1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMark.hpp"
  28 #include "gc/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1ErgoVerbose.hpp"
  32 #include "gc/g1/g1GCPhaseTimes.hpp"
  33 #include "gc/g1/g1Log.hpp"
  34 #include "gc/g1/heapRegion.inline.hpp"
  35 #include "gc/g1/heapRegionRemSet.hpp"
  36 #include "gc/shared/gcPolicyCounters.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/java.hpp"
  39 #include "runtime/mutexLocker.hpp"
  40 #include "utilities/debug.hpp"
  41 
  42 // Different defaults for different number of GC threads
  43 // They were chosen by running GCOld and SPECjbb on debris with different
  44 //   numbers of GC threads and choosing them based on the results
  45 
  46 // all the same
  47 static double rs_length_diff_defaults[] = {
  48   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  49 };
  50 
  51 static double cost_per_card_ms_defaults[] = {
  52   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  53 };
  54 
  55 // all the same
  56 static double young_cards_per_entry_ratio_defaults[] = {
  57   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  58 };
  59 
  60 static double cost_per_entry_ms_defaults[] = {
  61   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  62 };
  63 
  64 static double cost_per_byte_ms_defaults[] = {
  65   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  66 };
  67 
  68 // these should be pretty consistent
  69 static double constant_other_time_ms_defaults[] = {
  70   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  71 };
  72 
  73 
  74 static double young_other_cost_per_region_ms_defaults[] = {
  75   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  76 };
  77 
  78 static double non_young_other_cost_per_region_ms_defaults[] = {
  79   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  80 };
  81 
  82 G1CollectorPolicy::G1CollectorPolicy() :
  83   _predictor(G1ConfidencePercent / 100.0),
  84   _parallel_gc_threads(ParallelGCThreads),
  85 
  86   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  87   _stop_world_start(0.0),
  88 
  89   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  91 
  92   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  93   _prev_collection_pause_end_ms(0.0),
  94   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _cost_scan_hcc_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 104   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 105   _non_young_other_cost_per_region_ms_seq(
 106                                          new TruncatedSeq(TruncatedSeqLength)),
 107 
 108   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 109   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 110 
 111   _pause_time_target_ms((double) MaxGCPauseMillis),
 112 
 113   _recent_prev_end_times_for_all_gcs_sec(
 114                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 115 
 116   _recent_avg_pause_time_ratio(0.0),
 117   _rs_lengths_prediction(0),
 118   _max_survivor_regions(0),
 119 
 120   _eden_used_bytes_before_gc(0),
 121   _survivor_used_bytes_before_gc(0),
 122   _heap_used_bytes_before_gc(0),
 123   _metaspace_used_bytes_before_gc(0),
 124   _eden_capacity_bytes_before_gc(0),
 125   _heap_capacity_bytes_before_gc(0),
 126 
 127   _eden_cset_region_length(0),
 128   _survivor_cset_region_length(0),
 129   _old_cset_region_length(0),
 130 
 131   _collection_set(NULL),
 132   _collection_set_bytes_used_before(0),
 133 
 134   // Incremental CSet attributes
 135   _inc_cset_build_state(Inactive),
 136   _inc_cset_head(NULL),
 137   _inc_cset_tail(NULL),
 138   _inc_cset_bytes_used_before(0),
 139   _inc_cset_max_finger(NULL),
 140   _inc_cset_recorded_rs_lengths(0),
 141   _inc_cset_recorded_rs_lengths_diffs(0),
 142   _inc_cset_predicted_elapsed_time_ms(0.0),
 143   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 144 
 145   // add here any more surv rate groups
 146   _recorded_survivor_regions(0),
 147   _recorded_survivor_head(NULL),
 148   _recorded_survivor_tail(NULL),
 149   _survivors_age_table(true),
 150 
 151   _gc_overhead_perc(0.0) {
 152 
 153   // SurvRateGroups below must be initialized after the predictor because they
 154   // indirectly use it through this object passed to their constructor.
 155   _short_lived_surv_rate_group =
 156     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 157   _survivor_surv_rate_group =
 158     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
 159 
 160   // Set up the region size and associated fields. Given that the
 161   // policy is created before the heap, we have to set this up here,
 162   // so it's done as soon as possible.
 163 
 164   // It would have been natural to pass initial_heap_byte_size() and
 165   // max_heap_byte_size() to setup_heap_region_size() but those have
 166   // not been set up at this point since they should be aligned with
 167   // the region size. So, there is a circular dependency here. We base
 168   // the region size on the heap size, but the heap size should be
 169   // aligned with the region size. To get around this we use the
 170   // unaligned values for the heap.
 171   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 172   HeapRegionRemSet::setup_remset_size();
 173 
 174   G1ErgoVerbose::initialize();
 175   if (PrintAdaptiveSizePolicy) {
 176     // Currently, we only use a single switch for all the heuristics.
 177     G1ErgoVerbose::set_enabled(true);
 178     // Given that we don't currently have a verboseness level
 179     // parameter, we'll hardcode this to high. This can be easily
 180     // changed in the future.
 181     G1ErgoVerbose::set_level(ErgoHigh);
 182   } else {
 183     G1ErgoVerbose::set_enabled(false);
 184   }
 185 
 186   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 187   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 188 
 189   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 190 
 191   int index = MIN2(_parallel_gc_threads - 1, 7);
 192 
 193   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 194   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 195   _cost_scan_hcc_seq->add(0.0);
 196   _young_cards_per_entry_ratio_seq->add(
 197                                   young_cards_per_entry_ratio_defaults[index]);
 198   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 199   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 200   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 201   _young_other_cost_per_region_ms_seq->add(
 202                                young_other_cost_per_region_ms_defaults[index]);
 203   _non_young_other_cost_per_region_ms_seq->add(
 204                            non_young_other_cost_per_region_ms_defaults[index]);
 205 
 206   // Below, we might need to calculate the pause time target based on
 207   // the pause interval. When we do so we are going to give G1 maximum
 208   // flexibility and allow it to do pauses when it needs to. So, we'll
 209   // arrange that the pause interval to be pause time target + 1 to
 210   // ensure that a) the pause time target is maximized with respect to
 211   // the pause interval and b) we maintain the invariant that pause
 212   // time target < pause interval. If the user does not want this
 213   // maximum flexibility, they will have to set the pause interval
 214   // explicitly.
 215 
 216   // First make sure that, if either parameter is set, its value is
 217   // reasonable.
 218   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 219     if (MaxGCPauseMillis < 1) {
 220       vm_exit_during_initialization("MaxGCPauseMillis should be "
 221                                     "greater than 0");
 222     }
 223   }
 224   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 225     if (GCPauseIntervalMillis < 1) {
 226       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 227                                     "greater than 0");
 228     }
 229   }
 230 
 231   // Then, if the pause time target parameter was not set, set it to
 232   // the default value.
 233   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 234     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 235       // The default pause time target in G1 is 200ms
 236       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 237     } else {
 238       // We do not allow the pause interval to be set without the
 239       // pause time target
 240       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 241                                     "without setting MaxGCPauseMillis");
 242     }
 243   }
 244 
 245   // Then, if the interval parameter was not set, set it according to
 246   // the pause time target (this will also deal with the case when the
 247   // pause time target is the default value).
 248   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 249     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 250   }
 251 
 252   // Finally, make sure that the two parameters are consistent.
 253   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 254     char buffer[256];
 255     jio_snprintf(buffer, 256,
 256                  "MaxGCPauseMillis (%u) should be less than "
 257                  "GCPauseIntervalMillis (%u)",
 258                  MaxGCPauseMillis, GCPauseIntervalMillis);
 259     vm_exit_during_initialization(buffer);
 260   }
 261 
 262   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 263   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 264   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 265 
 266   // start conservatively (around 50ms is about right)
 267   _concurrent_mark_remark_times_ms->add(0.05);
 268   _concurrent_mark_cleanup_times_ms->add(0.20);
 269   _tenuring_threshold = MaxTenuringThreshold;
 270 
 271   assert(GCTimeRatio > 0,
 272          "we should have set it to a default value set_g1_gc_flags() "
 273          "if a user set it to 0");
 274   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 275 
 276   uintx reserve_perc = G1ReservePercent;
 277   // Put an artificial ceiling on this so that it's not set to a silly value.
 278   if (reserve_perc > 50) {
 279     reserve_perc = 50;
 280     warning("G1ReservePercent is set to a value that is too large, "
 281             "it's been updated to " UINTX_FORMAT, reserve_perc);
 282   }
 283   _reserve_factor = (double) reserve_perc / 100.0;
 284   // This will be set when the heap is expanded
 285   // for the first time during initialization.
 286   _reserve_regions = 0;
 287 
 288   _collectionSetChooser = new CollectionSetChooser();
 289 }
 290 
 291 double G1CollectorPolicy::get_new_prediction(TruncatedSeq const* seq) const {
 292   return _predictor.get_new_prediction(seq);
 293 }
 294 
 295 void G1CollectorPolicy::initialize_alignments() {
 296   _space_alignment = HeapRegion::GrainBytes;
 297   size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
 298   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 299   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 300 }
 301 
 302 void G1CollectorPolicy::initialize_flags() {
 303   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 304     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 305   }
 306 
 307   if (SurvivorRatio < 1) {
 308     vm_exit_during_initialization("Invalid survivor ratio specified");
 309   }
 310   CollectorPolicy::initialize_flags();
 311   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 312 }
 313 
 314 void G1CollectorPolicy::post_heap_initialize() {
 315   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 316   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 317   if (max_young_size != MaxNewSize) {
 318     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 319   }
 320 }
 321 
 322 G1CollectorState* G1CollectorPolicy::collector_state() const { return _g1->collector_state(); }
 323 
 324 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 325         _min_desired_young_length(0), _max_desired_young_length(0) {
 326   if (FLAG_IS_CMDLINE(NewRatio)) {
 327     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 328       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 329     } else {
 330       _sizer_kind = SizerNewRatio;
 331       _adaptive_size = false;
 332       return;
 333     }
 334   }
 335 
 336   if (NewSize > MaxNewSize) {
 337     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 338       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 339               "A new max generation size of " SIZE_FORMAT "k will be used.",
 340               NewSize/K, MaxNewSize/K, NewSize/K);
 341     }
 342     MaxNewSize = NewSize;
 343   }
 344 
 345   if (FLAG_IS_CMDLINE(NewSize)) {
 346     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 347                                      1U);
 348     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 349       _max_desired_young_length =
 350                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 351                                   1U);
 352       _sizer_kind = SizerMaxAndNewSize;
 353       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 354     } else {
 355       _sizer_kind = SizerNewSizeOnly;
 356     }
 357   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 358     _max_desired_young_length =
 359                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 360                                   1U);
 361     _sizer_kind = SizerMaxNewSizeOnly;
 362   }
 363 }
 364 
 365 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 366   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 367   return MAX2(1U, default_value);
 368 }
 369 
 370 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 371   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 372   return MAX2(1U, default_value);
 373 }
 374 
 375 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 376   assert(number_of_heap_regions > 0, "Heap must be initialized");
 377 
 378   switch (_sizer_kind) {
 379     case SizerDefaults:
 380       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 381       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 382       break;
 383     case SizerNewSizeOnly:
 384       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 385       *max_young_length = MAX2(*min_young_length, *max_young_length);
 386       break;
 387     case SizerMaxNewSizeOnly:
 388       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 389       *min_young_length = MIN2(*min_young_length, *max_young_length);
 390       break;
 391     case SizerMaxAndNewSize:
 392       // Do nothing. Values set on the command line, don't update them at runtime.
