clients of this interface.)
  87 
  88 // Local to this file.
  89 
  90 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  91   bool _concurrent;
  92 public:
  93   RefineCardTableEntryClosure() : _concurrent(true) { }
  94 
  95   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  96     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  97     // This path is executed by the concurrent refine or mutator threads,
  98     // concurrently, and so we do not care if card_ptr contains references
  99     // that point into the collection set.
 100     assert(!oops_into_cset, "should be");
 101 
 102     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 103       // Caller will actually yield.
 104       return false;
 105     }
 106     // Otherwise, we finished successfully; return true.
 107     return true;
 108   }
 109 
 110   void set_concurrent(bool b) { _concurrent = b; }
 111 };
 112 
 113 
 114 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 115  private:
 116   size_t _num_processed;
 117 
 118  public:
 119   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 120 
 121   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 122     *card_ptr = CardTableModRefBS::dirty_card_val();
 123     _num_processed++;
 124     return true;
 125   }
 126 
 127   size_t num_processed() const { return _num_processed; }
 128 };
 129 
 130 
 131 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 132   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 133 }
 134 
 135 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 136   // The from card cache is not the memory that is actually committed. So we cannot
 137   // take advantage of the zero_filled parameter.
 138   reset_from_card_cache(start_idx, num_regions);
 139 }
 140 
 141 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 142 {
 143   // Claim the right to put the region on the dirty cards region list
 144   // by installing a self pointer.
 145   HeapRegion* next = hr->get_next_dirty_cards_region();
 146   if (next == NULL) {
 147     HeapRegion* res = (HeapRegion*)
 148       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 149                           NULL);
 150     if (res == NULL) {
 151       HeapRegion* head;
 152       do {
 153         // Put the region to the dirty cards region list.
 154         head = _dirty_cards_region_list;
 155         next = (HeapRegion*)
 156           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 157         if (next == head) {
 158           assert(hr->get_next_dirty_cards_region() == hr,
 159                  "hr->get_next_dirty_cards_region() != hr");
 160           if (next == NULL) {
 161             // The last region in the list points to itself.
 162             hr->set_next_dirty_cards_region(hr);
 163           } else {
 164             hr->set_next_dirty_cards_region(next);
 165           }
 166         }
 167       } while (next != head);
 168     }
 169   }
 170 }
 171 
 172 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 173 {
 174   HeapRegion* head;
 175   HeapRegion* hr;
 176   do {
 177     head = _dirty_cards_region_list;
 178     if (head == NULL) {
 179       return NULL;
 180     }
 181     HeapRegion* new_head = head->get_next_dirty_cards_region();
 182     if (head == new_head) {
 183       // The last region.
 184       new_head = NULL;
 185     }
 186     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 187                                           head);
 188   } while (hr != head);
 189   assert(hr != NULL, "invariant");
 190   hr->set_next_dirty_cards_region(NULL);
 191   return hr;
 192 }
 193 
 194 // Returns true if the reference points to an object that
 195 // can move in an incremental collection.
 196 bool G1CollectedHeap::is_scavengable(const void* p) {
 197   HeapRegion* hr = heap_region_containing(p);
 198   return !hr->is_pinned();
 199 }
 200 
 201 // Private methods.
 202 
 203 HeapRegion*
 204 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 205   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 206   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 207     if (!_secondary_free_list.is_empty()) {
 208       if (G1ConcRegionFreeingVerbose) {
 209         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 210                                "secondary_free_list has %u entries",
 211                                _secondary_free_list.length());
 212       }
 213       // It looks as if there are free regions available on the
 214       // secondary_free_list. Let's move them to the free_list and try
 215       // again to allocate from it.
 216       append_secondary_free_list();
 217 
 218       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 219              "empty we should have moved at least one entry to the free_list");
 220       HeapRegion* res = _hrm.allocate_free_region(is_old);
 221       if (G1ConcRegionFreeingVerbose) {
 222         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 223                                "allocated " HR_FORMAT " from secondary_free_list",
 224                                HR_FORMAT_PARAMS(res));
 225       }
 226       return res;
 227     }
 228 
 229     // Wait here until we get notified either when (a) there are no
 230     // more free regions coming or (b) some regions have been moved on
 231     // the secondary_free_list.
 232     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 233   }
 234 
 235   if (G1ConcRegionFreeingVerbose) {
 236     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 237                            "could not allocate from secondary_free_list");
 238   }
 239   return NULL;
 240 }
 241 
 242 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 243   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 244          "the only time we use this to allocate a humongous region is "
 245          "when we are allocating a single humongous region");
 246 
 247   HeapRegion* res;
 248   if (G1StressConcRegionFreeing) {
 249     if (!_secondary_free_list.is_empty()) {
 250       if (G1ConcRegionFreeingVerbose) {
 251         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 252                                "forced to look at the secondary_free_list");
 253       }
 254       res = new_region_try_secondary_free_list(is_old);
 255       if (res != NULL) {
 256         return res;
 257       }
 258     }
 259   }
 260 
 261   res = _hrm.allocate_free_region(is_old);
 262 
 263   if (res == NULL) {
 264     if (G1ConcRegionFreeingVerbose) {
 265       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 266                              "res == NULL, trying the secondary_free_list");
 267     }
 268     res = new_region_try_secondary_free_list(is_old);
 269   }
 270   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 271     // Currently, only attempts to allocate GC alloc regions set
 272     // do_expand to true. So, we should only reach here during a
 273     // safepoint. If this assumption changes we might have to
 274     // reconsider the use of _expand_heap_after_alloc_failure.
 275     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 276 
 277     ergo_verbose1(ErgoHeapSizing,
 278                   "attempt heap expansion",
 279                   ergo_format_reason("region allocation request failed")
 280                   ergo_format_byte("allocation request"),
 281                   word_size * HeapWordSize);
 282     if (expand(word_size * HeapWordSize)) {
 283       // Given that expand() succeeded in expanding the heap, and we
 284       // always expand the heap by an amount aligned to the heap
 285       // region size, the free list should in theory not be empty.
 286       // In either case allocate_free_region() will check for NULL.
 287       res = _hrm.allocate_free_region(is_old);
 288     } else {
 289       _expand_heap_after_alloc_failure = false;
 290     }
 291   }
 292   return res;
 293 }
 294 
 295 HeapWord*
 296 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 297                                                            uint num_regions,
 298                                                            size_t word_size,
 299                                                            AllocationContext_t context) {
 300   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 301   assert(is_humongous(word_size), "word_size should be humongous");
 302   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 303 
 304   // Index of last region in the series + 1.
 305   uint last = first + num_regions;
 306 
 307   // We need to initialize the region(s) we just discovered. This is
 308   // a bit tricky given that it can happen concurrently with
 309   // refinement threads refining cards on these regions and
 310   // potentially wanting to refine the BOT as they are scanning
 311   // those cards (this can happen shortly after a cleanup; see CR
 312   // 6991377). So we have to set up the region(s) carefully and in
 313   // a specific order.
 314 
 315   // The word size sum of all the regions we will allocate.
 316   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 317   assert(word_size <= word_size_sum, "sanity");
 318 
 319   // This will be the "starts humongous" region.
 320   HeapRegion* first_hr = region_at(first);
 321   // The header of the new object will be placed at the bottom of
 322   // the first region.
 323   HeapWord* new_obj = first_hr->bottom();
 324   // This will be the new top of the new object.
 325   HeapWord* obj_top = new_obj + word_size;
 326 
 327   // First, we need to zero the header of the space that we will be
 328   // allocating. When we update top further down, some refinement
 329   // threads might try to scan the region. By zeroing the header we
 330   // ensure that any thread that will try to scan the region will
 331   // come across the zero klass word and bail out.
 332   //
 333   // NOTE: It would not have been correct to have used
 334   // CollectedHeap::fill_with_object() and make the space look like
 335   // an int array. The thread that is doing the allocation will
 336   // later update the object header to a potentially different array
 337   // type and, for a very short period of time, the klass and length
 338   // fields will be inconsistent. This could cause a refinement
 339   // thread to calculate the object size incorrectly.
 340   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 341 
 342   // We will set up the first region as "starts humongous". This
 343   // will also update the BOT covering all the regions to reflect
 344   // that there is a single object that starts at the bottom of the
 345   // first region.
 346   first_hr->set_starts_humongous(obj_top);
 347   first_hr->set_allocation_context(context);
 348   // Then, if there are any, we will set up the "continues
 349   // humongous" regions.
 350   HeapRegion* hr = NULL;
 351   for (uint i = first + 1; i < last; ++i) {
 352     hr = region_at(i);
 353     hr->set_continues_humongous(first_hr);
 354     hr->set_allocation_context(context);
 355   }
 356 
 357   // Up to this point no concurrent thread would have been able to
 358   // do any scanning on any region in this series. All the top
 359   // fields still point to bottom, so the intersection between
 360   // [bottom,top] and [card_start,card_end] will be empty. Before we
 361   // update the top fields, we'll do a storestore to make sure that
 362   // no thread sees the update to top before the zeroing of the
 363   // object header and the BOT initialization.
 364   OrderAccess::storestore();
 365 
 366   // Now that the BOT and the object header have been initialized,
 367   // we can update top of the "starts humongous" region.
 368   first_hr->set_top(MIN2(first_hr->end(), obj_top));
 369   if (_hr_printer.is_active()) {
 370     _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, first_hr->top());
 371   }
 372 
 373   // Now, we will update the top fields of the "continues humongous"
 374   // regions.
 375   hr = NULL;
 376   for (uint i = first + 1; i < last; ++i) {
 377     hr = region_at(i);
 378     if ((i + 1) == last) {
 379       // last continues humongous region
 380       assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 381              "new_top should fall on this region");
 382       hr->set_top(obj_top);
 383       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, obj_top);
 384     } else {
 385       // not last one
 386       assert(obj_top > hr->end(), "obj_top should be above this region");
 387       hr->set_top(hr->end());
 388       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 389     }
 390   }
 391   // If we have continues humongous regions (hr != NULL), its top should
 392   // match obj_top.
 393   assert(hr == NULL || (hr->top() == obj_top), "sanity");
 394   check_bitmaps("Humongous Region Allocation", first_hr);
 395 
 396   increase_used(word_size * HeapWordSize);
 397 
 398   for (uint i = first; i < last; ++i) {
 399     _humongous_set.add(region_at(i));
 400   }
 401 
 402   return new_obj;
 403 }
 404 
 405 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 406   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);  
 407   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 408 }
 409 
 410 // If could fit into free regions w/o expansion, try.
 411 // Otherwise, if can expand, do so.
 412 // Otherwise, if using ex regions might help, try with ex given back.
 413 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 414   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 415 
 416   verify_region_sets_optional();
 417 
 418   uint first = G1_NO_HRM_INDEX;
 419   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 420 
 421   if (obj_regions == 1) {
 422     // Only one region to allocate, try to use a fast path by directly allocating
 423     // from the free lists. Do not try to expand here, we will potentially do that
 424     // later.
 425     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 426     if (hr != NULL) {
 427       first = hr->hrm_index();
 428     }
 429   } else {
 430     // We can't allocate humongous regions spanning more than one region while
 431     // cleanupComplete() is running, since some of the regions we find to be
 432     // empty might not yet be added to the free list. It is not straightforward
 433     // to know in which list they are on so that we can remove them. We only
 434     // need to do this if we need to allocate more than one region to satisfy the
 435     // current humongous allocation request. If we are only allocating one region
 436     // we use the one-region region allocation code (see above), that already
 437     // potentially waits for regions from the secondary free list.
 438     wait_while_free_regions_coming();
 439     append_secondary_free_list_if_not_empty_with_lock();
 440 
 441     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 442     // are lucky enough to find some.
 443     first = _hrm.find_contiguous_only_empty(obj_regions);
 444     if (first != G1_NO_HRM_INDEX) {
 445       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 446     }
 447   }
 448 
 449   if (first == G1_NO_HRM_INDEX) {
 450     // Policy: We could not find enough regions for the humongous object in the
 451     // free list. Look through the heap to find a mix of free and uncommitted regions.
 452     // If so, try expansion.
 453     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 454     if (first != G1_NO_HRM_INDEX) {
 455       // We found something. Make sure these regions are committed, i.e. expand
 456       // the heap. Alternatively we could do a defragmentation GC.
 457       ergo_verbose1(ErgoHeapSizing,
 458                     "attempt heap expansion",
 459                     ergo_format_reason("humongous allocation request failed")
 460                     ergo_format_byte("allocation request"),
 461                     word_size * HeapWordSize);
 462 
 463       _hrm.expand_at(first, obj_regions);
 464       g1_policy()->record_new_heap_size(num_regions());
 465 
 466 #ifdef ASSERT
 467       for (uint i = first; i < first + obj_regions; ++i) {
 468         HeapRegion* hr = region_at(i);
 469         assert(hr->is_free(), "sanity");
 470         assert(hr->is_empty(), "sanity");
 471         assert(is_on_master_free_list(hr), "sanity");
 472       }
 473 #endif
 474       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 475     } else {
 476       // Policy: Potentially trigger a defragmentation GC.
 477     }
 478   }
 479 
 480   HeapWord* result = NULL;
 481   if (first != G1_NO_HRM_INDEX) {
 482     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 483                                                        word_size, context);
 484     assert(result != NULL, "it should always return a valid result");
 485 
 486     // A successful humongous object allocation changes the used space
 487     // information of the old generation so we need to recalculate the
 488     // sizes and update the jstat counters here.
 489     g1mm()->update_sizes();
 490   }
 491 
 492   verify_region_sets_optional();
 493 
 494   return result;
 495 }
 496 
 497 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 498   assert_heap_not_locked_and_not_at_safepoint();
 499   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 500 
 501   uint dummy_gc_count_before;
 502   uint dummy_gclocker_retry_count = 0;
 503   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 504 }
 505 
 506 HeapWord*
 507 G1CollectedHeap::mem_allocate(size_t word_size,
 508                               bool*  gc_overhead_limit_was_exceeded) {
 509   assert_heap_not_locked_and_not_at_safepoint();
 510 
 511   // Loop until the allocation is satisfied, or unsatisfied after GC.
 512   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 513     uint gc_count_before;
 514 
 515     HeapWord* result = NULL;
 516     if (!is_humongous(word_size)) {
 517       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 518     } else {
 519       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 520     }
 521     if (result != NULL) {
 522       return result;
 523     }
 524 
 525     // Create the garbage collection operation...
 526     VM_G1CollectForAllocation op(gc_count_before, word_size);
 527     op.set_allocation_context(AllocationContext::current());
 528 
 529     // ...and get the VM thread to execute it.
 530     VMThread::execute(&op);
 531 
 532     if (op.prologue_succeeded() && op.pause_succeeded()) {
 533       // If the operation was successful we'll return the result even
 534       // if it is NULL. If the allocation attempt failed immediately
 535       // after a Full GC, it's unlikely we'll be able to allocate now.
 536       HeapWord* result = op.result();
 537       if (result != NULL && !is_humongous(word_size)) {
 538         // Allocations that take place on VM operations do not do any
 539         // card dirtying and we have to do it here. We only have to do
 540         // this for non-humongous allocations, though.
 541         dirty_young_block(result, word_size);
 542       }
 543       return result;
 544     } else {
 545       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 546         return NULL;
 547       }
 548       assert(op.result() == NULL,
 549              "the result should be NULL if the VM op did not succeed");
 550     }
 551 
 552     // Give a warning if we seem to be looping forever.
 553     if ((QueuedAllocationWarningCount > 0) &&
 554         (try_count % QueuedAllocationWarningCount == 0)) {
 555       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 556     }
 557   }
 558 
 559   ShouldNotReachHere();
 560   return NULL;
 561 }
 562 
 563 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 564                                                    AllocationContext_t context,
 565                                                    uint* gc_count_before_ret,
 566                                                    uint* gclocker_retry_count_ret) {
 567   // Make sure you read the note in attempt_allocation_humongous().
 568 
 569   assert_heap_not_locked_and_not_at_safepoint();
 570   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 571          "be called for humongous allocation requests");
 572 
 573   // We should only get here after the first-level allocation attempt
 574   // (attempt_allocation()) failed to allocate.
 575 
 576   // We will loop until a) we manage to successfully perform the
 577   // allocation or b) we successfully schedule a collection which
 578   // fails to perform the allocation. b) is the only case when we'll
 579   // return NULL.
 580   HeapWord* result = NULL;
 581   for (int try_count = 1; /* we'll return */; try_count += 1) {
 582     bool should_try_gc;
 583     uint gc_count_before;
 584 
 585     {
 586       MutexLockerEx x(Heap_lock);
 587       result = _allocator->attempt_allocation_locked(word_size, context);
 588       if (result != NULL) {
 589         return result;
 590       }
 591 
 592       if (GC_locker::is_active_and_needs_gc()) {
 593         if (g1_policy()->can_expand_young_list()) {
 594           // No need for an ergo verbose message here,
 595           // can_expand_young_list() does this when it returns true.
 596           result = _allocator->attempt_allocation_force(word_size, context);
 597           if (result != NULL) {
 598             return result;
 599           }
 600         }
 601         should_try_gc = false;
 602       } else {
 603         // The GCLocker may not be active but the GCLocker initiated
 604         // GC may not yet have been performed (GCLocker::needs_gc()
 605         // returns true). In this case we do not try this GC and
 606         // wait until the GCLocker initiated GC is performed, and
 607         // then retry the allocation.
 608         if (GC_locker::needs_gc()) {
 609           should_try_gc = false;
 610         } else {
 611           // Read the GC count while still holding the Heap_lock.
 612           gc_count_before = total_collections();
 613           should_try_gc = true;
 614         }
 615       }
 616     }
 617 
 618     if (should_try_gc) {
 619       bool succeeded;
 620       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 621                                    GCCause::_g1_inc_collection_pause);
 622       if (result != NULL) {
 623         assert(succeeded, "only way to get back a non-NULL result");
 624         return result;
 625       }
 626 
 627       if (succeeded) {
 628         // If we get here we successfully scheduled a collection which
 629         // failed to allocate. No point in trying to allocate
 630         // further. We'll just return NULL.
 631         MutexLockerEx x(Heap_lock);
 632         *gc_count_before_ret = total_collections();
 633         return NULL;
 634       }
 635     } else {
 636       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 637         MutexLockerEx x(Heap_lock);
 638         *gc_count_before_ret = total_collections();
 639         return NULL;
 640       }
 641       // The GCLocker is either active or the GCLocker initiated
 642       // GC has not yet been performed. Stall until it is and
 643       // then retry the allocation.
 644       GC_locker::stall_until_clear();
 645       (*gclocker_retry_count_ret) += 1;
 646     }
 647 
 648     // We can reach here if we were unsuccessful in scheduling a
 649     // collection (because another thread beat us to it) or if we were
 650     // stalled due to the GC locker. In either can we should retry the
 651     // allocation attempt in case another thread successfully
 652     // performed a collection and reclaimed enough space. We do the
 653     // first attempt (without holding the Heap_lock) here and the
 654     // follow-on attempt will be at the start of the next loop
 655     // iteration (after taking the Heap_lock).
 656     result = _allocator->attempt_allocation(word_size, context);
 657     if (result != NULL) {
 658       return result;
 659     }
 660 
 661     // Give a warning if we seem to be looping forever.
 662     if ((QueuedAllocationWarningCount > 0) &&
 663         (try_count % QueuedAllocationWarningCount == 0)) {
 664       warning("G1CollectedHeap::attempt_allocation_slow() "
 665               "retries %d times", try_count);
 666     }
 667   }
 668 
 669   ShouldNotReachHere();
 670   return NULL;
 671 }
 672 
 673 void G1CollectedHeap::begin_archive_alloc_range() {
 674   assert_at_safepoint(true /* should_be_vm_thread */);
 675   if (_archive_allocator == NULL) {
 676     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 677   }
 678 }
 679 
 680 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 681   // Allocations in archive regions cannot be of a size that would be considered
 682   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 683   // may be different at archive-restore time.
 684   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 685 }
 686 
 687 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 688   assert_at_safepoint(true /* should_be_vm_thread */);
 689   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 690   if (is_archive_alloc_too_large(word_size)) {
 691     return NULL;
 692   }
 693   return _archive_allocator->archive_mem_allocate(word_size);
 694 }
 695 
 696 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 697                                               size_t end_alignment_in_bytes) {
 698   assert_at_safepoint(true /* should_be_vm_thread */);
 699   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 700 
 701   // Call complete_archive to do the real work, filling in the MemRegion
 702   // array with the archive regions.
 703   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 704   delete _archive_allocator;
 705   _archive_allocator = NULL;
 706 }
 707 
 708 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 709   assert(ranges != NULL, "MemRegion array NULL");
 710   assert(count != 0, "No MemRegions provided");
 711   MemRegion reserved = _hrm.reserved();
 712   for (size_t i = 0; i < count; i++) {
 713     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 714       return false;
 715     }
 716   }
 717   return true;
 718 }
 719 
 720 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 721   assert(!is_init_completed(), "Expect to be called at JVM init time");
 722   assert(ranges != NULL, "MemRegion array NULL");
 723   assert(count != 0, "No MemRegions provided");
 724   MutexLockerEx x(Heap_lock);
 725 
 726   MemRegion reserved = _hrm.reserved();
 727   HeapWord* prev_last_addr = NULL;
 728   HeapRegion* prev_last_region = NULL;
 729 
 730   // Temporarily disable pretouching of heap pages. This interface is used
 731   // when mmap'ing archived heap data in, so pre-touching is wasted.
 732   FlagSetting fs(AlwaysPreTouch, false);
 733 
 734   // Enable archive object checking in G1MarkSweep. We have to let it know
 735   // about each archive range, so that objects in those ranges aren't marked.
 736   G1MarkSweep::enable_archive_object_check();
 737 
 738   // For each specified MemRegion range, allocate the corresponding G1
 739   // regions and mark them as archive regions. We expect the ranges in
 740   // ascending starting address order, without overlap.
 741   for (size_t i = 0; i < count; i++) {
 742     MemRegion curr_range = ranges[i];
 743     HeapWord* start_address = curr_range.start();
 744     size_t word_size = curr_range.word_size();
 745     HeapWord* last_address = curr_range.last();
 746     size_t commits = 0;
 747 
 748     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 749               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 750               p2i(start_address), p2i(last_address));
 751     guarantee(start_address > prev_last_addr,
 752               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 753               p2i(start_address), p2i(prev_last_addr));
 754     prev_last_addr = last_address;
 755 
 756     // Check for ranges that start in the same G1 region in which the previous
 757     // range ended, and adjust the start address so we don't try to allocate
 758     // the same region again. If the current range is entirely within that
 759     // region, skip it, just adjusting the recorded top.
 760     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 761     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 762       start_address = start_region->end();
 763       if (start_address > last_address) {
 764         increase_used(word_size * HeapWordSize);
 765         start_region->set_top(last_address + 1);
 766         continue;
 767       }
 768       start_region->set_top(start_address);
 769       curr_range = MemRegion(start_address, last_address + 1);
 770       start_region = _hrm.addr_to_region(start_address);
 771     }
 772 
 773     // Perform the actual region allocation, exiting if it fails.
 774     // Then note how much new space we have allocated.
 775     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 776       return false;
 777     }
 778     increase_used(word_size * HeapWordSize);
 779     if (commits != 0) {
 780       ergo_verbose1(ErgoHeapSizing,
 781                     "attempt heap expansion",
 782                     ergo_format_reason("allocate archive regions")
 783                     ergo_format_byte("total size"),
 784                     HeapRegion::GrainWords * HeapWordSize * commits);
 785     }
 786 
 787     // Mark each G1 region touched by the range as archive, add it to the old set,
 788     // and set the allocation context and top.
 789     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 790     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 791     prev_last_region = last_region;
 792 
 793     while (curr_region != NULL) {
 794       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 795              "Region already in use (index %u)", curr_region->hrm_index());
 796       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 797       curr_region->set_allocation_context(AllocationContext::system());
 798       curr_region->set_archive();
 799       _old_set.add(curr_region);
 800       if (curr_region != last_region) {
 801         curr_region->set_top(curr_region->end());
 802         curr_region = _hrm.next_region_in_heap(curr_region);
 803       } else {
 804         curr_region->set_top(last_address + 1);
 805         curr_region = NULL;
 806       }
 807     }
 808 
 809     // Notify mark-sweep of the archive range.
 810     G1MarkSweep::set_range_archive(curr_range, true);
 811   }
 812   return true;
 813 }
 814 
 815 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 816   assert(!is_init_completed(), "Expect to be called at JVM init time");
 817   assert(ranges != NULL, "MemRegion array NULL");
 818   assert(count != 0, "No MemRegions provided");
 819   MemRegion reserved = _hrm.reserved();
 820   HeapWord *prev_last_addr = NULL;
 821   HeapRegion* prev_last_region = NULL;
 822 
 823   // For each MemRegion, create filler objects, if needed, in the G1 regions
 824   // that contain the address range. The address range actually within the
 825   // MemRegion will not be modified. That is assumed to have been initialized
 826   // elsewhere, probably via an mmap of archived heap data.
