1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorState.hpp"
  32 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  33 #include "gc/g1/g1OopClosures.inline.hpp"
  34 #include "gc/g1/g1Policy.hpp"
  35 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  36 #include "gc/g1/g1StringDedup.hpp"
  37 #include "gc/g1/heapRegion.inline.hpp"
  38 #include "gc/g1/heapRegionRemSet.hpp"
  39 #include "gc/g1/heapRegionSet.inline.hpp"
  40 #include "gc/shared/adaptiveSizePolicy.hpp"
  41 #include "gc/shared/gcId.hpp"
  42 #include "gc/shared/gcTimer.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/genOopClosures.inline.hpp"
  46 #include "gc/shared/referencePolicy.hpp"
  47 #include "gc/shared/strongRootsScope.hpp"
  48 #include "gc/shared/suspendibleThreadSet.hpp"
  49 #include "gc/shared/taskqueue.inline.hpp"
  50 #include "gc/shared/vmGCOperations.hpp"
  51 #include "gc/shared/weakProcessor.hpp"
  52 #include "include/jvm.h"
  53 #include "logging/log.hpp"
  54 #include "memory/allocation.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "oops/access.inline.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/handles.inline.hpp"
  60 #include "runtime/java.hpp"
  61 #include "runtime/prefetch.inline.hpp"
  62 #include "services/memTracker.hpp"
  63 #include "utilities/align.hpp"
  64 #include "utilities/growableArray.hpp"
  65 
  66 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  67   assert(addr < _cm->finger(), "invariant");
  68   assert(addr >= _task->finger(), "invariant");
  69 
  70   // We move that task's local finger along.
  71   _task->move_finger_to(addr);
  72 
  73   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  74   // we only partially drain the local queue and global stack
  75   _task->drain_local_queue(true);
  76   _task->drain_global_stack(true);
  77 
  78   // if the has_aborted flag has been raised, we need to bail out of
  79   // the iteration
  80   return !_task->has_aborted();
  81 }
  82 
  83 G1CMMarkStack::G1CMMarkStack() :
  84   _max_chunk_capacity(0),
  85   _base(NULL),
  86   _chunk_capacity(0) {
  87   set_empty();
  88 }
  89 
  90 bool G1CMMarkStack::resize(size_t new_capacity) {
  91   assert(is_empty(), "Only resize when stack is empty.");
  92   assert(new_capacity <= _max_chunk_capacity,
  93          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  94 
  95   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
  96 
  97   if (new_base == NULL) {
  98     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
  99     return false;
 100   }
 101   // Release old mapping.
 102   if (_base != NULL) {
 103     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 104   }
 105 
 106   _base = new_base;
 107   _chunk_capacity = new_capacity;
 108   set_empty();
 109 
 110   return true;
 111 }
 112 
 113 size_t G1CMMarkStack::capacity_alignment() {
 114   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 115 }
 116 
 117 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 118   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 119 
 120   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 121 
 122   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 123   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 124 
 125   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 126             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 127             _max_chunk_capacity,
 128             initial_chunk_capacity);
 129 
 130   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 131                 initial_chunk_capacity, _max_chunk_capacity);
 132 
 133   return resize(initial_chunk_capacity);
 134 }
 135 
 136 void G1CMMarkStack::expand() {
 137   if (_chunk_capacity == _max_chunk_capacity) {
 138     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 139     return;
 140   }
 141   size_t old_capacity = _chunk_capacity;
 142   // Double capacity if possible
 143   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 144 
 145   if (resize(new_capacity)) {
 146     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 147                   old_capacity, new_capacity);
 148   } else {
 149     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 150                     old_capacity, new_capacity);
 151   }
 152 }
 153 
 154 G1CMMarkStack::~G1CMMarkStack() {
 155   if (_base != NULL) {
 156     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 157   }
 158 }
 159 
 160 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 161   elem->next = *list;
 162   *list = elem;
 163 }
 164 
 165 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 166   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 167   add_chunk_to_list(&_chunk_list, elem);
 168   _chunks_in_chunk_list++;
 169 }
 170 
 171 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 172   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 173   add_chunk_to_list(&_free_list, elem);
 174 }
 175 
 176 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 177   TaskQueueEntryChunk* result = *list;
 178   if (result != NULL) {
 179     *list = (*list)->next;
 180   }
 181   return result;
 182 }
 183 
 184 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 185   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 186   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 187   if (result != NULL) {
 188     _chunks_in_chunk_list--;
 189   }
 190   return result;
 191 }
 192 
 193 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 194   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 195   return remove_chunk_from_list(&_free_list);
 196 }
 197 
 198 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 199   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 200   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 201   // wraparound of _hwm.
 202   if (_hwm >= _chunk_capacity) {
 203     return NULL;
 204   }
 205 
 206   size_t cur_idx = Atomic::add(1u, &_hwm) - 1;
 207   if (cur_idx >= _chunk_capacity) {
 208     return NULL;
 209   }
 210 
 211   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 212   result->next = NULL;
 213   return result;
 214 }
 215 
 216 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 217   // Get a new chunk.
 218   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 219 
 220   if (new_chunk == NULL) {
 221     // Did not get a chunk from the free list. Allocate from backing memory.
 222     new_chunk = allocate_new_chunk();
 223 
 224     if (new_chunk == NULL) {
 225       return false;
 226     }
 227   }
 228 
 229   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 230 
 231   add_chunk_to_chunk_list(new_chunk);
 232 
 233   return true;
 234 }
 235 
 236 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 237   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 238 
 239   if (cur == NULL) {
 240     return false;
 241   }
 242 
 243   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 244 
 245   add_chunk_to_free_list(cur);
 246   return true;
 247 }
 248 
 249 void G1CMMarkStack::set_empty() {
 250   _chunks_in_chunk_list = 0;
 251   _hwm = 0;
 252   _chunk_list = NULL;
 253   _free_list = NULL;
 254 }
 255 
 256 G1CMRootRegions::G1CMRootRegions() :
 257   _survivors(NULL), _cm(NULL), _scan_in_progress(false),
 258   _should_abort(false), _claimed_survivor_index(0) { }
 259 
 260 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 261   _survivors = survivors;
 262   _cm = cm;
 263 }
 264 
 265 void G1CMRootRegions::prepare_for_scan() {
 266   assert(!scan_in_progress(), "pre-condition");
 267 
 268   // Currently, only survivors can be root regions.
 269   _claimed_survivor_index = 0;
 270   _scan_in_progress = _survivors->regions()->is_nonempty();
 271   _should_abort = false;
 272 }
 273 
 274 HeapRegion* G1CMRootRegions::claim_next() {
 275   if (_should_abort) {
 276     // If someone has set the should_abort flag, we return NULL to
 277     // force the caller to bail out of their loop.
 278     return NULL;
 279   }
 280 
 281   // Currently, only survivors can be root regions.
 282   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 283 
 284   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 285   if (claimed_index < survivor_regions->length()) {
 286     return survivor_regions->at(claimed_index);
 287   }
 288   return NULL;
 289 }
 290 
 291 uint G1CMRootRegions::num_root_regions() const {
 292   return (uint)_survivors->regions()->length();
 293 }
 294 
 295 void G1CMRootRegions::notify_scan_done() {
 296   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 297   _scan_in_progress = false;
 298   RootRegionScan_lock->notify_all();
 299 }
 300 
 301 void G1CMRootRegions::cancel_scan() {
 302   notify_scan_done();
 303 }
 304 
 305 void G1CMRootRegions::scan_finished() {
 306   assert(scan_in_progress(), "pre-condition");
 307 
 308   // Currently, only survivors can be root regions.
 309   if (!_should_abort) {
 310     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 311     assert((uint)_claimed_survivor_index >= _survivors->length(),
 312            "we should have claimed all survivors, claimed index = %u, length = %u",
 313            (uint)_claimed_survivor_index, _survivors->length());
 314   }
 315 
 316   notify_scan_done();
 317 }
 318 
 319 bool G1CMRootRegions::wait_until_scan_finished() {
 320   if (!scan_in_progress()) {
 321     return false;
 322   }
 323 
 324   {
 325     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 326     while (scan_in_progress()) {
 327       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 328     }
 329   }
 330   return true;
 331 }
 332 
 333 // Returns the maximum number of workers to be used in a concurrent
 334 // phase based on the number of GC workers being used in a STW
 335 // phase.