 393       break;
 394     case SizerNewRatio:
 395       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 396       *max_young_length = *min_young_length;
 397       break;
 398     default:
 399       ShouldNotReachHere();
 400   }
 401 
 402   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 403 }
 404 
 405 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 406   // We need to pass the desired values because recalculation may not update these
 407   // values in some cases.
 408   uint temp = _min_desired_young_length;
 409   uint result = _max_desired_young_length;
 410   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 411   return result;
 412 }
 413 
 414 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 415   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 416           &_max_desired_young_length);
 417 }
 418 
 419 void G1CollectorPolicy::init() {
 420   // Set aside an initial future to_space.
 421   _g1 = G1CollectedHeap::heap();
 422 
 423   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 424 
 425   initialize_gc_policy_counters();
 426 
 427   if (adaptive_young_list_length()) {
 428     _young_list_fixed_length = 0;
 429   } else {
 430     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 431   }
 432   _free_regions_at_end_of_collection = _g1->num_free_regions();
 433 
 434   update_young_list_max_and_target_length();
 435   // We may immediately start allocating regions and placing them on the
 436   // collection set list. Initialize the per-collection set info
 437   start_incremental_cset_building();
 438 }
 439 
 440 // Create the jstat counters for the policy.
 441 void G1CollectorPolicy::initialize_gc_policy_counters() {
 442   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 443 }
 444 
 445 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 446                                          double base_time_ms,
 447                                          uint base_free_regions,
 448                                          double target_pause_time_ms) const {
 449   if (young_length >= base_free_regions) {
 450     // end condition 1: not enough space for the young regions
 451     return false;
 452   }
 453 
 454   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 455   size_t bytes_to_copy =
 456                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 457   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 458   double young_other_time_ms = predict_young_other_time_ms(young_length);
 459   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 460   if (pause_time_ms > target_pause_time_ms) {
 461     // end condition 2: prediction is over the target pause time
 462     return false;
 463   }
 464 
 465   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 466   if ((2.0 /* magic */ * _predictor.sigma()) * bytes_to_copy > free_bytes) {
 467     // end condition 3: out-of-space (conservatively!)
 468     return false;
 469   }
 470 
 471   // success!
 472   return true;
 473 }
 474 
 475 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 476   // re-calculate the necessary reserve
 477   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 478   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 479   // smaller than 1.0) we'll get 1.
 480   _reserve_regions = (uint) ceil(reserve_regions_d);
 481 
 482   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 483 }
 484 
 485 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 486                                                        uint base_min_length) const {
 487   uint desired_min_length = 0;
 488   if (adaptive_young_list_length()) {
 489     if (_alloc_rate_ms_seq->num() > 3) {
 490       double now_sec = os::elapsedTime();
 491       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 492       double alloc_rate_ms = predict_alloc_rate_ms();
 493       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 494     } else {
 495       // otherwise we don't have enough info to make the prediction
 496     }
 497   }
 498   desired_min_length += base_min_length;
 499   // make sure we don't go below any user-defined minimum bound
 500   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 501 }
 502 
 503 uint G1CollectorPolicy::calculate_young_list_desired_max_length() const {
 504   // Here, we might want to also take into account any additional
 505   // constraints (i.e., user-defined minimum bound). Currently, we
 506   // effectively don't set this bound.
 507   return _young_gen_sizer->max_desired_young_length();
 508 }
 509 
 510 void G1CollectorPolicy::update_young_list_max_and_target_length() {
 511   update_young_list_max_and_target_length(get_new_prediction(_rs_lengths_seq));
 512 }
 513 
 514 void G1CollectorPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 515   update_young_list_target_length(rs_lengths);
 516   update_max_gc_locker_expansion();
 517 }
 518 
 519 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 520   _young_list_target_length = bounded_young_list_target_length(rs_lengths);
 521 }
 522 
 523 void G1CollectorPolicy::update_young_list_target_length() {
 524   update_young_list_target_length(get_new_prediction(_rs_lengths_seq));
 525 }
 526 
 527 uint G1CollectorPolicy::bounded_young_list_target_length(size_t rs_lengths) const {
 528   // Calculate the absolute and desired min bounds.
 529 
 530   // This is how many young regions we already have (currently: the survivors).
 531   uint base_min_length = recorded_survivor_regions();
 532   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 533   // This is the absolute minimum young length. Ensure that we
 534   // will at least have one eden region available for allocation.
 535   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 536   // If we shrank the young list target it should not shrink below the current size.
 537   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 538   // Calculate the absolute and desired max bounds.
 539 
 540   // We will try our best not to "eat" into the reserve.
 541   uint absolute_max_length = 0;
 542   if (_free_regions_at_end_of_collection > _reserve_regions) {
 543     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 544   }
 545   uint desired_max_length = calculate_young_list_desired_max_length();
 546   if (desired_max_length > absolute_max_length) {
 547     desired_max_length = absolute_max_length;
 548   }
 549 
 550   uint young_list_target_length = 0;
 551   if (adaptive_young_list_length()) {
 552     if (collector_state()->gcs_are_young()) {
 553       young_list_target_length =
 554                         calculate_young_list_target_length(rs_lengths,
 555                                                            base_min_length,
 556                                                            desired_min_length,
 557                                                            desired_max_length);
 558     } else {
 559       // Don't calculate anything and let the code below bound it to
 560       // the desired_min_length, i.e., do the next GC as soon as
 561       // possible to maximize how many old regions we can add to it.
 562     }
 563   } else {
 564     // The user asked for a fixed young gen so we'll fix the young gen
 565     // whether the next GC is young or mixed.
 566     young_list_target_length = _young_list_fixed_length;
 567   }
 568 
 569   // Make sure we don't go over the desired max length, nor under the
 570   // desired min length. In case they clash, desired_min_length wins
 571   // which is why that test is second.
 572   if (young_list_target_length > desired_max_length) {
 573     young_list_target_length = desired_max_length;
 574   }
 575   if (young_list_target_length < desired_min_length) {
 576     young_list_target_length = desired_min_length;
 577   }
 578 
 579   assert(young_list_target_length > recorded_survivor_regions(),
 580          "we should be able to allocate at least one eden region");
 581   assert(young_list_target_length >= absolute_min_length, "post-condition");
 582 
 583   return young_list_target_length;
 584 }
 585 
 586 uint
 587 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 588                                                      uint base_min_length,
 589                                                      uint desired_min_length,
 590                                                      uint desired_max_length) const {
 591   assert(adaptive_young_list_length(), "pre-condition");
 592   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 593 
 594   // In case some edge-condition makes the desired max length too small...
 595   if (desired_max_length <= desired_min_length) {
 596     return desired_min_length;
 597   }
 598 
 599   // We'll adjust min_young_length and max_young_length not to include
 600   // the already allocated young regions (i.e., so they reflect the
 601   // min and max eden regions we'll allocate). The base_min_length
 602   // will be reflected in the predictions by the
 603   // survivor_regions_evac_time prediction.
 604   assert(desired_min_length > base_min_length, "invariant");
 605   uint min_young_length = desired_min_length - base_min_length;
 606   assert(desired_max_length > base_min_length, "invariant");
 607   uint max_young_length = desired_max_length - base_min_length;
 608 
 609   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 610   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 611   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 612   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 613   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 614   double base_time_ms =
 615     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 616     survivor_regions_evac_time;
 617   uint available_free_regions = _free_regions_at_end_of_collection;
 618   uint base_free_regions = 0;
 619   if (available_free_regions > _reserve_regions) {
 620     base_free_regions = available_free_regions - _reserve_regions;
 621   }
 622 
 623   // Here, we will make sure that the shortest young length that
 624   // makes sense fits within the target pause time.
 625 
 626   if (predict_will_fit(min_young_length, base_time_ms,
 627                        base_free_regions, target_pause_time_ms)) {
 628     // The shortest young length will fit into the target pause time;
 629     // we'll now check whether the absolute maximum number of young
 630     // regions will fit in the target pause time. If not, we'll do
 631     // a binary search between min_young_length and max_young_length.
 632     if (predict_will_fit(max_young_length, base_time_ms,
 633                          base_free_regions, target_pause_time_ms)) {
 634       // The maximum young length will fit into the target pause time.
 635       // We are done so set min young length to the maximum length (as
 636       // the result is assumed to be returned in min_young_length).
 637       min_young_length = max_young_length;
 638     } else {
 639       // The maximum possible number of young regions will not fit within
 640       // the target pause time so we'll search for the optimal
 641       // length. The loop invariants are:
 642       //
 643       // min_young_length < max_young_length
 644       // min_young_length is known to fit into the target pause time
 645       // max_young_length is known not to fit into the target pause time
 646       //
 647       // Going into the loop we know the above hold as we've just
 648       // checked them. Every time around the loop we check whether
 649       // the middle value between min_young_length and
 650       // max_young_length fits into the target pause time. If it
 651       // does, it becomes the new min. If it doesn't, it becomes
 652       // the new max. This way we maintain the loop invariants.