 827   MutexLockerEx x(Heap_lock);
 828   for (size_t i = 0; i < count; i++) {
 829     HeapWord* start_address = ranges[i].start();
 830     HeapWord* last_address = ranges[i].last();
 831 
 832     assert(reserved.contains(start_address) && reserved.contains(last_address),
 833            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 834            p2i(start_address), p2i(last_address));
 835     assert(start_address > prev_last_addr,
 836            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 837            p2i(start_address), p2i(prev_last_addr));
 838 
 839     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 840     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 841     HeapWord* bottom_address = start_region->bottom();
 842 
 843     // Check for a range beginning in the same region in which the
 844     // previous one ended.
 845     if (start_region == prev_last_region) {
 846       bottom_address = prev_last_addr + 1;
 847     }
 848 
 849     // Verify that the regions were all marked as archive regions by
 850     // alloc_archive_regions.
 851     HeapRegion* curr_region = start_region;
 852     while (curr_region != NULL) {
 853       guarantee(curr_region->is_archive(),
 854                 "Expected archive region at index %u", curr_region->hrm_index());
 855       if (curr_region != last_region) {
 856         curr_region = _hrm.next_region_in_heap(curr_region);
 857       } else {
 858         curr_region = NULL;
 859       }
 860     }
 861 
 862     prev_last_addr = last_address;
 863     prev_last_region = last_region;
 864 
 865     // Fill the memory below the allocated range with dummy object(s),
 866     // if the region bottom does not match the range start, or if the previous
 867     // range ended within the same G1 region, and there is a gap.
 868     if (start_address != bottom_address) {
 869       size_t fill_size = pointer_delta(start_address, bottom_address);
 870       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 871       increase_used(fill_size * HeapWordSize);
 872     }
 873   }
 874 }
 875 
 876 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 877                                                      uint* gc_count_before_ret,
 878                                                      uint* gclocker_retry_count_ret) {
 879   assert_heap_not_locked_and_not_at_safepoint();
 880   assert(!is_humongous(word_size), "attempt_allocation() should not "
 881          "be called for humongous allocation requests");
 882 
 883   AllocationContext_t context = AllocationContext::current();
 884   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 885 
 886   if (result == NULL) {
 887     result = attempt_allocation_slow(word_size,
 888                                      context,
 889                                      gc_count_before_ret,
 890                                      gclocker_retry_count_ret);
 891   }
 892   assert_heap_not_locked();
 893   if (result != NULL) {
 894     dirty_young_block(result, word_size);
 895   }
 896   return result;
 897 }
 898 
 899 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 900   assert(!is_init_completed(), "Expect to be called at JVM init time");
 901   assert(ranges != NULL, "MemRegion array NULL");
 902   assert(count != 0, "No MemRegions provided");
 903   MemRegion reserved = _hrm.reserved();
 904   HeapWord* prev_last_addr = NULL;
 905   HeapRegion* prev_last_region = NULL;
 906   size_t size_used = 0;
 907   size_t uncommitted_regions = 0;
 908 
 909   // For each Memregion, free the G1 regions that constitute it, and
 910   // notify mark-sweep that the range is no longer to be considered 'archive.'
 911   MutexLockerEx x(Heap_lock);
 912   for (size_t i = 0; i < count; i++) {
 913     HeapWord* start_address = ranges[i].start();
 914     HeapWord* last_address = ranges[i].last();
 915 
 916     assert(reserved.contains(start_address) && reserved.contains(last_address),
 917            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 918            p2i(start_address), p2i(last_address));
 919     assert(start_address > prev_last_addr,
 920            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 921            p2i(start_address), p2i(prev_last_addr));
 922     size_used += ranges[i].byte_size();
 923     prev_last_addr = last_address;
 924 
 925     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 926     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 927 
 928     // Check for ranges that start in the same G1 region in which the previous
 929     // range ended, and adjust the start address so we don't try to free
 930     // the same region again. If the current range is entirely within that
 931     // region, skip it.
 932     if (start_region == prev_last_region) {
 933       start_address = start_region->end();
 934       if (start_address > last_address) {
 935         continue;
 936       }
 937       start_region = _hrm.addr_to_region(start_address);
 938     }
 939     prev_last_region = last_region;
 940 
 941     // After verifying that each region was marked as an archive region by
 942     // alloc_archive_regions, set it free and empty and uncommit it.
 943     HeapRegion* curr_region = start_region;
 944     while (curr_region != NULL) {
 945       guarantee(curr_region->is_archive(),
 946                 "Expected archive region at index %u", curr_region->hrm_index());
 947       uint curr_index = curr_region->hrm_index();
 948       _old_set.remove(curr_region);
 949       curr_region->set_free();
 950       curr_region->set_top(curr_region->bottom());
 951       if (curr_region != last_region) {
 952         curr_region = _hrm.next_region_in_heap(curr_region);
 953       } else {
 954         curr_region = NULL;
 955       }
 956       _hrm.shrink_at(curr_index, 1);
 957       uncommitted_regions++;
 958     }
 959 
 960     // Notify mark-sweep that this is no longer an archive range.
 961     G1MarkSweep::set_range_archive(ranges[i], false);
 962   }
 963 
 964   if (uncommitted_regions != 0) {
 965     ergo_verbose1(ErgoHeapSizing,
 966                   "attempt heap shrinking",
 967                   ergo_format_reason("uncommitted archive regions")
 968                   ergo_format_byte("total size"),
 969                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 970   }
 971   decrease_used(size_used);
 972 }
 973 
 974 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 975                                                         uint* gc_count_before_ret,
 976                                                         uint* gclocker_retry_count_ret) {
 977   // The structure of this method has a lot of similarities to
 978   // attempt_allocation_slow(). The reason these two were not merged
 979   // into a single one is that such a method would require several "if
 980   // allocation is not humongous do this, otherwise do that"
 981   // conditional paths which would obscure its flow. In fact, an early
 982   // version of this code did use a unified method which was harder to
 983   // follow and, as a result, it had subtle bugs that were hard to
 984   // track down. So keeping these two methods separate allows each to
 985   // be more readable. It will be good to keep these two in sync as
 986   // much as possible.
 987 
 988   assert_heap_not_locked_and_not_at_safepoint();
 989   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 990          "should only be called for humongous allocations");
 991 
 992   // Humongous objects can exhaust the heap quickly, so we should check if we
 993   // need to start a marking cycle at each humongous object allocation. We do
 994   // the check before we do the actual allocation. The reason for doing it
 995   // before the allocation is that we avoid having to keep track of the newly
 996   // allocated memory while we do a GC.
 997   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 998                                            word_size)) {
 999     collect(GCCause::_g1_humongous_allocation);
1000   }
1001 
1002   // We will loop until a) we manage to successfully perform the
1003   // allocation or b) we successfully schedule a collection which
1004   // fails to perform the allocation. b) is the only case when we'll
1005   // return NULL.
1006   HeapWord* result = NULL;
1007   for (int try_count = 1; /* we'll return */; try_count += 1) {
1008     bool should_try_gc;
1009     uint gc_count_before;
1010 
1011     {
1012       MutexLockerEx x(Heap_lock);
1013 
1014       // Given that humongous objects are not allocated in young
1015       // regions, we'll first try to do the allocation without doing a
1016       // collection hoping that there's enough space in the heap.
1017       result = humongous_obj_allocate(word_size, AllocationContext::current());
1018       if (result != NULL) {
1019         g1_policy()->add_last_old_allocated_bytes(humongous_obj_size_in_regions(word_size) * HeapRegion::GrainBytes);
1020         return result;
1021       }
1022 
1023       if (GC_locker::is_active_and_needs_gc()) {
1024         should_try_gc = false;
1025       } else {
1026          // The GCLocker may not be active but the GCLocker initiated
1027         // GC may not yet have been performed (GCLocker::needs_gc()
1028         // returns true). In this case we do not try this GC and
1029         // wait until the GCLocker initiated GC is performed, and
1030         // then retry the allocation.
1031         if (GC_locker::needs_gc()) {
1032           should_try_gc = false;
1033         } else {
1034           // Read the GC count while still holding the Heap_lock.
1035           gc_count_before = total_collections();
1036           should_try_gc = true;
1037         }
1038       }
1039     }
1040 
1041     if (should_try_gc) {
1042       // If we failed to allocate the humongous object, we should try to
1043       // do a collection pause (if we're allowed) in case it reclaims
1044       // enough space for the allocation to succeed after the pause.
1045 
1046       bool succeeded;
1047       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1048                                    GCCause::_g1_humongous_allocation);
1049       if (result != NULL) {
1050         assert(succeeded, "only way to get back a non-NULL result");
1051         return result;
1052       }
1053 
1054       if (succeeded) {
1055         // If we get here we successfully scheduled a collection which
1056         // failed to allocate. No point in trying to allocate
1057         // further. We'll just return NULL.
1058         MutexLockerEx x(Heap_lock);
1059         *gc_count_before_ret = total_collections();
1060         return NULL;
1061       }
1062     } else {
1063       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1064         MutexLockerEx x(Heap_lock);
1065         *gc_count_before_ret = total_collections();
1066         return NULL;
1067       }
1068       // The GCLocker is either active or the GCLocker initiated
1069       // GC has not yet been performed. Stall until it is and
1070       // then retry the allocation.
1071       GC_locker::stall_until_clear();
1072       (*gclocker_retry_count_ret) += 1;
1073     }
1074 
1075     // We can reach here if we were unsuccessful in scheduling a
1076     // collection (because another thread beat us to it) or if we were
1077     // stalled due to the GC locker. In either can we should retry the
1078     // allocation attempt in case another thread successfully
1079     // performed a collection and reclaimed enough space.  Give a
1080     // warning if we seem to be looping forever.
1081 
1082     if ((QueuedAllocationWarningCount > 0) &&
1083         (try_count % QueuedAllocationWarningCount == 0)) {
1084       warning("G1CollectedHeap::attempt_allocation_humongous() "
1085               "retries %d times", try_count);
1086     }
1087   }
1088 
1089   ShouldNotReachHere();
1090   return NULL;
1091 }
1092 
1093 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1094                                                            AllocationContext_t context,
1095                                                            bool expect_null_mutator_alloc_region) {
1096   assert_at_safepoint(true /* should_be_vm_thread */);
1097   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1098          "the current alloc region was unexpectedly found to be non-NULL");
1099 
1100   if (!is_humongous(word_size)) {
1101     return _allocator->attempt_allocation_locked(word_size, context);
1102   } else {
1103     HeapWord* result = humongous_obj_allocate(word_size, context);
1104     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1105       collector_state()->set_initiate_conc_mark_if_possible(true);
1106     }
1107     return result;
1108   }
1109 
1110   ShouldNotReachHere();
1111 }
1112 
1113 class PostMCRemSetClearClosure: public HeapRegionClosure {
1114   G1CollectedHeap* _g1h;
1115   ModRefBarrierSet* _mr_bs;
1116 public:
1117   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1118     _g1h(g1h), _mr_bs(mr_bs) {}
1119 
1120   bool doHeapRegion(HeapRegion* r) {
1121     HeapRegionRemSet* hrrs = r->rem_set();
1122 
1123     _g1h->reset_gc_time_stamps(r);
1124 
1125     if (r->is_continues_humongous()) {
1126       // We'll assert that the strong code root list and RSet is empty
1127       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1128       assert(hrrs->occupied() == 0, "RSet should be empty");
1129     } else {
1130       hrrs->clear();
1131     }
1132     // You might think here that we could clear just the cards
1133     // corresponding to the used region.  But no: if we leave a dirty card
1134     // in a region we might allocate into, then it would prevent that card
1135     // from being enqueued, and cause it to be missed.
1136     // Re: the performance cost: we shouldn't be doing full GC anyway!
1137     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1138 
1139     return false;
1140   }
1141 };
1142 
1143 void G1CollectedHeap::clear_rsets_post_compaction() {
1144   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1145   heap_region_iterate(&rs_clear);
1146 }
1147 
1148 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1149   G1CollectedHeap*   _g1h;
1150   UpdateRSOopClosure _cl;
1151 public:
1152   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1153     _cl(g1->g1_rem_set(), worker_i),
1154     _g1h(g1)
1155   { }
1156 
1157   bool doHeapRegion(HeapRegion* r) {
1158     if (!r->is_continues_humongous()) {
1159       _cl.set_from(r);
1160       r->oop_iterate(&_cl);
1161     }
1162     return false;
1163   }
1164 };
1165 
1166 class ParRebuildRSTask: public AbstractGangTask {
1167   G1CollectedHeap* _g1;
1168   HeapRegionClaimer _hrclaimer;
1169 
1170 public:
1171   ParRebuildRSTask(G1CollectedHeap* g1) :
1172       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1173 
1174   void work(uint worker_id) {
1175     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1176     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1177   }
1178 };
1179 
1180 class PostCompactionPrinterClosure: public HeapRegionClosure {
1181 private:
1182   G1HRPrinter* _hr_printer;
1183 public:
1184   bool doHeapRegion(HeapRegion* hr) {
1185     assert(!hr->is_young(), "not expecting to find young regions");
1186     if (hr->is_free()) {
1187       // We only generate output for non-empty regions.
1188     } else if (hr->is_starts_humongous()) {
1189       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1190     } else if (hr->is_continues_humongous()) {
1191       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1192     } else if (hr->is_archive()) {
1193       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1194     } else if (hr->is_old()) {
1195       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1196     } else {
1197       ShouldNotReachHere();
1198     }
1199     return false;
1200   }
1201 
1202   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1203     : _hr_printer(hr_printer) { }
1204 };
1205 
1206 void G1CollectedHeap::print_hrm_post_compaction() {
1207   PostCompactionPrinterClosure cl(hr_printer());
1208   heap_region_iterate(&cl);
1209 }
1210 
1211 bool G1CollectedHeap::do_collection(bool explicit_gc,
1212                                     bool clear_all_soft_refs,
1213                                     size_t word_size) {
1214   assert_at_safepoint(true /* should_be_vm_thread */);
1215 
1216   if (GC_locker::check_active_before_gc()) {
1217     return false;
1218   }
1219 
1220   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1221   gc_timer->register_gc_start();
1222 
1223   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1224   GCIdMark gc_id_mark;
1225   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1226 
1227   SvcGCMarker sgcm(SvcGCMarker::FULL);
1228   ResourceMark rm;
1229 
1230   G1Log::update_level();
1231   print_heap_before_gc();
1232   trace_heap_before_gc(gc_tracer);
1233 
1234   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1235 
1236   verify_region_sets_optional();
1237 
1238   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1239                            collector_policy()->should_clear_all_soft_refs();
1240 
1241   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1242 
1243   {
1244     IsGCActiveMark x;
1245 
1246     // Timing
1247     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1248     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1249 
1250     {
1251       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1252       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1253       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1254 
1255       g1_policy()->record_full_collection_start();
1256 
1257       // Note: When we have a more flexible GC logging framework that
1258       // allows us to add optional attributes to a GC log record we
1259       // could consider timing and reporting how long we wait in the
1260       // following two methods.
1261       wait_while_free_regions_coming();
1262       // If we start the compaction before the CM threads finish
1263       // scanning the root regions we might trip them over as we'll
1264       // be moving objects / updating references. So let's wait until
1265       // they are done. By telling them to abort, they should complete
1266       // early.
1267       _cm->root_regions()->abort();
1268       _cm->root_regions()->wait_until_scan_finished();
1269       append_secondary_free_list_if_not_empty_with_lock();
1270 
1271       gc_prologue(true);
1272       increment_total_collections(true /* full gc */);
1273       increment_old_marking_cycles_started();
1274 
1275       assert(used() == recalculate_used(), "Should be equal");
1276 
1277       verify_before_gc();
1278 
1279       check_bitmaps("Full GC Start");
1280       pre_full_gc_dump(gc_timer);
1281 
1282 #if defined(COMPILER2) || INCLUDE_JVMCI
1283       DerivedPointerTable::clear();
1284 #endif
1285 
1286       // Disable discovery and empty the discovered lists
1287       // for the CM ref processor.
1288       ref_processor_cm()->disable_discovery();
1289       ref_processor_cm()->abandon_partial_discovery();
1290       ref_processor_cm()->verify_no_references_recorded();
1291 
1292       // Abandon current iterations of concurrent marking and concurrent
1293       // refinement, if any are in progress. We have to do this before
1294       // wait_until_scan_finished() below.
1295       concurrent_mark()->abort();
1296 
1297       // Make sure we'll choose a new allocation region afterwards.
1298       _allocator->release_mutator_alloc_region();
1299       _allocator->abandon_gc_alloc_regions();
1300       g1_rem_set()->cleanupHRRS();
1301 
1302       // We should call this after we retire any currently active alloc
1303       // regions so that all the ALLOC / RETIRE events are generated
1304       // before the start GC event.
1305       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1306 
1307       // We may have added regions to the current incremental collection
1308       // set between the last GC or pause and now. We need to clear the
1309       // incremental collection set and then start rebuilding it afresh
1310       // after this full GC.
1311       abandon_collection_set(g1_policy()->inc_cset_head());
1312       g1_policy()->clear_incremental_cset();
1313       g1_policy()->stop_incremental_cset_building();
1314 
1315       tear_down_region_sets(false /* free_list_only */);
1316       collector_state()->set_gcs_are_young(true);
1317 
1318       // See the comments in g1CollectedHeap.hpp and
1319       // G1CollectedHeap::ref_processing_init() about
1320       // how reference processing currently works in G1.
1321 
1322       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1323       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1324 
1325       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1326       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1327 
1328       ref_processor_stw()->enable_discovery();
1329       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1330 
1331       // Do collection work
1332       {
1333         HandleMark hm;  // Discard invalid handles created during gc
1334         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1335       }
1336 
1337       assert(num_free_regions() == 0, "we should not have added any free regions");
1338       rebuild_region_sets(false /* free_list_only */);
1339 
1340       // Enqueue any discovered reference objects that have
1341       // not been removed from the discovered lists.
1342       ref_processor_stw()->enqueue_discovered_references();
1343 
1344 #if defined(COMPILER2) || INCLUDE_JVMCI
1345       DerivedPointerTable::update_pointers();
1346 #endif
1347 
1348       MemoryService::track_memory_usage();
1349 
1350       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1351       ref_processor_stw()->verify_no_references_recorded();
1352 
1353       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1354       ClassLoaderDataGraph::purge();
1355       MetaspaceAux::verify_metrics();
1356 
1357       // Note: since we've just done a full GC, concurrent
1358       // marking is no longer active. Therefore we need not
1359       // re-enable reference discovery for the CM ref processor.
1360       // That will be done at the start of the next marking cycle.
1361       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1362       ref_processor_cm()->verify_no_references_recorded();
1363 
1364       reset_gc_time_stamp();
1365       // Since everything potentially moved, we will clear all remembered
1366       // sets, and clear all cards.  Later we will rebuild remembered
1367       // sets. We will also reset the GC time stamps of the regions.
1368       clear_rsets_post_compaction();
1369       check_gc_time_stamps();
1370 
1371       // Resize the heap if necessary.
1372       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1373 
1374       if (_hr_printer.is_active()) {
1375         // We should do this after we potentially resize the heap so
1376         // that all the COMMIT / UNCOMMIT events are generated before
1377         // the end GC event.
1378 
1379         print_hrm_post_compaction();
1380         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1381       }
1382 
1383       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1384       if (hot_card_cache->use_cache()) {
1385         hot_card_cache->reset_card_counts();
1386         hot_card_cache->reset_hot_cache();
1387       }
1388 
1389       // Rebuild remembered sets of all regions.
1390       uint n_workers =
1391         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1392                                                 workers()->active_workers(),
1393                                                 Threads::number_of_non_daemon_threads());
1394       workers()->set_active_workers(n_workers);
1395 
1396       ParRebuildRSTask rebuild_rs_task(this);
1397       workers()->run_task(&rebuild_rs_task);
1398 
1399       // Rebuild the strong code root lists for each region
1400       rebuild_strong_code_roots();
1401 
1402       if (true) { // FIXME
1403         MetaspaceGC::compute_new_size();
1404       }
1405 
1406 #ifdef TRACESPINNING
1407       ParallelTaskTerminator::print_termination_counts();
1408 #endif
1409 
1410       // Discard all rset updates
1411       JavaThread::dirty_card_queue_set().abandon_logs();
1412       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1413 
1414       _young_list->reset_sampled_info();
1415       // At this point there should be no regions in the
1416       // entire heap tagged as young.
1417       assert(check_young_list_empty(true /* check_heap */),
1418              "young list should be empty at this point");
1419 
1420       // Update the number of full collections that have been completed.
1421       increment_old_marking_cycles_completed(false /* concurrent */);
1422 
1423       _hrm.verify_optional();
1424       verify_region_sets_optional();
1425 
1426       verify_after_gc();
1427 
1428       // Clear the previous marking bitmap, if needed for bitmap verification.
1429       // Note we cannot do this when we clear the next marking bitmap in
1430       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1431       // objects marked during a full GC against the previous bitmap.
1432       // But we need to clear it before calling check_bitmaps below since
1433       // the full GC has compacted objects and updated TAMS but not updated
1434       // the prev bitmap.
1435       if (G1VerifyBitmaps) {
1436         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1437       }
1438       check_bitmaps("Full GC End");
1439 
1440       // Start a new incremental collection set for the next pause
1441       assert(g1_policy()->collection_set() == NULL, "must be");
1442       g1_policy()->start_incremental_cset_building();
1443 
1444       clear_cset_fast_test();
1445 
1446       _allocator->init_mutator_alloc_region();
1447 
1448       g1_policy()->record_full_collection_end();
1449 
1450       if (G1Log::fine()) {
1451         g1_policy()->print_heap_transition();
1452       }
1453 
1454       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1455       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1456       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1457       // before any GC notifications are raised.
1458       g1mm()->update_sizes();
1459 
1460       gc_epilogue(true);
1461     }
1462 
1463     if (G1Log::finer()) {
1464       g1_policy()->print_detailed_heap_transition(true /* full */);
1465     }
1466 
1467     print_heap_after_gc();
1468     trace_heap_after_gc(gc_tracer);
1469 
1470     post_full_gc_dump(gc_timer);
1471 
1472     gc_timer->register_gc_end();
1473     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1474   }
1475 
1476   return true;
1477 }
1478 
1479 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1480   // do_collection() will return whether it succeeded in performing
1481   // the GC. Currently, there is no facility on the
1482   // do_full_collection() API to notify the caller than the collection
1483   // did not succeed (e.g., because it was locked out by the GC
1484   // locker). So, right now, we'll ignore the return value.
1485   bool dummy = do_collection(true,                /* explicit_gc */
1486                              clear_all_soft_refs,
1487                              0                    /* word_size */);
1488 }
1489 
1490 // This code is mostly copied from TenuredGeneration.
1491 void
1492 G1CollectedHeap::
1493 resize_if_necessary_after_full_collection(size_t word_size) {
1494   // Include the current allocation, if any, and bytes that will be
1495   // pre-allocated to support collections, as "used".
1496   const size_t used_after_gc = used();
1497   const size_t capacity_after_gc = capacity();
1498   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1499 
1500   // This is enforced in arguments.cpp.
1501   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1502          "otherwise the code below doesn't make sense");
1503 
1504   // We don't have floating point command-line arguments
1505   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1506   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1507   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1508   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1509 
1510   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1511   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1512 
1513   // We have to be careful here as these two calculations can overflow
1514   // 32-bit size_t's.
1515   double used_after_gc_d = (double) used_after_gc;
1516   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1517   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1518 
1519   // Let's make sure that they are both under the max heap size, which
1520   // by default will make them fit into a size_t.
1521   double desired_capacity_upper_bound = (double) max_heap_size;
1522   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1523                                     desired_capacity_upper_bound);
1524   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1525                                     desired_capacity_upper_bound);
1526 
1527   // We can now safely turn them into size_t's.
1528   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1529   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1530 
1531   // This assert only makes sense here, before we adjust them
1532   // with respect to the min and max heap size.
1533   assert(minimum_desired_capacity <= maximum_desired_capacity,
1534          "minimum_desired_capacity = " SIZE_FORMAT ", "
1535          "maximum_desired_capacity = " SIZE_FORMAT,
1536          minimum_desired_capacity, maximum_desired_capacity);
1537 
1538   // Should not be greater than the heap max size. No need to adjust
1539   // it with respect to the heap min size as it's a lower bound (i.e.,
1540   // we'll try to make the capacity larger than it, not smaller).
1541   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1542   // Should not be less than the heap min size. No need to adjust it
1543   // with respect to the heap max size as it's an upper bound (i.e.,
1544   // we'll try to make the capacity smaller than it, not greater).
1545   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1546 
1547   if (capacity_after_gc < minimum_desired_capacity) {
1548     // Don't expand unless it's significant
1549     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1550     ergo_verbose4(ErgoHeapSizing,
1551                   "attempt heap expansion",
1552                   ergo_format_reason("capacity lower than "
1553                                      "min desired capacity after Full GC")
1554                   ergo_format_byte("capacity")
1555                   ergo_format_byte("occupancy")
1556                   ergo_format_byte_perc("min desired capacity"),
1557                   capacity_after_gc, used_after_gc,
1558                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1559     expand(expand_bytes);
1560 
1561     // No expansion, now see if we want to shrink
1562   } else if (capacity_after_gc > maximum_desired_capacity) {
1563     // Capacity too large, compute shrinking size
1564     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1565     ergo_verbose4(ErgoHeapSizing,
1566                   "attempt heap shrinking",
1567                   ergo_format_reason("capacity higher than "
1568                                      "max desired capacity after Full GC")
1569                   ergo_format_byte("capacity")
1570                   ergo_format_byte("occupancy")
1571                   ergo_format_byte_perc("max desired capacity"),
1572                   capacity_after_gc, used_after_gc,
1573                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1574     shrink(shrink_bytes);
1575   }
1576 }
1577 
1578 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1579                                                             AllocationContext_t context,
1580                                                             bool do_gc,
1581                                                             bool clear_all_soft_refs,
1582                                                             bool expect_null_mutator_alloc_region,
1583                                                             bool* gc_succeeded) {
1584   *gc_succeeded = true;
1585   // Let's attempt the allocation first.