 336 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 337   return MAX2((num_gc_workers + 2) / 4, 1U);
 338 }
 339 
 340 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 341                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 342                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 343   // _cm_thread set inside the constructor
 344   _g1h(g1h),
 345   _completed_initialization(false),
 346 
 347   _mark_bitmap_1(),
 348   _mark_bitmap_2(),
 349   _prev_mark_bitmap(&_mark_bitmap_1),
 350   _next_mark_bitmap(&_mark_bitmap_2),
 351 
 352   _heap(_g1h->reserved_region()),
 353 
 354   _root_regions(),
 355 
 356   _global_mark_stack(),
 357 
 358   // _finger set in set_non_marking_state
 359 
 360   _worker_id_offset(DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 361   _max_num_tasks(ParallelGCThreads),
 362   // _num_active_tasks set in set_non_marking_state()
 363   // _tasks set inside the constructor
 364 
 365   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 366   _terminator(ParallelTaskTerminator((int) _max_num_tasks, _task_queues)),
 367 
 368   _first_overflow_barrier_sync(),
 369   _second_overflow_barrier_sync(),
 370 
 371   _has_overflown(false),
 372   _concurrent(false),
 373   _has_aborted(false),
 374   _restart_for_overflow(false),
 375   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 376   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 377 
 378   // _verbose_level set below
 379 
 380   _init_times(),
 381   _remark_times(),
 382   _remark_mark_times(),
 383   _remark_weak_ref_times(),
 384   _cleanup_times(),
 385   _total_cleanup_time(0.0),
 386 
 387   _accum_task_vtime(NULL),
 388 
 389   _concurrent_workers(NULL),
 390   _num_concurrent_workers(0),
 391   _max_concurrent_workers(0),
 392 
 393   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 394   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 395 {
 396   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 397   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 398 
 399   // Create & start ConcurrentMark thread.
 400   _cm_thread = new ConcurrentMarkThread(this);
 401   if (_cm_thread->osthread() == NULL) {
 402     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 403   }
 404 
 405   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 406 
 407   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 408   satb_qs.set_buffer_size(G1SATBBufferSize);
 409 
 410   _root_regions.init(_g1h->survivor(), this);
 411 
 412   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 413     // Calculate the number of concurrent worker threads by scaling
 414     // the number of parallel GC threads.
 415     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 416     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 417   }
 418 
 419   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 420   if (ConcGCThreads > ParallelGCThreads) {
 421     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 422                     ConcGCThreads, ParallelGCThreads);
 423     return;
 424   }
 425 
 426   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 427   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 428 
 429   _num_concurrent_workers = ConcGCThreads;
 430   _max_concurrent_workers = _num_concurrent_workers;
 431 
 432   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 433   _concurrent_workers->initialize_workers();
 434 
 435   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 436     size_t mark_stack_size =
 437       MIN2(MarkStackSizeMax,
 438           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 439     // Verify that the calculated value for MarkStackSize is in range.
 440     // It would be nice to use the private utility routine from Arguments.
 441     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 442       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 443                       "must be between 1 and " SIZE_FORMAT,
 444                       mark_stack_size, MarkStackSizeMax);
 445       return;
 446     }
 447     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 448   } else {
 449     // Verify MarkStackSize is in range.
 450     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 451       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 452         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 453           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 454                           "must be between 1 and " SIZE_FORMAT,
 455                           MarkStackSize, MarkStackSizeMax);
 456           return;
 457         }
 458       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 459         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 460           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 461                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 462                           MarkStackSize, MarkStackSizeMax);
 463           return;
 464         }
 465       }
 466     }
 467   }
 468 
 469   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 470     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 471   }
 472 
 473   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 474   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 475 
 476   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 477   _num_active_tasks = _max_num_tasks;
 478 
 479   for (uint i = 0; i < _max_num_tasks; ++i) {
 480     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 481     task_queue->initialize();
 482     _task_queues->register_queue(i, task_queue);
 483 
 484     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions());
 485 
 486     _accum_task_vtime[i] = 0.0;
 487   }
 488 
 489   reset_at_marking_complete();
 490   _completed_initialization = true;
 491 }
 492 
 493 void G1ConcurrentMark::reset() {
 494   _has_aborted = false;
 495 
 496   reset_marking_for_restart();
 497 
 498   // Reset all tasks, since different phases will use different number of active
 499   // threads. So, it's easiest to have all of them ready.
 500   for (uint i = 0; i < _max_num_tasks; ++i) {
 501     _tasks[i]->reset(_next_mark_bitmap);
 502   }
 503 
 504   uint max_regions = _g1h->max_regions();
 505   for (uint i = 0; i < max_regions; i++) {
 506     _top_at_rebuild_starts[i] = NULL;
 507     _region_mark_stats[i].clear();
 508   }
 509 }
 510 
 511 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 512   for (uint j = 0; j < _max_num_tasks; ++j) {
 513     _tasks[j]->clear_mark_stats_cache(region_idx);
 514   }
 515   _top_at_rebuild_starts[region_idx] = NULL;
 516   _region_mark_stats[region_idx].clear();
 517 }
 518 
 519 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 520   uint const region_idx = r->hrm_index();
 521   if (r->is_humongous()) {
 522     assert(r->is_starts_humongous(), "Got humongous continues region here");
 523     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 524     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 525       clear_statistics_in_region(j);
 526     }
 527   } else {
 528     clear_statistics_in_region(region_idx);
 529   } 
 530 }
 531 
 532 static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 533   if (bitmap->is_marked(addr)) {
 534     bitmap->clear(addr);
 535   }
 536 }
 537 
 538 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 539   assert_at_safepoint_on_vm_thread();
 540 
 541   // Need to clear all mark bits of the humongous object.
 542   clear_mark_if_set(_prev_mark_bitmap, r->bottom());
 543   clear_mark_if_set(_next_mark_bitmap, r->bottom());
 544 
 545   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
 546     return;
 547   }
 548 
 549   // Clear any statistics about the region gathered so far.
 550   clear_statistics(r);
 551 }
 552 
 553 void G1ConcurrentMark::reset_marking_for_restart() {
 554   _global_mark_stack.set_empty();
 555 
 556   // Expand the marking stack, if we have to and if we can.
 557   if (has_overflown()) {
 558     _global_mark_stack.expand();
 559 
 560     uint max_regions = _g1h->max_regions();
 561     for (uint i = 0; i < max_regions; i++) {
 562       _region_mark_stats[i].clear_during_overflow();
 563     }
 564   }
 565 
 566   clear_has_overflown();
 567   _finger = _heap.start();
 568 
 569   for (uint i = 0; i < _max_num_tasks; ++i) {
 570     G1CMTaskQueue* queue = _task_queues->queue(i);
 571     queue->set_empty();
 572   }
 573 }
 574 
 575 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 576   assert(active_tasks <= _max_num_tasks, "we should not have more");
 577 
 578   _num_active_tasks = active_tasks;
 579   // Need to update the three data structures below according to the
 580   // number of active threads for this phase.
 581   _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
 582   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 583   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 584 }
 585 
 586 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 587   set_concurrency(active_tasks);
 588 
 589   _concurrent = concurrent;
 590 
 591   if (!concurrent) {
 592     // At this point we should be in a STW phase, and completed marking.
 593     assert_at_safepoint_on_vm_thread();
 594     assert(out_of_regions(),
 595            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 596            p2i(_finger), p2i(_heap.end()));
 597   }
 598 }
 599 
 600 void G1ConcurrentMark::reset_at_marking_complete() {
 601   // We set the global marking state to some default values when we're
 602   // not doing marking.
 603   reset_marking_for_restart();
 604   _num_active_tasks = 0;
 605 }
 606 
 607 G1ConcurrentMark::~G1ConcurrentMark() {
 608   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 609   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 610   // The G1ConcurrentMark instance is never freed.
 611   ShouldNotReachHere();
 612 }
 613 
 614 class G1ClearBitMapTask : public AbstractGangTask {
 615 public:
 616   static size_t chunk_size() { return M; }
 617 
 618 private:
 619   // Heap region closure used for clearing the given mark bitmap.
 620   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 621   private:
 622     G1CMBitMap* _bitmap;
 623     G1ConcurrentMark* _cm;
 624   public:
 625     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 626     }
 627 
 628     virtual bool do_heap_region(HeapRegion* r) {
 629       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 630 
 631       HeapWord* cur = r->bottom();
 632       HeapWord* const end = r->end();
 633 
 634       while (cur < end) {
 635         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 636         _bitmap->clear_range(mr);
 637 
 638         cur += chunk_size_in_words;
 639 
 640         // Abort iteration if after yielding the marking has been aborted.
 641         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 642           return true;
 643         }
 644         // Repeat the asserts from before the start of the closure. We will do them
 645         // as asserts here to minimize their overhead on the product. However, we
 646         // will have them as guarantees at the beginning / end of the bitmap
 647         // clearing to get some checking in the product.
 648         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 649         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 650       }
 651       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 652 
 653       return false;
 654     }
 655   };
 656 
 657   G1ClearBitmapHRClosure _cl;
 658   HeapRegionClaimer _hr_claimer;
 659   bool _suspendible; // If the task is suspendible, workers must join the STS.