 653 
 654       assert(min_young_length < max_young_length, "invariant");
 655       uint diff = (max_young_length - min_young_length) / 2;
 656       while (diff > 0) {
 657         uint young_length = min_young_length + diff;
 658         if (predict_will_fit(young_length, base_time_ms,
 659                              base_free_regions, target_pause_time_ms)) {
 660           min_young_length = young_length;
 661         } else {
 662           max_young_length = young_length;
 663         }
 664         assert(min_young_length <  max_young_length, "invariant");
 665         diff = (max_young_length - min_young_length) / 2;
 666       }
 667       // The results is min_young_length which, according to the
 668       // loop invariants, should fit within the target pause time.
 669 
 670       // These are the post-conditions of the binary search above:
 671       assert(min_young_length < max_young_length,
 672              "otherwise we should have discovered that max_young_length "
 673              "fits into the pause target and not done the binary search");
 674       assert(predict_will_fit(min_young_length, base_time_ms,
 675                               base_free_regions, target_pause_time_ms),
 676              "min_young_length, the result of the binary search, should "
 677              "fit into the pause target");
 678       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 679                                base_free_regions, target_pause_time_ms),
 680              "min_young_length, the result of the binary search, should be "
 681              "optimal, so no larger length should fit into the pause target");
 682     }
 683   } else {
 684     // Even the minimum length doesn't fit into the pause time
 685     // target, return it as the result nevertheless.
 686   }
 687   return base_min_length + min_young_length;
 688 }
 689 
 690 double G1CollectorPolicy::predict_survivor_regions_evac_time() const {
 691   double survivor_regions_evac_time = 0.0;
 692   for (HeapRegion * r = _recorded_survivor_head;
 693        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 694        r = r->get_next_young_region()) {
 695     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 696   }
 697   return survivor_regions_evac_time;
 698 }
 699 
 700 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 701   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 702 
 703   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 704   if (rs_lengths > _rs_lengths_prediction) {
 705     // add 10% to avoid having to recalculate often
 706     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 707     update_rs_lengths_prediction(rs_lengths_prediction);
 708 
 709     update_young_list_max_and_target_length(rs_lengths_prediction);
 710   }
 711 }
 712 
 713 void G1CollectorPolicy::update_rs_lengths_prediction() {
 714   update_rs_lengths_prediction(get_new_prediction(_rs_lengths_seq));
 715 }
 716 
 717 void G1CollectorPolicy::update_rs_lengths_prediction(size_t prediction) {
 718   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 719     _rs_lengths_prediction = prediction;
 720   }
 721 }
 722 
 723 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 724                                                bool is_tlab,
 725                                                bool* gc_overhead_limit_was_exceeded) {
 726   guarantee(false, "Not using this policy feature yet.");
 727   return NULL;
 728 }
 729 
 730 // This method controls how a collector handles one or more
 731 // of its generations being fully allocated.
 732 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 733                                                        bool is_tlab) {
 734   guarantee(false, "Not using this policy feature yet.");
 735   return NULL;
 736 }
 737 
 738 
 739 #ifndef PRODUCT
 740 bool G1CollectorPolicy::verify_young_ages() {
 741   HeapRegion* head = _g1->young_list()->first_region();
 742   return
 743     verify_young_ages(head, _short_lived_surv_rate_group);
 744   // also call verify_young_ages on any additional surv rate groups
 745 }
 746 
 747 bool
 748 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 749                                      SurvRateGroup *surv_rate_group) {
 750   guarantee( surv_rate_group != NULL, "pre-condition" );
 751 
 752   const char* name = surv_rate_group->name();
 753   bool ret = true;
 754   int prev_age = -1;
 755 
 756   for (HeapRegion* curr = head;
 757        curr != NULL;
 758        curr = curr->get_next_young_region()) {
 759     SurvRateGroup* group = curr->surv_rate_group();
 760     if (group == NULL && !curr->is_survivor()) {
 761       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 762       ret = false;
 763     }
 764 
 765     if (surv_rate_group == group) {
 766       int age = curr->age_in_surv_rate_group();
 767 
 768       if (age < 0) {
 769         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 770         ret = false;
 771       }
 772 
 773       if (age <= prev_age) {
 774         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 775                                "(%d, %d)", name, age, prev_age);
 776         ret = false;
 777       }
 778       prev_age = age;
 779     }
 780   }
 781 
 782   return ret;
 783 }
 784 #endif // PRODUCT
 785 
 786 void G1CollectorPolicy::record_full_collection_start() {
 787   _full_collection_start_sec = os::elapsedTime();
 788   record_heap_size_info_at_start(true /* full */);
 789   // Release the future to-space so that it is available for compaction into.
 790   collector_state()->set_full_collection(true);
 791 }
 792 
 793 void G1CollectorPolicy::record_full_collection_end() {
 794   // Consider this like a collection pause for the purposes of allocation
 795   // since last pause.
 796   double end_sec = os::elapsedTime();
 797   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 798   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 799 
 800   _trace_old_gen_time_data.record_full_collection(full_gc_time_ms);
 801 
 802   update_recent_gc_times(end_sec, full_gc_time_ms);
 803 
 804   collector_state()->set_full_collection(false);
 805 
 806   // "Nuke" the heuristics that control the young/mixed GC
 807   // transitions and make sure we start with young GCs after the Full GC.
 808   collector_state()->set_gcs_are_young(true);
 809   collector_state()->set_last_young_gc(false);
 810   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 811   collector_state()->set_during_initial_mark_pause(false);
 812   collector_state()->set_in_marking_window(false);
 813   collector_state()->set_in_marking_window_im(false);
 814 
 815   _short_lived_surv_rate_group->start_adding_regions();
 816   // also call this on any additional surv rate groups
 817 
 818   record_survivor_regions(0, NULL, NULL);
 819 
 820   _free_regions_at_end_of_collection = _g1->num_free_regions();
 821   // Reset survivors SurvRateGroup.
 822   _survivor_surv_rate_group->reset();
 823   update_young_list_max_and_target_length();
 824   update_rs_lengths_prediction();
 825   _collectionSetChooser->clear();
 826 }
 827 
 828 void G1CollectorPolicy::record_stop_world_start() {
 829   _stop_world_start = os::elapsedTime();
 830 }
 831 
 832 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 833   // We only need to do this here as the policy will only be applied
 834   // to the GC we're about to start. so, no point is calculating this
 835   // every time we calculate / recalculate the target young length.
 836   update_survivors_policy();
 837 
 838   assert(_g1->used() == _g1->recalculate_used(),
 839          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 840          _g1->used(), _g1->recalculate_used());
 841 
 842   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 843   _trace_young_gen_time_data.record_start_collection(s_w_t_ms);
 844   _stop_world_start = 0.0;
 845 
 846   record_heap_size_info_at_start(false /* full */);
 847 
 848   phase_times()->record_cur_collection_start_sec(start_time_sec);
 849   _pending_cards = _g1->pending_card_num();
 850 
 851   _collection_set_bytes_used_before = 0;
 852   _bytes_copied_during_gc = 0;
 853 
 854   collector_state()->set_last_gc_was_young(false);
 855 
 856   // do that for any other surv rate groups
 857   _short_lived_surv_rate_group->stop_adding_regions();
 858   _survivors_age_table.clear();
 859 
 860   assert( verify_young_ages(), "region age verification" );
 861 }
 862 
 863 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 864                                                    mark_init_elapsed_time_ms) {
 865   collector_state()->set_during_marking(true);
 866   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 867   collector_state()->set_during_initial_mark_pause(false);
 868   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 869 }
 870 
 871 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 872   _mark_remark_start_sec = os::elapsedTime();
 873   collector_state()->set_during_marking(false);
 874 }
 875 
 876 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 877   double end_time_sec = os::elapsedTime();
 878   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 879   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 880   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 881   _prev_collection_pause_end_ms += elapsed_time_ms;
 882 
 883   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec);
 884 }
 885 
 886 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 887   _mark_cleanup_start_sec = os::elapsedTime();
 888 }
 889 
 890 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 891   collector_state()->set_last_young_gc(true);
 892   collector_state()->set_in_marking_window(false);
 893 }
 894 
 895 void G1CollectorPolicy::record_concurrent_pause() {
 896   if (_stop_world_start > 0.0) {
 897     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 898     _trace_young_gen_time_data.record_yield_time(yield_ms);
 899   }
 900 }
 901 
 902 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 903   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 904     return false;
 905   }
 906 
 907   size_t marking_initiating_used_threshold =
 908     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 909   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 910   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 911 
 912   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 913     if (collector_state()->gcs_are_young() && !collector_state()->last_young_gc()) {
 914       ergo_verbose5(ErgoConcCycles,
 915         "request concurrent cycle initiation",
 916         ergo_format_reason("occupancy higher than threshold")
 917         ergo_format_byte("occupancy")
 918         ergo_format_byte("allocation request")
 919         ergo_format_byte_perc("threshold")
 920         ergo_format_str("source"),
 921         cur_used_bytes,
 922         alloc_byte_size,
 923         marking_initiating_used_threshold,
 924         (double) InitiatingHeapOccupancyPercent,
 925         source);
 926       return true;
 927     } else {
 928       ergo_verbose5(ErgoConcCycles,
 929         "do not request concurrent cycle initiation",
 930         ergo_format_reason("still doing mixed collections")
 931         ergo_format_byte("occupancy")
 932         ergo_format_byte("allocation request")
 933         ergo_format_byte_perc("threshold")
 934         ergo_format_str("source"),
 935         cur_used_bytes,
 936         alloc_byte_size,
 937         marking_initiating_used_threshold,
 938         (double) InitiatingHeapOccupancyPercent,
 939         source);
 940     }
 941   }
 942 
 943   return false;
 944 }
 945 
 946 // Anything below that is considered to be zero
 947 #define MIN_TIMER_GRANULARITY 0.0000001
 948 
 949 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned) {
 950   double end_time_sec = os::elapsedTime();
 951   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 952          "otherwise, the subtraction below does not make sense");
 953   size_t rs_size =
 954             _cur_collection_pause_used_regions_at_start - cset_region_length();
 955   size_t cur_used_bytes = _g1->used();
 956   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 957   bool last_pause_included_initial_mark = false;
 958   bool update_stats = !_g1->evacuation_failed();
 959 
 960 #ifndef PRODUCT
 961   if (G1YoungSurvRateVerbose) {
 962     gclog_or_tty->cr();
 963     _short_lived_surv_rate_group->print();
 964     // do that for any other surv rate groups too
 965   }
 966 #endif // PRODUCT
 967 
 968   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 969   if (last_pause_included_initial_mark) {
 970     record_concurrent_mark_init_end(0.0);
 971   } else {
 972     maybe_start_marking();
 973   }
 974 
 975   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0, end_time_sec);
 976 
 977   if (update_stats) {
 978     _trace_young_gen_time_data.record_end_collection(pause_time_ms, phase_times());
 979     // this is where we update the allocation rate of the application
 980     double app_time_ms =
 981       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 982     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 983       // This usually happens due to the timer not having the required
 984       // granularity. Some Linuxes are the usual culprits.