1586   HeapWord* result =
1587     attempt_allocation_at_safepoint(word_size,
1588                                     context,
1589                                     expect_null_mutator_alloc_region);
1590   if (result != NULL) {
1591     assert(*gc_succeeded, "sanity");
1592     return result;
1593   }
1594 
1595   // In a G1 heap, we're supposed to keep allocation from failing by
1596   // incremental pauses.  Therefore, at least for now, we'll favor
1597   // expansion over collection.  (This might change in the future if we can
1598   // do something smarter than full collection to satisfy a failed alloc.)
1599   result = expand_and_allocate(word_size, context);
1600   if (result != NULL) {
1601     assert(*gc_succeeded, "sanity");
1602     return result;
1603   }
1604 
1605   if (do_gc) {
1606     // Expansion didn't work, we'll try to do a Full GC.
1607     *gc_succeeded = do_collection(false, /* explicit_gc */
1608                                   clear_all_soft_refs,
1609                                   word_size);
1610   }
1611 
1612   return NULL;
1613 }
1614 
1615 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1616                                                      AllocationContext_t context,
1617                                                      bool* succeeded) {
1618   assert_at_safepoint(true /* should_be_vm_thread */);
1619 
1620   // Attempts to allocate followed by Full GC.
1621   HeapWord* result =
1622     satisfy_failed_allocation_helper(word_size,
1623                                      context,
1624                                      true,  /* do_gc */
1625                                      false, /* clear_all_soft_refs */
1626                                      false, /* expect_null_mutator_alloc_region */
1627                                      succeeded);
1628 
1629   if (result != NULL || !*succeeded) {
1630     return result;
1631   }
1632 
1633   // Attempts to allocate followed by Full GC that will collect all soft references.
1634   result = satisfy_failed_allocation_helper(word_size,
1635                                             context,
1636                                             true, /* do_gc */
1637                                             true, /* clear_all_soft_refs */
1638                                             true, /* expect_null_mutator_alloc_region */
1639                                             succeeded);
1640 
1641   if (result != NULL || !*succeeded) {
1642     return result;
1643   }
1644 
1645   // Attempts to allocate, no GC
1646   result = satisfy_failed_allocation_helper(word_size,
1647                                             context,
1648                                             false, /* do_gc */
1649                                             false, /* clear_all_soft_refs */
1650                                             true,  /* expect_null_mutator_alloc_region */
1651                                             succeeded);
1652 
1653   if (result != NULL) {
1654     assert(*succeeded, "sanity");
1655     return result;
1656   }
1657 
1658   assert(!collector_policy()->should_clear_all_soft_refs(),
1659          "Flag should have been handled and cleared prior to this point");
1660 
1661   // What else?  We might try synchronous finalization later.  If the total
1662   // space available is large enough for the allocation, then a more
1663   // complete compaction phase than we've tried so far might be
1664   // appropriate.
1665   assert(*succeeded, "sanity");
1666   return NULL;
1667 }
1668 
1669 // Attempting to expand the heap sufficiently
1670 // to support an allocation of the given "word_size".  If
1671 // successful, perform the allocation and return the address of the
1672 // allocated block, or else "NULL".
1673 
1674 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1675   assert_at_safepoint(true /* should_be_vm_thread */);
1676 
1677   verify_region_sets_optional();
1678 
1679   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1680   ergo_verbose1(ErgoHeapSizing,
1681                 "attempt heap expansion",
1682                 ergo_format_reason("allocation request failed")
1683                 ergo_format_byte("allocation request"),
1684                 word_size * HeapWordSize);
1685   if (expand(expand_bytes)) {
1686     _hrm.verify_optional();
1687     verify_region_sets_optional();
1688     return attempt_allocation_at_safepoint(word_size,
1689                                            context,
1690                                            false /* expect_null_mutator_alloc_region */);
1691   }
1692   return NULL;
1693 }
1694 
1695 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1696   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1697   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1698                                        HeapRegion::GrainBytes);
1699   ergo_verbose2(ErgoHeapSizing,
1700                 "expand the heap",
1701                 ergo_format_byte("requested expansion amount")
1702                 ergo_format_byte("attempted expansion amount"),
1703                 expand_bytes, aligned_expand_bytes);
1704 
1705   if (is_maximal_no_gc()) {
1706     ergo_verbose0(ErgoHeapSizing,
1707                       "did not expand the heap",
1708                       ergo_format_reason("heap already fully expanded"));
1709     return false;
1710   }
1711 
1712   double expand_heap_start_time_sec = os::elapsedTime();
1713   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1714   assert(regions_to_expand > 0, "Must expand by at least one region");
1715 
1716   uint expanded_by = _hrm.expand_by(regions_to_expand);
1717   if (expand_time_ms != NULL) {
1718     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1719   }
1720 
1721   if (expanded_by > 0) {
1722     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1723     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1724     g1_policy()->record_new_heap_size(num_regions());
1725   } else {
1726     ergo_verbose0(ErgoHeapSizing,
1727                   "did not expand the heap",
1728                   ergo_format_reason("heap expansion operation failed"));
1729     // The expansion of the virtual storage space was unsuccessful.
1730     // Let's see if it was because we ran out of swap.
1731     if (G1ExitOnExpansionFailure &&
1732         _hrm.available() >= regions_to_expand) {
1733       // We had head room...
1734       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1735     }
1736   }
1737   return regions_to_expand > 0;
1738 }
1739 
1740 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1741   size_t aligned_shrink_bytes =
1742     ReservedSpace::page_align_size_down(shrink_bytes);
1743   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1744                                          HeapRegion::GrainBytes);
1745   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1746 
1747   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1748   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1749 
1750   ergo_verbose3(ErgoHeapSizing,
1751                 "shrink the heap",
1752                 ergo_format_byte("requested shrinking amount")
1753                 ergo_format_byte("aligned shrinking amount")
1754                 ergo_format_byte("attempted shrinking amount"),
1755                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1756   if (num_regions_removed > 0) {
1757     g1_policy()->record_new_heap_size(num_regions());
1758   } else {
1759     ergo_verbose0(ErgoHeapSizing,
1760                   "did not shrink the heap",
1761                   ergo_format_reason("heap shrinking operation failed"));
1762   }
1763 }
1764 
1765 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1766   verify_region_sets_optional();
1767 
1768   // We should only reach here at the end of a Full GC which means we
1769   // should not not be holding to any GC alloc regions. The method
1770   // below will make sure of that and do any remaining clean up.
1771   _allocator->abandon_gc_alloc_regions();
1772 
1773   // Instead of tearing down / rebuilding the free lists here, we
1774   // could instead use the remove_all_pending() method on free_list to
1775   // remove only the ones that we need to remove.
1776   tear_down_region_sets(true /* free_list_only */);
1777   shrink_helper(shrink_bytes);
1778   rebuild_region_sets(true /* free_list_only */);
1779 
1780   _hrm.verify_optional();
1781   verify_region_sets_optional();
1782 }
1783 
1784 // Public methods.
1785 
1786 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1787   CollectedHeap(),
1788   _g1_policy(policy_),
1789   _dirty_card_queue_set(false),
1790   _is_alive_closure_cm(this),
1791   _is_alive_closure_stw(this),
1792   _ref_processor_cm(NULL),
1793   _ref_processor_stw(NULL),
1794   _bot_shared(NULL),
1795   _cg1r(NULL),
1796   _g1mm(NULL),
1797   _refine_cte_cl(NULL),
1798   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1799   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1800   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1801   _humongous_reclaim_candidates(),
1802   _has_humongous_reclaim_candidates(false),
1803   _archive_allocator(NULL),
1804   _free_regions_coming(false),
1805   _young_list(new YoungList(this)),
1806   _gc_time_stamp(0),
1807   _summary_bytes_used(0),
1808   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1809   _old_evac_stats(OldPLABSize, PLABWeight),
1810   _expand_heap_after_alloc_failure(true),
1811   _old_marking_cycles_started(0),
1812   _old_marking_cycles_completed(0),
1813   _heap_summary_sent(false),
1814   _in_cset_fast_test(),
1815   _dirty_cards_region_list(NULL),
1816   _worker_cset_start_region(NULL),
1817   _worker_cset_start_region_time_stamp(NULL),
1818   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1819   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1820   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1821   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1822 
1823   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1824                           /* are_GC_task_threads */true,
1825                           /* are_ConcurrentGC_threads */false);
1826   _workers->initialize_workers();
1827 
1828   _allocator = G1Allocator::create_allocator(this);
1829   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1830 
1831   // Override the default _filler_array_max_size so that no humongous filler
1832   // objects are created.
1833   _filler_array_max_size = _humongous_object_threshold_in_words;
1834 
1835   uint n_queues = ParallelGCThreads;
1836   _task_queues = new RefToScanQueueSet(n_queues);
1837 
1838   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1839   assert(n_rem_sets > 0, "Invariant.");
1840 
1841   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1842   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1843   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1844 
1845   for (uint i = 0; i < n_queues; i++) {
1846     RefToScanQueue* q = new RefToScanQueue();
1847     q->initialize();
1848     _task_queues->register_queue(i, q);
1849     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1850   }
1851   clear_cset_start_regions();
1852 
1853   // Initialize the G1EvacuationFailureALot counters and flags.
1854   NOT_PRODUCT(reset_evacuation_should_fail();)
1855 
1856   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1857 }
1858 
1859 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1860                                                                  size_t size,
1861                                                                  size_t translation_factor) {
1862   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1863   // Allocate a new reserved space, preferring to use large pages.
1864   ReservedSpace rs(size, preferred_page_size);
1865   G1RegionToSpaceMapper* result  =
1866     G1RegionToSpaceMapper::create_mapper(rs,
1867                                          size,
1868                                          rs.alignment(),
1869                                          HeapRegion::GrainBytes,
1870                                          translation_factor,
1871                                          mtGC);
1872   if (TracePageSizes) {
1873     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1874                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1875   }
1876   return result;
1877 }
1878 
1879 jint G1CollectedHeap::initialize() {
1880   CollectedHeap::pre_initialize();
1881   os::enable_vtime();
1882 
1883   G1Log::init();
1884 
1885   // Necessary to satisfy locking discipline assertions.
1886 
1887   MutexLocker x(Heap_lock);
1888 
1889   // We have to initialize the printer before committing the heap, as
1890   // it will be used then.
1891   _hr_printer.set_active(G1PrintHeapRegions);
1892 
1893   // While there are no constraints in the GC code that HeapWordSize
1894   // be any particular value, there are multiple other areas in the
1895   // system which believe this to be true (e.g. oop->object_size in some
1896   // cases incorrectly returns the size in wordSize units rather than
1897   // HeapWordSize).
1898   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1899 
1900   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1901   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1902   size_t heap_alignment = collector_policy()->heap_alignment();
1903 
1904   // Ensure that the sizes are properly aligned.
1905   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1906   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1907   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1908 
1909   _refine_cte_cl = new RefineCardTableEntryClosure();
1910 
1911   jint ecode = JNI_OK;
1912   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1913   if (_cg1r == NULL) {
1914     return ecode;
1915   }
1916 
1917   // Reserve the maximum.
1918 
1919   // When compressed oops are enabled, the preferred heap base
1920   // is calculated by subtracting the requested size from the
1921   // 32Gb boundary and using the result as the base address for
1922   // heap reservation. If the requested size is not aligned to
1923   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1924   // into the ReservedHeapSpace constructor) then the actual
1925   // base of the reserved heap may end up differing from the
1926   // address that was requested (i.e. the preferred heap base).
1927   // If this happens then we could end up using a non-optimal
1928   // compressed oops mode.
1929 
1930   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1931                                                  heap_alignment);
1932 
1933   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1934 
1935   // Create the barrier set for the entire reserved region.
1936   G1SATBCardTableLoggingModRefBS* bs
1937     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1938   bs->initialize();
1939   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1940   set_barrier_set(bs);
1941 
1942   // Also create a G1 rem set.
1943   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1944 
1945   // Carve out the G1 part of the heap.
1946 
1947   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1948   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1949   G1RegionToSpaceMapper* heap_storage =
1950     G1RegionToSpaceMapper::create_mapper(g1_rs,
1951                                          g1_rs.size(),
1952                                          page_size,
1953                                          HeapRegion::GrainBytes,
1954                                          1,
1955                                          mtJavaHeap);
1956   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1957                        max_byte_size, page_size,
1958                        heap_rs.base(),
1959                        heap_rs.size());
1960   heap_storage->set_mapping_changed_listener(&_listener);
1961 
1962   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1963   G1RegionToSpaceMapper* bot_storage =
1964     create_aux_memory_mapper("Block offset table",
1965                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1966                              G1BlockOffsetSharedArray::heap_map_factor());
1967 
1968   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1969   G1RegionToSpaceMapper* cardtable_storage =
1970     create_aux_memory_mapper("Card table",
1971                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1972                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1973 
1974   G1RegionToSpaceMapper* card_counts_storage =
1975     create_aux_memory_mapper("Card counts table",
1976                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1977                              G1CardCounts::heap_map_factor());
1978 
1979   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1980   G1RegionToSpaceMapper* prev_bitmap_storage =
1981     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1982   G1RegionToSpaceMapper* next_bitmap_storage =
1983     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1984 
1985   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1986   g1_barrier_set()->initialize(cardtable_storage);
1987    // Do later initialization work for concurrent refinement.
1988   _cg1r->init(card_counts_storage);
1989 
1990   // 6843694 - ensure that the maximum region index can fit
1991   // in the remembered set structures.
1992   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1993   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1994 
1995   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1996   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1997   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1998             "too many cards per region");
1999 
2000   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2001 
2002   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2003 
2004   {
2005     HeapWord* start = _hrm.reserved().start();
2006     HeapWord* end = _hrm.reserved().end();
2007     size_t granularity = HeapRegion::GrainBytes;
2008 
2009     _in_cset_fast_test.initialize(start, end, granularity);
2010     _humongous_reclaim_candidates.initialize(start, end, granularity);
2011   }
2012 
2013   // Create the ConcurrentMark data structure and thread.
2014   // (Must do this late, so that "max_regions" is defined.)
2015   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2016   if (_cm == NULL || !_cm->completed_initialization()) {
2017     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2018     return JNI_ENOMEM;
2019   }
2020   _cmThread = _cm->cmThread();
2021 
2022   // Initialize the from_card cache structure of HeapRegionRemSet.
2023   HeapRegionRemSet::init_heap(max_regions());
2024 
2025   // Now expand into the initial heap size.
2026   if (!expand(init_byte_size)) {
2027     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2028     return JNI_ENOMEM;
2029   }
2030 
2031   // Perform any initialization actions delegated to the policy.
2032   g1_policy()->init();
2033 
2034   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2035                                                SATB_Q_FL_lock,
2036                                                G1SATBProcessCompletedThreshold,
2037                                                Shared_SATB_Q_lock);
2038 
2039   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2040                                                 DirtyCardQ_CBL_mon,
2041                                                 DirtyCardQ_FL_lock,
2042                                                 concurrent_g1_refine()->yellow_zone(),
2043                                                 concurrent_g1_refine()->red_zone(),
2044                                                 Shared_DirtyCardQ_lock);
2045 
2046   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2047                                     DirtyCardQ_CBL_mon,
2048                                     DirtyCardQ_FL_lock,
2049                                     -1, // never trigger processing
2050                                     -1, // no limit on length
2051                                     Shared_DirtyCardQ_lock,
2052                                     &JavaThread::dirty_card_queue_set());
2053 
2054   // Here we allocate the dummy HeapRegion that is required by the
2055   // G1AllocRegion class.
2056   HeapRegion* dummy_region = _hrm.get_dummy_region();
2057 
2058   // We'll re-use the same region whether the alloc region will
2059   // require BOT updates or not and, if it doesn't, then a non-young
2060   // region will complain that it cannot support allocations without
2061   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2062   dummy_region->set_eden();
2063   // Make sure it's full.
2064   dummy_region->set_top(dummy_region->end());
2065   G1AllocRegion::setup(this, dummy_region);
2066 
2067   _allocator->init_mutator_alloc_region();
2068 
2069   // Do create of the monitoring and management support so that
2070   // values in the heap have been properly initialized.
2071   _g1mm = new G1MonitoringSupport(this);
2072 
2073   G1StringDedup::initialize();
2074 
2075   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2076   for (uint i = 0; i < ParallelGCThreads; i++) {
2077     new (&_preserved_objs[i]) OopAndMarkOopStack();
2078   }
2079 
2080   return JNI_OK;
2081 }
2082 
2083 void G1CollectedHeap::stop() {
2084   // Stop all concurrent threads. We do this to make sure these threads
2085   // do not continue to execute and access resources (e.g. gclog_or_tty)
2086   // that are destroyed during shutdown.
2087   _cg1r->stop();
2088   _cmThread->stop();
2089   if (G1StringDedup::is_enabled()) {
2090     G1StringDedup::stop();
2091   }
2092 }
2093 
2094 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2095   return HeapRegion::max_region_size();
2096 }
2097 
2098 void G1CollectedHeap::post_initialize() {
2099   CollectedHeap::post_initialize();
2100   ref_processing_init();
2101 }
2102 
2103 void G1CollectedHeap::ref_processing_init() {
2104   // Reference processing in G1 currently works as follows:
2105   //
2106   // * There are two reference processor instances. One is
2107   //   used to record and process discovered references
2108   //   during concurrent marking; the other is used to
2109   //   record and process references during STW pauses
2110   //   (both full and incremental).
2111   // * Both ref processors need to 'span' the entire heap as
2112   //   the regions in the collection set may be dotted around.
2113   //
2114   // * For the concurrent marking ref processor:
2115   //   * Reference discovery is enabled at initial marking.
2116   //   * Reference discovery is disabled and the discovered
2117   //     references processed etc during remarking.
2118   //   * Reference discovery is MT (see below).
2119   //   * Reference discovery requires a barrier (see below).
2120   //   * Reference processing may or may not be MT
2121   //     (depending on the value of ParallelRefProcEnabled
2122   //     and ParallelGCThreads).
2123   //   * A full GC disables reference discovery by the CM
2124   //     ref processor and abandons any entries on it's
2125   //     discovered lists.
2126   //
2127   // * For the STW processor:
2128   //   * Non MT discovery is enabled at the start of a full GC.
2129   //   * Processing and enqueueing during a full GC is non-MT.
2130   //   * During a full GC, references are processed after marking.
2131   //
2132   //   * Discovery (may or may not be MT) is enabled at the start
2133   //     of an incremental evacuation pause.
2134   //   * References are processed near the end of a STW evacuation pause.
2135   //   * For both types of GC:
2136   //     * Discovery is atomic - i.e. not concurrent.
2137   //     * Reference discovery will not need a barrier.
2138 
2139   MemRegion mr = reserved_region();
2140 
2141   // Concurrent Mark ref processor
2142   _ref_processor_cm =
2143     new ReferenceProcessor(mr,    // span
2144                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2145                                 // mt processing
2146                            ParallelGCThreads,
2147                                 // degree of mt processing
2148                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2149                                 // mt discovery
2150                            MAX2(ParallelGCThreads, ConcGCThreads),
2151                                 // degree of mt discovery
2152                            false,
2153                                 // Reference discovery is not atomic
2154                            &_is_alive_closure_cm);
2155                                 // is alive closure
2156                                 // (for efficiency/performance)
2157 
2158   // STW ref processor
2159   _ref_processor_stw =
2160     new ReferenceProcessor(mr,    // span
2161                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2162                                 // mt processing
2163                            ParallelGCThreads,
2164                                 // degree of mt processing
2165                            (ParallelGCThreads > 1),
2166                                 // mt discovery
2167                            ParallelGCThreads,
2168                                 // degree of mt discovery
2169                            true,
2170                                 // Reference discovery is atomic
2171                            &_is_alive_closure_stw);
2172                                 // is alive closure
2173                                 // (for efficiency/performance)
2174 }
2175 
2176 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2177   return g1_policy();
2178 }
2179 
2180 size_t G1CollectedHeap::capacity() const {
2181   return _hrm.length() * HeapRegion::GrainBytes;
2182 }
2183 
2184 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2185   hr->reset_gc_time_stamp();
2186 }
2187 
2188 #ifndef PRODUCT
2189 
2190 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2191 private:
2192   unsigned _gc_time_stamp;
2193   bool _failures;
2194 
2195 public:
2196   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2197     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2198 
2199   virtual bool doHeapRegion(HeapRegion* hr) {
2200     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2201     if (_gc_time_stamp != region_gc_time_stamp) {
2202       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2203                              "expected %d", HR_FORMAT_PARAMS(hr),
2204                              region_gc_time_stamp, _gc_time_stamp);
2205       _failures = true;
2206     }
2207     return false;
2208   }
2209 
2210   bool failures() { return _failures; }
2211 };
2212 
2213 void G1CollectedHeap::check_gc_time_stamps() {
2214   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2215   heap_region_iterate(&cl);
2216   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2217 }
2218 #endif // PRODUCT
2219 
2220 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2221   _cg1r->hot_card_cache()->drain(cl, worker_i);
2222 }
2223 
2224 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2225   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2226   size_t n_completed_buffers = 0;
2227   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2228     n_completed_buffers++;
2229   }
2230   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2231   dcqs.clear_n_completed_buffers();
2232   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2233 }
2234 
2235 // Computes the sum of the storage used by the various regions.
2236 size_t G1CollectedHeap::used() const {
2237   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2238   if (_archive_allocator != NULL) {
2239     result += _archive_allocator->used();
2240   }
2241   return result;
2242 }
2243 
2244 size_t G1CollectedHeap::used_unlocked() const {
2245   return _summary_bytes_used;
2246 }
2247 
2248 class SumUsedClosure: public HeapRegionClosure {
2249   size_t _used;
2250 public:
2251   SumUsedClosure() : _used(0) {}
2252   bool doHeapRegion(HeapRegion* r) {
2253     _used += r->used();
2254     return false;
2255   }
2256   size_t result() { return _used; }
2257 };
2258 
2259 size_t G1CollectedHeap::recalculate_used() const {
2260   double recalculate_used_start = os::elapsedTime();
2261 
2262   SumUsedClosure blk;
2263   heap_region_iterate(&blk);
2264 
2265   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2266   return blk.result();
2267 }
2268 
2269 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2270   switch (cause) {
2271     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2272     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2273     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2274     case GCCause::_g1_humongous_allocation: return true;
2275     case GCCause::_update_allocation_context_stats_inc: return true;
2276     case GCCause::_wb_conc_mark:            return true;
2277     default:                                return false;
2278   }
2279 }
2280 
2281 #ifndef PRODUCT
2282 void G1CollectedHeap::allocate_dummy_regions() {
2283   // Let's fill up most of the region
2284   size_t word_size = HeapRegion::GrainWords - 1024;
2285   // And as a result the region we'll allocate will be humongous.
2286   guarantee(is_humongous(word_size), "sanity");
2287 
2288   // _filler_array_max_size is set to humongous object threshold
2289   // but temporarily change it to use CollectedHeap::fill_with_object().
2290   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2291 
2292   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2293     // Let's use the existing mechanism for the allocation
2294     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2295                                                  AllocationContext::system());
2296     if (dummy_obj != NULL) {
2297       MemRegion mr(dummy_obj, word_size);
2298       CollectedHeap::fill_with_object(mr);
2299     } else {
2300       // If we can't allocate once, we probably cannot allocate
2301       // again. Let's get out of the loop.
2302       break;
2303     }
2304   }
2305 }
2306 #endif // !PRODUCT
2307 
2308 void G1CollectedHeap::increment_old_marking_cycles_started() {
2309   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2310          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2311          "Wrong marking cycle count (started: %d, completed: %d)",
2312          _old_marking_cycles_started, _old_marking_cycles_completed);
2313 
2314   _old_marking_cycles_started++;
2315 }
2316 
2317 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2318   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2319 
2320   // We assume that if concurrent == true, then the caller is a
2321   // concurrent thread that was joined the Suspendible Thread
2322   // Set. If there's ever a cheap way to check this, we should add an
2323   // assert here.
2324 
2325   // Given that this method is called at the end of a Full GC or of a
2326   // concurrent cycle, and those can be nested (i.e., a Full GC can
2327   // interrupt a concurrent cycle), the number of full collections
2328   // completed should be either one (in the case where there was no
2329   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2330   // behind the number of full collections started.
2331 
2332   // This is the case for the inner caller, i.e. a Full GC.
2333   assert(concurrent ||
2334          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2335          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2336          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2337          "is inconsistent with _old_marking_cycles_completed = %u",
2338          _old_marking_cycles_started, _old_marking_cycles_completed);
2339 
2340   // This is the case for the outer caller, i.e. the concurrent cycle.