 660 
 661 public:
 662   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 663     AbstractGangTask("G1 Clear Bitmap"),
 664     _cl(bitmap, suspendible ? cm : NULL),
 665     _hr_claimer(n_workers),
 666     _suspendible(suspendible)
 667   { }
 668 
 669   void work(uint worker_id) {
 670     SuspendibleThreadSetJoiner sts_join(_suspendible);
 671     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 672   }
 673 
 674   bool is_complete() {
 675     return _cl.is_complete();
 676   }
 677 };
 678 
 679 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 680   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 681 
 682   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 683   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 684 
 685   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 686 
 687   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 688 
 689   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 690   workers->run_task(&cl, num_workers);
 691   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 692 }
 693 
 694 void G1ConcurrentMark::cleanup_for_next_mark() {
 695   // Make sure that the concurrent mark thread looks to still be in
 696   // the current cycle.
 697   guarantee(cm_thread()->during_cycle(), "invariant");
 698 
 699   // We are finishing up the current cycle by clearing the next
 700   // marking bitmap and getting it ready for the next cycle. During
 701   // this time no other cycle can start. So, let's make sure that this
 702   // is the case.
 703   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 704 
 705   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 706 
 707   // Repeat the asserts from above.
 708   guarantee(cm_thread()->during_cycle(), "invariant");
 709   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 710 }
 711 
 712 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 713   assert_at_safepoint_on_vm_thread();
 714   clear_bitmap(_prev_mark_bitmap, workers, false);
 715 }
 716 
 717 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 718   G1CMBitMap* _bitmap;
 719  public:
 720   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 721   }
 722 
 723   virtual bool do_heap_region(HeapRegion* r) {
 724     // This closure can be called concurrently to the mutator, so we must make sure
 725     // that the result of the getNextMarkedWordAddress() call is compared to the
 726     // value passed to it as limit to detect any found bits.
 727     // end never changes in G1.
 728     HeapWord* end = r->end();
 729     return _bitmap->get_next_marked_addr(r->bottom(), end) != end;
 730   }
 731 };
 732 
 733 bool G1ConcurrentMark::next_mark_bitmap_is_clear() {
 734   CheckBitmapClearHRClosure cl(_next_mark_bitmap);
 735   _g1h->heap_region_iterate(&cl);
 736   return cl.is_complete();
 737 }
 738 
 739 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 740 public:
 741   bool do_heap_region(HeapRegion* r) {
 742     r->note_start_of_marking();
 743     return false;
 744   }
 745 };
 746 
 747 void G1ConcurrentMark::pre_initial_mark() {
 748   // Initialize marking structures. This has to be done in a STW phase.
 749   reset();
 750 
 751   // For each region note start of marking.
 752   NoteStartOfMarkHRClosure startcl;
 753   _g1h->heap_region_iterate(&startcl);
 754 }
 755 
 756 
 757 void G1ConcurrentMark::post_initial_mark() {
 758   // Start Concurrent Marking weak-reference discovery.
 759   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 760   // enable ("weak") refs discovery
 761   rp->enable_discovery();
 762   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 763 
 764   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 765   // This is the start of  the marking cycle, we're expected all
 766   // threads to have SATB queues with active set to false.
 767   satb_mq_set.set_active_all_threads(true, /* new active value */
 768                                      false /* expected_active */);
 769 
 770   _root_regions.prepare_for_scan();
 771 
 772   // update_g1_committed() will be called at the end of an evac pause
 773   // when marking is on. So, it's also called at the end of the
 774   // initial-mark pause to update the heap end, if the heap expands
 775   // during it. No need to call it here.
 776 }
 777 
 778 /*
 779  * Notice that in the next two methods, we actually leave the STS
 780  * during the barrier sync and join it immediately afterwards. If we
 781  * do not do this, the following deadlock can occur: one thread could
 782  * be in the barrier sync code, waiting for the other thread to also
 783  * sync up, whereas another one could be trying to yield, while also
 784  * waiting for the other threads to sync up too.
 785  *
 786  * Note, however, that this code is also used during remark and in
 787  * this case we should not attempt to leave / enter the STS, otherwise
 788  * we'll either hit an assert (debug / fastdebug) or deadlock
 789  * (product). So we should only leave / enter the STS if we are
 790  * operating concurrently.
 791  *
 792  * Because the thread that does the sync barrier has left the STS, it
 793  * is possible to be suspended for a Full GC or an evacuation pause
 794  * could occur. This is actually safe, since the entering the sync
 795  * barrier is one of the last things do_marking_step() does, and it
 796  * doesn't manipulate any data structures afterwards.
 797  */
 798 
 799 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 800   bool barrier_aborted;
 801   {
 802     SuspendibleThreadSetLeaver sts_leave(concurrent());
 803     barrier_aborted = !_first_overflow_barrier_sync.enter();
 804   }
 805 
 806   // at this point everyone should have synced up and not be doing any
 807   // more work
 808 
 809   if (barrier_aborted) {
 810     // If the barrier aborted we ignore the overflow condition and
 811     // just abort the whole marking phase as quickly as possible.
 812     return;
 813   }
 814 }
 815 
 816 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 817   SuspendibleThreadSetLeaver sts_leave(concurrent());
 818   _second_overflow_barrier_sync.enter();
 819 
 820   // at this point everything should be re-initialized and ready to go
 821 }
 822 
 823 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 824   G1ConcurrentMark*     _cm;
 825 public:
 826   void work(uint worker_id) {
 827     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 828     ResourceMark rm;
 829 
 830     double start_vtime = os::elapsedVTime();
 831 
 832     {
 833       SuspendibleThreadSetJoiner sts_join;
 834 
 835       assert(worker_id < _cm->active_tasks(), "invariant");
 836 
 837       G1CMTask* task = _cm->task(worker_id);
 838       task->record_start_time();
 839       if (!_cm->has_aborted()) {
 840         do {
 841           task->do_marking_step(G1ConcMarkStepDurationMillis,
 842                                 true  /* do_termination */,
 843                                 false /* is_serial*/);
 844 
 845           _cm->do_yield_check();
 846         } while (!_cm->has_aborted() && task->has_aborted());
 847       }
 848       task->record_end_time();
 849       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 850     }
 851 
 852     double end_vtime = os::elapsedVTime();
 853     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 854   }
 855 
 856   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 857       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 858 
 859   ~G1CMConcurrentMarkingTask() { }
 860 };
 861 
 862 uint G1ConcurrentMark::calc_active_marking_workers() {
 863   uint result = 0;
 864   if (!UseDynamicNumberOfGCThreads ||
 865       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 866        !ForceDynamicNumberOfGCThreads)) {
 867     result = _max_concurrent_workers;
 868   } else {
 869     result =
 870       AdaptiveSizePolicy::calc_default_active_workers(_max_concurrent_workers,
 871                                                       1, /* Minimum workers */
 872                                                       _num_concurrent_workers,
 873                                                       Threads::number_of_non_daemon_threads());
 874     // Don't scale the result down by scale_concurrent_workers() because
 875     // that scaling has already gone into "_max_concurrent_workers".
 876   }
 877   assert(result > 0 && result <= _max_concurrent_workers,
 878          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 879          _max_concurrent_workers, result);
 880   return result;
 881 }
 882 
 883 void G1ConcurrentMark::scan_root_region(HeapRegion* hr, uint worker_id) {
 884   // Currently, only survivors can be root regions.
 885   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 886   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 887 
 888   const uintx interval = PrefetchScanIntervalInBytes;
 889   HeapWord* curr = hr->bottom();
 890   const HeapWord* end = hr->top();
 891   while (curr < end) {
 892     Prefetch::read(curr, interval);
 893     oop obj = oop(curr);
 894     int size = obj->oop_iterate_size(&cl);
 895     assert(size == obj->size(), "sanity");
 896     curr += size;
 897   }
 898 }
 899 
 900 class G1CMRootRegionScanTask : public AbstractGangTask {
 901   G1ConcurrentMark* _cm;
 902 public:
 903   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 904     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 905 
 906   void work(uint worker_id) {
 907     assert(Thread::current()->is_ConcurrentGC_thread(),
 908            "this should only be done by a conc GC thread");
 909 
 910     G1CMRootRegions* root_regions = _cm->root_regions();
 911     HeapRegion* hr = root_regions->claim_next();
 912     while (hr != NULL) {
 913       _cm->scan_root_region(hr, worker_id);
 914       hr = root_regions->claim_next();
 915     }
 916   }
 917 };
 918 
 919 void G1ConcurrentMark::scan_root_regions() {
 920   // scan_in_progress() will have been set to true only if there was
 921   // at least one root region to scan. So, if it's false, we
 922   // should not attempt to do any further work.
 923   if (root_regions()->scan_in_progress()) {
 924     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 925 
 926     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 927                                    // We distribute work on a per-region basis, so starting
 928                                    // more threads than that is useless.
 929                                    root_regions()->num_root_regions());
 930     assert(_num_concurrent_workers <= _max_concurrent_workers,
 931            "Maximum number of marking threads exceeded");
 932 
 933     G1CMRootRegionScanTask task(this);
 934     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 935                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 936     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 937 
 938     // It's possible that has_aborted() is true here without actually
 939     // aborting the survivor scan earlier. This is OK as it's
 940     // mainly used for sanity checking.