 985       // We'll just set it to something (arbitrarily) small.
 986       app_time_ms = 1.0;
 987     }
 988     // We maintain the invariant that all objects allocated by mutator
 989     // threads will be allocated out of eden regions. So, we can use
 990     // the eden region number allocated since the previous GC to
 991     // calculate the application's allocate rate. The only exception
 992     // to that is humongous objects that are allocated separately. But
 993     // given that humongous object allocations do not really affect
 994     // either the pause's duration nor when the next pause will take
 995     // place we can safely ignore them here.
 996     uint regions_allocated = eden_cset_region_length();
 997     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 998     _alloc_rate_ms_seq->add(alloc_rate_ms);
 999 
1000     double interval_ms =
1001       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1002     update_recent_gc_times(end_time_sec, pause_time_ms);
1003     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1004     if (recent_avg_pause_time_ratio() < 0.0 ||
1005         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1006 #ifndef PRODUCT
1007       // Dump info to allow post-facto debugging
1008       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
1009       gclog_or_tty->print_cr("-------------------------------------------");
1010       gclog_or_tty->print_cr("Recent GC Times (ms):");
1011       _recent_gc_times_ms->dump();
1012       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1013       _recent_prev_end_times_for_all_gcs_sec->dump();
1014       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1015                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1016       // In debug mode, terminate the JVM if the user wants to debug at this point.
1017       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1018 #endif  // !PRODUCT
1019       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1020       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1021       if (_recent_avg_pause_time_ratio < 0.0) {
1022         _recent_avg_pause_time_ratio = 0.0;
1023       } else {
1024         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1025         _recent_avg_pause_time_ratio = 1.0;
1026       }
1027     }
1028   }
1029 
1030   bool new_in_marking_window = collector_state()->in_marking_window();
1031   bool new_in_marking_window_im = false;
1032   if (last_pause_included_initial_mark) {
1033     new_in_marking_window = true;
1034     new_in_marking_window_im = true;
1035   }
1036 
1037   if (collector_state()->last_young_gc()) {
1038     // This is supposed to to be the "last young GC" before we start
1039     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1040     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
1041 
1042     if (next_gc_should_be_mixed("start mixed GCs",
1043                                 "do not start mixed GCs")) {
1044       collector_state()->set_gcs_are_young(false);
1045     }
1046 
1047     collector_state()->set_last_young_gc(false);
1048   }
1049 
1050   if (!collector_state()->last_gc_was_young()) {
1051     // This is a mixed GC. Here we decide whether to continue doing
1052     // mixed GCs or not.
1053 
1054     if (!next_gc_should_be_mixed("continue mixed GCs",
1055                                  "do not continue mixed GCs")) {
1056       collector_state()->set_gcs_are_young(true);
1057 
1058       maybe_start_marking();
1059     }
1060   }
1061 
1062   _short_lived_surv_rate_group->start_adding_regions();
1063   // Do that for any other surv rate groups
1064 
1065   if (update_stats) {
1066     double cost_per_card_ms = 0.0;
1067     double cost_scan_hcc = phase_times()->average_time_ms(G1GCPhaseTimes::ScanHCC);
1068     if (_pending_cards > 0) {
1069       cost_per_card_ms = (phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS) - cost_scan_hcc) / (double) _pending_cards;
1070       _cost_per_card_ms_seq->add(cost_per_card_ms);
1071     }
1072     _cost_scan_hcc_seq->add(cost_scan_hcc);
1073 
1074     double cost_per_entry_ms = 0.0;
1075     if (cards_scanned > 10) {
1076       cost_per_entry_ms = phase_times()->average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
1077       if (collector_state()->last_gc_was_young()) {
1078         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1079       } else {
1080         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1081       }
1082     }
1083 
1084     if (_max_rs_lengths > 0) {
1085       double cards_per_entry_ratio =
1086         (double) cards_scanned / (double) _max_rs_lengths;
1087       if (collector_state()->last_gc_was_young()) {
1088         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1089       } else {
1090         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1091       }
1092     }
1093 
1094     // This is defensive. For a while _max_rs_lengths could get
1095     // smaller than _recorded_rs_lengths which was causing
1096     // rs_length_diff to get very large and mess up the RSet length
1097     // predictions. The reason was unsafe concurrent updates to the
1098     // _inc_cset_recorded_rs_lengths field which the code below guards
1099     // against (see CR 7118202). This bug has now been fixed (see CR
1100     // 7119027). However, I'm still worried that
1101     // _inc_cset_recorded_rs_lengths might still end up somewhat
1102     // inaccurate. The concurrent refinement thread calculates an
1103     // RSet's length concurrently with other CR threads updating it
1104     // which might cause it to calculate the length incorrectly (if,
1105     // say, it's in mid-coarsening). So I'll leave in the defensive
1106     // conditional below just in case.
1107     size_t rs_length_diff = 0;
1108     if (_max_rs_lengths > _recorded_rs_lengths) {
1109       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1110     }
1111     _rs_length_diff_seq->add((double) rs_length_diff);
1112 
1113     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1114     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1115     double cost_per_byte_ms = 0.0;
1116 
1117     if (copied_bytes > 0) {
1118       cost_per_byte_ms = phase_times()->average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
1119       if (collector_state()->in_marking_window()) {
1120         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1121       } else {
1122         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1123       }
1124     }
1125 
1126     double all_other_time_ms = pause_time_ms -
1127       (phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS) + phase_times()->average_time_ms(G1GCPhaseTimes::ScanRS) +
1128           phase_times()->average_time_ms(G1GCPhaseTimes::ObjCopy) + phase_times()->average_time_ms(G1GCPhaseTimes::Termination));
1129 
1130     double young_other_time_ms = 0.0;
1131     if (young_cset_region_length() > 0) {
1132       young_other_time_ms =
1133         phase_times()->young_cset_choice_time_ms() +
1134         phase_times()->young_free_cset_time_ms();
1135       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1136                                           (double) young_cset_region_length());
1137     }
1138     double non_young_other_time_ms = 0.0;
1139     if (old_cset_region_length() > 0) {
1140       non_young_other_time_ms =
1141         phase_times()->non_young_cset_choice_time_ms() +
1142         phase_times()->non_young_free_cset_time_ms();
1143 
1144       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1145                                             (double) old_cset_region_length());
1146     }
1147 
1148     double constant_other_time_ms = all_other_time_ms -
1149       (young_other_time_ms + non_young_other_time_ms);
1150     _constant_other_time_ms_seq->add(constant_other_time_ms);
1151 
1152     double survival_ratio = 0.0;
1153     if (_collection_set_bytes_used_before > 0) {
1154       survival_ratio = (double) _bytes_copied_during_gc /
1155                                    (double) _collection_set_bytes_used_before;
1156     }
1157 
1158     _pending_cards_seq->add((double) _pending_cards);
1159     _rs_lengths_seq->add((double) _max_rs_lengths);
1160   }
1161 
1162   collector_state()->set_in_marking_window(new_in_marking_window);
1163   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1164   _free_regions_at_end_of_collection = _g1->num_free_regions();
1165   update_young_list_max_and_target_length();
1166   update_rs_lengths_prediction();
1167 
1168   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1169   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1170 
1171   double scan_hcc_time_ms = phase_times()->average_time_ms(G1GCPhaseTimes::ScanHCC);
1172 
1173   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
1174     ergo_verbose2(ErgoTiming,
1175                   "adjust concurrent refinement thresholds",
1176                   ergo_format_reason("Scanning the HCC expected to take longer than Update RS time goal")
1177                   ergo_format_ms("Update RS time goal")
1178                   ergo_format_ms("Scan HCC time"),
1179                   update_rs_time_goal_ms,
1180                   scan_hcc_time_ms);
1181 
1182     update_rs_time_goal_ms = 0;
1183   } else {
1184     update_rs_time_goal_ms -= scan_hcc_time_ms;
1185   }
1186   adjust_concurrent_refinement(phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
1187                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
1188                                update_rs_time_goal_ms);
1189 
1190   _collectionSetChooser->verify();
1191 }
1192 
1193 #define EXT_SIZE_FORMAT "%.1f%s"
1194 #define EXT_SIZE_PARAMS(bytes)                                  \
1195   byte_size_in_proper_unit((double)(bytes)),                    \
1196   proper_unit_for_byte_size((bytes))
1197 
1198 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1199   YoungList* young_list = _g1->young_list();
1200   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1201   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1202   _heap_capacity_bytes_before_gc = _g1->capacity();
1203   _heap_used_bytes_before_gc = _g1->used();
1204   _cur_collection_pause_used_regions_at_start = _g1->num_used_regions();
1205 
1206   _eden_capacity_bytes_before_gc =
1207          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1208 
1209   if (full) {
1210     _metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();
1211   }
1212 }
1213 
1214 void G1CollectorPolicy::print_heap_transition(size_t bytes_before) const {
1215   size_t bytes_after = _g1->used();
1216   size_t capacity = _g1->capacity();
1217 
1218   gclog_or_tty->print(" " SIZE_FORMAT "%s->" SIZE_FORMAT "%s(" SIZE_FORMAT "%s)",
1219       byte_size_in_proper_unit(bytes_before),
1220       proper_unit_for_byte_size(bytes_before),
1221       byte_size_in_proper_unit(bytes_after),
1222       proper_unit_for_byte_size(bytes_after),
1223       byte_size_in_proper_unit(capacity),
1224       proper_unit_for_byte_size(capacity));
1225 }
1226 