2341   assert(!concurrent ||
2342          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2343          "for outer caller (concurrent cycle): "
2344          "_old_marking_cycles_started = %u "
2345          "is inconsistent with _old_marking_cycles_completed = %u",
2346          _old_marking_cycles_started, _old_marking_cycles_completed);
2347 
2348   _old_marking_cycles_completed += 1;
2349 
2350   // We need to clear the "in_progress" flag in the CM thread before
2351   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2352   // is set) so that if a waiter requests another System.gc() it doesn't
2353   // incorrectly see that a marking cycle is still in progress.
2354   if (concurrent) {
2355     _cmThread->set_idle();
2356   }
2357 
2358   // This notify_all() will ensure that a thread that called
2359   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2360   // and it's waiting for a full GC to finish will be woken up. It is
2361   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2362   FullGCCount_lock->notify_all();
2363 }
2364 
2365 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2366   GCIdMarkAndRestore conc_gc_id_mark;
2367   collector_state()->set_concurrent_cycle_started(true);
2368   _gc_timer_cm->register_gc_start(start_time);
2369 
2370   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2371   trace_heap_before_gc(_gc_tracer_cm);
2372   _cmThread->set_gc_id(GCId::current());
2373 }
2374 
2375 void G1CollectedHeap::register_concurrent_cycle_end() {
2376   if (collector_state()->concurrent_cycle_started()) {
2377     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2378     if (_cm->has_aborted()) {
2379       _gc_tracer_cm->report_concurrent_mode_failure();
2380     }
2381 
2382     _gc_timer_cm->register_gc_end();
2383     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2384 
2385     // Clear state variables to prepare for the next concurrent cycle.
2386      collector_state()->set_concurrent_cycle_started(false);
2387     _heap_summary_sent = false;
2388   }
2389 }
2390 
2391 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2392   if (collector_state()->concurrent_cycle_started()) {
2393     // This function can be called when:
2394     //  the cleanup pause is run
2395     //  the concurrent cycle is aborted before the cleanup pause.
2396     //  the concurrent cycle is aborted after the cleanup pause,
2397     //   but before the concurrent cycle end has been registered.
2398     // Make sure that we only send the heap information once.
2399     if (!_heap_summary_sent) {
2400       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2401       trace_heap_after_gc(_gc_tracer_cm);
2402       _heap_summary_sent = true;
2403     }
2404   }
2405 }
2406 
2407 void G1CollectedHeap::collect(GCCause::Cause cause) {
2408   assert_heap_not_locked();
2409 
2410   uint gc_count_before;
2411   uint old_marking_count_before;
2412   uint full_gc_count_before;
2413   bool retry_gc;
2414 
2415   do {
2416     retry_gc = false;
2417 
2418     {
2419       MutexLocker ml(Heap_lock);
2420 
2421       // Read the GC count while holding the Heap_lock
2422       gc_count_before = total_collections();
2423       full_gc_count_before = total_full_collections();
2424       old_marking_count_before = _old_marking_cycles_started;
2425     }
2426 
2427     if (should_do_concurrent_full_gc(cause)) {
2428       // Schedule an initial-mark evacuation pause that will start a
2429       // concurrent cycle. We're setting word_size to 0 which means that
2430       // we are not requesting a post-GC allocation.
2431       VM_G1IncCollectionPause op(gc_count_before,
2432                                  0,     /* word_size */
2433                                  true,  /* should_initiate_conc_mark */
2434                                  g1_policy()->max_pause_time_ms(),
2435                                  cause);
2436       op.set_allocation_context(AllocationContext::current());
2437 
2438       VMThread::execute(&op);
2439       if (!op.pause_succeeded()) {
2440         if (old_marking_count_before == _old_marking_cycles_started) {
2441           retry_gc = op.should_retry_gc();
2442         } else {
2443           // A Full GC happened while we were trying to schedule the
2444           // initial-mark GC. No point in starting a new cycle given
2445           // that the whole heap was collected anyway.
2446         }
2447 
2448         if (retry_gc) {
2449           if (GC_locker::is_active_and_needs_gc()) {
2450             GC_locker::stall_until_clear();
2451           }
2452         }
2453       }
2454     } else {
2455       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2456           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2457 
2458         // Schedule a standard evacuation pause. We're setting word_size
2459         // to 0 which means that we are not requesting a post-GC allocation.
2460         VM_G1IncCollectionPause op(gc_count_before,
2461                                    0,     /* word_size */
2462                                    false, /* should_initiate_conc_mark */
2463                                    g1_policy()->max_pause_time_ms(),
2464                                    cause);
2465         VMThread::execute(&op);
2466       } else {
2467         // Schedule a Full GC.
2468         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2469         VMThread::execute(&op);
2470       }
2471     }
2472   } while (retry_gc);
2473 }
2474 
2475 bool G1CollectedHeap::is_in(const void* p) const {
2476   if (_hrm.reserved().contains(p)) {
2477     // Given that we know that p is in the reserved space,
2478     // heap_region_containing() should successfully
2479     // return the containing region.
2480     HeapRegion* hr = heap_region_containing(p);
2481     return hr->is_in(p);
2482   } else {
2483     return false;
2484   }
2485 }
2486 
2487 #ifdef ASSERT
2488 bool G1CollectedHeap::is_in_exact(const void* p) const {
2489   bool contains = reserved_region().contains(p);
2490   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2491   if (contains && available) {
2492     return true;
2493   } else {
2494     return false;
2495   }
2496 }
2497 #endif
2498 
2499 bool G1CollectedHeap::obj_in_cs(oop obj) {
2500   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2501   return r != NULL && r->in_collection_set();
2502 }
2503 
2504 // Iteration functions.
2505 
2506 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2507 
2508 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2509   ExtendedOopClosure* _cl;
2510 public:
2511   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2512   bool doHeapRegion(HeapRegion* r) {
2513     if (!r->is_continues_humongous()) {
2514       r->oop_iterate(_cl);
2515     }
2516     return false;
2517   }
2518 };
2519 
2520 // Iterates an ObjectClosure over all objects within a HeapRegion.
2521 
2522 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2523   ObjectClosure* _cl;
2524 public:
2525   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2526   bool doHeapRegion(HeapRegion* r) {
2527     if (!r->is_continues_humongous()) {
2528       r->object_iterate(_cl);
2529     }
2530     return false;
2531   }
2532 };
2533 
2534 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2535   IterateObjectClosureRegionClosure blk(cl);
2536   heap_region_iterate(&blk);
2537 }
2538 
2539 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2540   _hrm.iterate(cl);
2541 }
2542 
2543 void
2544 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2545                                          uint worker_id,
2546                                          HeapRegionClaimer *hrclaimer,
2547                                          bool concurrent) const {
2548   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2549 }
2550 
2551 // Clear the cached CSet starting regions and (more importantly)
2552 // the time stamps. Called when we reset the GC time stamp.
2553 void G1CollectedHeap::clear_cset_start_regions() {
2554   assert(_worker_cset_start_region != NULL, "sanity");
2555   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2556 
2557   for (uint i = 0; i < ParallelGCThreads; i++) {
2558     _worker_cset_start_region[i] = NULL;
2559     _worker_cset_start_region_time_stamp[i] = 0;
2560   }
2561 }
2562 
2563 // Given the id of a worker, obtain or calculate a suitable
2564 // starting region for iterating over the current collection set.
2565 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2566   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2567 
2568   HeapRegion* result = NULL;
2569   unsigned gc_time_stamp = get_gc_time_stamp();
2570 
2571   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2572     // Cached starting region for current worker was set
2573     // during the current pause - so it's valid.
2574     // Note: the cached starting heap region may be NULL
2575     // (when the collection set is empty).
2576     result = _worker_cset_start_region[worker_i];
2577     assert(result == NULL || result->in_collection_set(), "sanity");
2578     return result;
2579   }
2580 
2581   // The cached entry was not valid so let's calculate
2582   // a suitable starting heap region for this worker.
2583 
2584   // We want the parallel threads to start their collection
2585   // set iteration at different collection set regions to
2586   // avoid contention.
2587   // If we have:
2588   //          n collection set regions
2589   //          p threads
2590   // Then thread t will start at region floor ((t * n) / p)
2591 
2592   result = g1_policy()->collection_set();
2593   uint cs_size = g1_policy()->cset_region_length();
2594   uint active_workers = workers()->active_workers();
2595 
2596   uint end_ind   = (cs_size * worker_i) / active_workers;
2597   uint start_ind = 0;
2598 
2599   if (worker_i > 0 &&
2600       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2601     // Previous workers starting region is valid
2602     // so let's iterate from there
2603     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2604     result = _worker_cset_start_region[worker_i - 1];
2605   }
2606 
2607   for (uint i = start_ind; i < end_ind; i++) {
2608     result = result->next_in_collection_set();
2609   }
2610 
2611   // Note: the calculated starting heap region may be NULL
2612   // (when the collection set is empty).
2613   assert(result == NULL || result->in_collection_set(), "sanity");
2614   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2615          "should be updated only once per pause");
2616   _worker_cset_start_region[worker_i] = result;
2617   OrderAccess::storestore();
2618   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2619   return result;
2620 }
2621 
2622 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2623   HeapRegion* r = g1_policy()->collection_set();
2624   while (r != NULL) {
2625     HeapRegion* next = r->next_in_collection_set();
2626     if (cl->doHeapRegion(r)) {
2627       cl->incomplete();
2628       return;
2629     }
2630     r = next;
2631   }
2632 }
2633 
2634 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2635                                                   HeapRegionClosure *cl) {
2636   if (r == NULL) {
2637     // The CSet is empty so there's nothing to do.
2638     return;
2639   }
2640 
2641   assert(r->in_collection_set(),
2642          "Start region must be a member of the collection set.");
2643   HeapRegion* cur = r;
2644   while (cur != NULL) {
2645     HeapRegion* next = cur->next_in_collection_set();
2646     if (cl->doHeapRegion(cur) && false) {
2647       cl->incomplete();
2648       return;
2649     }
2650     cur = next;
2651   }
2652   cur = g1_policy()->collection_set();
2653   while (cur != r) {
2654     HeapRegion* next = cur->next_in_collection_set();
2655     if (cl->doHeapRegion(cur) && false) {
2656       cl->incomplete();
2657       return;
2658     }
2659     cur = next;
2660   }
2661 }
2662 
2663 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2664   HeapRegion* result = _hrm.next_region_in_heap(from);
2665   while (result != NULL && result->is_pinned()) {
2666     result = _hrm.next_region_in_heap(result);
2667   }
2668   return result;
2669 }
2670 
2671 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2672   HeapRegion* hr = heap_region_containing(addr);
2673   return hr->block_start(addr);
2674 }
2675 
2676 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2677   HeapRegion* hr = heap_region_containing(addr);
2678   return hr->block_size(addr);
2679 }
2680 
2681 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2682   HeapRegion* hr = heap_region_containing(addr);
2683   return hr->block_is_obj(addr);
2684 }
2685 
2686 bool G1CollectedHeap::supports_tlab_allocation() const {
2687   return true;
2688 }
2689 
2690 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2691   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2692 }
2693 
2694 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2695   return young_list()->eden_used_bytes();
2696 }
2697 
2698 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2699 // must be equal to the humongous object limit.
2700 size_t G1CollectedHeap::max_tlab_size() const {
2701   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2702 }
2703 
2704 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2705   AllocationContext_t context = AllocationContext::current();
2706   return _allocator->unsafe_max_tlab_alloc(context);
2707 }
2708 
2709 size_t G1CollectedHeap::max_capacity() const {
2710   return _hrm.reserved().byte_size();
2711 }
2712 
2713 jlong G1CollectedHeap::millis_since_last_gc() {
2714   // assert(false, "NYI");
2715   return 0;
2716 }
2717 
2718 void G1CollectedHeap::prepare_for_verify() {
2719   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2720     ensure_parsability(false);
2721   }
2722   g1_rem_set()->prepare_for_verify();
2723 }
2724 
2725 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2726                                               VerifyOption vo) {
2727   switch (vo) {
2728   case VerifyOption_G1UsePrevMarking:
2729     return hr->obj_allocated_since_prev_marking(obj);
2730   case VerifyOption_G1UseNextMarking:
2731     return hr->obj_allocated_since_next_marking(obj);
2732   case VerifyOption_G1UseMarkWord:
2733     return false;
2734   default:
2735     ShouldNotReachHere();
2736   }
2737   return false; // keep some compilers happy
2738 }
2739 
2740 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2741   switch (vo) {
2742   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2743   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2744   case VerifyOption_G1UseMarkWord:    return NULL;
2745   default:                            ShouldNotReachHere();
2746   }
2747   return NULL; // keep some compilers happy
2748 }
2749 
2750 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2751   switch (vo) {
2752   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2753   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2754   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2755   default:                            ShouldNotReachHere();
2756   }
2757   return false; // keep some compilers happy
2758 }
2759 
2760 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2761   switch (vo) {
2762   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2763   case VerifyOption_G1UseNextMarking: return "NTAMS";
2764   case VerifyOption_G1UseMarkWord:    return "NONE";
2765   default:                            ShouldNotReachHere();
2766   }
2767   return NULL; // keep some compilers happy
2768 }
2769 
2770 class VerifyRootsClosure: public OopClosure {
2771 private:
2772   G1CollectedHeap* _g1h;
2773   VerifyOption     _vo;
2774   bool             _failures;
2775 public:
2776   // _vo == UsePrevMarking -> use "prev" marking information,
2777   // _vo == UseNextMarking -> use "next" marking information,
2778   // _vo == UseMarkWord    -> use mark word from object header.
2779   VerifyRootsClosure(VerifyOption vo) :
2780     _g1h(G1CollectedHeap::heap()),
2781     _vo(vo),
2782     _failures(false) { }
2783 
2784   bool failures() { return _failures; }
2785 
2786   template <class T> void do_oop_nv(T* p) {
2787     T heap_oop = oopDesc::load_heap_oop(p);
2788     if (!oopDesc::is_null(heap_oop)) {
2789       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2790       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2791         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2792                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2793         if (_vo == VerifyOption_G1UseMarkWord) {
2794           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2795         }
2796         obj->print_on(gclog_or_tty);
2797         _failures = true;
2798       }
2799     }
2800   }
2801 
2802   void do_oop(oop* p)       { do_oop_nv(p); }
2803   void do_oop(narrowOop* p) { do_oop_nv(p); }
2804 };
2805 
2806 class G1VerifyCodeRootOopClosure: public OopClosure {
2807   G1CollectedHeap* _g1h;
2808   OopClosure* _root_cl;
2809   nmethod* _nm;
2810   VerifyOption _vo;
2811   bool _failures;
2812 
2813   template <class T> void do_oop_work(T* p) {
2814     // First verify that this root is live
2815     _root_cl->do_oop(p);
2816 
2817     if (!G1VerifyHeapRegionCodeRoots) {
2818       // We're not verifying the code roots attached to heap region.
2819       return;
2820     }
2821 
2822     // Don't check the code roots during marking verification in a full GC
2823     if (_vo == VerifyOption_G1UseMarkWord) {
2824       return;
2825     }
2826 
2827     // Now verify that the current nmethod (which contains p) is
2828     // in the code root list of the heap region containing the
2829     // object referenced by p.
2830 
2831     T heap_oop = oopDesc::load_heap_oop(p);
2832     if (!oopDesc::is_null(heap_oop)) {
2833       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2834 
2835       // Now fetch the region containing the object
2836       HeapRegion* hr = _g1h->heap_region_containing(obj);
2837       HeapRegionRemSet* hrrs = hr->rem_set();
2838       // Verify that the strong code root list for this region
2839       // contains the nmethod
2840       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2841         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2842                                "from nmethod " PTR_FORMAT " not in strong "
2843                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2844                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2845         _failures = true;
2846       }
2847     }
2848   }
2849 
2850 public:
2851   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2852     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2853 
2854   void do_oop(oop* p) { do_oop_work(p); }
2855   void do_oop(narrowOop* p) { do_oop_work(p); }
2856 
2857   void set_nmethod(nmethod* nm) { _nm = nm; }
2858   bool failures() { return _failures; }
2859 };
2860 
2861 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2862   G1VerifyCodeRootOopClosure* _oop_cl;
2863 
2864 public:
2865   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2866     _oop_cl(oop_cl) {}
2867 
2868   void do_code_blob(CodeBlob* cb) {
2869     nmethod* nm = cb->as_nmethod_or_null();
2870     if (nm != NULL) {
2871       _oop_cl->set_nmethod(nm);
2872       nm->oops_do(_oop_cl);
2873     }
2874   }
2875 };
2876 
2877 class YoungRefCounterClosure : public OopClosure {
2878   G1CollectedHeap* _g1h;
2879   int              _count;
2880  public:
2881   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2882   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2883   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2884 
2885   int count() { return _count; }
2886   void reset_count() { _count = 0; };
2887 };
2888 
2889 class VerifyKlassClosure: public KlassClosure {
2890   YoungRefCounterClosure _young_ref_counter_closure;
2891   OopClosure *_oop_closure;
2892  public:
2893   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2894   void do_klass(Klass* k) {
2895     k->oops_do(_oop_closure);
2896 
2897     _young_ref_counter_closure.reset_count();
2898     k->oops_do(&_young_ref_counter_closure);
2899     if (_young_ref_counter_closure.count() > 0) {
2900       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2901     }
2902   }
2903 };
2904 
2905 class VerifyLivenessOopClosure: public OopClosure {
2906   G1CollectedHeap* _g1h;
2907   VerifyOption _vo;
2908 public:
2909   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2910     _g1h(g1h), _vo(vo)
2911   { }
2912   void do_oop(narrowOop *p) { do_oop_work(p); }
2913   void do_oop(      oop *p) { do_oop_work(p); }
2914 
2915   template <class T> void do_oop_work(T *p) {
2916     oop obj = oopDesc::load_decode_heap_oop(p);
2917     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2918               "Dead object referenced by a not dead object");
2919   }
2920 };
2921 
2922 class VerifyObjsInRegionClosure: public ObjectClosure {
2923 private:
2924   G1CollectedHeap* _g1h;
2925   size_t _live_bytes;
2926   HeapRegion *_hr;
2927   VerifyOption _vo;
2928 public:
2929   // _vo == UsePrevMarking -> use "prev" marking information,
2930   // _vo == UseNextMarking -> use "next" marking information,
2931   // _vo == UseMarkWord    -> use mark word from object header.
2932   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2933     : _live_bytes(0), _hr(hr), _vo(vo) {
2934     _g1h = G1CollectedHeap::heap();
2935   }
2936   void do_object(oop o) {
2937     VerifyLivenessOopClosure isLive(_g1h, _vo);
2938     assert(o != NULL, "Huh?");
2939     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2940       // If the object is alive according to the mark word,
2941       // then verify that the marking information agrees.
2942       // Note we can't verify the contra-positive of the
2943       // above: if the object is dead (according to the mark
2944       // word), it may not be marked, or may have been marked
2945       // but has since became dead, or may have been allocated
2946       // since the last marking.
2947       if (_vo == VerifyOption_G1UseMarkWord) {
2948         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2949       }
2950 
2951       o->oop_iterate_no_header(&isLive);
2952       if (!_hr->obj_allocated_since_prev_marking(o)) {
2953         size_t obj_size = o->size();    // Make sure we don't overflow
2954         _live_bytes += (obj_size * HeapWordSize);
2955       }
2956     }
2957   }
2958   size_t live_bytes() { return _live_bytes; }
2959 };
2960 
2961 class VerifyArchiveOopClosure: public OopClosure {
2962 public:
2963   VerifyArchiveOopClosure(HeapRegion *hr) { }
2964   void do_oop(narrowOop *p) { do_oop_work(p); }
2965   void do_oop(      oop *p) { do_oop_work(p); }
2966 
2967   template <class T> void do_oop_work(T *p) {
2968     oop obj = oopDesc::load_decode_heap_oop(p);
2969     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2970               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2971               p2i(p), p2i(obj));
2972   }
2973 };
2974 
2975 class VerifyArchiveRegionClosure: public ObjectClosure {
2976 public:
2977   VerifyArchiveRegionClosure(HeapRegion *hr) { }
2978   // Verify that all object pointers are to archive regions.
2979   void do_object(oop o) {
2980     VerifyArchiveOopClosure checkOop(NULL);
2981     assert(o != NULL, "Should not be here for NULL oops");
2982     o->oop_iterate_no_header(&checkOop);
2983   }
2984 };
2985 
2986 class VerifyRegionClosure: public HeapRegionClosure {
2987 private:
2988   bool             _par;
2989   VerifyOption     _vo;
2990   bool             _failures;
2991 public:
2992   // _vo == UsePrevMarking -> use "prev" marking information,
2993   // _vo == UseNextMarking -> use "next" marking information,
2994   // _vo == UseMarkWord    -> use mark word from object header.
2995   VerifyRegionClosure(bool par, VerifyOption vo)
2996     : _par(par),
2997       _vo(vo),
2998       _failures(false) {}
2999 
3000   bool failures() {
3001     return _failures;
3002   }
3003 
3004   bool doHeapRegion(HeapRegion* r) {
3005     // For archive regions, verify there are no heap pointers to
3006     // non-pinned regions. For all others, verify liveness info.
3007     if (r->is_archive()) {
3008       VerifyArchiveRegionClosure verify_oop_pointers(r);
3009       r->object_iterate(&verify_oop_pointers);
3010       return true;
3011     }
3012     if (!r->is_continues_humongous()) {
3013       bool failures = false;
3014       r->verify(_vo, &failures);
3015       if (failures) {
3016         _failures = true;
3017       } else if (!r->is_starts_humongous()) {
3018         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3019         r->object_iterate(&not_dead_yet_cl);
3020         if (_vo != VerifyOption_G1UseNextMarking) {
3021           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3022             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3023                                    "max_live_bytes " SIZE_FORMAT " "
3024                                    "< calculated " SIZE_FORMAT,
3025                                    p2i(r->bottom()), p2i(r->end()),
3026                                    r->max_live_bytes(),
3027                                  not_dead_yet_cl.live_bytes());
3028             _failures = true;
3029           }
3030         } else {
3031           // When vo == UseNextMarking we cannot currently do a sanity
3032           // check on the live bytes as the calculation has not been
3033           // finalized yet.
3034         }
3035       }
3036     }
3037     return false; // stop the region iteration if we hit a failure
3038   }
3039 };
3040 
3041 // This is the task used for parallel verification of the heap regions
3042 
3043 class G1ParVerifyTask: public AbstractGangTask {
3044 private:
3045   G1CollectedHeap*  _g1h;
3046   VerifyOption      _vo;
3047   bool              _failures;
3048   HeapRegionClaimer _hrclaimer;
3049 
3050 public:
3051   // _vo == UsePrevMarking -> use "prev" marking information,
3052   // _vo == UseNextMarking -> use "next" marking information,
3053   // _vo == UseMarkWord    -> use mark word from object header.
3054   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3055       AbstractGangTask("Parallel verify task"),
3056       _g1h(g1h),
3057       _vo(vo),
3058       _failures(false),
3059       _hrclaimer(g1h->workers()->active_workers()) {}
3060 
3061   bool failures() {
3062     return _failures;
3063   }
3064 
3065   void work(uint worker_id) {
3066     HandleMark hm;
3067     VerifyRegionClosure blk(true, _vo);
3068     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3069     if (blk.failures()) {
3070       _failures = true;
3071     }
3072   }
3073 };
3074 
3075 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3076   if (SafepointSynchronize::is_at_safepoint()) {
3077     assert(Thread::current()->is_VM_thread(),
3078            "Expected to be executed serially by the VM thread at this point");
3079 
3080     if (!silent) { gclog_or_tty->print("Roots "); }
3081     VerifyRootsClosure rootsCl(vo);
3082     VerifyKlassClosure klassCl(this, &rootsCl);
3083     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3084 
3085     // We apply the relevant closures to all the oops in the
3086     // system dictionary, class loader data graph, the string table
3087     // and the nmethods in the code cache.
3088     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3089     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3090 
3091     {
3092       G1RootProcessor root_processor(this, 1);
3093       root_processor.process_all_roots(&rootsCl,
3094                                        &cldCl,
3095                                        &blobsCl);
3096     }
3097 
3098     bool failures = rootsCl.failures() || codeRootsCl.failures();
3099 
3100     if (vo != VerifyOption_G1UseMarkWord) {
3101       // If we're verifying during a full GC then the region sets
3102       // will have been torn down at the start of the GC. Therefore
3103       // verifying the region sets will fail. So we only verify
3104       // the region sets when not in a full GC.
3105       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3106       verify_region_sets();
3107     }
3108 
3109     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3110     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3111 
3112       G1ParVerifyTask task(this, vo);
3113       workers()->run_task(&task);
3114       if (task.failures()) {
3115         failures = true;
3116       }
3117 
3118     } else {
3119       VerifyRegionClosure blk(false, vo);
3120       heap_region_iterate(&blk);
3121       if (blk.failures()) {
3122         failures = true;
3123       }
3124     }
3125 
3126     if (G1StringDedup::is_enabled()) {
3127       if (!silent) gclog_or_tty->print("StrDedup ");
3128       G1StringDedup::verify();
3129     }
3130 
3131     if (failures) {
3132       gclog_or_tty->print_cr("Heap:");
3133       // It helps to have the per-region information in the output to
3134       // help us track down what went wrong. This is why we call
3135       // print_extended_on() instead of print_on().