 941     root_regions()->scan_finished();
 942   }
 943 }
 944 
 945 void G1ConcurrentMark::concurrent_cycle_start() {
 946   _gc_timer_cm->register_gc_start();
 947 
 948   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 949 
 950   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 951 }
 952 
 953 void G1ConcurrentMark::concurrent_cycle_end() {
 954   _g1h->collector_state()->set_clearing_next_bitmap(false);
 955 
 956   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 957 
 958   if (has_aborted()) {
 959     log_info(gc, marking)("Concurrent Mark Abort");
 960     _gc_tracer_cm->report_concurrent_mode_failure();
 961   }
 962 
 963   _gc_timer_cm->register_gc_end();
 964 
 965   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 966 }
 967 
 968 void G1ConcurrentMark::mark_from_roots() {
 969   _restart_for_overflow = false;
 970 
 971   _num_concurrent_workers = calc_active_marking_workers();
 972 
 973   uint active_workers = MAX2(1U, _num_concurrent_workers);
 974 
 975   // Setting active workers is not guaranteed since fewer
 976   // worker threads may currently exist and more may not be
 977   // available.
 978   active_workers = _concurrent_workers->update_active_workers(active_workers);
 979   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 980 
 981   // Parallel task terminator is set in "set_concurrency_and_phase()"
 982   set_concurrency_and_phase(active_workers, true /* concurrent */);
 983 
 984   G1CMConcurrentMarkingTask marking_task(this);
 985   _concurrent_workers->run_task(&marking_task);
 986   print_stats();
 987 }
 988 
 989 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 990   G1HeapVerifier* verifier = _g1h->verifier();
 991 
 992   verifier->verify_region_sets_optional();
 993 
 994   if (VerifyDuringGC) {
 995     GCTraceTime(Debug, gc, phases) trace(caller, _gc_timer_cm);
 996 
 997     size_t const BufLen = 512;
 998     char buffer[BufLen];
 999 
1000     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
1001     verifier->verify(type, vo, buffer);
1002   }
1003 
1004   verifier->check_bitmaps(caller);
1005 }
1006 
1007 class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
1008   G1CollectedHeap* _g1h;
1009   G1ConcurrentMark* _cm;
1010 
1011   G1PrintRegionLivenessInfoClosure _cl;
1012 
1013   uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
1014 
1015   void update_remset_before_rebuild(HeapRegion * hr) {
1016     G1RemSetTrackingPolicy* tracking_policy = _g1h->g1_policy()->remset_tracker();
1017 
1018     size_t live_bytes = _cm->liveness(hr->hrm_index()) * HeapWordSize;
1019     bool selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
1020     if (selected_for_rebuild) {
1021       _num_regions_selected_for_rebuild++;
1022     }
1023     _cm->update_top_at_rebuild_start(hr);
1024   }
1025 
1026   void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) {
1027     uint const region_idx = hr->hrm_index();
1028     assert(hr->is_starts_humongous(), "Should not have marked bytes " SIZE_FORMAT " in non-starts humongous region %u (%s)", marked_words, region_idx, hr->get_type_str());
1029     uint num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(marked_words);
1030 
1031     for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) {
1032       HeapRegion* const r = _g1h->region_at(i);
1033       size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words);
1034       r->add_to_marked_bytes(words_to_add * HeapWordSize);
1035       marked_words -= words_to_add;
1036     }
1037   }
1038 
1039   void update_marked_bytes(HeapRegion* hr) {
1040     uint const region_idx = hr->hrm_index();
1041     size_t marked_words = _cm->liveness(region_idx);
1042     // The marking attributes the object's size completely to the humongous starts
1043     // region. We need to distribute this value across the entire set of regions a
1044     // humongous object spans.
1045     if (!hr->is_humongous()) {
1046       hr->add_to_marked_bytes(marked_words * HeapWordSize);
1047       log_trace(gc)("Added " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1048     } else {
1049       if (marked_words > 0) {
1050         log_trace(gc)("Distributing " SIZE_FORMAT " words to humongous start region %u (%s), word size %d (%f)", 
1051                       marked_words, region_idx, hr->get_type_str(),
1052                       oop(hr->bottom())->size(), (double)oop(hr->bottom())->size() / HeapRegion::GrainWords);
1053         distribute_marked_bytes(hr, marked_words);
1054       } else {
1055         log_trace(gc)("NOT Added " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1056       }
1057     }
1058   }
1059 public:
1060   G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm) :
1061     _g1h(g1h), _cm(cm), _cl("Post-Marking"), _num_regions_selected_for_rebuild(0) { }
1062 
1063   virtual bool do_heap_region(HeapRegion* r) {
1064     update_remset_before_rebuild(r);
1065     update_marked_bytes(r);
1066     if (log_is_enabled(Trace, gc, liveness)) {
1067       _cl.do_heap_region(r);
1068     }
1069     r->note_end_of_marking();
1070     return false;
1071   }
1072 
1073   uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1074 };
1075 
1076 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1077   G1CollectedHeap* _g1h;
1078 public:
1079   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1080 
1081   virtual bool do_heap_region(HeapRegion* r) {
1082     _g1h->g1_policy()->remset_tracker()->update_after_rebuild(r);
1083     return false;
1084   }
1085 };
1086 
1087 void G1ConcurrentMark::remark() {
1088   assert_at_safepoint_on_vm_thread();
1089 
1090   // If a full collection has happened, we should not continue. However we might
1091   // have ended up here as the Remark VM operation has been scheduled already.
1092   if (has_aborted()) {
1093     return;
1094   }
1095 
1096   G1Policy* g1p = _g1h->g1_policy();
1097   g1p->record_concurrent_mark_remark_start();
1098 
1099   double start = os::elapsedTime();
1100 
1101   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1102 
1103   {
1104     GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1105     finalize_marking();
1106   }
1107 
1108   double mark_work_end = os::elapsedTime();
1109 
1110   bool const mark_finished = !has_overflown();
1111   if (mark_finished) {
1112     weak_refs_work(false /* clear_all_soft_refs */);
1113 
1114     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1115     // We're done with marking.
1116     // This is the end of the marking cycle, we're expected all
1117     // threads to have SATB queues with active set to true.
1118     satb_mq_set.set_active_all_threads(false, /* new active value */
1119                                        true /* expected_active */);
1120 
1121     {
1122       GCTraceTime(Debug, gc, phases)("Flush Task Caches");
1123       flush_all_task_caches();
1124     }
1125 
1126     // Install newly created mark bitmap as "prev".
1127     swap_mark_bitmaps();
1128     {
1129       GCTraceTime(Debug, gc, phases)("Update Remembered Set Tracking Before Rebuild");
1130       G1UpdateRemSetTrackingBeforeRebuild cl(_g1h, this);
1131       _g1h->heap_region_iterate(&cl);
1132       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1133                                       _g1h->num_regions(), cl.num_selected_for_rebuild());
1134     }
1135 
1136     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after");
1137 
1138     assert(!restart_for_overflow(), "sanity");
1139     // Completely reset the marking state since marking completed
1140     reset_at_marking_complete();
1141   } else {
1142     // We overflowed.  Restart concurrent marking.
1143     _restart_for_overflow = true;
1144 
1145     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1146 
1147     // Clear the marking state because we will be restarting
1148     // marking due to overflowing the global mark stack.
1149     reset_marking_for_restart();
1150   }
1151 
1152   {
1153     GCTraceTime(Debug, gc, phases)("Report Object Count");
1154     report_object_count(mark_finished);
1155   }
1156 
1157   // Statistics
1158   double now = os::elapsedTime();
1159   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1160   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1161   _remark_times.add((now - start) * 1000.0);
1162 
1163   g1p->record_concurrent_mark_remark_end();
1164 }
1165 
1166 class G1CleanupTask : public AbstractGangTask {
1167   // Per-region work during the Cleanup pause.