1227 void G1CollectorPolicy::print_heap_transition() const {
1228   print_heap_transition(_heap_used_bytes_before_gc);
1229 }
1230 
1231 void G1CollectorPolicy::print_detailed_heap_transition(bool full) const {
1232   YoungList* young_list = _g1->young_list();
1233 
1234   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1235   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1236   size_t heap_used_bytes_after_gc = _g1->used();
1237 
1238   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1239   size_t eden_capacity_bytes_after_gc =
1240     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1241 
1242   gclog_or_tty->print(
1243     "   [Eden: " EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")->" EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ") "
1244     "Survivors: " EXT_SIZE_FORMAT "->" EXT_SIZE_FORMAT " "
1245     "Heap: " EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")->"
1246     EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")]",
1247     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1248     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1249     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1250     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1251     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1252     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1253     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1254     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1255     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1256     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1257 
1258   if (full) {
1259     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1260   }
1261 
1262   gclog_or_tty->cr();
1263 }
1264 
1265 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1266                                                      double update_rs_processed_buffers,
1267                                                      double goal_ms) {
1268   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1269   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1270 
1271   if (G1UseAdaptiveConcRefinement) {
1272     const int k_gy = 3, k_gr = 6;
1273     const double inc_k = 1.1, dec_k = 0.9;
1274 
1275     int g = cg1r->green_zone();
1276     if (update_rs_time > goal_ms) {
1277       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1278     } else {
1279       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1280         g = (int)MAX2(g * inc_k, g + 1.0);
1281       }
1282     }
1283     // Change the refinement threads params
1284     cg1r->set_green_zone(g);
1285     cg1r->set_yellow_zone(g * k_gy);
1286     cg1r->set_red_zone(g * k_gr);
1287     cg1r->reinitialize_threads();
1288 
1289     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * _predictor.sigma()), 1);
1290     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1291                                     cg1r->yellow_zone());
1292     // Change the barrier params
1293     dcqs.set_process_completed_threshold(processing_threshold);
1294     dcqs.set_max_completed_queue(cg1r->red_zone());
1295   }
1296 
1297   int curr_queue_size = dcqs.completed_buffers_num();
1298   if (curr_queue_size >= cg1r->yellow_zone()) {
1299     dcqs.set_completed_queue_padding(curr_queue_size);
1300   } else {
1301     dcqs.set_completed_queue_padding(0);
1302   }
1303   dcqs.notify_if_necessary();
1304 }
1305 
1306 size_t G1CollectorPolicy::predict_rs_length_diff() const {
1307   return (size_t) get_new_prediction(_rs_length_diff_seq);
1308 }
1309 
1310 double G1CollectorPolicy::predict_alloc_rate_ms() const {
1311   return get_new_prediction(_alloc_rate_ms_seq);
1312 }
1313 
1314 double G1CollectorPolicy::predict_cost_per_card_ms() const {
1315   return get_new_prediction(_cost_per_card_ms_seq);
1316 }
1317 
1318 double G1CollectorPolicy::predict_scan_hcc_ms() const {
1319   return get_new_prediction(_cost_scan_hcc_seq);
1320 }
1321 
1322 double G1CollectorPolicy::predict_rs_update_time_ms(size_t pending_cards) const {
1323   return pending_cards * predict_cost_per_card_ms() + predict_scan_hcc_ms();
1324 }
1325 
1326 double G1CollectorPolicy::predict_young_cards_per_entry_ratio() const {
1327   return get_new_prediction(_young_cards_per_entry_ratio_seq);
1328 }
1329 
1330 double G1CollectorPolicy::predict_mixed_cards_per_entry_ratio() const {
1331   if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
1332     return predict_young_cards_per_entry_ratio();
1333   } else {
1334     return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
1335   }
1336 }
1337 
1338 size_t G1CollectorPolicy::predict_young_card_num(size_t rs_length) const {
1339   return (size_t) (rs_length * predict_young_cards_per_entry_ratio());
1340 }
1341 
1342 size_t G1CollectorPolicy::predict_non_young_card_num(size_t rs_length) const {
1343   return (size_t)(rs_length * predict_mixed_cards_per_entry_ratio());
1344 }
1345 
1346 double G1CollectorPolicy::predict_rs_scan_time_ms(size_t card_num) const {
1347   if (collector_state()->gcs_are_young()) {
1348     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1349   } else {
1350     return predict_mixed_rs_scan_time_ms(card_num);
1351   }
1352 }
1353 
1354 double G1CollectorPolicy::predict_mixed_rs_scan_time_ms(size_t card_num) const {
1355   if (_mixed_cost_per_entry_ms_seq->num() < 3) {
1356     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1357   } else {
1358     return card_num * get_new_prediction(_mixed_cost_per_entry_ms_seq);
1359   }
1360 }
1361 
1362 double G1CollectorPolicy::predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const {
1363   if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
1364     return (1.1 * bytes_to_copy) * get_new_prediction(_cost_per_byte_ms_seq);
1365   } else {
1366     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_during_cm_seq);
1367   }
1368 }
1369 
1370 double G1CollectorPolicy::predict_object_copy_time_ms(size_t bytes_to_copy) const {
1371   if (collector_state()->during_concurrent_mark()) {
1372     return predict_object_copy_time_ms_during_cm(bytes_to_copy);
1373   } else {
1374     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_seq);
1375   }
1376 }
1377 
1378 double G1CollectorPolicy::predict_constant_other_time_ms() const {
1379   return get_new_prediction(_constant_other_time_ms_seq);
1380 }
1381 
1382 double G1CollectorPolicy::predict_young_other_time_ms(size_t young_num) const {
1383   return young_num * get_new_prediction(_young_other_cost_per_region_ms_seq);
1384 }
1385 
1386 double G1CollectorPolicy::predict_non_young_other_time_ms(size_t non_young_num) const {
1387   return non_young_num * get_new_prediction(_non_young_other_cost_per_region_ms_seq);
1388 }
1389 
1390 double G1CollectorPolicy::predict_remark_time_ms() const {
1391   return get_new_prediction(_concurrent_mark_remark_times_ms);
1392 }
1393 
1394 double G1CollectorPolicy::predict_cleanup_time_ms() const {
1395   return get_new_prediction(_concurrent_mark_cleanup_times_ms);
1396 }
1397 
1398 double G1CollectorPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
1399   TruncatedSeq* seq = surv_rate_group->get_seq(age);
1400   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
1401   double pred = get_new_prediction(seq);
1402   if (pred > 1.0) {
1403     pred = 1.0;
1404   }
1405   return pred;
1406 }
1407 
1408 double G1CollectorPolicy::predict_yg_surv_rate(int age) const {
1409   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
1410 }
1411 
1412 double G1CollectorPolicy::accum_yg_surv_rate_pred(int age) const {
1413   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
1414 }
1415 
1416 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1417                                                        size_t scanned_cards) const {
1418   return
1419     predict_rs_update_time_ms(pending_cards) +
1420     predict_rs_scan_time_ms(scanned_cards) +
1421     predict_constant_other_time_ms();
1422 }
1423 
1424 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1425   size_t rs_length = predict_rs_length_diff();
1426   size_t card_num;
1427   if (collector_state()->gcs_are_young()) {
1428     card_num = predict_young_card_num(rs_length);
1429   } else {
1430     card_num = predict_non_young_card_num(rs_length);
1431   }
1432   return predict_base_elapsed_time_ms(pending_cards, card_num);
1433 }
1434 
1435 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
1436   size_t bytes_to_copy;
1437   if (hr->is_marked())
1438     bytes_to_copy = hr->max_live_bytes();
1439   else {
1440     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1441     int age = hr->age_in_surv_rate_group();
1442     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1443     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
1444   }
1445   return bytes_to_copy;
1446 }
1447 
1448 double G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1449                                                          bool for_young_gc) const {
1450   size_t rs_length = hr->rem_set()->occupied();
1451   size_t card_num;
1452 
1453   // Predicting the number of cards is based on which type of GC
1454   // we're predicting for.
1455   if (for_young_gc) {
1456     card_num = predict_young_card_num(rs_length);
1457   } else {
1458     card_num = predict_non_young_card_num(rs_length);
1459   }
1460   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1461 
1462   double region_elapsed_time_ms =
1463     predict_rs_scan_time_ms(card_num) +
1464     predict_object_copy_time_ms(bytes_to_copy);
1465 
1466   // The prediction of the "other" time for this region is based
1467   // upon the region type and NOT the GC type.
1468   if (hr->is_young()) {
1469     region_elapsed_time_ms += predict_young_other_time_ms(1);
1470   } else {
1471     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1472   }
1473   return region_elapsed_time_ms;
1474 }
1475 
1476 void G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1477                                                  uint survivor_cset_region_length) {
1478   _eden_cset_region_length     = eden_cset_region_length;
1479   _survivor_cset_region_length = survivor_cset_region_length;
1480   _old_cset_region_length      = 0;
1481 }
1482 
1483 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1484   _recorded_rs_lengths = rs_lengths;
1485 }
1486 
1487 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1488                                                double elapsed_ms) {
1489   _recent_gc_times_ms->add(elapsed_ms);
1490   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1491   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1492 }
1493 
1494 size_t G1CollectorPolicy::expansion_amount() const {
1495   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1496   double threshold = _gc_overhead_perc;
1497   if (recent_gc_overhead > threshold) {
1498     // We will double the existing space, or take
1499     // G1ExpandByPercentOfAvailable % of the available expansion
1500     // space, whichever is smaller, bounded below by a minimum
1501     // expansion (unless that's all that's left.)