3136       print_extended_on(gclog_or_tty);
3137       gclog_or_tty->cr();
3138       gclog_or_tty->flush();
3139     }
3140     guarantee(!failures, "there should not have been any failures");
3141   } else {
3142     if (!silent) {
3143       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3144       if (G1StringDedup::is_enabled()) {
3145         gclog_or_tty->print(", StrDedup");
3146       }
3147       gclog_or_tty->print(") ");
3148     }
3149   }
3150 }
3151 
3152 void G1CollectedHeap::verify(bool silent) {
3153   verify(silent, VerifyOption_G1UsePrevMarking);
3154 }
3155 
3156 double G1CollectedHeap::verify(bool guard, const char* msg) {
3157   double verify_time_ms = 0.0;
3158 
3159   if (guard && total_collections() >= VerifyGCStartAt) {
3160     double verify_start = os::elapsedTime();
3161     HandleMark hm;  // Discard invalid handles created during verification
3162     prepare_for_verify();
3163     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3164     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3165   }
3166 
3167   return verify_time_ms;
3168 }
3169 
3170 void G1CollectedHeap::verify_before_gc() {
3171   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3172   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3173 }
3174 
3175 void G1CollectedHeap::verify_after_gc() {
3176   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3177   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3178 }
3179 
3180 class PrintRegionClosure: public HeapRegionClosure {
3181   outputStream* _st;
3182 public:
3183   PrintRegionClosure(outputStream* st) : _st(st) {}
3184   bool doHeapRegion(HeapRegion* r) {
3185     r->print_on(_st);
3186     return false;
3187   }
3188 };
3189 
3190 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3191                                        const HeapRegion* hr,
3192                                        const VerifyOption vo) const {
3193   switch (vo) {
3194   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3195   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3196   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3197   default:                            ShouldNotReachHere();
3198   }
3199   return false; // keep some compilers happy
3200 }
3201 
3202 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3203                                        const VerifyOption vo) const {
3204   switch (vo) {
3205   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3206   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3207   case VerifyOption_G1UseMarkWord: {
3208     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3209     return !obj->is_gc_marked() && !hr->is_archive();
3210   }
3211   default:                            ShouldNotReachHere();
3212   }
3213   return false; // keep some compilers happy
3214 }
3215 
3216 void G1CollectedHeap::print_on(outputStream* st) const {
3217   st->print(" %-20s", "garbage-first heap");
3218   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3219             capacity()/K, used_unlocked()/K);
3220   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3221             p2i(_hrm.reserved().start()),
3222             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3223             p2i(_hrm.reserved().end()));
3224   st->cr();
3225   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3226   uint young_regions = _young_list->length();
3227   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3228             (size_t) young_regions * HeapRegion::GrainBytes / K);
3229   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3230   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3231             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3232   st->cr();
3233   MetaspaceAux::print_on(st);
3234 }
3235 
3236 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3237   print_on(st);
3238 
3239   // Print the per-region information.
3240   st->cr();
3241   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3242                "HS=humongous(starts), HC=humongous(continues), "
3243                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3244                "PTAMS=previous top-at-mark-start, "
3245                "NTAMS=next top-at-mark-start)");
3246   PrintRegionClosure blk(st);
3247   heap_region_iterate(&blk);
3248 }
3249 
3250 void G1CollectedHeap::print_on_error(outputStream* st) const {
3251   this->CollectedHeap::print_on_error(st);
3252 
3253   if (_cm != NULL) {
3254     st->cr();
3255     _cm->print_on_error(st);
3256   }
3257 }
3258 
3259 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3260   workers()->print_worker_threads_on(st);
3261   _cmThread->print_on(st);
3262   st->cr();
3263   _cm->print_worker_threads_on(st);
3264   _cg1r->print_worker_threads_on(st);
3265   if (G1StringDedup::is_enabled()) {
3266     G1StringDedup::print_worker_threads_on(st);
3267   }
3268 }
3269 
3270 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3271   workers()->threads_do(tc);
3272   tc->do_thread(_cmThread);
3273   _cg1r->threads_do(tc);
3274   if (G1StringDedup::is_enabled()) {
3275     G1StringDedup::threads_do(tc);
3276   }
3277 }
3278 
3279 void G1CollectedHeap::print_tracing_info() const {
3280   // We'll overload this to mean "trace GC pause statistics."
3281   if (TraceYoungGenTime || TraceOldGenTime) {
3282     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3283     // to that.
3284     g1_policy()->print_tracing_info();
3285   }
3286   if (G1SummarizeRSetStats) {
3287     g1_rem_set()->print_summary_info();
3288   }
3289   if (G1SummarizeConcMark) {
3290     concurrent_mark()->print_summary_info();
3291   }
3292   g1_policy()->print_yg_surv_rate_info();
3293 }
3294 
3295 #ifndef PRODUCT
3296 // Helpful for debugging RSet issues.
3297 
3298 class PrintRSetsClosure : public HeapRegionClosure {
3299 private:
3300   const char* _msg;
3301   size_t _occupied_sum;
3302 
3303 public:
3304   bool doHeapRegion(HeapRegion* r) {
3305     HeapRegionRemSet* hrrs = r->rem_set();
3306     size_t occupied = hrrs->occupied();
3307     _occupied_sum += occupied;
3308 
3309     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3310                            HR_FORMAT_PARAMS(r));
3311     if (occupied == 0) {
3312       gclog_or_tty->print_cr("  RSet is empty");
3313     } else {
3314       hrrs->print();
3315     }
3316     gclog_or_tty->print_cr("----------");
3317     return false;
3318   }
3319 
3320   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3321     gclog_or_tty->cr();
3322     gclog_or_tty->print_cr("========================================");
3323     gclog_or_tty->print_cr("%s", msg);
3324     gclog_or_tty->cr();
3325   }
3326 
3327   ~PrintRSetsClosure() {
3328     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3329     gclog_or_tty->print_cr("========================================");
3330     gclog_or_tty->cr();
3331   }
3332 };
3333 
3334 void G1CollectedHeap::print_cset_rsets() {
3335   PrintRSetsClosure cl("Printing CSet RSets");
3336   collection_set_iterate(&cl);
3337 }
3338 
3339 void G1CollectedHeap::print_all_rsets() {
3340   PrintRSetsClosure cl("Printing All RSets");;
3341   heap_region_iterate(&cl);
3342 }
3343 #endif // PRODUCT
3344 
3345 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3346   YoungList* young_list = heap()->young_list();
3347 
3348   size_t eden_used_bytes = young_list->eden_used_bytes();
3349   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3350 
3351   size_t eden_capacity_bytes =
3352     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3353 
3354   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3355   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3356 }
3357 
3358 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3359   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3360                        stats->unused(), stats->used(), stats->region_end_waste(),
3361                        stats->regions_filled(), stats->direct_allocated(),
3362                        stats->failure_used(), stats->failure_waste());
3363 }
3364 
3365 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3366   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3367   gc_tracer->report_gc_heap_summary(when, heap_summary);
3368 
3369   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3370   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3371 }
3372 
3373 
3374 G1CollectedHeap* G1CollectedHeap::heap() {
3375   CollectedHeap* heap = Universe::heap();
3376   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3377   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3378   return (G1CollectedHeap*)heap;
3379 }
3380 
3381 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3382   // always_do_update_barrier = false;
3383   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3384   // Fill TLAB's and such
3385   accumulate_statistics_all_tlabs();
3386   ensure_parsability(true);
3387 
3388   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3389       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3390     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3391   }
3392 }
3393 
3394 void G1CollectedHeap::gc_epilogue(bool full) {
3395 
3396   if (G1SummarizeRSetStats &&
3397       (G1SummarizeRSetStatsPeriod > 0) &&
3398       // we are at the end of the GC. Total collections has already been increased.
3399       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3400     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3401   }
3402 
3403   // FIXME: what is this about?
3404   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3405   // is set.
3406 #if defined(COMPILER2) || INCLUDE_JVMCI
3407   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3408 #endif
3409   // always_do_update_barrier = true;
3410 
3411   resize_all_tlabs();
3412   allocation_context_stats().update(full);
3413 
3414   // We have just completed a GC. Update the soft reference
3415   // policy with the new heap occupancy
3416   Universe::update_heap_info_at_gc();
3417 }
3418 
3419 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3420                                                uint gc_count_before,
3421                                                bool* succeeded,
3422                                                GCCause::Cause gc_cause) {
3423   assert_heap_not_locked_and_not_at_safepoint();
3424   g1_policy()->record_stop_world_start();
3425   VM_G1IncCollectionPause op(gc_count_before,
3426                              word_size,
3427                              false, /* should_initiate_conc_mark */
3428                              g1_policy()->max_pause_time_ms(),
3429                              gc_cause);
3430 
3431   op.set_allocation_context(AllocationContext::current());
3432   VMThread::execute(&op);
3433 
3434   HeapWord* result = op.result();
3435   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3436   assert(result == NULL || ret_succeeded,
3437          "the result should be NULL if the VM did not succeed");
3438   *succeeded = ret_succeeded;
3439 
3440   assert_heap_not_locked();
3441   return result;
3442 }
3443 
3444 void
3445 G1CollectedHeap::doConcurrentMark() {
3446   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3447   if (!_cmThread->in_progress()) {
3448     _cmThread->set_started();
3449     CGC_lock->notify();
3450   }
3451 }
3452 
3453 size_t G1CollectedHeap::pending_card_num() {
3454   size_t extra_cards = 0;
3455   JavaThread *curr = Threads::first();
3456   while (curr != NULL) {
3457     DirtyCardQueue& dcq = curr->dirty_card_queue();
3458     extra_cards += dcq.size();
3459     curr = curr->next();
3460   }
3461   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3462   size_t buffer_size = dcqs.buffer_size();
3463   size_t buffer_num = dcqs.completed_buffers_num();
3464 
3465   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3466   // in bytes - not the number of 'entries'. We need to convert
3467   // into a number of cards.
3468   return (buffer_size * buffer_num + extra_cards) / oopSize;
3469 }
3470 
3471 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3472  private:
3473   size_t _total_humongous;
3474   size_t _candidate_humongous;
3475 
3476   DirtyCardQueue _dcq;
3477 
3478   // We don't nominate objects with many remembered set entries, on
3479   // the assumption that such objects are likely still live.
3480   bool is_remset_small(HeapRegion* region) const {
3481     HeapRegionRemSet* const rset = region->rem_set();
3482     return G1EagerReclaimHumongousObjectsWithStaleRefs
3483       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3484       : rset->is_empty();
3485   }
3486 
3487   bool is_typeArray_region(HeapRegion* region) const {
3488     return oop(region->bottom())->is_typeArray();
3489   }
3490 
3491   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3492     assert(region->is_starts_humongous(), "Must start a humongous object");
3493 
3494     // Candidate selection must satisfy the following constraints
3495     // while concurrent marking is in progress:
3496     //
3497     // * In order to maintain SATB invariants, an object must not be
3498     // reclaimed if it was allocated before the start of marking and
3499     // has not had its references scanned.  Such an object must have
3500     // its references (including type metadata) scanned to ensure no
3501     // live objects are missed by the marking process.  Objects
3502     // allocated after the start of concurrent marking don't need to
3503     // be scanned.
3504     //
3505     // * An object must not be reclaimed if it is on the concurrent
3506     // mark stack.  Objects allocated after the start of concurrent
3507     // marking are never pushed on the mark stack.
3508     //
3509     // Nominating only objects allocated after the start of concurrent
3510     // marking is sufficient to meet both constraints.  This may miss
3511     // some objects that satisfy the constraints, but the marking data
3512     // structures don't support efficiently performing the needed
3513     // additional tests or scrubbing of the mark stack.
3514     //
3515     // However, we presently only nominate is_typeArray() objects.
3516     // A humongous object containing references induces remembered
3517     // set entries on other regions.  In order to reclaim such an
3518     // object, those remembered sets would need to be cleaned up.
3519     //
3520     // We also treat is_typeArray() objects specially, allowing them
3521     // to be reclaimed even if allocated before the start of
3522     // concurrent mark.  For this we rely on mark stack insertion to
3523     // exclude is_typeArray() objects, preventing reclaiming an object
3524     // that is in the mark stack.  We also rely on the metadata for
3525     // such objects to be built-in and so ensured to be kept live.
3526     // Frequent allocation and drop of large binary blobs is an
3527     // important use case for eager reclaim, and this special handling
3528     // may reduce needed headroom.
3529 
3530     return is_typeArray_region(region) && is_remset_small(region);
3531   }
3532 
3533  public:
3534   RegisterHumongousWithInCSetFastTestClosure()
3535   : _total_humongous(0),
3536     _candidate_humongous(0),
3537     _dcq(&JavaThread::dirty_card_queue_set()) {
3538   }
3539 
3540   virtual bool doHeapRegion(HeapRegion* r) {
3541     if (!r->is_starts_humongous()) {
3542       return false;
3543     }
3544     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3545 
3546     bool is_candidate = humongous_region_is_candidate(g1h, r);
3547     uint rindex = r->hrm_index();
3548     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3549     if (is_candidate) {
3550       _candidate_humongous++;
3551       g1h->register_humongous_region_with_cset(rindex);
3552       // Is_candidate already filters out humongous object with large remembered sets.
3553       // If we have a humongous object with a few remembered sets, we simply flush these
3554       // remembered set entries into the DCQS. That will result in automatic
3555       // re-evaluation of their remembered set entries during the following evacuation
3556       // phase.
3557       if (!r->rem_set()->is_empty()) {
3558         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3559                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3560         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3561         HeapRegionRemSetIterator hrrs(r->rem_set());
3562         size_t card_index;
3563         while (hrrs.has_next(card_index)) {
3564           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3565           // The remembered set might contain references to already freed
3566           // regions. Filter out such entries to avoid failing card table
3567           // verification.
3568           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3569             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3570               *card_ptr = CardTableModRefBS::dirty_card_val();
3571               _dcq.enqueue(card_ptr);
3572             }
3573           }
3574         }
3575         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3576                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3577                hrrs.n_yielded(), r->rem_set()->occupied());
3578         r->rem_set()->clear_locked();
3579       }
3580       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3581     }
3582     _total_humongous++;
3583 
3584     return false;
3585   }
3586 
3587   size_t total_humongous() const { return _total_humongous; }
3588   size_t candidate_humongous() const { return _candidate_humongous; }
3589 
3590   void flush_rem_set_entries() { _dcq.flush(); }
3591 };
3592 
3593 void G1CollectedHeap::register_humongous_regions_with_cset() {
3594   if (!G1EagerReclaimHumongousObjects) {
3595     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3596     return;
3597   }
3598   double time = os::elapsed_counter();
3599 
3600   // Collect reclaim candidate information and register candidates with cset.
3601   RegisterHumongousWithInCSetFastTestClosure cl;
3602   heap_region_iterate(&cl);
3603 
3604   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3605   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3606                                                                   cl.total_humongous(),
3607                                                                   cl.candidate_humongous());
3608   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3609 
3610   // Finally flush all remembered set entries to re-check into the global DCQS.
3611   cl.flush_rem_set_entries();
3612 }
3613 
3614 #ifdef ASSERT
3615 class VerifyCSetClosure: public HeapRegionClosure {
3616 public:
3617   bool doHeapRegion(HeapRegion* hr) {
3618     // Here we check that the CSet region's RSet is ready for parallel
3619     // iteration. The fields that we'll verify are only manipulated
3620     // when the region is part of a CSet and is collected. Afterwards,
3621     // we reset these fields when we clear the region's RSet (when the
3622     // region is freed) so they are ready when the region is
3623     // re-allocated. The only exception to this is if there's an
3624     // evacuation failure and instead of freeing the region we leave
3625     // it in the heap. In that case, we reset these fields during
3626     // evacuation failure handling.
3627     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3628 
3629     // Here's a good place to add any other checks we'd like to
3630     // perform on CSet regions.
3631     return false;
3632   }
3633 };
3634 #endif // ASSERT
3635 
3636 uint G1CollectedHeap::num_task_queues() const {
3637   return _task_queues->size();
3638 }
3639 
3640 #if TASKQUEUE_STATS
3641 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3642   st->print_raw_cr("GC Task Stats");
3643   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3644   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3645 }
3646 
3647 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3648   print_taskqueue_stats_hdr(st);
3649 
3650   TaskQueueStats totals;
3651   const uint n = num_task_queues();
3652   for (uint i = 0; i < n; ++i) {
3653     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3654     totals += task_queue(i)->stats;
3655   }
3656   st->print_raw("tot "); totals.print(st); st->cr();
3657 
3658   DEBUG_ONLY(totals.verify());
3659 }
3660 
3661 void G1CollectedHeap::reset_taskqueue_stats() {
3662   const uint n = num_task_queues();
3663   for (uint i = 0; i < n; ++i) {
3664     task_queue(i)->stats.reset();
3665   }
3666 }
3667 #endif // TASKQUEUE_STATS
3668 
3669 void G1CollectedHeap::log_gc_header() {
3670   if (!G1Log::fine()) {
3671     return;
3672   }
3673 
3674   gclog_or_tty->gclog_stamp();
3675 
3676   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3677     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3678     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3679 
3680   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3681 }
3682 
3683 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3684   if (!G1Log::fine()) {
3685     return;
3686   }
3687 
3688   if (G1Log::finer()) {
3689     if (evacuation_failed()) {
3690       gclog_or_tty->print(" (to-space exhausted)");
3691     }
3692     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3693     g1_policy()->print_phases(pause_time_sec);
3694     g1_policy()->print_detailed_heap_transition();
3695   } else {
3696     if (evacuation_failed()) {
3697       gclog_or_tty->print("--");
3698     }
3699     g1_policy()->print_heap_transition();
3700     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3701   }
3702   gclog_or_tty->flush();
3703 }
3704 
3705 void G1CollectedHeap::wait_for_root_region_scanning() {
3706   double scan_wait_start = os::elapsedTime();
3707   // We have to wait until the CM threads finish scanning the
3708   // root regions as it's the only way to ensure that all the
3709   // objects on them have been correctly scanned before we start
3710   // moving them during the GC.
3711   bool waited = _cm->root_regions()->wait_until_scan_finished();
3712   double wait_time_ms = 0.0;
3713   if (waited) {
3714     double scan_wait_end = os::elapsedTime();
3715     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3716   }
3717   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3718 }
3719 
3720 bool
3721 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3722   assert_at_safepoint(true /* should_be_vm_thread */);
3723   guarantee(!is_gc_active(), "collection is not reentrant");
3724 
3725   if (GC_locker::check_active_before_gc()) {
3726     return false;
3727   }
3728 
3729   _gc_timer_stw->register_gc_start();
3730 
3731   GCIdMark gc_id_mark;
3732   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3733 
3734   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3735   ResourceMark rm;
3736 
3737   wait_for_root_region_scanning();
3738 
3739   G1Log::update_level();
3740   print_heap_before_gc();
3741   trace_heap_before_gc(_gc_tracer_stw);
3742 
3743   verify_region_sets_optional();
3744   verify_dirty_young_regions();
3745 
3746   // This call will decide whether this pause is an initial-mark
3747   // pause. If it is, during_initial_mark_pause() will return true
3748   // for the duration of this pause.
3749   g1_policy()->decide_on_conc_mark_initiation();
3750 
3751   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3752   assert(!collector_state()->during_initial_mark_pause() ||
3753           collector_state()->gcs_are_young(), "sanity");
3754 
3755   // We also do not allow mixed GCs during marking.
3756   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3757 
3758   // Record whether this pause is an initial mark. When the current
3759   // thread has completed its logging output and it's safe to signal
3760   // the CM thread, the flag's value in the policy has been reset.
3761   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3762 
3763   // Inner scope for scope based logging, timers, and stats collection
3764   {
3765     EvacuationInfo evacuation_info;
3766 
3767     if (collector_state()->during_initial_mark_pause()) {
3768       // We are about to start a marking cycle, so we increment the
3769       // full collection counter.
3770       increment_old_marking_cycles_started();
3771       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3772     }
3773 
3774     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3775 
3776     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3777 
3778     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3779                                                                   workers()->active_workers(),
3780                                                                   Threads::number_of_non_daemon_threads());
3781     workers()->set_active_workers(active_workers);
3782 
3783     double pause_start_sec = os::elapsedTime();
3784     g1_policy()->note_gc_start(active_workers);
3785     log_gc_header();
3786 
3787     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3788     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3789 
3790     // If the secondary_free_list is not empty, append it to the
3791     // free_list. No need to wait for the cleanup operation to finish;
3792     // the region allocation code will check the secondary_free_list
3793     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3794     // set, skip this step so that the region allocation code has to
3795     // get entries from the secondary_free_list.
3796     if (!G1StressConcRegionFreeing) {
3797       append_secondary_free_list_if_not_empty_with_lock();
3798     }
3799 
3800     assert(check_young_list_well_formed(), "young list should be well formed");
3801 
3802     // Don't dynamically change the number of GC threads this early.  A value of
3803     // 0 is used to indicate serial work.  When parallel work is done,
3804     // it will be set.
3805 
3806     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3807       IsGCActiveMark x;
3808 
3809       gc_prologue(false);
3810       increment_total_collections(false /* full gc */);
3811       increment_gc_time_stamp();
3812 
3813       verify_before_gc();
3814 
3815       check_bitmaps("GC Start");
3816 
3817 #if defined(COMPILER2) || INCLUDE_JVMCI
3818       DerivedPointerTable::clear();
3819 #endif
3820 
3821       // Please see comment in g1CollectedHeap.hpp and
3822       // G1CollectedHeap::ref_processing_init() to see how
3823       // reference processing currently works in G1.
3824 
3825       // Enable discovery in the STW reference processor
3826       ref_processor_stw()->enable_discovery();
3827 
3828       {
3829         // We want to temporarily turn off discovery by the
3830         // CM ref processor, if necessary, and turn it back on
3831         // on again later if we do. Using a scoped
3832         // NoRefDiscovery object will do this.
3833         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3834 
3835         // Forget the current alloc region (we might even choose it to be part
3836         // of the collection set!).
3837         _allocator->release_mutator_alloc_region();
3838 
3839         // We should call this after we retire the mutator alloc
3840         // region(s) so that all the ALLOC / RETIRE events are generated
3841         // before the start GC event.
3842         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3843 
3844         // This timing is only used by the ergonomics to handle our pause target.
3845         // It is unclear why this should not include the full pause. We will
3846         // investigate this in CR 7178365.
3847         //
3848         // Preserving the old comment here if that helps the investigation:
3849         //
3850         // The elapsed time induced by the start time below deliberately elides
3851         // the possible verification above.
3852         double sample_start_time_sec = os::elapsedTime();
3853 
3854         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3855 
3856         if (collector_state()->during_initial_mark_pause()) {
3857           concurrent_mark()->checkpointRootsInitialPre();
3858         }
3859 
3860         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3861         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3862 
3863         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3864 
3865         // Make sure the remembered sets are up to date. This needs to be
3866         // done before register_humongous_regions_with_cset(), because the
3867         // remembered sets are used there to choose eager reclaim candidates.
3868         // If the remembered sets are not up to date we might miss some
3869         // entries that need to be handled.
3870         g1_rem_set()->cleanupHRRS();
3871 
3872         register_humongous_regions_with_cset();
3873 
3874         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3875 
3876         _cm->note_start_of_gc();
3877         // We call this after finalize_cset() to
3878         // ensure that the CSet has been finalized.
3879         _cm->verify_no_cset_oops();
3880 
3881         if (_hr_printer.is_active()) {
3882           HeapRegion* hr = g1_policy()->collection_set();
3883           while (hr != NULL) {
3884             _hr_printer.cset(hr);
3885             hr = hr->next_in_collection_set();
3886           }
3887         }
3888 
3889 #ifdef ASSERT
3890         VerifyCSetClosure cl;
3891         collection_set_iterate(&cl);
3892 #endif // ASSERT
3893 
3894         // Initialize the GC alloc regions.
3895         _allocator->init_gc_alloc_regions(evacuation_info);
3896 
3897         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3898         pre_evacuate_collection_set();
3899 
3900         // Actually do the work...
3901         evacuate_collection_set(evacuation_info, &per_thread_states);
3902 
3903         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3904 
3905         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3906         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3907 
3908         eagerly_reclaim_humongous_regions();
3909 
3910         g1_policy()->clear_collection_set();
3911 
3912         // Start a new incremental collection set for the next pause.
3913         g1_policy()->start_incremental_cset_building();
3914 
3915         clear_cset_fast_test();
3916 
3917         _young_list->reset_sampled_info();
3918 
3919         // Don't check the whole heap at this point as the
3920         // GC alloc regions from this pause have been tagged
3921         // as survivors and moved on to the survivor list.
3922         // Survivor regions will fail the !is_young() check.