1168   class G1CleanupRegionsClosure : public HeapRegionClosure {
1169     G1CollectedHeap* _g1h;
1170     size_t _freed_bytes;
1171     FreeRegionList* _local_cleanup_list;
1172     uint _old_regions_removed;
1173     uint _humongous_regions_removed;
1174     HRRSCleanupTask* _hrrs_cleanup_task;
1175 
1176   public:
1177     G1CleanupRegionsClosure(G1CollectedHeap* g1,
1178                             FreeRegionList* local_cleanup_list,
1179                             HRRSCleanupTask* hrrs_cleanup_task) :
1180       _g1h(g1),
1181       _freed_bytes(0),
1182       _local_cleanup_list(local_cleanup_list),
1183       _old_regions_removed(0),
1184       _humongous_regions_removed(0),
1185       _hrrs_cleanup_task(hrrs_cleanup_task) { }
1186 
1187     size_t freed_bytes() { return _freed_bytes; }
1188     const uint old_regions_removed() { return _old_regions_removed; }
1189     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1190 
1191     bool do_heap_region(HeapRegion *hr) {
1192       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1193         _freed_bytes += hr->used();
1194         hr->set_containing_set(NULL);
1195         if (hr->is_humongous()) {
1196           _humongous_regions_removed++;
1197           _g1h->free_humongous_region(hr, _local_cleanup_list);
1198         } else {
1199           _old_regions_removed++;
1200           _g1h->free_region(hr, _local_cleanup_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
1201         }
1202         hr->clear_cardtable();
1203         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1204         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1205       } else {
1206         hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1207       }
1208 
1209       return false;
1210     }
1211   };
1212 
1213   G1CollectedHeap* _g1h;
1214   FreeRegionList* _cleanup_list;
1215   HeapRegionClaimer _hrclaimer;
1216 
1217 public:
1218   G1CleanupTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1219     AbstractGangTask("G1 Cleanup"),
1220     _g1h(g1h),
1221     _cleanup_list(cleanup_list),
1222     _hrclaimer(n_workers) {
1223 
1224     HeapRegionRemSet::reset_for_cleanup_tasks();
1225   }
1226 
1227   void work(uint worker_id) {
1228     FreeRegionList local_cleanup_list("Local Cleanup List");
1229     HRRSCleanupTask hrrs_cleanup_task;
1230     G1CleanupRegionsClosure cl(_g1h,
1231                                &local_cleanup_list,
1232                                &hrrs_cleanup_task);
1233     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1234     assert(cl.is_complete(), "Shouldn't have aborted!");
1235 
1236     // Now update the old/humongous region sets
1237     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1238     {
1239       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1240       _g1h->decrement_summary_bytes(cl.freed_bytes());
1241 
1242       _cleanup_list->add_ordered(&local_cleanup_list);
1243       assert(local_cleanup_list.is_empty(), "post-condition");
1244 
1245       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1246     }
1247   }
1248 };
1249 
1250 void G1ConcurrentMark::reclaim_empty_regions() {
1251   WorkGang* workers = _g1h->workers();
1252   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1253 
1254   G1CleanupTask cl(_g1h, &empty_regions_list, workers->active_workers());
1255   workers->run_task(&cl);
1256 
1257   if (!empty_regions_list.is_empty()) {
1258     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1259     // Now print the empty regions list.
1260     G1HRPrinter* hrp = _g1h->hr_printer();
1261     if (hrp->is_active()) {
1262       FreeRegionListIterator iter(&empty_regions_list);
1263       while (iter.more_available()) {
1264         HeapRegion* hr = iter.get_next();
1265         hrp->cleanup(hr);
1266       }
1267     }
1268     // And actually make them available.
1269     _g1h->prepend_to_freelist(&empty_regions_list);
1270   }
1271 }
1272 
1273 void G1ConcurrentMark::cleanup() {
1274   assert_at_safepoint_on_vm_thread();
1275 
1276   // If a full collection has happened, we shouldn't do this.
1277   if (has_aborted()) {
1278     return;
1279   }
1280 
1281   G1Policy* g1p = _g1h->g1_policy();
1282   g1p->record_concurrent_mark_cleanup_start();
1283 
1284   double start = os::elapsedTime();
1285 
1286   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before");
1287 
1288   {
1289     GCTraceTime(Debug, gc, phases)("Update Remembered Set Tracking After Rebuild");
1290     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1291     _g1h->heap_region_iterate(&cl);
1292   }
1293 
1294   if (log_is_enabled(Trace, gc, liveness)) {
1295     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1296     _g1h->heap_region_iterate(&cl);
1297   }
1298 
1299   {
1300     GCTraceTime(Debug, gc, phases)("Reclaim Empty Regions");
1301     reclaim_empty_regions();
1302   }
1303 
1304   // Cleanup will have freed any regions completely full of garbage.
1305   // Update the soft reference policy with the new heap occupancy.
1306   Universe::update_heap_info_at_gc();
1307 
1308   // Clean out dead classes and update Metaspace sizes.
1309   if (ClassUnloadingWithConcurrentMark) {
1310     GCTraceTime(Debug, gc, phases)("Purge Metaspace");
1311     ClassLoaderDataGraph::purge();
1312   }
1313   MetaspaceGC::compute_new_size();
1314 
1315   // We reclaimed old regions so we should calculate the sizes to make
1316   // sure we update the old gen/space data.
1317   _g1h->g1mm()->update_sizes();
1318 
1319   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1320 
1321   // We need to make this be a "collection" so any collection pause that
1322   // races with it goes around and waits for Cleanup to finish.
1323   _g1h->increment_total_collections();
1324 
1325   // Local statistics
1326   double recent_cleanup_time = (os::elapsedTime() - start);
1327   _total_cleanup_time += recent_cleanup_time;
1328   _cleanup_times.add(recent_cleanup_time);
1329 
1330   {
1331     GCTraceTime(Debug, gc, phases)("Finalize Concurrent Mark Cleanup");
1332     _g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1333   }
1334 }
1335 
1336 // Supporting Object and Oop closures for reference discovery
1337 // and processing in during marking
1338 
1339 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1340   HeapWord* addr = (HeapWord*)obj;
1341   return addr != NULL &&
1342          (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_ill(obj));
1343 }
1344 
1345 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1346 // Uses the G1CMTask associated with a worker thread (for serial reference
1347 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1348 // trace referent objects.
1349 //
1350 // Using the G1CMTask and embedded local queues avoids having the worker
1351 // threads operating on the global mark stack. This reduces the risk
1352 // of overflowing the stack - which we would rather avoid at this late
1353 // state. Also using the tasks' local queues removes the potential
1354 // of the workers interfering with each other that could occur if
1355 // operating on the global stack.
1356 
1357 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1358   G1ConcurrentMark* _cm;
1359   G1CMTask*         _task;
1360   int               _ref_counter_limit;
1361   int               _ref_counter;
1362   bool              _is_serial;
1363 public:
1364   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1365     _cm(cm), _task(task), _is_serial(is_serial),
1366     _ref_counter_limit(G1RefProcDrainInterval) {
1367     assert(_ref_counter_limit > 0, "sanity");
1368     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1369     _ref_counter = _ref_counter_limit;
1370   }
1371 
1372   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1373   virtual void do_oop(      oop* p) { do_oop_work(p); }
1374 
1375   template <class T> void do_oop_work(T* p) {
1376     if (!_cm->has_overflown()) {
1377       _task->deal_with_reference(p);
1378       _ref_counter--;
1379 
1380       if (_ref_counter == 0) {
1381         // We have dealt with _ref_counter_limit references, pushing them
1382         // and objects reachable from them on to the local stack (and
1383         // possibly the global stack). Call G1CMTask::do_marking_step() to
1384         // process these entries.
1385         //
1386         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1387         // there's nothing more to do (i.e. we're done with the entries that
1388         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1389         // above) or we overflow.
1390         //
1391         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1392         // flag while there may still be some work to do. (See the comment at
1393         // the beginning of G1CMTask::do_marking_step() for those conditions -
1394         // one of which is reaching the specified time target.) It is only
1395         // when G1CMTask::do_marking_step() returns without setting the
1396         // has_aborted() flag that the marking step has completed.
1397         do {
1398           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1399           _task->do_marking_step(mark_step_duration_ms,
1400                                  false      /* do_termination */,
1401                                  _is_serial);
1402         } while (_task->has_aborted() && !_cm->has_overflown());
1403         _ref_counter = _ref_counter_limit;
1404       }
1405     }
1406   }
1407 };
1408 
1409 // 'Drain' oop closure used by both serial and parallel reference processing.
1410 // Uses the G1CMTask associated with a given worker thread (for serial
1411 // reference processing the G1CMtask for worker 0 is used). Calls the
1412 // do_marking_step routine, with an unbelievably large timeout value,
1413 // to drain the marking data structures of the remaining entries
1414 // added by the 'keep alive' oop closure above.
1415 
1416 class G1CMDrainMarkingStackClosure : public VoidClosure {
1417   G1ConcurrentMark* _cm;
1418   G1CMTask*         _task;
1419   bool              _is_serial;
1420  public:
1421   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1422     _cm(cm), _task(task), _is_serial(is_serial) {
1423     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1424   }
1425 
1426   void do_void() {
1427     do {
1428       // We call G1CMTask::do_marking_step() to completely drain the local
1429       // and global marking stacks of entries pushed by the 'keep alive'
1430       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1431       //
1432       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1433       // if there's nothing more to do (i.e. we've completely drained the
1434       // entries that were pushed as a a result of applying the 'keep alive'
1435       // closure to the entries on the discovered ref lists) or we overflow
1436       // the global marking stack.
1437       //
1438       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1439       // flag while there may still be some work to do. (See the comment at
1440       // the beginning of G1CMTask::do_marking_step() for those conditions -
1441       // one of which is reaching the specified time target.) It is only
1442       // when G1CMTask::do_marking_step() returns without setting the
1443       // has_aborted() flag that the marking step has completed.