1502     const size_t min_expand_bytes = 1*M;
1503     size_t reserved_bytes = _g1->max_capacity();
1504     size_t committed_bytes = _g1->capacity();
1505     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1506     size_t expand_bytes;
1507     size_t expand_bytes_via_pct =
1508       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1509     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1510     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1511     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1512 
1513     ergo_verbose5(ErgoHeapSizing,
1514                   "attempt heap expansion",
1515                   ergo_format_reason("recent GC overhead higher than "
1516                                      "threshold after GC")
1517                   ergo_format_perc("recent GC overhead")
1518                   ergo_format_perc("threshold")
1519                   ergo_format_byte("uncommitted")
1520                   ergo_format_byte_perc("calculated expansion amount"),
1521                   recent_gc_overhead, threshold,
1522                   uncommitted_bytes,
1523                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1524 
1525     return expand_bytes;
1526   } else {
1527     return 0;
1528   }
1529 }
1530 
1531 void G1CollectorPolicy::print_tracing_info() const {
1532   _trace_young_gen_time_data.print();
1533   _trace_old_gen_time_data.print();
1534 }
1535 
1536 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1537 #ifndef PRODUCT
1538   _short_lived_surv_rate_group->print_surv_rate_summary();
1539   // add this call for any other surv rate groups
1540 #endif // PRODUCT
1541 }
1542 
1543 bool G1CollectorPolicy::is_young_list_full() const {
1544   uint young_list_length = _g1->young_list()->length();
1545   uint young_list_target_length = _young_list_target_length;
1546   return young_list_length >= young_list_target_length;
1547 }
1548 
1549 bool G1CollectorPolicy::can_expand_young_list() const {
1550   uint young_list_length = _g1->young_list()->length();
1551   uint young_list_max_length = _young_list_max_length;
1552   return young_list_length < young_list_max_length;
1553 }
1554 
1555 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1556   uint expansion_region_num = 0;
1557   if (GCLockerEdenExpansionPercent > 0) {
1558     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1559     double expansion_region_num_d = perc * (double) _young_list_target_length;
1560     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1561     // less than 1.0) we'll get 1.
1562     expansion_region_num = (uint) ceil(expansion_region_num_d);
1563   } else {
1564     assert(expansion_region_num == 0, "sanity");
1565   }
1566   _young_list_max_length = _young_list_target_length + expansion_region_num;
1567   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1568 }
1569 
1570 // Calculates survivor space parameters.
1571 void G1CollectorPolicy::update_survivors_policy() {
1572   double max_survivor_regions_d =
1573                  (double) _young_list_target_length / (double) SurvivorRatio;
1574   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1575   // smaller than 1.0) we'll get 1.
1576   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1577 
1578   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1579         HeapRegion::GrainWords * _max_survivor_regions, counters());
1580 }
1581 
1582 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1583                                                      GCCause::Cause gc_cause) {
1584   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1585   if (!during_cycle) {
1586     ergo_verbose1(ErgoConcCycles,
1587                   "request concurrent cycle initiation",
1588                   ergo_format_reason("requested by GC cause")
1589                   ergo_format_str("GC cause"),
1590                   GCCause::to_string(gc_cause));
1591     collector_state()->set_initiate_conc_mark_if_possible(true);
1592     return true;
1593   } else {
1594     ergo_verbose1(ErgoConcCycles,
1595                   "do not request concurrent cycle initiation",
1596                   ergo_format_reason("concurrent cycle already in progress")
1597                   ergo_format_str("GC cause"),
1598                   GCCause::to_string(gc_cause));
1599     return false;
1600   }
1601 }
1602 
1603 void G1CollectorPolicy::decide_on_conc_mark_initiation() {
1604   // We are about to decide on whether this pause will be an
1605   // initial-mark pause.
1606 
1607   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1608   // will set it here if we have to. However, it should be cleared by
1609   // the end of the pause (it's only set for the duration of an
1610   // initial-mark pause).
1611   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1612 
1613   if (collector_state()->initiate_conc_mark_if_possible()) {
1614     // We had noticed on a previous pause that the heap occupancy has
1615     // gone over the initiating threshold and we should start a
1616     // concurrent marking cycle. So we might initiate one.
1617 
1618     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
1619     if (!during_cycle) {
1620       // The concurrent marking thread is not "during a cycle", i.e.,
1621       // it has completed the last one. So we can go ahead and
1622       // initiate a new cycle.
1623 
1624       collector_state()->set_during_initial_mark_pause(true);
1625       // We do not allow mixed GCs during marking.
1626       if (!collector_state()->gcs_are_young()) {
1627         collector_state()->set_gcs_are_young(true);
1628         ergo_verbose0(ErgoMixedGCs,
1629                       "end mixed GCs",
1630                       ergo_format_reason("concurrent cycle is about to start"));
1631       }
1632 
1633       // And we can now clear initiate_conc_mark_if_possible() as
1634       // we've already acted on it.
1635       collector_state()->set_initiate_conc_mark_if_possible(false);
1636 
1637       ergo_verbose0(ErgoConcCycles,
1638                   "initiate concurrent cycle",
1639                   ergo_format_reason("concurrent cycle initiation requested"));
1640     } else {
1641       // The concurrent marking thread is still finishing up the
1642       // previous cycle. If we start one right now the two cycles
1643       // overlap. In particular, the concurrent marking thread might
1644       // be in the process of clearing the next marking bitmap (which
1645       // we will use for the next cycle if we start one). Starting a
1646       // cycle now will be bad given that parts of the marking
1647       // information might get cleared by the marking thread. And we
1648       // cannot wait for the marking thread to finish the cycle as it
1649       // periodically yields while clearing the next marking bitmap
1650       // and, if it's in a yield point, it's waiting for us to
1651       // finish. So, at this point we will not start a cycle and we'll
1652       // let the concurrent marking thread complete the last one.
1653       ergo_verbose0(ErgoConcCycles,
1654                     "do not initiate concurrent cycle",
1655                     ergo_format_reason("concurrent cycle already in progress"));
1656     }
1657   }
1658 }
1659 
1660 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1661   G1CollectedHeap* _g1h;
1662   CSetChooserParUpdater _cset_updater;
1663 
1664 public:
1665   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1666                            uint chunk_size) :
1667     _g1h(G1CollectedHeap::heap()),
1668     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1669 
1670   bool doHeapRegion(HeapRegion* r) {
1671     // Do we have any marking information for this region?
1672     if (r->is_marked()) {
1673       // We will skip any region that's currently used as an old GC
1674       // alloc region (we should not consider those for collection
1675       // before we fill them up).
1676       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1677         _cset_updater.add_region(r);
1678       }
1679     }
1680     return false;
1681   }
1682 };
1683 
1684 class ParKnownGarbageTask: public AbstractGangTask {
1685   CollectionSetChooser* _hrSorted;
1686   uint _chunk_size;
1687   G1CollectedHeap* _g1;
1688   HeapRegionClaimer _hrclaimer;
1689 
1690 public:
1691   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1692       AbstractGangTask("ParKnownGarbageTask"),
1693       _hrSorted(hrSorted), _chunk_size(chunk_size),
1694       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1695 
1696   void work(uint worker_id) {
1697     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1698     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1699   }
1700 };
1701 
1702 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const {
1703   assert(n_workers > 0, "Active gc workers should be greater than 0");
1704   const uint overpartition_factor = 4;
1705   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1706   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1707 }
1708 
1709 void
1710 G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1711   _collectionSetChooser->clear();
1712 
1713   WorkGang* workers = _g1->workers();
1714   uint n_workers = workers->active_workers();
1715 
1716   uint n_regions = _g1->num_regions();
1717   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1718   _collectionSetChooser->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1719   ParKnownGarbageTask par_known_garbage_task(_collectionSetChooser, chunk_size, n_workers);
1720   workers->run_task(&par_known_garbage_task);
1721 
1722   _collectionSetChooser->sort_regions();
1723 
1724   double end_sec = os::elapsedTime();
1725   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1726   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1727   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1728   _prev_collection_pause_end_ms += elapsed_time_ms;
1729   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec);
1730 }
1731 
1732 // Add the heap region at the head of the non-incremental collection set
1733 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1734   assert(_inc_cset_build_state == Active, "Precondition");
1735   assert(hr->is_old(), "the region should be old");
1736 
1737   assert(!hr->in_collection_set(), "should not already be in the CSet");
1738   _g1->register_old_region_with_cset(hr);
1739   hr->set_next_in_collection_set(_collection_set);
1740   _collection_set = hr;
1741   _collection_set_bytes_used_before += hr->used();
1742   size_t rs_length = hr->rem_set()->occupied();
1743   _recorded_rs_lengths += rs_length;
1744   _old_cset_region_length += 1;
1745 }
1746 
1747 // Initialize the per-collection-set information
1748 void G1CollectorPolicy::start_incremental_cset_building() {
1749   assert(_inc_cset_build_state == Inactive, "Precondition");
1750 
1751   _inc_cset_head = NULL;
1752   _inc_cset_tail = NULL;
1753   _inc_cset_bytes_used_before = 0;
1754 
1755   _inc_cset_max_finger = 0;
1756   _inc_cset_recorded_rs_lengths = 0;
1757   _inc_cset_recorded_rs_lengths_diffs = 0;
1758   _inc_cset_predicted_elapsed_time_ms = 0.0;
1759   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1760   _inc_cset_build_state = Active;
1761 }
1762 
1763 void G1CollectorPolicy::finalize_incremental_cset_building() {
1764   assert(_inc_cset_build_state == Active, "Precondition");
1765   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1766 
1767   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1768   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1769   // that adds a new region to the CSet. Further updates by the
1770   // concurrent refinement thread that samples the young RSet lengths
1771   // are accumulated in the *_diffs fields. Here we add the diffs to
1772   // the "main" fields.
1773 
1774   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1775     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1776   } else {
1777     // This is defensive. The diff should in theory be always positive
1778     // as RSets can only grow between GCs. However, given that we
1779     // sample their size concurrently with other threads updating them
1780     // it's possible that we might get the wrong size back, which
1781     // could make the calculations somewhat inaccurate.
1782     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1783     if (_inc_cset_recorded_rs_lengths >= diffs) {
1784       _inc_cset_recorded_rs_lengths -= diffs;
1785     } else {
1786       _inc_cset_recorded_rs_lengths = 0;
1787     }
1788   }
1789   _inc_cset_predicted_elapsed_time_ms +=
1790                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1791 
1792   _inc_cset_recorded_rs_lengths_diffs = 0;
1793   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1794 }
1795 
1796 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1797   // This routine is used when:
1798   // * adding survivor regions to the incremental cset at the end of an
1799   //   evacuation pause,
1800   // * adding the current allocation region to the incremental cset
1801   //   when it is retired, and
1802   // * updating existing policy information for a region in the
1803   //   incremental cset via young list RSet sampling.