3923         assert(check_young_list_empty(false /* check_heap */),
3924           "young list should be empty");
3925 
3926         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3927                                              _young_list->first_survivor_region(),
3928                                              _young_list->last_survivor_region());
3929 
3930         _young_list->reset_auxilary_lists();
3931 
3932         if (evacuation_failed()) {
3933           set_used(recalculate_used());
3934           if (_archive_allocator != NULL) {
3935             _archive_allocator->clear_used();
3936           }
3937           for (uint i = 0; i < ParallelGCThreads; i++) {
3938             if (_evacuation_failed_info_array[i].has_failed()) {
3939               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3940             }
3941           }
3942         } else {
3943           // The "used" of the the collection set have already been subtracted
3944           // when they were freed.  Add in the bytes evacuated.
3945           increase_used(g1_policy()->bytes_copied_during_gc());
3946         }
3947 
3948         if (collector_state()->during_initial_mark_pause()) {
3949           // We have to do this before we notify the CM threads that
3950           // they can start working to make sure that all the
3951           // appropriate initialization is done on the CM object.
3952           concurrent_mark()->checkpointRootsInitialPost();
3953           collector_state()->set_mark_in_progress(true);
3954           // Note that we don't actually trigger the CM thread at
3955           // this point. We do that later when we're sure that
3956           // the current thread has completed its logging output.
3957         }
3958 
3959         allocate_dummy_regions();
3960 
3961         _allocator->init_mutator_alloc_region();
3962 
3963         {
3964           size_t expand_bytes = g1_policy()->expansion_amount();
3965           if (expand_bytes > 0) {
3966             size_t bytes_before = capacity();
3967             // No need for an ergo verbose message here,
3968             // expansion_amount() does this when it returns a value > 0.
3969             double expand_ms;
3970             if (!expand(expand_bytes, &expand_ms)) {
3971               // We failed to expand the heap. Cannot do anything about it.
3972             }
3973             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3974           }
3975         }
3976 
3977         // We redo the verification but now wrt to the new CSet which
3978         // has just got initialized after the previous CSet was freed.
3979         _cm->verify_no_cset_oops();
3980         _cm->note_end_of_gc();
3981 
3982         // This timing is only used by the ergonomics to handle our pause target.
3983         // It is unclear why this should not include the full pause. We will
3984         // investigate this in CR 7178365.
3985         double sample_end_time_sec = os::elapsedTime();
3986         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3987         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3988         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
3989 
3990         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
3991         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3992 
3993         MemoryService::track_memory_usage();
3994 
3995         // In prepare_for_verify() below we'll need to scan the deferred
3996         // update buffers to bring the RSets up-to-date if
3997         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3998         // the update buffers we'll probably need to scan cards on the
3999         // regions we just allocated to (i.e., the GC alloc
4000         // regions). However, during the last GC we called
4001         // set_saved_mark() on all the GC alloc regions, so card
4002         // scanning might skip the [saved_mark_word()...top()] area of
4003         // those regions (i.e., the area we allocated objects into
4004         // during the last GC). But it shouldn't. Given that
4005         // saved_mark_word() is conditional on whether the GC time stamp
4006         // on the region is current or not, by incrementing the GC time
4007         // stamp here we invalidate all the GC time stamps on all the
4008         // regions and saved_mark_word() will simply return top() for
4009         // all the regions. This is a nicer way of ensuring this rather
4010         // than iterating over the regions and fixing them. In fact, the
4011         // GC time stamp increment here also ensures that
4012         // saved_mark_word() will return top() between pauses, i.e.,
4013         // during concurrent refinement. So we don't need the
4014         // is_gc_active() check to decided which top to use when
4015         // scanning cards (see CR 7039627).
4016         increment_gc_time_stamp();
4017 
4018         verify_after_gc();
4019         check_bitmaps("GC End");
4020 
4021         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4022         ref_processor_stw()->verify_no_references_recorded();
4023 
4024         // CM reference discovery will be re-enabled if necessary.
4025       }
4026 
4027       // We should do this after we potentially expand the heap so
4028       // that all the COMMIT events are generated before the end GC
4029       // event, and after we retire the GC alloc regions so that all
4030       // RETIRE events are generated before the end GC event.
4031       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4032 
4033 #ifdef TRACESPINNING
4034       ParallelTaskTerminator::print_termination_counts();
4035 #endif
4036 
4037       gc_epilogue(false);
4038     }
4039 
4040     // Print the remainder of the GC log output.
4041     log_gc_footer(os::elapsedTime() - pause_start_sec);
4042 
4043     // It is not yet to safe to tell the concurrent mark to
4044     // start as we have some optional output below. We don't want the
4045     // output from the concurrent mark thread interfering with this
4046     // logging output either.
4047 
4048     _hrm.verify_optional();
4049     verify_region_sets_optional();
4050 
4051     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4052     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4053 
4054     print_heap_after_gc();
4055     trace_heap_after_gc(_gc_tracer_stw);
4056 
4057     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4058     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4059     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4060     // before any GC notifications are raised.
4061     g1mm()->update_sizes();
4062 
4063     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4064     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4065     _gc_timer_stw->register_gc_end();
4066     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4067   }
4068   // It should now be safe to tell the concurrent mark thread to start
4069   // without its logging output interfering with the logging output
4070   // that came from the pause.
4071 
4072   if (should_start_conc_mark) {
4073     // CAUTION: after the doConcurrentMark() call below,
4074     // the concurrent marking thread(s) could be running
4075     // concurrently with us. Make sure that anything after
4076     // this point does not assume that we are the only GC thread
4077     // running. Note: of course, the actual marking work will
4078     // not start until the safepoint itself is released in
4079     // SuspendibleThreadSet::desynchronize().
4080     doConcurrentMark();
4081   }
4082 
4083   return true;
4084 }
4085 
4086 void G1CollectedHeap::remove_self_forwarding_pointers() {
4087   double remove_self_forwards_start = os::elapsedTime();
4088 
4089   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4090   workers()->run_task(&rsfp_task);
4091 
4092   // Now restore saved marks, if any.
4093   for (uint i = 0; i < ParallelGCThreads; i++) {
4094     OopAndMarkOopStack& cur = _preserved_objs[i];
4095     while (!cur.is_empty()) {
4096       OopAndMarkOop elem = cur.pop();
4097       elem.set_mark();
4098     }
4099     cur.clear(true);
4100   }
4101 
4102   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4103 }
4104 
4105 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4106   if (!_evacuation_failed) {
4107     _evacuation_failed = true;
4108   }
4109 
4110   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4111 
4112   // We want to call the "for_promotion_failure" version only in the
4113   // case of a promotion failure.
4114   if (m->must_be_preserved_for_promotion_failure(obj)) {
4115     OopAndMarkOop elem(obj, m);
4116     _preserved_objs[worker_id].push(elem);
4117   }
4118 }
4119 
4120 class G1ParEvacuateFollowersClosure : public VoidClosure {
4121 private:
4122   double _start_term;
4123   double _term_time;
4124   size_t _term_attempts;
4125 
4126   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4127   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4128 protected:
4129   G1CollectedHeap*              _g1h;
4130   G1ParScanThreadState*         _par_scan_state;
4131   RefToScanQueueSet*            _queues;
4132   ParallelTaskTerminator*       _terminator;
4133 
4134   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4135   RefToScanQueueSet*      queues()         { return _queues; }
4136   ParallelTaskTerminator* terminator()     { return _terminator; }
4137 
4138 public:
4139   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4140                                 G1ParScanThreadState* par_scan_state,
4141                                 RefToScanQueueSet* queues,
4142                                 ParallelTaskTerminator* terminator)
4143     : _g1h(g1h), _par_scan_state(par_scan_state),
4144       _queues(queues), _terminator(terminator),
4145       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4146 
4147   void do_void();
4148 
4149   double term_time() const { return _term_time; }
4150   size_t term_attempts() const { return _term_attempts; }
4151 
4152 private:
4153   inline bool offer_termination();
4154 };
4155 
4156 bool G1ParEvacuateFollowersClosure::offer_termination() {
4157   G1ParScanThreadState* const pss = par_scan_state();
4158   start_term_time();
4159   const bool res = terminator()->offer_termination();
4160   end_term_time();
4161   return res;
4162 }
4163 
4164 void G1ParEvacuateFollowersClosure::do_void() {
4165   G1ParScanThreadState* const pss = par_scan_state();
4166   pss->trim_queue();
4167   do {
4168     pss->steal_and_trim_queue(queues());
4169   } while (!offer_termination());
4170 }
4171 
4172 class G1ParTask : public AbstractGangTask {
4173 protected:
4174   G1CollectedHeap*         _g1h;
4175   G1ParScanThreadStateSet* _pss;
4176   RefToScanQueueSet*       _queues;
4177   G1RootProcessor*         _root_processor;
4178   ParallelTaskTerminator   _terminator;
4179   uint                     _n_workers;
4180 
4181 public:
4182   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4183     : AbstractGangTask("G1 collection"),
4184       _g1h(g1h),
4185       _pss(per_thread_states),
4186       _queues(task_queues),
4187       _root_processor(root_processor),
4188       _terminator(n_workers, _queues),
4189       _n_workers(n_workers)
4190   {}
4191 
4192   void work(uint worker_id) {
4193     if (worker_id >= _n_workers) return;  // no work needed this round
4194 
4195     double start_sec = os::elapsedTime();
4196     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4197 
4198     {
4199       ResourceMark rm;
4200       HandleMark   hm;
4201 
4202       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4203 
4204       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4205       pss->set_ref_processor(rp);
4206 
4207       double start_strong_roots_sec = os::elapsedTime();
4208 
4209       _root_processor->evacuate_roots(pss->closures(), worker_id);
4210 
4211       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4212 
4213       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4214       // treating the nmethods visited to act as roots for concurrent marking.
4215       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4216       // objects copied by the current evacuation.
4217       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4218                                                                              pss->closures()->weak_codeblobs(),
4219                                                                              worker_id);
4220 
4221       _pss->add_cards_scanned(worker_id, cards_scanned);
4222 
4223       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4224 
4225       double term_sec = 0.0;
4226       size_t evac_term_attempts = 0;
4227       {
4228         double start = os::elapsedTime();
4229         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4230         evac.do_void();
4231 
4232         evac_term_attempts = evac.term_attempts();
4233         term_sec = evac.term_time();
4234         double elapsed_sec = os::elapsedTime() - start;
4235         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4236         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4237         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4238       }
4239 
4240       assert(pss->queue_is_empty(), "should be empty");
4241 
4242       if (PrintTerminationStats) {
4243         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4244         size_t lab_waste;
4245         size_t lab_undo_waste;
4246         pss->waste(lab_waste, lab_undo_waste);
4247         _g1h->print_termination_stats(gclog_or_tty,
4248                                       worker_id,
4249                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4250                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4251                                       term_sec * 1000.0,                          /* evac term time */
4252                                       evac_term_attempts,                         /* evac term attempts */
4253                                       lab_waste,                                  /* alloc buffer waste */
4254                                       lab_undo_waste                              /* undo waste */
4255                                       );
4256       }
4257 
4258       // Close the inner scope so that the ResourceMark and HandleMark
4259       // destructors are executed here and are included as part of the
4260       // "GC Worker Time".
4261     }
4262     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4263   }
4264 };
4265 
4266 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4267   st->print_raw_cr("GC Termination Stats");
4268   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4269   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4270   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4271 }
4272 
4273 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4274                                               uint worker_id,
4275                                               double elapsed_ms,
4276                                               double strong_roots_ms,
4277                                               double term_ms,
4278                                               size_t term_attempts,
4279                                               size_t alloc_buffer_waste,
4280                                               size_t undo_waste) const {
4281   st->print_cr("%3d %9.2f %9.2f %6.2f "
4282                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4283                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4284                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4285                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4286                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4287                alloc_buffer_waste * HeapWordSize / K,
4288                undo_waste * HeapWordSize / K);
4289 }
4290 
4291 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4292 private:
4293   BoolObjectClosure* _is_alive;
4294   int _initial_string_table_size;
4295   int _initial_symbol_table_size;
4296 
4297   bool  _process_strings;
4298   int _strings_processed;
4299   int _strings_removed;
4300 
4301   bool  _process_symbols;
4302   int _symbols_processed;
4303   int _symbols_removed;
4304 
4305 public:
4306   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4307     AbstractGangTask("String/Symbol Unlinking"),
4308     _is_alive(is_alive),
4309     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4310     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4311 
4312     _initial_string_table_size = StringTable::the_table()->table_size();
4313     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4314     if (process_strings) {
4315       StringTable::clear_parallel_claimed_index();
4316     }
4317     if (process_symbols) {
4318       SymbolTable::clear_parallel_claimed_index();
4319     }
4320   }
4321 
4322   ~G1StringSymbolTableUnlinkTask() {
4323     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4324               "claim value %d after unlink less than initial string table size %d",
4325               StringTable::parallel_claimed_index(), _initial_string_table_size);
4326     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4327               "claim value %d after unlink less than initial symbol table size %d",
4328               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4329 
4330     if (G1TraceStringSymbolTableScrubbing) {
4331       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4332                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4333                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4334                              strings_processed(), strings_removed(),
4335                              symbols_processed(), symbols_removed());
4336     }
4337   }
4338 
4339   void work(uint worker_id) {
4340     int strings_processed = 0;
4341     int strings_removed = 0;
4342     int symbols_processed = 0;
4343     int symbols_removed = 0;
4344     if (_process_strings) {
4345       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4346       Atomic::add(strings_processed, &_strings_processed);
4347       Atomic::add(strings_removed, &_strings_removed);
4348     }
4349     if (_process_symbols) {
4350       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4351       Atomic::add(symbols_processed, &_symbols_processed);
4352       Atomic::add(symbols_removed, &_symbols_removed);
4353     }
4354   }
4355 
4356   size_t strings_processed() const { return (size_t)_strings_processed; }
4357   size_t strings_removed()   const { return (size_t)_strings_removed; }
4358 
4359   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4360   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4361 };
4362 
4363 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4364 private:
4365   static Monitor* _lock;
4366 
4367   BoolObjectClosure* const _is_alive;
4368   const bool               _unloading_occurred;
4369   const uint               _num_workers;
4370 
4371   // Variables used to claim nmethods.
4372   nmethod* _first_nmethod;
4373   volatile nmethod* _claimed_nmethod;
4374 
4375   // The list of nmethods that need to be processed by the second pass.
4376   volatile nmethod* _postponed_list;
4377   volatile uint     _num_entered_barrier;
4378 
4379  public:
4380   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4381       _is_alive(is_alive),
4382       _unloading_occurred(unloading_occurred),
4383       _num_workers(num_workers),
4384       _first_nmethod(NULL),
4385       _claimed_nmethod(NULL),
4386       _postponed_list(NULL),
4387       _num_entered_barrier(0)
4388   {
4389     nmethod::increase_unloading_clock();
4390     // Get first alive nmethod
4391     NMethodIterator iter = NMethodIterator();
4392     if(iter.next_alive()) {
4393       _first_nmethod = iter.method();
4394     }
4395     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4396   }
4397 
4398   ~G1CodeCacheUnloadingTask() {
4399     CodeCache::verify_clean_inline_caches();
4400 
4401     CodeCache::set_needs_cache_clean(false);
4402     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4403 
4404     CodeCache::verify_icholder_relocations();
4405   }
4406 
4407  private:
4408   void add_to_postponed_list(nmethod* nm) {
4409       nmethod* old;
4410       do {
4411         old = (nmethod*)_postponed_list;
4412         nm->set_unloading_next(old);
4413       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4414   }
4415 
4416   void clean_nmethod(nmethod* nm) {
4417     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4418 
4419     if (postponed) {
4420       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4421       add_to_postponed_list(nm);
4422     }
4423 
4424     // Mark that this thread has been cleaned/unloaded.
4425     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4426     nm->set_unloading_clock(nmethod::global_unloading_clock());
4427   }
4428 
4429   void clean_nmethod_postponed(nmethod* nm) {
4430     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4431   }
4432 
4433   static const int MaxClaimNmethods = 16;
4434 
4435   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4436     nmethod* first;
4437     NMethodIterator last;
4438 
4439     do {
4440       *num_claimed_nmethods = 0;
4441 
4442       first = (nmethod*)_claimed_nmethod;
4443       last = NMethodIterator(first);
4444 
4445       if (first != NULL) {
4446 
4447         for (int i = 0; i < MaxClaimNmethods; i++) {
4448           if (!last.next_alive()) {
4449             break;
4450           }
4451           claimed_nmethods[i] = last.method();
4452           (*num_claimed_nmethods)++;
4453         }
4454       }
4455 
4456     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4457   }
4458 
4459   nmethod* claim_postponed_nmethod() {
4460     nmethod* claim;
4461     nmethod* next;
4462 
4463     do {
4464       claim = (nmethod*)_postponed_list;
4465       if (claim == NULL) {
4466         return NULL;
4467       }
4468 
4469       next = claim->unloading_next();
4470 
4471     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4472 
4473     return claim;
4474   }
4475 
4476  public:
4477   // Mark that we're done with the first pass of nmethod cleaning.
4478   void barrier_mark(uint worker_id) {
4479     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4480     _num_entered_barrier++;
4481     if (_num_entered_barrier == _num_workers) {
4482       ml.notify_all();
4483     }
4484   }
4485 
4486   // See if we have to wait for the other workers to
4487   // finish their first-pass nmethod cleaning work.
4488   void barrier_wait(uint worker_id) {
4489     if (_num_entered_barrier < _num_workers) {
4490       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4491       while (_num_entered_barrier < _num_workers) {
4492           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4493       }
4494     }
4495   }
4496 
4497   // Cleaning and unloading of nmethods. Some work has to be postponed
4498   // to the second pass, when we know which nmethods survive.
4499   void work_first_pass(uint worker_id) {
4500     // The first nmethods is claimed by the first worker.
4501     if (worker_id == 0 && _first_nmethod != NULL) {
4502       clean_nmethod(_first_nmethod);
4503       _first_nmethod = NULL;
4504     }
4505 
4506     int num_claimed_nmethods;
4507     nmethod* claimed_nmethods[MaxClaimNmethods];
4508 
4509     while (true) {
4510       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4511 
4512       if (num_claimed_nmethods == 0) {
4513         break;
4514       }
4515 
4516       for (int i = 0; i < num_claimed_nmethods; i++) {
4517         clean_nmethod(claimed_nmethods[i]);
4518       }
4519     }
4520   }
4521 
4522   void work_second_pass(uint worker_id) {
4523     nmethod* nm;
4524     // Take care of postponed nmethods.
4525     while ((nm = claim_postponed_nmethod()) != NULL) {
4526       clean_nmethod_postponed(nm);
4527     }
4528   }
4529 };
4530 
4531 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4532 
4533 class G1KlassCleaningTask : public StackObj {
4534   BoolObjectClosure*                      _is_alive;
4535   volatile jint                           _clean_klass_tree_claimed;
4536   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4537 
4538  public:
4539   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4540       _is_alive(is_alive),
4541       _clean_klass_tree_claimed(0),
4542       _klass_iterator() {
4543   }
4544 
4545  private:
4546   bool claim_clean_klass_tree_task() {
4547     if (_clean_klass_tree_claimed) {
4548       return false;
4549     }
4550 
4551     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4552   }
4553 
4554   InstanceKlass* claim_next_klass() {
4555     Klass* klass;
4556     do {
4557       klass =_klass_iterator.next_klass();
4558     } while (klass != NULL && !klass->is_instance_klass());
4559 
4560     // this can be null so don't call InstanceKlass::cast
4561     return static_cast<InstanceKlass*>(klass);
4562   }
4563 
4564 public:
4565 
4566   void clean_klass(InstanceKlass* ik) {
4567     ik->clean_weak_instanceklass_links(_is_alive);
4568   }
4569 
4570   void work() {
4571     ResourceMark rm;
4572 
4573     // One worker will clean the subklass/sibling klass tree.
4574     if (claim_clean_klass_tree_task()) {
4575       Klass::clean_subklass_tree(_is_alive);
4576     }
4577 
4578     // All workers will help cleaning the classes,
4579     InstanceKlass* klass;
4580     while ((klass = claim_next_klass()) != NULL) {
4581       clean_klass(klass);
4582     }
4583   }
4584 };
4585 
4586 // To minimize the remark pause times, the tasks below are done in parallel.
4587 class G1ParallelCleaningTask : public AbstractGangTask {
4588 private:
4589   G1StringSymbolTableUnlinkTask _string_symbol_task;
4590   G1CodeCacheUnloadingTask      _code_cache_task;
4591   G1KlassCleaningTask           _klass_cleaning_task;
4592 
4593 public:
4594   // The constructor is run in the VMThread.
4595   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4596       AbstractGangTask("Parallel Cleaning"),
4597       _string_symbol_task(is_alive, process_strings, process_symbols),
4598       _code_cache_task(num_workers, is_alive, unloading_occurred),
4599       _klass_cleaning_task(is_alive) {
4600   }
4601 
4602   // The parallel work done by all worker threads.
4603   void work(uint worker_id) {
4604     // Do first pass of code cache cleaning.
4605     _code_cache_task.work_first_pass(worker_id);
4606 
4607     // Let the threads mark that the first pass is done.
4608     _code_cache_task.barrier_mark(worker_id);
4609 
4610     // Clean the Strings and Symbols.
4611     _string_symbol_task.work(worker_id);
4612 
4613     // Wait for all workers to finish the first code cache cleaning pass.
4614     _code_cache_task.barrier_wait(worker_id);
4615 
4616     // Do the second code cache cleaning work, which realize on
4617     // the liveness information gathered during the first pass.
4618     _code_cache_task.work_second_pass(worker_id);
4619 
4620     // Clean all klasses that were not unloaded.
4621     _klass_cleaning_task.work();
4622   }
4623 };
4624 
4625 
4626 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4627                                         bool process_strings,
4628                                         bool process_symbols,
4629                                         bool class_unloading_occurred) {
4630   uint n_workers = workers()->active_workers();
4631 
4632   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4633                                         n_workers, class_unloading_occurred);
4634   workers()->run_task(&g1_unlink_task);
4635 }
4636 
4637 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4638                                                      bool process_strings, bool process_symbols) {
4639   {
4640     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4641     workers()->run_task(&g1_unlink_task);
4642   }
4643 
4644   if (G1StringDedup::is_enabled()) {
4645     G1StringDedup::unlink(is_alive);
4646   }
4647 }
4648 
4649 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4650  private:
4651   DirtyCardQueueSet* _queue;
4652  public:
4653   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4654 
4655   virtual void work(uint worker_id) {
4656     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4657     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4658 
4659     RedirtyLoggedCardTableEntryClosure cl;
4660     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4661 
4662     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4663   }
4664 };
4665 
4666 void G1CollectedHeap::redirty_logged_cards() {
4667   double redirty_logged_cards_start = os::elapsedTime();
4668 
4669   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4670   dirty_card_queue_set().reset_for_par_iteration();
4671   workers()->run_task(&redirty_task);
4672 
4673   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4674   dcq.merge_bufferlists(&dirty_card_queue_set());
4675   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4676 
4677   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4678 }
4679 
4680 // Weak Reference Processing support
4681 
4682 // An always "is_alive" closure that is used to preserve referents.
4683 // If the object is non-null then it's alive.  Used in the preservation
4684 // of referent objects that are pointed to by reference objects
4685 // discovered by the CM ref processor.
4686 class G1AlwaysAliveClosure: public BoolObjectClosure {
4687   G1CollectedHeap* _g1;
4688 public:
4689   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4690   bool do_object_b(oop p) {
4691     if (p != NULL) {
4692       return true;
4693     }
4694     return false;
4695   }
4696 };
4697 
4698 bool G1STWIsAliveClosure::do_object_b(oop p) {
4699   // An object is reachable if it is outside the collection set,
4700   // or is inside and copied.
4701   return !_g1->is_in_cset(p) || p->is_forwarded();
4702 }
4703 
4704 // Non Copying Keep Alive closure
4705 class G1KeepAliveClosure: public OopClosure {
4706   G1CollectedHeap* _g1;
4707 public:
4708   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4709   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4710   void do_oop(oop* p) {
4711     oop obj = *p;
4712     assert(obj != NULL, "the caller should have filtered out NULL values");
4713 
4714     const InCSetState cset_state = _g1->in_cset_state(obj);
4715     if (!cset_state.is_in_cset_or_humongous()) {
4716       return;
4717     }
4718     if (cset_state.is_in_cset()) {
4719       assert( obj->is_forwarded(), "invariant" );
4720       *p = obj->forwardee();
4721     } else {
4722       assert(!obj->is_forwarded(), "invariant" );
4723       assert(cset_state.is_humongous(),
4724              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4725       _g1->set_humongous_is_live(obj);
4726     }
4727   }
4728 };
4729 
4730 // Copying Keep Alive closure - can be called from both
4731 // serial and parallel code as long as different worker
4732 // threads utilize different G1ParScanThreadState instances
4733 // and different queues.
4734 
4735 class G1CopyingKeepAliveClosure: public OopClosure {
4736   G1CollectedHeap*         _g1h;
4737   OopClosure*              _copy_non_heap_obj_cl;
4738   G1ParScanThreadState*    _par_scan_state;
4739 
4740 public:
4741   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4742                             OopClosure* non_heap_obj_cl,
4743                             G1ParScanThreadState* pss):
4744     _g1h(g1h),
4745     _copy_non_heap_obj_cl(non_heap_obj_cl),
4746     _par_scan_state(pss)
4747   {}
4748 
4749   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4750   virtual void do_oop(      oop* p) { do_oop_work(p); }
4751 
4752   template <class T> void do_oop_work(T* p) {
4753     oop obj = oopDesc::load_decode_heap_oop(p);
4754 
4755     if (_g1h->is_in_cset_or_humongous(obj)) {
4756       // If the referent object has been forwarded (either copied
4757       // to a new location or to itself in the event of an
4758       // evacuation failure) then we need to update the reference
4759       // field and, if both reference and referent are in the G1
4760       // heap, update the RSet for the referent.