1444 
1445       _task->do_marking_step(1000000000.0 /* something very large */,
1446                              true         /* do_termination */,
1447                              _is_serial);
1448     } while (_task->has_aborted() && !_cm->has_overflown());
1449   }
1450 };
1451 
1452 // Implementation of AbstractRefProcTaskExecutor for parallel
1453 // reference processing at the end of G1 concurrent marking
1454 
1455 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1456 private:
1457   G1CollectedHeap*  _g1h;
1458   G1ConcurrentMark* _cm;
1459   WorkGang*         _workers;
1460   uint              _active_workers;
1461 
1462 public:
1463   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1464                           G1ConcurrentMark* cm,
1465                           WorkGang* workers,
1466                           uint n_workers) :
1467     _g1h(g1h), _cm(cm),
1468     _workers(workers), _active_workers(n_workers) { }
1469 
1470   // Executes the given task using concurrent marking worker threads.
1471   virtual void execute(ProcessTask& task);
1472   virtual void execute(EnqueueTask& task);
1473 };
1474 
1475 class G1CMRefProcTaskProxy : public AbstractGangTask {
1476   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1477   ProcessTask&      _proc_task;
1478   G1CollectedHeap*  _g1h;
1479   G1ConcurrentMark* _cm;
1480 
1481 public:
1482   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1483                        G1CollectedHeap* g1h,
1484                        G1ConcurrentMark* cm) :
1485     AbstractGangTask("Process reference objects in parallel"),
1486     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1487     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1488     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1489   }
1490 
1491   virtual void work(uint worker_id) {
1492     ResourceMark rm;
1493     HandleMark hm;
1494     G1CMTask* task = _cm->task(worker_id);
1495     G1CMIsAliveClosure g1_is_alive(_g1h);
1496     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1497     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1498 
1499     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1500   }
1501 };
1502 
1503 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1504   assert(_workers != NULL, "Need parallel worker threads.");
1505   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1506 
1507   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1508 
1509   // We need to reset the concurrency level before each
1510   // proxy task execution, so that the termination protocol
1511   // and overflow handling in G1CMTask::do_marking_step() knows
1512   // how many workers to wait for.
1513   _cm->set_concurrency(_active_workers);
1514   _workers->run_task(&proc_task_proxy);
1515 }
1516 
1517 class G1CMRefEnqueueTaskProxy : public AbstractGangTask {
1518   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1519   EnqueueTask& _enq_task;
1520 
1521 public:
1522   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1523     AbstractGangTask("Enqueue reference objects in parallel"),
1524     _enq_task(enq_task) { }
1525 
1526   virtual void work(uint worker_id) {
1527     _enq_task.work(worker_id);
1528   }
1529 };
1530 
1531 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1532   assert(_workers != NULL, "Need parallel worker threads.");
1533   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1534 
1535   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1536 
1537   // Not strictly necessary but...
1538   //
1539   // We need to reset the concurrency level before each
1540   // proxy task execution, so that the termination protocol
1541   // and overflow handling in G1CMTask::do_marking_step() knows
1542   // how many workers to wait for.
1543   _cm->set_concurrency(_active_workers);
1544   _workers->run_task(&enq_task_proxy);
1545 }
1546 
1547 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1548   ResourceMark rm;
1549   HandleMark   hm;
1550 
1551   // Is alive closure.
1552   G1CMIsAliveClosure g1_is_alive(_g1h);
1553 
1554   // Inner scope to exclude the cleaning of the string and symbol
1555   // tables from the displayed time.
1556   {
1557     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1558 
1559     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1560 
1561     // See the comment in G1CollectedHeap::ref_processing_init()
1562     // about how reference processing currently works in G1.
1563 
1564     // Set the soft reference policy
1565     rp->setup_policy(clear_all_soft_refs);
1566     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1567 
1568     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1569     // in serial reference processing. Note these closures are also
1570     // used for serially processing (by the the current thread) the
1571     // JNI references during parallel reference processing.
1572     //
1573     // These closures do not need to synchronize with the worker
1574     // threads involved in parallel reference processing as these
1575     // instances are executed serially by the current thread (e.g.
1576     // reference processing is not multi-threaded and is thus
1577     // performed by the current thread instead of a gang worker).
1578     //
1579     // The gang tasks involved in parallel reference processing create
1580     // their own instances of these closures, which do their own
1581     // synchronization among themselves.
1582     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1583     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1584 
1585     // We need at least one active thread. If reference processing
1586     // is not multi-threaded we use the current (VMThread) thread,
1587     // otherwise we use the work gang from the G1CollectedHeap and
1588     // we utilize all the worker threads we can.
1589     bool processing_is_mt = rp->processing_is_mt();
1590     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1591     active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U);
1592 
1593     // Parallel processing task executor.
1594     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1595                                               _g1h->workers(), active_workers);
1596     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1597 
1598     // Set the concurrency level. The phase was already set prior to
1599     // executing the remark task.
1600     set_concurrency(active_workers);
1601 
1602     // Set the degree of MT processing here.  If the discovery was done MT,
1603     // the number of threads involved during discovery could differ from
1604     // the number of active workers.  This is OK as long as the discovered
1605     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1606     rp->set_active_mt_degree(active_workers);
1607 
1608     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q());
1609 
1610     // Process the weak references.
1611     const ReferenceProcessorStats& stats =
1612         rp->process_discovered_references(&g1_is_alive,
1613                                           &g1_keep_alive,
1614                                           &g1_drain_mark_stack,
1615                                           executor,
1616                                           &pt);
1617     _gc_tracer_cm->report_gc_reference_stats(stats);
1618     pt.print_all_references();
1619 
1620     // The do_oop work routines of the keep_alive and drain_marking_stack
1621     // oop closures will set the has_overflown flag if we overflow the
1622     // global marking stack.
1623 
1624     assert(has_overflown() || _global_mark_stack.is_empty(),
1625            "Mark stack should be empty (unless it has overflown)");
1626 
1627     assert(rp->num_q() == active_workers, "why not");
1628 
1629     rp->enqueue_discovered_references(executor, &pt);
1630 
1631     rp->verify_no_references_recorded();
1632 
1633     pt.print_enqueue_phase();
1634 
1635     assert(!rp->discovery_enabled(), "Post condition");
1636   }
1637 
1638   assert(has_overflown() || _global_mark_stack.is_empty(),
1639          "Mark stack should be empty (unless it has overflown)");
1640 
1641   {
1642     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1643     WeakProcessor::weak_oops_do(&g1_is_alive, &do_nothing_cl);
1644   }
1645 
1646   if (has_overflown()) {
1647     // We can not trust g1_is_alive if the marking stack overflowed
1648     return;
1649   }
1650 
1651   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1652 
1653   // Unload Klasses, String, Symbols, Code Cache, etc.
1654   if (ClassUnloadingWithConcurrentMark) {
1655     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1656     bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, _gc_timer_cm, false /* Defer cleaning */);
1657     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1658   } else {
1659     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1660     // No need to clean string table and symbol table as they are treated as strong roots when
1661     // class unloading is disabled.
1662     _g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled());
1663   }
1664 }
1665 
1666 // When sampling object counts, we already swapped the mark bitmaps, so we need to use
1667 // the prev bitmap determining liveness.
1668 class G1ObjectCountIsAliveClosure: public BoolObjectClosure {
1669   G1CollectedHeap* _g1;
1670  public:
1671   G1ObjectCountIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
1672 
1673   bool do_object_b(oop obj) {
1674     HeapWord* addr = (HeapWord*)obj;
1675     return addr != NULL &&
1676            (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_dead(obj));
1677   }
1678 };
1679 
1680 void G1ConcurrentMark::report_object_count(bool mark_completed) {
1681   // Depending on the completion of the marking liveness needs to be determined
1682   // using either the next or prev bitmap.
1683   G1ObjectCountIsAliveClosure is_alive_prev(_g1h);
1684   G1CMIsAliveClosure is_alive_next(_g1h);
1685   BoolObjectClosure* is_alive;
1686   if (mark_completed) {
1687     is_alive = &is_alive_prev;
1688   } else {
1689     is_alive = &is_alive_next;
1690   }
1691   _gc_tracer_cm->report_object_count_after_gc(is_alive);
1692 }
1693 
1694 
1695 void G1ConcurrentMark::swap_mark_bitmaps() {
1696   G1CMBitMap* temp = _prev_mark_bitmap;
1697   _prev_mark_bitmap = _next_mark_bitmap;
1698   _next_mark_bitmap = temp;
1699   _g1h->collector_state()->set_clearing_next_bitmap(true);
1700 }
1701 
1702 // Closure for marking entries in SATB buffers.
1703 class G1CMSATBBufferClosure : public SATBBufferClosure {
1704 private:
1705   G1CMTask* _task;
1706   G1CollectedHeap* _g1h;
1707 
1708   // This is very similar to G1CMTask::deal_with_reference, but with
1709   // more relaxed requirements for the argument, so this must be more
1710   // circumspect about treating the argument as an object.