1804   // Therefore this routine may be called at a safepoint by the
1805   // VM thread, or in-between safepoints by mutator threads (when
1806   // retiring the current allocation region) or a concurrent
1807   // refine thread (RSet sampling).
1808 
1809   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1810   size_t used_bytes = hr->used();
1811   _inc_cset_recorded_rs_lengths += rs_length;
1812   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1813   _inc_cset_bytes_used_before += used_bytes;
1814 
1815   // Cache the values we have added to the aggregated information
1816   // in the heap region in case we have to remove this region from
1817   // the incremental collection set, or it is updated by the
1818   // rset sampling code
1819   hr->set_recorded_rs_length(rs_length);
1820   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1821 }
1822 
1823 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1824                                                      size_t new_rs_length) {
1825   // Update the CSet information that is dependent on the new RS length
1826   assert(hr->is_young(), "Precondition");
1827   assert(!SafepointSynchronize::is_at_safepoint(),
1828                                                "should not be at a safepoint");
1829 
1830   // We could have updated _inc_cset_recorded_rs_lengths and
1831   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1832   // that atomically, as this code is executed by a concurrent
1833   // refinement thread, potentially concurrently with a mutator thread
1834   // allocating a new region and also updating the same fields. To
1835   // avoid the atomic operations we accumulate these updates on two
1836   // separate fields (*_diffs) and we'll just add them to the "main"
1837   // fields at the start of a GC.
1838 
1839   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1840   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1841   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1842 
1843   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1844   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1845   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1846   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1847 
1848   hr->set_recorded_rs_length(new_rs_length);
1849   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1850 }
1851 
1852 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1853   assert(hr->is_young(), "invariant");
1854   assert(hr->young_index_in_cset() > -1, "should have already been set");
1855   assert(_inc_cset_build_state == Active, "Precondition");
1856 
1857   // We need to clear and set the cached recorded/cached collection set
1858   // information in the heap region here (before the region gets added
1859   // to the collection set). An individual heap region's cached values
1860   // are calculated, aggregated with the policy collection set info,
1861   // and cached in the heap region here (initially) and (subsequently)
1862   // by the Young List sampling code.
1863 
1864   size_t rs_length = hr->rem_set()->occupied();
1865   add_to_incremental_cset_info(hr, rs_length);
1866 
1867   HeapWord* hr_end = hr->end();
1868   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1869 
1870   assert(!hr->in_collection_set(), "invariant");
1871   _g1->register_young_region_with_cset(hr);
1872   assert(hr->next_in_collection_set() == NULL, "invariant");
1873 }
1874 
1875 // Add the region at the RHS of the incremental cset
1876 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1877   // We should only ever be appending survivors at the end of a pause
1878   assert(hr->is_survivor(), "Logic");
1879 
1880   // Do the 'common' stuff
1881   add_region_to_incremental_cset_common(hr);
1882 
1883   // Now add the region at the right hand side
1884   if (_inc_cset_tail == NULL) {
1885     assert(_inc_cset_head == NULL, "invariant");
1886     _inc_cset_head = hr;
1887   } else {
1888     _inc_cset_tail->set_next_in_collection_set(hr);
1889   }
1890   _inc_cset_tail = hr;
1891 }
1892 
1893 // Add the region to the LHS of the incremental cset
1894 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1895   // Survivors should be added to the RHS at the end of a pause
1896   assert(hr->is_eden(), "Logic");
1897 
1898   // Do the 'common' stuff
1899   add_region_to_incremental_cset_common(hr);
1900 
1901   // Add the region at the left hand side
1902   hr->set_next_in_collection_set(_inc_cset_head);
1903   if (_inc_cset_head == NULL) {
1904     assert(_inc_cset_tail == NULL, "Invariant");
1905     _inc_cset_tail = hr;
1906   }
1907   _inc_cset_head = hr;
1908 }
1909 
1910 #ifndef PRODUCT
1911 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1912   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1913 
1914   st->print_cr("\nCollection_set:");
1915   HeapRegion* csr = list_head;
1916   while (csr != NULL) {
1917     HeapRegion* next = csr->next_in_collection_set();
1918     assert(csr->in_collection_set(), "bad CS");
1919     st->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
1920                  HR_FORMAT_PARAMS(csr),
1921                  p2i(csr->prev_top_at_mark_start()), p2i(csr->next_top_at_mark_start()),
1922                  csr->age_in_surv_rate_group_cond());
1923     csr = next;
1924   }
1925 }
1926 #endif // !PRODUCT
1927 
1928 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
1929   // Returns the given amount of reclaimable bytes (that represents
1930   // the amount of reclaimable space still to be collected) as a
1931   // percentage of the current heap capacity.
1932   size_t capacity_bytes = _g1->capacity();
1933   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1934 }
1935 
1936 void G1CollectorPolicy::maybe_start_marking() {
1937   if (need_to_start_conc_mark("end of GC")) {
1938     // Note: this might have already been set, if during the last
1939     // pause we decided to start a cycle but at the beginning of
1940     // this pause we decided to postpone it. That's OK.
1941     collector_state()->set_initiate_conc_mark_if_possible(true);
1942   }  
1943 }
1944 
1945 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1946                                                 const char* false_action_str) const {
1947   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1948   if (cset_chooser->is_empty()) {
1949     ergo_verbose0(ErgoMixedGCs,
1950                   false_action_str,
1951                   ergo_format_reason("candidate old regions not available"));
1952     return false;
1953   }
1954 
1955   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1956   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1957   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1958   double threshold = (double) G1HeapWastePercent;
1959   if (reclaimable_perc <= threshold) {
1960     ergo_verbose4(ErgoMixedGCs,
1961               false_action_str,
1962               ergo_format_reason("reclaimable percentage not over threshold")
1963               ergo_format_region("candidate old regions")
1964               ergo_format_byte_perc("reclaimable")
1965               ergo_format_perc("threshold"),
1966               cset_chooser->remaining_regions(),
1967               reclaimable_bytes,
1968               reclaimable_perc, threshold);
1969     return false;
1970   }
1971 
1972   ergo_verbose4(ErgoMixedGCs,
1973                 true_action_str,
1974                 ergo_format_reason("candidate old regions available")
1975                 ergo_format_region("candidate old regions")
1976                 ergo_format_byte_perc("reclaimable")
1977                 ergo_format_perc("threshold"),
1978                 cset_chooser->remaining_regions(),
1979                 reclaimable_bytes,
1980                 reclaimable_perc, threshold);
1981   return true;
1982 }
1983 
1984 uint G1CollectorPolicy::calc_min_old_cset_length() const {
1985   // The min old CSet region bound is based on the maximum desired
1986   // number of mixed GCs after a cycle. I.e., even if some old regions
1987   // look expensive, we should add them to the CSet anyway to make
1988   // sure we go through the available old regions in no more than the
1989   // maximum desired number of mixed GCs.
1990   //
1991   // The calculation is based on the number of marked regions we added
1992   // to the CSet chooser in the first place, not how many remain, so
1993   // that the result is the same during all mixed GCs that follow a cycle.
1994 
1995   const size_t region_num = (size_t) _collectionSetChooser->length();
1996   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1997   size_t result = region_num / gc_num;
1998   // emulate ceiling
1999   if (result * gc_num < region_num) {
2000     result += 1;
2001   }
2002   return (uint) result;
2003 }
2004 
2005 uint G1CollectorPolicy::calc_max_old_cset_length() const {
2006   // The max old CSet region bound is based on the threshold expressed
2007   // as a percentage of the heap size. I.e., it should bound the
2008   // number of old regions added to the CSet irrespective of how many
2009   // of them are available.
2010 
2011   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
2012   const size_t region_num = g1h->num_regions();
2013   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
2014   size_t result = region_num * perc / 100;
2015   // emulate ceiling
2016   if (100 * result < region_num * perc) {
2017     result += 1;
2018   }
2019   return (uint) result;
2020 }
2021 
2022 
2023 double G1CollectorPolicy::finalize_young_cset_part(double target_pause_time_ms) {
2024   double young_start_time_sec = os::elapsedTime();
2025 
2026   YoungList* young_list = _g1->young_list();
2027   finalize_incremental_cset_building();
2028 
2029   guarantee(target_pause_time_ms > 0.0,
2030             "target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
2031   guarantee(_collection_set == NULL, "Precondition");
2032 
2033   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2034   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
2035 
2036   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
2037                 "start choosing CSet",
2038                 ergo_format_size("_pending_cards")
2039                 ergo_format_ms("predicted base time")
2040                 ergo_format_ms("remaining time")
2041                 ergo_format_ms("target pause time"),
2042                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
2043 
2044   collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
2045 
2046   if (collector_state()->last_gc_was_young()) {
2047     _trace_young_gen_time_data.increment_young_collection_count();
2048   } else {
2049     _trace_young_gen_time_data.increment_mixed_collection_count();
2050   }
2051 
2052   // The young list is laid with the survivor regions from the previous
2053   // pause are appended to the RHS of the young list, i.e.
2054   //   [Newly Young Regions ++ Survivors from last pause].
2055 
2056   uint survivor_region_length = young_list->survivor_length();
2057   uint eden_region_length = young_list->eden_length();
2058   init_cset_region_lengths(eden_region_length, survivor_region_length);
2059 
2060   HeapRegion* hr = young_list->first_survivor_region();
2061   while (hr != NULL) {
2062     assert(hr->is_survivor(), "badly formed young list");
2063     // There is a convention that all the young regions in the CSet
2064     // are tagged as "eden", so we do this for the survivors here. We
2065     // use the special set_eden_pre_gc() as it doesn't check that the
2066     // region is free (which is not the case here).
2067     hr->set_eden_pre_gc();
2068     hr = hr->get_next_young_region();
2069   }
2070 
2071   // Clear the fields that point to the survivor list - they are all young now.