4761       //
4762       // If the referent has not been forwarded then we have to keep
4763       // it alive by policy. Therefore we have copy the referent.
4764       //
4765       // If the reference field is in the G1 heap then we can push
4766       // on the PSS queue. When the queue is drained (after each
4767       // phase of reference processing) the object and it's followers
4768       // will be copied, the reference field set to point to the
4769       // new location, and the RSet updated. Otherwise we need to
4770       // use the the non-heap or metadata closures directly to copy
4771       // the referent object and update the pointer, while avoiding
4772       // updating the RSet.
4773 
4774       if (_g1h->is_in_g1_reserved(p)) {
4775         _par_scan_state->push_on_queue(p);
4776       } else {
4777         assert(!Metaspace::contains((const void*)p),
4778                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4779         _copy_non_heap_obj_cl->do_oop(p);
4780       }
4781     }
4782   }
4783 };
4784 
4785 // Serial drain queue closure. Called as the 'complete_gc'
4786 // closure for each discovered list in some of the
4787 // reference processing phases.
4788 
4789 class G1STWDrainQueueClosure: public VoidClosure {
4790 protected:
4791   G1CollectedHeap* _g1h;
4792   G1ParScanThreadState* _par_scan_state;
4793 
4794   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4795 
4796 public:
4797   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4798     _g1h(g1h),
4799     _par_scan_state(pss)
4800   { }
4801 
4802   void do_void() {
4803     G1ParScanThreadState* const pss = par_scan_state();
4804     pss->trim_queue();
4805   }
4806 };
4807 
4808 // Parallel Reference Processing closures
4809 
4810 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4811 // processing during G1 evacuation pauses.
4812 
4813 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4814 private:
4815   G1CollectedHeap*          _g1h;
4816   G1ParScanThreadStateSet*  _pss;
4817   RefToScanQueueSet*        _queues;
4818   WorkGang*                 _workers;
4819   uint                      _active_workers;
4820 
4821 public:
4822   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4823                            G1ParScanThreadStateSet* per_thread_states,
4824                            WorkGang* workers,
4825                            RefToScanQueueSet *task_queues,
4826                            uint n_workers) :
4827     _g1h(g1h),
4828     _pss(per_thread_states),
4829     _queues(task_queues),
4830     _workers(workers),
4831     _active_workers(n_workers)
4832   {
4833     assert(n_workers > 0, "shouldn't call this otherwise");
4834   }
4835 
4836   // Executes the given task using concurrent marking worker threads.
4837   virtual void execute(ProcessTask& task);
4838   virtual void execute(EnqueueTask& task);
4839 };
4840 
4841 // Gang task for possibly parallel reference processing
4842 
4843 class G1STWRefProcTaskProxy: public AbstractGangTask {
4844   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4845   ProcessTask&     _proc_task;
4846   G1CollectedHeap* _g1h;
4847   G1ParScanThreadStateSet* _pss;
4848   RefToScanQueueSet* _task_queues;
4849   ParallelTaskTerminator* _terminator;
4850 
4851 public:
4852   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4853                         G1CollectedHeap* g1h,
4854                         G1ParScanThreadStateSet* per_thread_states,
4855                         RefToScanQueueSet *task_queues,
4856                         ParallelTaskTerminator* terminator) :
4857     AbstractGangTask("Process reference objects in parallel"),
4858     _proc_task(proc_task),
4859     _g1h(g1h),
4860     _pss(per_thread_states),
4861     _task_queues(task_queues),
4862     _terminator(terminator)
4863   {}
4864 
4865   virtual void work(uint worker_id) {
4866     // The reference processing task executed by a single worker.
4867     ResourceMark rm;
4868     HandleMark   hm;
4869 
4870     G1STWIsAliveClosure is_alive(_g1h);
4871 
4872     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4873     pss->set_ref_processor(NULL);
4874 
4875     // Keep alive closure.
4876     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4877 
4878     // Complete GC closure
4879     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4880 
4881     // Call the reference processing task's work routine.
4882     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4883 
4884     // Note we cannot assert that the refs array is empty here as not all
4885     // of the processing tasks (specifically phase2 - pp2_work) execute
4886     // the complete_gc closure (which ordinarily would drain the queue) so
4887     // the queue may not be empty.
4888   }
4889 };
4890 
4891 // Driver routine for parallel reference processing.
4892 // Creates an instance of the ref processing gang
4893 // task and has the worker threads execute it.
4894 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4895   assert(_workers != NULL, "Need parallel worker threads.");
4896 
4897   ParallelTaskTerminator terminator(_active_workers, _queues);
4898   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4899 
4900   _workers->run_task(&proc_task_proxy);
4901 }
4902 
4903 // Gang task for parallel reference enqueueing.
4904 
4905 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4906   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4907   EnqueueTask& _enq_task;
4908 
4909 public:
4910   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4911     AbstractGangTask("Enqueue reference objects in parallel"),
4912     _enq_task(enq_task)
4913   { }
4914 
4915   virtual void work(uint worker_id) {
4916     _enq_task.work(worker_id);
4917   }
4918 };
4919 
4920 // Driver routine for parallel reference enqueueing.
4921 // Creates an instance of the ref enqueueing gang
4922 // task and has the worker threads execute it.
4923 
4924 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4925   assert(_workers != NULL, "Need parallel worker threads.");
4926 
4927   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4928 
4929   _workers->run_task(&enq_task_proxy);
4930 }
4931 
4932 // End of weak reference support closures
4933 
4934 // Abstract task used to preserve (i.e. copy) any referent objects
4935 // that are in the collection set and are pointed to by reference
4936 // objects discovered by the CM ref processor.
4937 
4938 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4939 protected:
4940   G1CollectedHeap*         _g1h;
4941   G1ParScanThreadStateSet* _pss;
4942   RefToScanQueueSet*       _queues;
4943   ParallelTaskTerminator   _terminator;
4944   uint                     _n_workers;
4945 
4946 public:
4947   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4948     AbstractGangTask("ParPreserveCMReferents"),
4949     _g1h(g1h),
4950     _pss(per_thread_states),
4951     _queues(task_queues),
4952     _terminator(workers, _queues),
4953     _n_workers(workers)
4954   { }
4955 
4956   void work(uint worker_id) {
4957     ResourceMark rm;
4958     HandleMark   hm;
4959 
4960     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4961     pss->set_ref_processor(NULL);
4962     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4963 
4964     // Is alive closure
4965     G1AlwaysAliveClosure always_alive(_g1h);
4966 
4967     // Copying keep alive closure. Applied to referent objects that need
4968     // to be copied.
4969     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4970 
4971     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4972 
4973     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4974     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4975 
4976     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4977     // So this must be true - but assert just in case someone decides to
4978     // change the worker ids.
4979     assert(worker_id < limit, "sanity");
4980     assert(!rp->discovery_is_atomic(), "check this code");
4981 
4982     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4983     for (uint idx = worker_id; idx < limit; idx += stride) {
4984       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4985 
4986       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4987       while (iter.has_next()) {
4988         // Since discovery is not atomic for the CM ref processor, we
4989         // can see some null referent objects.
4990         iter.load_ptrs(DEBUG_ONLY(true));
4991         oop ref = iter.obj();
4992 
4993         // This will filter nulls.
4994         if (iter.is_referent_alive()) {
4995           iter.make_referent_alive();
4996         }
4997         iter.move_to_next();
4998       }
4999     }
5000 
5001     // Drain the queue - which may cause stealing
5002     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
5003     drain_queue.do_void();
5004     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5005     assert(pss->queue_is_empty(), "should be");
5006   }
5007 };
5008 
5009 // Weak Reference processing during an evacuation pause (part 1).
5010 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5011   double ref_proc_start = os::elapsedTime();
5012 
5013   ReferenceProcessor* rp = _ref_processor_stw;
5014   assert(rp->discovery_enabled(), "should have been enabled");
5015 
5016   // Any reference objects, in the collection set, that were 'discovered'
5017   // by the CM ref processor should have already been copied (either by
5018   // applying the external root copy closure to the discovered lists, or
5019   // by following an RSet entry).
5020   //
5021   // But some of the referents, that are in the collection set, that these
5022   // reference objects point to may not have been copied: the STW ref
5023   // processor would have seen that the reference object had already
5024   // been 'discovered' and would have skipped discovering the reference,
5025   // but would not have treated the reference object as a regular oop.
5026   // As a result the copy closure would not have been applied to the
5027   // referent object.
5028   //
5029   // We need to explicitly copy these referent objects - the references
5030   // will be processed at the end of remarking.
5031   //
5032   // We also need to do this copying before we process the reference
5033   // objects discovered by the STW ref processor in case one of these
5034   // referents points to another object which is also referenced by an
5035   // object discovered by the STW ref processor.
5036 
5037   uint no_of_gc_workers = workers()->active_workers();
5038 
5039   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5040                                                  per_thread_states,
5041                                                  no_of_gc_workers,
5042                                                  _task_queues);
5043 
5044   workers()->run_task(&keep_cm_referents);
5045 
5046   // Closure to test whether a referent is alive.
5047   G1STWIsAliveClosure is_alive(this);
5048 
5049   // Even when parallel reference processing is enabled, the processing
5050   // of JNI refs is serial and performed serially by the current thread
5051   // rather than by a worker. The following PSS will be used for processing
5052   // JNI refs.
5053 
5054   // Use only a single queue for this PSS.
5055   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5056   pss->set_ref_processor(NULL);
5057   assert(pss->queue_is_empty(), "pre-condition");
5058 
5059   // Keep alive closure.
5060   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
5061 
5062   // Serial Complete GC closure
5063   G1STWDrainQueueClosure drain_queue(this, pss);
5064 
5065   // Setup the soft refs policy...
5066   rp->setup_policy(false);
5067 
5068   ReferenceProcessorStats stats;
5069   if (!rp->processing_is_mt()) {
5070     // Serial reference processing...
5071     stats = rp->process_discovered_references(&is_alive,
5072                                               &keep_alive,
5073                                               &drain_queue,
5074                                               NULL,
5075                                               _gc_timer_stw);
5076   } else {
5077     // Parallel reference processing
5078     assert(rp->num_q() == no_of_gc_workers, "sanity");
5079     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5080 
5081     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5082     stats = rp->process_discovered_references(&is_alive,
5083                                               &keep_alive,
5084                                               &drain_queue,
5085                                               &par_task_executor,
5086                                               _gc_timer_stw);
5087   }
5088 
5089   _gc_tracer_stw->report_gc_reference_stats(stats);
5090 
5091   // We have completed copying any necessary live referent objects.
5092   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5093 
5094   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5095   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5096 }
5097 
5098 // Weak Reference processing during an evacuation pause (part 2).
5099 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5100   double ref_enq_start = os::elapsedTime();
5101 
5102   ReferenceProcessor* rp = _ref_processor_stw;
5103   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5104 
5105   // Now enqueue any remaining on the discovered lists on to
5106   // the pending list.
5107   if (!rp->processing_is_mt()) {
5108     // Serial reference processing...
5109     rp->enqueue_discovered_references();
5110   } else {
5111     // Parallel reference enqueueing
5112 
5113     uint n_workers = workers()->active_workers();
5114 
5115     assert(rp->num_q() == n_workers, "sanity");
5116     assert(n_workers <= rp->max_num_q(), "sanity");
5117 
5118     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5119     rp->enqueue_discovered_references(&par_task_executor);
5120   }
5121 
5122   rp->verify_no_references_recorded();
5123   assert(!rp->discovery_enabled(), "should have been disabled");
5124 
5125   // FIXME
5126   // CM's reference processing also cleans up the string and symbol tables.
5127   // Should we do that here also? We could, but it is a serial operation
5128   // and could significantly increase the pause time.
5129 
5130   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5131   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5132 }
5133 
5134 void G1CollectedHeap::pre_evacuate_collection_set() {
5135   _expand_heap_after_alloc_failure = true;
5136   _evacuation_failed = false;
5137 
5138   // Disable the hot card cache.
5139   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5140   hot_card_cache->reset_hot_cache_claimed_index();
5141   hot_card_cache->set_use_cache(false);
5142 
5143 }
5144 
5145 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5146   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5147 
5148   // Should G1EvacuationFailureALot be in effect for this GC?
5149   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5150 
5151   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5152   double start_par_time_sec = os::elapsedTime();
5153   double end_par_time_sec;
5154 
5155   {
5156     const uint n_workers = workers()->active_workers();
5157     G1RootProcessor root_processor(this, n_workers);
5158     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5159     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5160     if (collector_state()->during_initial_mark_pause()) {
5161       ClassLoaderDataGraph::clear_claimed_marks();
5162     }
5163 
5164     // The individual threads will set their evac-failure closures.
5165     if (PrintTerminationStats) {
5166       print_termination_stats_hdr(gclog_or_tty);
5167     }
5168 
5169     workers()->run_task(&g1_par_task);
5170     end_par_time_sec = os::elapsedTime();
5171 
5172     // Closing the inner scope will execute the destructor
5173     // for the G1RootProcessor object. We record the current
5174     // elapsed time before closing the scope so that time
5175     // taken for the destructor is NOT included in the
5176     // reported parallel time.
5177   }
5178 
5179   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5180 
5181   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5182   phase_times->record_par_time(par_time_ms);
5183 
5184   double code_root_fixup_time_ms =
5185         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5186   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5187 
5188   // Process any discovered reference objects - we have
5189   // to do this _before_ we retire the GC alloc regions
5190   // as we may have to copy some 'reachable' referent
5191   // objects (and their reachable sub-graphs) that were
5192   // not copied during the pause.
5193   process_discovered_references(per_thread_states);
5194 
5195   if (G1StringDedup::is_enabled()) {
5196     double fixup_start = os::elapsedTime();
5197 
5198     G1STWIsAliveClosure is_alive(this);
5199     G1KeepAliveClosure keep_alive(this);
5200     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5201 
5202     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5203     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5204   }
5205 
5206   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5207 
5208   if (evacuation_failed()) {
5209     remove_self_forwarding_pointers();
5210 
5211     // Reset the G1EvacuationFailureALot counters and flags
5212     // Note: the values are reset only when an actual
5213     // evacuation failure occurs.
5214     NOT_PRODUCT(reset_evacuation_should_fail();)
5215   }
5216 
5217   // Enqueue any remaining references remaining on the STW
5218   // reference processor's discovered lists. We need to do
5219   // this after the card table is cleaned (and verified) as
5220   // the act of enqueueing entries on to the pending list
5221   // will log these updates (and dirty their associated
5222   // cards). We need these updates logged to update any
5223   // RSets.
5224   enqueue_discovered_references(per_thread_states);
5225 }
5226 
5227 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5228   _allocator->release_gc_alloc_regions(evacuation_info);
5229 
5230   per_thread_states->flush();
5231 
5232   record_obj_copy_mem_stats();
5233 
5234   _survivor_evac_stats.adjust_desired_plab_sz();
5235   _old_evac_stats.adjust_desired_plab_sz();
5236 
5237   // Reset and re-enable the hot card cache.
5238   // Note the counts for the cards in the regions in the
5239   // collection set are reset when the collection set is freed.
5240   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5241   hot_card_cache->reset_hot_cache();
5242   hot_card_cache->set_use_cache(true);
5243 
5244   purge_code_root_memory();
5245 
5246   redirty_logged_cards();
5247 #if defined(COMPILER2) || INCLUDE_JVMCI
5248   DerivedPointerTable::update_pointers();
5249 #endif
5250 }
5251 
5252 void G1CollectedHeap::record_obj_copy_mem_stats() {
5253   g1_policy()->add_last_old_allocated_bytes(_old_evac_stats.allocated() * HeapWordSize);
5254 
5255   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5256                                                create_g1_evac_summary(&_old_evac_stats));
5257 }
5258 
5259 void G1CollectedHeap::free_region(HeapRegion* hr,
5260                                   FreeRegionList* free_list,
5261                                   bool par,
5262                                   bool locked) {
5263   assert(!hr->is_free(), "the region should not be free");
5264   assert(!hr->is_empty(), "the region should not be empty");
5265   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5266   assert(free_list != NULL, "pre-condition");
5267 
5268   if (G1VerifyBitmaps) {
5269     MemRegion mr(hr->bottom(), hr->end());
5270     concurrent_mark()->clearRangePrevBitmap(mr);
5271   }
5272 
5273   // Clear the card counts for this region.
5274   // Note: we only need to do this if the region is not young
5275   // (since we don't refine cards in young regions).
5276   if (!hr->is_young()) {
5277     _cg1r->hot_card_cache()->reset_card_counts(hr);
5278   }
5279   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5280   free_list->add_ordered(hr);
5281 }
5282 
5283 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5284                                             FreeRegionList* free_list,
5285                                             bool par) {
5286   assert(hr->is_humongous(), "this is only for humongous regions");
5287   assert(free_list != NULL, "pre-condition");
5288   hr->clear_humongous();
5289   free_region(hr, free_list, par);
5290 }
5291 
5292 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5293                                            const HeapRegionSetCount& humongous_regions_removed) {
5294   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5295     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5296     _old_set.bulk_remove(old_regions_removed);
5297     _humongous_set.bulk_remove(humongous_regions_removed);
5298   }
5299 
5300 }
5301 
5302 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5303   assert(list != NULL, "list can't be null");
5304   if (!list->is_empty()) {
5305     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5306     _hrm.insert_list_into_free_list(list);
5307   }
5308 }
5309 
5310 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5311   decrease_used(bytes);
5312 }
5313 
5314 class G1ParCleanupCTTask : public AbstractGangTask {
5315   G1SATBCardTableModRefBS* _ct_bs;
5316   G1CollectedHeap* _g1h;
5317   HeapRegion* volatile _su_head;
5318 public:
5319   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5320                      G1CollectedHeap* g1h) :
5321     AbstractGangTask("G1 Par Cleanup CT Task"),
5322     _ct_bs(ct_bs), _g1h(g1h) { }
5323 
5324   void work(uint worker_id) {
5325     HeapRegion* r;
5326     while (r = _g1h->pop_dirty_cards_region()) {
5327       clear_cards(r);
5328     }
5329   }
5330 
5331   void clear_cards(HeapRegion* r) {
5332     // Cards of the survivors should have already been dirtied.
5333     if (!r->is_survivor()) {
5334       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5335     }
5336   }
5337 };
5338 
5339 #ifndef PRODUCT
5340 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5341   G1CollectedHeap* _g1h;
5342   G1SATBCardTableModRefBS* _ct_bs;
5343 public:
5344   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5345     : _g1h(g1h), _ct_bs(ct_bs) { }
5346   virtual bool doHeapRegion(HeapRegion* r) {
5347     if (r->is_survivor()) {
5348       _g1h->verify_dirty_region(r);
5349     } else {
5350       _g1h->verify_not_dirty_region(r);
5351     }
5352     return false;
5353   }
5354 };
5355 
5356 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5357   // All of the region should be clean.
5358   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5359   MemRegion mr(hr->bottom(), hr->end());
5360   ct_bs->verify_not_dirty_region(mr);
5361 }
5362 
5363 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5364   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5365   // dirty allocated blocks as they allocate them. The thread that
5366   // retires each region and replaces it with a new one will do a
5367   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5368   // not dirty that area (one less thing to have to do while holding
5369   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5370   // is dirty.
5371   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5372   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5373   if (hr->is_young()) {
5374     ct_bs->verify_g1_young_region(mr);
5375   } else {
5376     ct_bs->verify_dirty_region(mr);
5377   }
5378 }
5379 
5380 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5381   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5382   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5383     verify_dirty_region(hr);
5384   }
5385 }
5386 
5387 void G1CollectedHeap::verify_dirty_young_regions() {
5388   verify_dirty_young_list(_young_list->first_region());
5389 }
5390 
5391 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5392                                                HeapWord* tams, HeapWord* end) {
5393   guarantee(tams <= end,
5394             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5395   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5396   if (result < end) {
5397     gclog_or_tty->cr();
5398     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5399                            bitmap_name, p2i(result));
5400     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5401                            bitmap_name, p2i(tams), p2i(end));
5402     return false;
5403   }
5404   return true;
5405 }
5406 
5407 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5408   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5409   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5410 
5411   HeapWord* bottom = hr->bottom();
5412   HeapWord* ptams  = hr->prev_top_at_mark_start();
5413   HeapWord* ntams  = hr->next_top_at_mark_start();
5414   HeapWord* end    = hr->end();
5415 
5416   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5417 
5418   bool res_n = true;
5419   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5420   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5421   // if we happen to be in that state.
5422   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5423     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5424   }
5425   if (!res_p || !res_n) {
5426     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5427                            HR_FORMAT_PARAMS(hr));
5428     gclog_or_tty->print_cr("#### Caller: %s", caller);
5429     return false;
5430   }
5431   return true;
5432 }
5433 
5434 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5435   if (!G1VerifyBitmaps) return;
5436 
5437   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5438 }
5439 
5440 class G1VerifyBitmapClosure : public HeapRegionClosure {
5441 private:
5442   const char* _caller;
5443   G1CollectedHeap* _g1h;
5444   bool _failures;
5445 
5446 public:
5447   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5448     _caller(caller), _g1h(g1h), _failures(false) { }
5449 
5450   bool failures() { return _failures; }
5451 
5452   virtual bool doHeapRegion(HeapRegion* hr) {
5453     bool result = _g1h->verify_bitmaps(_caller, hr);
5454     if (!result) {
5455       _failures = true;
5456     }
5457     return false;
5458   }
5459 };
5460 
5461 void G1CollectedHeap::check_bitmaps(const char* caller) {
5462   if (!G1VerifyBitmaps) return;
5463 
5464   G1VerifyBitmapClosure cl(caller, this);
5465   heap_region_iterate(&cl);
5466   guarantee(!cl.failures(), "bitmap verification");
5467 }
5468 
5469 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5470  private:
5471   bool _failures;
5472  public:
5473   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5474 
5475   virtual bool doHeapRegion(HeapRegion* hr) {
5476     uint i = hr->hrm_index();
5477     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5478     if (hr->is_humongous()) {
5479       if (hr->in_collection_set()) {
5480         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5481         _failures = true;
5482         return true;
5483       }
5484       if (cset_state.is_in_cset()) {
5485         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5486         _failures = true;
5487         return true;
5488       }
5489       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5490         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5491         _failures = true;
5492         return true;
5493       }
5494     } else {
5495       if (cset_state.is_humongous()) {
5496         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5497         _failures = true;
5498         return true;
5499       }
5500       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5501         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5502                                hr->in_collection_set(), cset_state.value(), i);
5503         _failures = true;
5504         return true;
5505       }
5506       if (cset_state.is_in_cset()) {
5507         if (hr->is_young() != (cset_state.is_young())) {
5508           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5509                                  hr->is_young(), cset_state.value(), i);
5510           _failures = true;
5511           return true;
5512         }
5513         if (hr->is_old() != (cset_state.is_old())) {
5514           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5515                                  hr->is_old(), cset_state.value(), i);
5516           _failures = true;
5517           return true;
5518         }
5519       }
5520     }
5521     return false;
5522   }
5523 
5524   bool failures() const { return _failures; }
5525 };
5526 
5527 bool G1CollectedHeap::check_cset_fast_test() {
5528   G1CheckCSetFastTableClosure cl;
5529   _hrm.iterate(&cl);
5530   return !cl.failures();
5531 }
5532 #endif // PRODUCT
5533 
5534 void G1CollectedHeap::cleanUpCardTable() {
5535   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5536   double start = os::elapsedTime();
5537 
5538   {
5539     // Iterate over the dirty cards region list.
5540     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5541 
5542     workers()->run_task(&cleanup_task);
5543 #ifndef PRODUCT
5544     if (G1VerifyCTCleanup || VerifyAfterGC) {
5545       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5546       heap_region_iterate(&cleanup_verifier);
5547     }
5548 #endif
5549   }
5550 
5551   double elapsed = os::elapsedTime() - start;
5552   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5553 }
5554 
5555 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5556   size_t pre_used = 0;
5557   FreeRegionList local_free_list("Local List for CSet Freeing");
5558 
5559   double young_time_ms     = 0.0;
5560   double non_young_time_ms = 0.0;
5561 
5562   // Since the collection set is a superset of the the young list,
5563   // all we need to do to clear the young list is clear its
5564   // head and length, and unlink any young regions in the code below
5565   _young_list->clear();
5566 
5567   G1CollectorPolicy* policy = g1_policy();
5568 
5569   double start_sec = os::elapsedTime();
5570   bool non_young = true;
5571 
5572   HeapRegion* cur = cs_head;
5573   int age_bound = -1;
5574   size_t rs_lengths = 0;
5575 
5576   while (cur != NULL) {
5577     assert(!is_on_master_free_list(cur), "sanity");
5578     if (non_young) {
5579       if (cur->is_young()) {
5580         double end_sec = os::elapsedTime();
5581         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5582         non_young_time_ms += elapsed_ms;
5583 
5584         start_sec = os::elapsedTime();
5585         non_young = false;
5586       }
5587     } else {
5588       if (!cur->is_young()) {
5589         double end_sec = os::elapsedTime();
5590         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5591         young_time_ms += elapsed_ms;
5592 
5593         start_sec = os::elapsedTime();
5594         non_young = true;
5595       }
5596     }
5597 
5598     rs_lengths += cur->rem_set()->occupied_locked();
5599 
5600     HeapRegion* next = cur->next_in_collection_set();
5601     assert(cur->in_collection_set(), "bad CS");
5602     cur->set_next_in_collection_set(NULL);
5603     clear_in_cset(cur);
5604 
5605     if (cur->is_young()) {
5606       int index = cur->young_index_in_cset();
5607       assert(index != -1, "invariant");
5608       assert((uint) index < policy->young_cset_region_length(), "invariant");
5609       size_t words_survived = surviving_young_words[index];
5610       cur->record_surv_words_in_group(words_survived);
5611 
5612       // At this point the we have 'popped' cur from the collection set
5613       // (linked via next_in_collection_set()) but it is still in the
5614       // young list (linked via next_young_region()). Clear the
5615       // _next_young_region field.