1711   void do_entry(void* entry) const {
1712     _task->increment_refs_reached();
1713     oop const obj = static_cast<oop>(entry);
1714     _task->make_reference_grey(obj);
1715   }
1716 
1717 public:
1718   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1719     : _task(task), _g1h(g1h) { }
1720 
1721   virtual void do_buffer(void** buffer, size_t size) {
1722     for (size_t i = 0; i < size; ++i) {
1723       do_entry(buffer[i]);
1724     }
1725   }
1726 };
1727 
1728 class G1RemarkThreadsClosure : public ThreadClosure {
1729   G1CMSATBBufferClosure _cm_satb_cl;
1730   G1CMOopClosure _cm_cl;
1731   MarkingCodeBlobClosure _code_cl;
1732   int _thread_parity;
1733 
1734  public:
1735   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1736     _cm_satb_cl(task, g1h),
1737     _cm_cl(g1h, task),
1738     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1739     _thread_parity(Threads::thread_claim_parity()) {}
1740 
1741   void do_thread(Thread* thread) {
1742     if (thread->is_Java_thread()) {
1743       if (thread->claim_oops_do(true, _thread_parity)) {
1744         JavaThread* jt = (JavaThread*)thread;
1745 
1746         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1747         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1748         // * Alive if on the stack of an executing method
1749         // * Weakly reachable otherwise
1750         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1751         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1752         jt->nmethods_do(&_code_cl);
1753 
1754         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1755       }
1756     } else if (thread->is_VM_thread()) {
1757       if (thread->claim_oops_do(true, _thread_parity)) {
1758         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1759       }
1760     }
1761   }
1762 };
1763 
1764 class G1CMRemarkTask : public AbstractGangTask {
1765   G1ConcurrentMark* _cm;
1766 public:
1767   void work(uint worker_id) {
1768     G1CMTask* task = _cm->task(worker_id);
1769     task->record_start_time();
1770     {
1771       ResourceMark rm;
1772       HandleMark hm;
1773 
1774       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1775       Threads::threads_do(&threads_f);
1776     }
1777 
1778     do {
1779       task->do_marking_step(1000000000.0 /* something very large */,
1780                             true         /* do_termination       */,
1781                             false        /* is_serial            */);
1782     } while (task->has_aborted() && !_cm->has_overflown());
1783     // If we overflow, then we do not want to restart. We instead
1784     // want to abort remark and do concurrent marking again.
1785     task->record_end_time();
1786   }
1787 
1788   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1789     AbstractGangTask("Par Remark"), _cm(cm) {
1790     _cm->terminator()->reset_for_reuse(active_workers);
1791   }
1792 };
1793 
1794 void G1ConcurrentMark::finalize_marking() {
1795   ResourceMark rm;
1796   HandleMark   hm;
1797 
1798   _g1h->ensure_parsability(false);
1799 
1800   // this is remark, so we'll use up all active threads
1801   uint active_workers = _g1h->workers()->active_workers();
1802   set_concurrency_and_phase(active_workers, false /* concurrent */);
1803   // Leave _parallel_marking_threads at it's
1804   // value originally calculated in the G1ConcurrentMark
1805   // constructor and pass values of the active workers
1806   // through the gang in the task.
1807 
1808   {
1809     StrongRootsScope srs(active_workers);
1810 
1811     G1CMRemarkTask remarkTask(this, active_workers);
1812     // We will start all available threads, even if we decide that the
1813     // active_workers will be fewer. The extra ones will just bail out
1814     // immediately.
1815     _g1h->workers()->run_task(&remarkTask);
1816   }
1817 
1818   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1819   guarantee(has_overflown() ||
1820             satb_mq_set.completed_buffers_num() == 0,
1821             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1822             BOOL_TO_STR(has_overflown()),
1823             satb_mq_set.completed_buffers_num());
1824 
1825   print_stats();
1826 }
1827 
1828 void G1ConcurrentMark::flush_all_task_caches() {
1829   size_t hits = 0;
1830   size_t misses = 0;
1831   for (uint i = 0; i < _max_num_tasks; i++) {
1832     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1833     hits += stats.first;
1834     misses += stats.second;
1835   }
1836   size_t sum = hits + misses;
1837   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1838                        hits, misses, percent_of(hits, sum));
1839 }
1840 
1841 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1842   _prev_mark_bitmap->clear_range(mr);
1843 }
1844 
1845 HeapRegion*
1846 G1ConcurrentMark::claim_region(uint worker_id) {
1847   // "checkpoint" the finger
1848   HeapWord* finger = _finger;
1849 
1850   while (finger < _heap.end()) {
1851     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1852 
1853     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1854     // Make sure that the reads below do not float before loading curr_region.
1855     OrderAccess::loadload();
1856     // Above heap_region_containing may return NULL as we always scan claim
1857     // until the end of the heap. In this case, just jump to the next region.
1858     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1859 
1860     // Is the gap between reading the finger and doing the CAS too long?
1861     HeapWord* res = Atomic::cmpxchg(end, &_finger, finger);
1862     if (res == finger && curr_region != NULL) {
1863       // we succeeded
1864       HeapWord*   bottom        = curr_region->bottom();
1865       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1866 
1867       // notice that _finger == end cannot be guaranteed here since,
1868       // someone else might have moved the finger even further
1869       assert(_finger >= end, "the finger should have moved forward");
1870 
1871       if (limit > bottom) {
1872         return curr_region;
1873       } else {
1874         assert(limit == bottom,
1875                "the region limit should be at bottom");
1876         // we return NULL and the caller should try calling
1877         // claim_region() again.
1878         return NULL;
1879       }
1880     } else {
1881       assert(_finger > finger, "the finger should have moved forward");
1882       // read it again
1883       finger = _finger;
1884     }
1885   }
1886 
1887   return NULL;
1888 }
1889 
1890 #ifndef PRODUCT
1891 class VerifyNoCSetOops {
1892   G1CollectedHeap* _g1h;
1893   const char* _phase;
1894   int _info;
1895 
1896 public:
1897   VerifyNoCSetOops(const char* phase, int info = -1) :
1898     _g1h(G1CollectedHeap::heap()),
1899     _phase(phase),
1900     _info(info)
1901   { }
1902 
1903   void operator()(G1TaskQueueEntry task_entry) const {
1904     if (task_entry.is_array_slice()) {
1905       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1906       return;
1907     }
1908     guarantee(oopDesc::is_oop(task_entry.obj()),
1909               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1910               p2i(task_entry.obj()), _phase, _info);
1911     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1912               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1913               p2i(task_entry.obj()), _phase, _info);
1914   }
1915 };
1916 
1917 void G1ConcurrentMark::verify_no_cset_oops() {
1918   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1919   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1920     return;
1921   }
1922 
1923   // Verify entries on the global mark stack
1924   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1925 
1926   // Verify entries on the task queues
1927   for (uint i = 0; i < _max_num_tasks; ++i) {
1928     G1CMTaskQueue* queue = _task_queues->queue(i);
1929     queue->iterate(VerifyNoCSetOops("Queue", i));
1930   }
1931 
1932   // Verify the global finger
1933   HeapWord* global_finger = finger();
1934   if (global_finger != NULL && global_finger < _heap.end()) {
1935     // Since we always iterate over all regions, we might get a NULL HeapRegion
1936     // here.
1937     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1938     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1939               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1940               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1941   }
1942 
1943   // Verify the task fingers
1944   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1945   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1946     G1CMTask* task = _tasks[i];
1947     HeapWord* task_finger = task->finger();
1948     if (task_finger != NULL && task_finger < _heap.end()) {
1949       // See above note on the global finger verification.
1950       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1951       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1952                 !task_hr->in_collection_set(),
1953                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1954                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1955     }
1956   }
1957 }
1958 #endif // PRODUCT
1959 
1960 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
1961   _g1h->g1_rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
1962 }
1963 
1964 void G1ConcurrentMark::print_stats() {
1965   if (!log_is_enabled(Debug, gc, stats)) {
1966     return;
1967   }
1968   log_debug(gc, stats)("---------------------------------------------------------------------");
1969   for (size_t i = 0; i < _num_active_tasks; ++i) {
1970     _tasks[i]->print_stats();
1971     log_debug(gc, stats)("---------------------------------------------------------------------");
1972   }
1973 }
1974 
1975 void G1ConcurrentMark::concurrent_cycle_abort() {
1976   if (!cm_thread()->during_cycle() || _has_aborted) {
1977     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
1978     return;
1979   }
1980 
1981   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
1982   // concurrent bitmap clearing.
1983   {
1984     GCTraceTime(Debug, gc)("Clear Next Bitmap");
1985     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
1986   }
1987   // Note we cannot clear the previous marking bitmap here
1988   // since VerifyDuringGC verifies the objects marked during
1989   // a full GC against the previous bitmap.
1990 
1991   // Empty mark stack
1992   reset_marking_for_restart();
1993   for (uint i = 0; i < _max_num_tasks; ++i) {
1994     _tasks[i]->clear_region_fields();
1995   }
1996   _first_overflow_barrier_sync.abort();
1997   _second_overflow_barrier_sync.abort();
1998   _has_aborted = true;
1999 
2000   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2001   satb_mq_set.abandon_partial_marking();
2002   // This can be called either during or outside marking, we'll read
2003   // the expected_active value from the SATB queue set.