2072   young_list->clear_survivors();
2073 
2074   _collection_set = _inc_cset_head;
2075   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2076   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
2077 
2078   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
2079                 "add young regions to CSet",
2080                 ergo_format_region("eden")
2081                 ergo_format_region("survivors")
2082                 ergo_format_ms("predicted young region time")
2083                 ergo_format_ms("target pause time"),
2084                 eden_region_length, survivor_region_length,
2085                 _inc_cset_predicted_elapsed_time_ms,
2086                 target_pause_time_ms);
2087 
2088   // The number of recorded young regions is the incremental
2089   // collection set's current size
2090   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2091 
2092   double young_end_time_sec = os::elapsedTime();
2093   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
2094 
2095   return time_remaining_ms;
2096 }
2097 
2098 void G1CollectorPolicy::finalize_old_cset_part(double time_remaining_ms) {
2099   double non_young_start_time_sec = os::elapsedTime();
2100   double predicted_old_time_ms = 0.0;
2101 
2102 
2103   if (!collector_state()->gcs_are_young()) {
2104     CollectionSetChooser* cset_chooser = _collectionSetChooser;
2105     cset_chooser->verify();
2106     const uint min_old_cset_length = calc_min_old_cset_length();
2107     const uint max_old_cset_length = calc_max_old_cset_length();
2108 
2109     uint expensive_region_num = 0;
2110     bool check_time_remaining = adaptive_young_list_length();
2111 
2112     HeapRegion* hr = cset_chooser->peek();
2113     while (hr != NULL) {
2114       if (old_cset_region_length() >= max_old_cset_length) {
2115         // Added maximum number of old regions to the CSet.
2116         ergo_verbose2(ErgoCSetConstruction,
2117                       "finish adding old regions to CSet",
2118                       ergo_format_reason("old CSet region num reached max")
2119                       ergo_format_region("old")
2120                       ergo_format_region("max"),
2121                       old_cset_region_length(), max_old_cset_length);
2122         break;
2123       }
2124 
2125 
2126       // Stop adding regions if the remaining reclaimable space is
2127       // not above G1HeapWastePercent.
2128       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2129       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2130       double threshold = (double) G1HeapWastePercent;
2131       if (reclaimable_perc <= threshold) {
2132         // We've added enough old regions that the amount of uncollected
2133         // reclaimable space is at or below the waste threshold. Stop
2134         // adding old regions to the CSet.
2135         ergo_verbose5(ErgoCSetConstruction,
2136                       "finish adding old regions to CSet",
2137                       ergo_format_reason("reclaimable percentage not over threshold")
2138                       ergo_format_region("old")
2139                       ergo_format_region("max")
2140                       ergo_format_byte_perc("reclaimable")
2141                       ergo_format_perc("threshold"),
2142                       old_cset_region_length(),
2143                       max_old_cset_length,
2144                       reclaimable_bytes,
2145                       reclaimable_perc, threshold);
2146         break;
2147       }
2148 
2149       double predicted_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
2150       if (check_time_remaining) {
2151         if (predicted_time_ms > time_remaining_ms) {
2152           // Too expensive for the current CSet.
2153 
2154           if (old_cset_region_length() >= min_old_cset_length) {
2155             // We have added the minimum number of old regions to the CSet,
2156             // we are done with this CSet.
2157             ergo_verbose4(ErgoCSetConstruction,
2158                           "finish adding old regions to CSet",
2159                           ergo_format_reason("predicted time is too high")
2160                           ergo_format_ms("predicted time")
2161                           ergo_format_ms("remaining time")
2162                           ergo_format_region("old")
2163                           ergo_format_region("min"),
2164                           predicted_time_ms, time_remaining_ms,
2165                           old_cset_region_length(), min_old_cset_length);
2166             break;
2167           }
2168 
2169           // We'll add it anyway given that we haven't reached the
2170           // minimum number of old regions.
2171           expensive_region_num += 1;
2172         }
2173       } else {
2174         if (old_cset_region_length() >= min_old_cset_length) {
2175           // In the non-auto-tuning case, we'll finish adding regions
2176           // to the CSet if we reach the minimum.
2177           ergo_verbose2(ErgoCSetConstruction,
2178                         "finish adding old regions to CSet",
2179                         ergo_format_reason("old CSet region num reached min")
2180                         ergo_format_region("old")
2181                         ergo_format_region("min"),
2182                         old_cset_region_length(), min_old_cset_length);
2183           break;
2184         }
2185       }
2186 
2187       // We will add this region to the CSet.
2188       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2189       predicted_old_time_ms += predicted_time_ms;
2190       cset_chooser->pop(); // already have region via peek()
2191       _g1->old_set_remove(hr);
2192       add_old_region_to_cset(hr);
2193 
2194       hr = cset_chooser->peek();
2195     }
2196     if (hr == NULL) {
2197       ergo_verbose0(ErgoCSetConstruction,
2198                     "finish adding old regions to CSet",
2199                     ergo_format_reason("candidate old regions not available"));
2200     }
2201 
2202     if (expensive_region_num > 0) {
2203       // We print the information once here at the end, predicated on
2204       // whether we added any apparently expensive regions or not, to
2205       // avoid generating output per region.
2206       ergo_verbose4(ErgoCSetConstruction,
2207                     "added expensive regions to CSet",
2208                     ergo_format_reason("old CSet region num not reached min")
2209                     ergo_format_region("old")
2210                     ergo_format_region("expensive")
2211                     ergo_format_region("min")
2212                     ergo_format_ms("remaining time"),
2213                     old_cset_region_length(),
2214                     expensive_region_num,
2215                     min_old_cset_length,
2216                     time_remaining_ms);
2217     }
2218 
2219     cset_chooser->verify();
2220   }
2221 
2222   stop_incremental_cset_building();
2223 
2224   ergo_verbose3(ErgoCSetConstruction,
2225                 "finish choosing CSet",
2226                 ergo_format_region("old")
2227                 ergo_format_ms("predicted old region time")
2228                 ergo_format_ms("time remaining"),
2229                 old_cset_region_length(),
2230                 predicted_old_time_ms, time_remaining_ms);
2231 
2232   double non_young_end_time_sec = os::elapsedTime();
2233   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2234 }
2235 
2236 void TraceYoungGenTimeData::record_start_collection(double time_to_stop_the_world_ms) {
2237   if(TraceYoungGenTime) {
2238     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2239   }
2240 }
2241 
2242 void TraceYoungGenTimeData::record_yield_time(double yield_time_ms) {
2243   if(TraceYoungGenTime) {
2244     _all_yield_times_ms.add(yield_time_ms);
2245   }
2246 }
2247 
2248 void TraceYoungGenTimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2249   if(TraceYoungGenTime) {
2250     _total.add(pause_time_ms);
2251     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2252     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2253     _parallel.add(phase_times->cur_collection_par_time_ms());
2254     _ext_root_scan.add(phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan));
2255     _satb_filtering.add(phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering));
2256     _update_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS));
2257     _scan_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::ScanRS));
2258     _obj_copy.add(phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy));
2259     _termination.add(phase_times->average_time_ms(G1GCPhaseTimes::Termination));
2260 
2261     double parallel_known_time = phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan) +
2262       phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering) +
2263       phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS) +
2264       phase_times->average_time_ms(G1GCPhaseTimes::ScanRS) +
2265       phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy) +
2266       phase_times->average_time_ms(G1GCPhaseTimes::Termination);
2267 
2268     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2269     _parallel_other.add(parallel_other_time);
2270     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2271   }
2272 }
2273 
2274 void TraceYoungGenTimeData::increment_young_collection_count() {
2275   if(TraceYoungGenTime) {
2276     ++_young_pause_num;
2277   }
2278 }
2279 
2280 void TraceYoungGenTimeData::increment_mixed_collection_count() {
2281   if(TraceYoungGenTime) {
2282     ++_mixed_pause_num;
2283   }
2284 }
2285 
2286 void TraceYoungGenTimeData::print_summary(const char* str,
2287                                           const NumberSeq* seq) const {
2288   double sum = seq->sum();
2289   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2290                 str, sum / 1000.0, seq->avg());
2291 }
2292 
2293 void TraceYoungGenTimeData::print_summary_sd(const char* str,
2294                                              const NumberSeq* seq) const {
2295   print_summary(str, seq);
2296   gclog_or_tty->print_cr("%45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2297                 "(num", seq->num(), seq->sd(), seq->maximum());
2298 }
2299 
2300 void TraceYoungGenTimeData::print() const {
2301   if (!TraceYoungGenTime) {
2302     return;
2303   }
2304 
2305   gclog_or_tty->print_cr("ALL PAUSES");
2306   print_summary_sd("   Total", &_total);
2307   gclog_or_tty->cr();
2308   gclog_or_tty->cr();
2309   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2310   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2311   gclog_or_tty->cr();
2312 
2313   gclog_or_tty->print_cr("EVACUATION PAUSES");
2314 
2315   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2316     gclog_or_tty->print_cr("none");
2317   } else {
2318     print_summary_sd("   Evacuation Pauses", &_total);
2319     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2320     print_summary("      Parallel Time", &_parallel);
2321     print_summary("         Ext Root Scanning", &_ext_root_scan);
2322     print_summary("         SATB Filtering", &_satb_filtering);
2323     print_summary("         Update RS", &_update_rs);
2324     print_summary("         Scan RS", &_scan_rs);
2325     print_summary("         Object Copy", &_obj_copy);
2326     print_summary("         Termination", &_termination);
2327     print_summary("         Parallel Other", &_parallel_other);
2328     print_summary("      Clear CT", &_clear_ct);
2329     print_summary("      Other", &_other);
2330   }
2331   gclog_or_tty->cr();
2332 
2333   gclog_or_tty->print_cr("MISC");
2334   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2335   print_summary_sd("   Yields", &_all_yield_times_ms);
2336 }
2337 
2338 void TraceOldGenTimeData::record_full_collection(double full_gc_time_ms) {
2339   if (TraceOldGenTime) {
2340     _all_full_gc_times.add(full_gc_time_ms);
2341   }
2342 }
2343 
2344 void TraceOldGenTimeData::print() const {
2345   if (!TraceOldGenTime) {
2346     return;
2347   }
2348 
2349   if (_all_full_gc_times.num() > 0) {
2350     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2351       _all_full_gc_times.num(),
2352       _all_full_gc_times.sum() / 1000.0);
2353     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2354     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2355       _all_full_gc_times.sd(),
2356       _all_full_gc_times.maximum());
2357   }
2358 }