5616       cur->set_next_young_region(NULL);
5617     } else {
5618       int index = cur->young_index_in_cset();
5619       assert(index == -1, "invariant");
5620     }
5621 
5622     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5623             (!cur->is_young() && cur->young_index_in_cset() == -1),
5624             "invariant" );
5625 
5626     if (!cur->evacuation_failed()) {
5627       MemRegion used_mr = cur->used_region();
5628 
5629       // And the region is empty.
5630       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5631       pre_used += cur->used();
5632       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5633     } else {
5634       cur->uninstall_surv_rate_group();
5635       if (cur->is_young()) {
5636         cur->set_young_index_in_cset(-1);
5637       }
5638       cur->set_evacuation_failed(false);
5639       // When moving a young gen region to old gen, we "allocate" that whole region
5640       // there. This is in addition to any already evacuated objects. Notify the
5641       // policy about that.
5642       // Old gen regions do not cause an additional allocation: both the objects
5643       // still in the region and the ones already moved are accounted for elsewhere.
5644       if (cur->is_young()) {
5645         policy->add_last_old_allocated_bytes(HeapRegion::GrainBytes);
5646       }
5647       // The region is now considered to be old.
5648       cur->set_old();
5649       // Do some allocation statistics accounting. Regions that failed evacuation
5650       // are always made old, so there is no need to update anything in the young
5651       // gen statistics, but we need to update old gen statistics.
5652       size_t used_words = cur->marked_bytes() / HeapWordSize;
5653       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5654       _old_set.add(cur);
5655       evacuation_info.increment_collectionset_used_after(cur->used());
5656     }
5657     cur = next;
5658   }
5659 
5660   evacuation_info.set_regions_freed(local_free_list.length());
5661   policy->record_max_rs_lengths(rs_lengths);
5662   policy->cset_regions_freed();
5663 
5664   double end_sec = os::elapsedTime();
5665   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5666 
5667   if (non_young) {
5668     non_young_time_ms += elapsed_ms;
5669   } else {
5670     young_time_ms += elapsed_ms;
5671   }
5672 
5673   prepend_to_freelist(&local_free_list);
5674   decrement_summary_bytes(pre_used);
5675   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5676   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5677 }
5678 
5679 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5680  private:
5681   FreeRegionList* _free_region_list;
5682   HeapRegionSet* _proxy_set;
5683   HeapRegionSetCount _humongous_regions_removed;
5684   size_t _freed_bytes;
5685  public:
5686 
5687   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5688     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5689   }
5690 
5691   virtual bool doHeapRegion(HeapRegion* r) {
5692     if (!r->is_starts_humongous()) {
5693       return false;
5694     }
5695 
5696     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5697 
5698     oop obj = (oop)r->bottom();
5699     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5700 
5701     // The following checks whether the humongous object is live are sufficient.
5702     // The main additional check (in addition to having a reference from the roots
5703     // or the young gen) is whether the humongous object has a remembered set entry.
5704     //
5705     // A humongous object cannot be live if there is no remembered set for it
5706     // because:
5707     // - there can be no references from within humongous starts regions referencing
5708     // the object because we never allocate other objects into them.
5709     // (I.e. there are no intra-region references that may be missed by the
5710     // remembered set)
5711     // - as soon there is a remembered set entry to the humongous starts region
5712     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5713     // until the end of a concurrent mark.
5714     //
5715     // It is not required to check whether the object has been found dead by marking
5716     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5717     // all objects allocated during that time are considered live.
5718     // SATB marking is even more conservative than the remembered set.
5719     // So if at this point in the collection there is no remembered set entry,
5720     // nobody has a reference to it.
5721     // At the start of collection we flush all refinement logs, and remembered sets
5722     // are completely up-to-date wrt to references to the humongous object.
5723     //
5724     // Other implementation considerations:
5725     // - never consider object arrays at this time because they would pose
5726     // considerable effort for cleaning up the the remembered sets. This is
5727     // required because stale remembered sets might reference locations that
5728     // are currently allocated into.
5729     uint region_idx = r->hrm_index();
5730     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5731         !r->rem_set()->is_empty()) {
5732 
5733       if (G1TraceEagerReclaimHumongousObjects) {
5734         gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5735                                region_idx,
5736                                (size_t)obj->size() * HeapWordSize,
5737                                p2i(r->bottom()),
5738                                r->rem_set()->occupied(),
5739                                r->rem_set()->strong_code_roots_list_length(),
5740                                next_bitmap->isMarked(r->bottom()),
5741                                g1h->is_humongous_reclaim_candidate(region_idx),
5742                                obj->is_typeArray()
5743                               );
5744       }
5745 
5746       return false;
5747     }
5748 
5749     guarantee(obj->is_typeArray(),
5750               "Only eagerly reclaiming type arrays is supported, but the object "
5751               PTR_FORMAT " is not.", p2i(r->bottom()));
5752 
5753     if (G1TraceEagerReclaimHumongousObjects) {
5754       gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5755                              region_idx,
5756                              (size_t)obj->size() * HeapWordSize,
5757                              p2i(r->bottom()),
5758                              r->rem_set()->occupied(),
5759                              r->rem_set()->strong_code_roots_list_length(),
5760                              next_bitmap->isMarked(r->bottom()),
5761                              g1h->is_humongous_reclaim_candidate(region_idx),
5762                              obj->is_typeArray()
5763                             );
5764     }
5765     // Need to clear mark bit of the humongous object if already set.
5766     if (next_bitmap->isMarked(r->bottom())) {
5767       next_bitmap->clear(r->bottom());
5768     }
5769     do {
5770       HeapRegion* next = g1h->next_region_in_humongous(r);
5771       _freed_bytes += r->used();
5772       r->set_containing_set(NULL);
5773       _humongous_regions_removed.increment(1u, r->capacity());
5774       g1h->free_humongous_region(r, _free_region_list, false);
5775       r = next;
5776     } while (r != NULL);
5777 
5778     return false;
5779   }
5780 
5781   HeapRegionSetCount& humongous_free_count() {
5782     return _humongous_regions_removed;
5783   }
5784 
5785   size_t bytes_freed() const {
5786     return _freed_bytes;
5787   }
5788 
5789   size_t humongous_reclaimed() const {
5790     return _humongous_regions_removed.length();
5791   }
5792 };
5793 
5794 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5795   assert_at_safepoint(true);
5796 
5797   if (!G1EagerReclaimHumongousObjects ||
5798       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5799     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5800     return;
5801   }
5802 
5803   double start_time = os::elapsedTime();
5804 
5805   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5806 
5807   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5808   heap_region_iterate(&cl);
5809 
5810   HeapRegionSetCount empty_set;
5811   remove_from_old_sets(empty_set, cl.humongous_free_count());
5812 
5813   G1HRPrinter* hrp = hr_printer();
5814   if (hrp->is_active()) {
5815     FreeRegionListIterator iter(&local_cleanup_list);
5816     while (iter.more_available()) {
5817       HeapRegion* hr = iter.get_next();
5818       hrp->cleanup(hr);
5819     }
5820   }
5821 
5822   prepend_to_freelist(&local_cleanup_list);
5823   decrement_summary_bytes(cl.bytes_freed());
5824 
5825   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5826                                                                     cl.humongous_reclaimed());
5827 }
5828 
5829 // This routine is similar to the above but does not record
5830 // any policy statistics or update free lists; we are abandoning
5831 // the current incremental collection set in preparation of a
5832 // full collection. After the full GC we will start to build up
5833 // the incremental collection set again.
5834 // This is only called when we're doing a full collection
5835 // and is immediately followed by the tearing down of the young list.
5836 
5837 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5838   HeapRegion* cur = cs_head;
5839 
5840   while (cur != NULL) {
5841     HeapRegion* next = cur->next_in_collection_set();
5842     assert(cur->in_collection_set(), "bad CS");
5843     cur->set_next_in_collection_set(NULL);
5844     clear_in_cset(cur);
5845     cur->set_young_index_in_cset(-1);
5846     cur = next;
5847   }
5848 }
5849 
5850 void G1CollectedHeap::set_free_regions_coming() {
5851   if (G1ConcRegionFreeingVerbose) {
5852     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5853                            "setting free regions coming");
5854   }
5855 
5856   assert(!free_regions_coming(), "pre-condition");
5857   _free_regions_coming = true;
5858 }
5859 
5860 void G1CollectedHeap::reset_free_regions_coming() {
5861   assert(free_regions_coming(), "pre-condition");
5862 
5863   {
5864     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5865     _free_regions_coming = false;
5866     SecondaryFreeList_lock->notify_all();
5867   }
5868 
5869   if (G1ConcRegionFreeingVerbose) {
5870     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5871                            "reset free regions coming");
5872   }
5873 }
5874 
5875 void G1CollectedHeap::wait_while_free_regions_coming() {
5876   // Most of the time we won't have to wait, so let's do a quick test
5877   // first before we take the lock.
5878   if (!free_regions_coming()) {
5879     return;
5880   }
5881 
5882   if (G1ConcRegionFreeingVerbose) {
5883     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5884                            "waiting for free regions");
5885   }
5886 
5887   {
5888     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5889     while (free_regions_coming()) {
5890       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5891     }
5892   }
5893 
5894   if (G1ConcRegionFreeingVerbose) {
5895     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5896                            "done waiting for free regions");
5897   }
5898 }
5899 
5900 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5901   return _allocator->is_retained_old_region(hr);
5902 }
5903 
5904 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5905   _young_list->push_region(hr);
5906 }
5907 
5908 class NoYoungRegionsClosure: public HeapRegionClosure {
5909 private:
5910   bool _success;
5911 public:
5912   NoYoungRegionsClosure() : _success(true) { }
5913   bool doHeapRegion(HeapRegion* r) {
5914     if (r->is_young()) {
5915       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5916                              p2i(r->bottom()), p2i(r->end()));
5917       _success = false;
5918     }
5919     return false;
5920   }
5921   bool success() { return _success; }
5922 };
5923 
5924 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5925   bool ret = _young_list->check_list_empty(check_sample);
5926 
5927   if (check_heap) {
5928     NoYoungRegionsClosure closure;
5929     heap_region_iterate(&closure);
5930     ret = ret && closure.success();
5931   }
5932 
5933   return ret;
5934 }
5935 
5936 class TearDownRegionSetsClosure : public HeapRegionClosure {
5937 private:
5938   HeapRegionSet *_old_set;
5939 
5940 public:
5941   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5942 
5943   bool doHeapRegion(HeapRegion* r) {
5944     if (r->is_old()) {
5945       _old_set->remove(r);
5946     } else {
5947       // We ignore free regions, we'll empty the free list afterwards.
5948       // We ignore young regions, we'll empty the young list afterwards.
5949       // We ignore humongous regions, we're not tearing down the
5950       // humongous regions set.
5951       assert(r->is_free() || r->is_young() || r->is_humongous(),
5952              "it cannot be another type");
5953     }
5954     return false;
5955   }
5956 
5957   ~TearDownRegionSetsClosure() {
5958     assert(_old_set->is_empty(), "post-condition");
5959   }
5960 };
5961 
5962 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5963   assert_at_safepoint(true /* should_be_vm_thread */);
5964 
5965   if (!free_list_only) {
5966     TearDownRegionSetsClosure cl(&_old_set);
5967     heap_region_iterate(&cl);
5968 
5969     // Note that emptying the _young_list is postponed and instead done as
5970     // the first step when rebuilding the regions sets again. The reason for
5971     // this is that during a full GC string deduplication needs to know if
5972     // a collected region was young or old when the full GC was initiated.
5973   }
5974   _hrm.remove_all_free_regions();
5975 }
5976 
5977 void G1CollectedHeap::increase_used(size_t bytes) {
5978   _summary_bytes_used += bytes;
5979 }
5980 
5981 void G1CollectedHeap::decrease_used(size_t bytes) {
5982   assert(_summary_bytes_used >= bytes,
5983          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5984          _summary_bytes_used, bytes);
5985   _summary_bytes_used -= bytes;
5986 }
5987 
5988 void G1CollectedHeap::set_used(size_t bytes) {
5989   _summary_bytes_used = bytes;
5990 }
5991 
5992 class RebuildRegionSetsClosure : public HeapRegionClosure {
5993 private:
5994   bool            _free_list_only;
5995   HeapRegionSet*   _old_set;
5996   HeapRegionManager*   _hrm;
5997   size_t          _total_used;
5998 
5999 public:
6000   RebuildRegionSetsClosure(bool free_list_only,
6001                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6002     _free_list_only(free_list_only),
6003     _old_set(old_set), _hrm(hrm), _total_used(0) {
6004     assert(_hrm->num_free_regions() == 0, "pre-condition");
6005     if (!free_list_only) {
6006       assert(_old_set->is_empty(), "pre-condition");
6007     }
6008   }
6009 
6010   bool doHeapRegion(HeapRegion* r) {
6011     if (r->is_empty()) {
6012       // Add free regions to the free list
6013       r->set_free();
6014       r->set_allocation_context(AllocationContext::system());
6015       _hrm->insert_into_free_list(r);
6016     } else if (!_free_list_only) {
6017       assert(!r->is_young(), "we should not come across young regions");
6018 
6019       if (r->is_humongous()) {
6020         // We ignore humongous regions. We left the humongous set unchanged.
6021       } else {
6022         // Objects that were compacted would have ended up on regions
6023         // that were previously old or free.  Archive regions (which are
6024         // old) will not have been touched.
6025         assert(r->is_free() || r->is_old(), "invariant");
6026         // We now consider them old, so register as such. Leave
6027         // archive regions set that way, however, while still adding
6028         // them to the old set.
6029         if (!r->is_archive()) {
6030           r->set_old();
6031         }
6032         _old_set->add(r);
6033       }
6034       _total_used += r->used();
6035     }
6036 
6037     return false;
6038   }
6039 
6040   size_t total_used() {
6041     return _total_used;
6042   }
6043 };
6044 
6045 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6046   assert_at_safepoint(true /* should_be_vm_thread */);
6047 
6048   if (!free_list_only) {
6049     _young_list->empty_list();
6050   }
6051 
6052   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6053   heap_region_iterate(&cl);
6054 
6055   if (!free_list_only) {
6056     set_used(cl.total_used());
6057     if (_archive_allocator != NULL) {
6058       _archive_allocator->clear_used();
6059     }
6060   }
6061   assert(used_unlocked() == recalculate_used(),
6062          "inconsistent used_unlocked(), "
6063          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6064          used_unlocked(), recalculate_used());
6065 }
6066 
6067 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6068   _refine_cte_cl->set_concurrent(concurrent);
6069 }
6070 
6071 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6072   HeapRegion* hr = heap_region_containing(p);
6073   return hr->is_in(p);
6074 }
6075 
6076 // Methods for the mutator alloc region
6077 
6078 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6079                                                       bool force) {
6080   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6081   assert(!force || g1_policy()->can_expand_young_list(),
6082          "if force is true we should be able to expand the young list");
6083   bool young_list_full = g1_policy()->is_young_list_full();
6084   if (force || !young_list_full) {
6085     HeapRegion* new_alloc_region = new_region(word_size,
6086                                               false /* is_old */,
6087                                               false /* do_expand */);
6088     if (new_alloc_region != NULL) {
6089       set_region_short_lived_locked(new_alloc_region);
6090       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6091       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6092       return new_alloc_region;
6093     }
6094   }
6095   return NULL;
6096 }
6097 
6098 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6099                                                   size_t allocated_bytes) {
6100   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6101   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6102 
6103   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6104   increase_used(allocated_bytes);
6105   _hr_printer.retire(alloc_region);
6106   // We update the eden sizes here, when the region is retired,
6107   // instead of when it's allocated, since this is the point that its
6108   // used space has been recored in _summary_bytes_used.
6109   g1mm()->update_eden_size();
6110 }
6111 
6112 // Methods for the GC alloc regions
6113 
6114 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6115                                                  uint count,
6116                                                  InCSetState dest) {
6117   assert(FreeList_lock->owned_by_self(), "pre-condition");
6118 
6119   if (count < g1_policy()->max_regions(dest)) {
6120     const bool is_survivor = (dest.is_young());
6121     HeapRegion* new_alloc_region = new_region(word_size,
6122                                               !is_survivor,
6123                                               true /* do_expand */);
6124     if (new_alloc_region != NULL) {
6125       // We really only need to do this for old regions given that we
6126       // should never scan survivors. But it doesn't hurt to do it
6127       // for survivors too.
6128       new_alloc_region->record_timestamp();
6129       if (is_survivor) {
6130         new_alloc_region->set_survivor();
6131         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6132         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6133       } else {
6134         new_alloc_region->set_old();
6135         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6136         check_bitmaps("Old Region Allocation", new_alloc_region);
6137       }
6138       bool during_im = collector_state()->during_initial_mark_pause();
6139       new_alloc_region->note_start_of_copying(during_im);
6140       return new_alloc_region;
6141     }
6142   }
6143   return NULL;
6144 }
6145 
6146 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6147                                              size_t allocated_bytes,
6148                                              InCSetState dest) {
6149   bool during_im = collector_state()->during_initial_mark_pause();
6150   alloc_region->note_end_of_copying(during_im);
6151   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6152   if (dest.is_young()) {
6153     young_list()->add_survivor_region(alloc_region);
6154   } else {
6155     _old_set.add(alloc_region);
6156   }
6157   _hr_printer.retire(alloc_region);
6158 }
6159 
6160 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6161   bool expanded = false;
6162   uint index = _hrm.find_highest_free(&expanded);
6163 
6164   if (index != G1_NO_HRM_INDEX) {
6165     if (expanded) {
6166       ergo_verbose1(ErgoHeapSizing,
6167                     "attempt heap expansion",
6168                     ergo_format_reason("requested address range outside heap bounds")
6169                     ergo_format_byte("region size"),
6170                     HeapRegion::GrainWords * HeapWordSize);
6171     }
6172     _hrm.allocate_free_regions_starting_at(index, 1);
6173     return region_at(index);
6174   }
6175   return NULL;
6176 }
6177 
6178 // Heap region set verification
6179 
6180 class VerifyRegionListsClosure : public HeapRegionClosure {
6181 private:
6182   HeapRegionSet*   _old_set;
6183   HeapRegionSet*   _humongous_set;
6184   HeapRegionManager*   _hrm;
6185 
6186 public:
6187   HeapRegionSetCount _old_count;
6188   HeapRegionSetCount _humongous_count;
6189   HeapRegionSetCount _free_count;
6190 
6191   VerifyRegionListsClosure(HeapRegionSet* old_set,
6192                            HeapRegionSet* humongous_set,
6193                            HeapRegionManager* hrm) :
6194     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6195     _old_count(), _humongous_count(), _free_count(){ }
6196 
6197   bool doHeapRegion(HeapRegion* hr) {
6198     if (hr->is_young()) {
6199       // TODO
6200     } else if (hr->is_humongous()) {
6201       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6202       _humongous_count.increment(1u, hr->capacity());
6203     } else if (hr->is_empty()) {
6204       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6205       _free_count.increment(1u, hr->capacity());
6206     } else if (hr->is_old()) {
6207       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6208       _old_count.increment(1u, hr->capacity());
6209     } else {
6210       // There are no other valid region types. Check for one invalid
6211       // one we can identify: pinned without old or humongous set.
6212       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6213       ShouldNotReachHere();
6214     }
6215     return false;
6216   }
6217 
6218   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6219     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6220     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6221               old_set->total_capacity_bytes(), _old_count.capacity());
6222 
6223     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6224     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6225               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6226 
6227     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6228     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6229               free_list->total_capacity_bytes(), _free_count.capacity());
6230   }
6231 };
6232 
6233 void G1CollectedHeap::verify_region_sets() {
6234   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6235 
6236   // First, check the explicit lists.
6237   _hrm.verify();
6238   {
6239     // Given that a concurrent operation might be adding regions to
6240     // the secondary free list we have to take the lock before
6241     // verifying it.
6242     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6243     _secondary_free_list.verify_list();
6244   }
6245 
6246   // If a concurrent region freeing operation is in progress it will
6247   // be difficult to correctly attributed any free regions we come
6248   // across to the correct free list given that they might belong to
6249   // one of several (free_list, secondary_free_list, any local lists,
6250   // etc.). So, if that's the case we will skip the rest of the
6251   // verification operation. Alternatively, waiting for the concurrent
6252   // operation to complete will have a non-trivial effect on the GC's
6253   // operation (no concurrent operation will last longer than the
6254   // interval between two calls to verification) and it might hide
6255   // any issues that we would like to catch during testing.
6256   if (free_regions_coming()) {
6257     return;
6258   }
6259 
6260   // Make sure we append the secondary_free_list on the free_list so
6261   // that all free regions we will come across can be safely
6262   // attributed to the free_list.
6263   append_secondary_free_list_if_not_empty_with_lock();
6264 
6265   // Finally, make sure that the region accounting in the lists is
6266   // consistent with what we see in the heap.
6267 
6268   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6269   heap_region_iterate(&cl);
6270   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6271 }
6272 
6273 // Optimized nmethod scanning
6274 
6275 class RegisterNMethodOopClosure: public OopClosure {
6276   G1CollectedHeap* _g1h;
6277   nmethod* _nm;
6278 
6279   template <class T> void do_oop_work(T* p) {
6280     T heap_oop = oopDesc::load_heap_oop(p);
6281     if (!oopDesc::is_null(heap_oop)) {
6282       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6283       HeapRegion* hr = _g1h->heap_region_containing(obj);
6284       assert(!hr->is_continues_humongous(),
6285              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6286              " starting at " HR_FORMAT,
6287              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6288 
6289       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6290       hr->add_strong_code_root_locked(_nm);
6291     }
6292   }
6293 
6294 public:
6295   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6296     _g1h(g1h), _nm(nm) {}
6297 
6298   void do_oop(oop* p)       { do_oop_work(p); }
6299   void do_oop(narrowOop* p) { do_oop_work(p); }
6300 };
6301 
6302 class UnregisterNMethodOopClosure: public OopClosure {
6303   G1CollectedHeap* _g1h;
6304   nmethod* _nm;
6305 
6306   template <class T> void do_oop_work(T* p) {
6307     T heap_oop = oopDesc::load_heap_oop(p);
6308     if (!oopDesc::is_null(heap_oop)) {
6309       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6310       HeapRegion* hr = _g1h->heap_region_containing(obj);
6311       assert(!hr->is_continues_humongous(),
6312              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6313              " starting at " HR_FORMAT,
6314              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6315 
6316       hr->remove_strong_code_root(_nm);
6317     }
6318   }
6319 
6320 public:
6321   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6322     _g1h(g1h), _nm(nm) {}
6323 
6324   void do_oop(oop* p)       { do_oop_work(p); }
6325   void do_oop(narrowOop* p) { do_oop_work(p); }
6326 };
6327 
6328 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6329   CollectedHeap::register_nmethod(nm);
6330 
6331   guarantee(nm != NULL, "sanity");
6332   RegisterNMethodOopClosure reg_cl(this, nm);
6333   nm->oops_do(&reg_cl);
6334 }
6335 
6336 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6337   CollectedHeap::unregister_nmethod(nm);
6338 
6339   guarantee(nm != NULL, "sanity");
6340   UnregisterNMethodOopClosure reg_cl(this, nm);
6341   nm->oops_do(&reg_cl, true);
6342 }
6343 
6344 void G1CollectedHeap::purge_code_root_memory() {
6345   double purge_start = os::elapsedTime();
6346   G1CodeRootSet::purge();
6347   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6348   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6349 }
6350 
6351 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6352   G1CollectedHeap* _g1h;
6353 
6354 public:
6355   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6356     _g1h(g1h) {}
6357 
6358   void do_code_blob(CodeBlob* cb) {
6359     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6360     if (nm == NULL) {
6361       return;
6362     }
6363 
6364     if (ScavengeRootsInCode) {
6365       _g1h->register_nmethod(nm);
6366     }
6367   }
6368 };
6369 
6370 void G1CollectedHeap::rebuild_strong_code_roots() {
6371   RebuildStrongCodeRootClosure blob_cl(this);
6372   CodeCache::blobs_do(&blob_cl);
6373 }