2004   satb_mq_set.set_active_all_threads(
2005                                  false, /* new active value */
2006                                  satb_mq_set.is_active() /* expected_active */);
2007 }
2008 
2009 static void print_ms_time_info(const char* prefix, const char* name,
2010                                NumberSeq& ns) {
2011   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2012                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2013   if (ns.num() > 0) {
2014     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2015                            prefix, ns.sd(), ns.maximum());
2016   }
2017 }
2018 
2019 void G1ConcurrentMark::print_summary_info() {
2020   Log(gc, marking) log;
2021   if (!log.is_trace()) {
2022     return;
2023   }
2024 
2025   log.trace(" Concurrent marking:");
2026   print_ms_time_info("  ", "init marks", _init_times);
2027   print_ms_time_info("  ", "remarks", _remark_times);
2028   {
2029     print_ms_time_info("     ", "final marks", _remark_mark_times);
2030     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2031 
2032   }
2033   print_ms_time_info("  ", "cleanups", _cleanup_times);
2034   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2035             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2036   log.trace("  Total stop_world time = %8.2f s.",
2037             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2038   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2039             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2040 }
2041 
2042 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2043   _concurrent_workers->print_worker_threads_on(st);
2044 }
2045 
2046 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2047   _concurrent_workers->threads_do(tc);
2048 }
2049 
2050 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2051   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2052                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2053   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2054   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2055 }
2056 
2057 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2058   ReferenceProcessor* result = g1h->ref_processor_cm();
2059   assert(result != NULL, "CM reference processor should not be NULL");
2060   return result;
2061 }
2062 
2063 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2064                                G1CMTask* task)
2065   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2066     _g1h(g1h), _task(task)
2067 { }
2068 
2069 void G1CMTask::setup_for_region(HeapRegion* hr) {
2070   assert(hr != NULL,
2071         "claim_region() should have filtered out NULL regions");
2072   _curr_region  = hr;
2073   _finger       = hr->bottom();
2074   update_region_limit();
2075 }
2076 
2077 void G1CMTask::update_region_limit() {
2078   HeapRegion* hr            = _curr_region;
2079   HeapWord* bottom          = hr->bottom();
2080   HeapWord* limit           = hr->next_top_at_mark_start();
2081 
2082   if (limit == bottom) {
2083     // The region was collected underneath our feet.
2084     // We set the finger to bottom to ensure that the bitmap
2085     // iteration that will follow this will not do anything.
2086     // (this is not a condition that holds when we set the region up,
2087     // as the region is not supposed to be empty in the first place)
2088     _finger = bottom;
2089   } else if (limit >= _region_limit) {
2090     assert(limit >= _finger, "peace of mind");
2091   } else {
2092     assert(limit < _region_limit, "only way to get here");
2093     // This can happen under some pretty unusual circumstances.  An
2094     // evacuation pause empties the region underneath our feet (NTAMS
2095     // at bottom). We then do some allocation in the region (NTAMS
2096     // stays at bottom), followed by the region being used as a GC
2097     // alloc region (NTAMS will move to top() and the objects
2098     // originally below it will be grayed). All objects now marked in
2099     // the region are explicitly grayed, if below the global finger,
2100     // and we do not need in fact to scan anything else. So, we simply
2101     // set _finger to be limit to ensure that the bitmap iteration
2102     // doesn't do anything.
2103     _finger = limit;
2104   }
2105 
2106   _region_limit = limit;
2107 }
2108 
2109 void G1CMTask::giveup_current_region() {
2110   assert(_curr_region != NULL, "invariant");
2111   clear_region_fields();
2112 }
2113 
2114 void G1CMTask::clear_region_fields() {
2115   // Values for these three fields that indicate that we're not
2116   // holding on to a region.
2117   _curr_region   = NULL;
2118   _finger        = NULL;
2119   _region_limit  = NULL;
2120 }
2121 
2122 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2123   if (cm_oop_closure == NULL) {
2124     assert(_cm_oop_closure != NULL, "invariant");
2125   } else {
2126     assert(_cm_oop_closure == NULL, "invariant");
2127   }
2128   _cm_oop_closure = cm_oop_closure;
2129 }
2130 
2131 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2132   guarantee(next_mark_bitmap != NULL, "invariant");
2133   _next_mark_bitmap              = next_mark_bitmap;
2134   clear_region_fields();
2135 
2136   _calls                         = 0;
2137   _elapsed_time_ms               = 0.0;
2138   _termination_time_ms           = 0.0;
2139   _termination_start_time_ms     = 0.0;
2140 
2141   _mark_stats_cache.reset();
2142 }
2143 
2144 bool G1CMTask::should_exit_termination() {
2145   regular_clock_call();
2146   // This is called when we are in the termination protocol. We should
2147   // quit if, for some reason, this task wants to abort or the global
2148   // stack is not empty (this means that we can get work from it).
2149   return !_cm->mark_stack_empty() || has_aborted();
2150 }
2151 
2152 void G1CMTask::reached_limit() {
2153   assert(_words_scanned >= _words_scanned_limit ||
2154          _refs_reached >= _refs_reached_limit ,
2155          "shouldn't have been called otherwise");
2156   regular_clock_call();
2157 }
2158 
2159 void G1CMTask::regular_clock_call() {
2160   if (has_aborted()) {
2161     return;
2162   }
2163 
2164   // First, we need to recalculate the words scanned and refs reached
2165   // limits for the next clock call.
2166   recalculate_limits();
2167 
2168   // During the regular clock call we do the following
2169 
2170   // (1) If an overflow has been flagged, then we abort.
2171   if (_cm->has_overflown()) {
2172     set_has_aborted();
2173     return;
2174   }
2175 
2176   // If we are not concurrent (i.e. we're doing remark) we don't need
2177   // to check anything else. The other steps are only needed during
2178   // the concurrent marking phase.
2179   if (!_cm->concurrent()) {
2180     return;
2181   }
2182 
2183   // (2) If marking has been aborted for Full GC, then we also abort.
2184   if (_cm->has_aborted()) {
2185     set_has_aborted();
2186     return;
2187   }
2188 
2189   double curr_time_ms = os::elapsedVTime() * 1000.0;
2190 
2191   // (4) We check whether we should yield. If we have to, then we abort.
2192   if (SuspendibleThreadSet::should_yield()) {
2193     // We should yield. To do this we abort the task. The caller is
2194     // responsible for yielding.
2195     set_has_aborted();
2196     return;
2197   }
2198 
2199   // (5) We check whether we've reached our time quota. If we have,
2200   // then we abort.
2201   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2202   if (elapsed_time_ms > _time_target_ms) {
2203     set_has_aborted();
2204     _has_timed_out = true;
2205     return;
2206   }
2207 
2208   // (6) Finally, we check whether there are enough completed STAB
2209   // buffers available for processing. If there are, we abort.
2210   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2211   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2212     // we do need to process SATB buffers, we'll abort and restart
2213     // the marking task to do so
2214     set_has_aborted();
2215     return;
2216   }
2217 }
2218 
2219 void G1CMTask::recalculate_limits() {
2220   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2221   _words_scanned_limit      = _real_words_scanned_limit;
2222 
2223   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2224   _refs_reached_limit       = _real_refs_reached_limit;
2225 }
2226 
2227 void G1CMTask::decrease_limits() {
2228   // This is called when we believe that we're going to do an infrequent
2229   // operation which will increase the per byte scanned cost (i.e. move
2230   // entries to/from the global stack). It basically tries to decrease the
2231   // scanning limit so that the clock is called earlier.
2232 
2233   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2234   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2235 }
2236 
2237 void G1CMTask::move_entries_to_global_stack() {
2238   // Local array where we'll store the entries that will be popped
2239   // from the local queue.
2240   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2241 
2242   size_t n = 0;
2243   G1TaskQueueEntry task_entry;
2244   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2245     buffer[n] = task_entry;
2246     ++n;
2247   }
2248   if (n < G1CMMarkStack::EntriesPerChunk) {
2249     buffer[n] = G1TaskQueueEntry();
2250   }
2251 
2252   if (n > 0) {
2253     if (!_cm->mark_stack_push(buffer)) {
2254       set_has_aborted();
2255     }
2256   }
2257 
2258   // This operation was quite expensive, so decrease the limits.
2259   decrease_limits();
2260 }
2261 
2262 bool G1CMTask::get_entries_from_global_stack() {
2263   // Local array where we'll store the entries that will be popped
2264   // from the global stack.
2265   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2266 
2267   if (!_cm->mark_stack_pop(buffer)) {
2268     return false;
2269   }
2270 
2271   // We did actually pop at least one entry.
2272   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2273     G1TaskQueueEntry task_entry = buffer[i];
2274     if (task_entry.is_null()) {
2275       break;
2276     }
2277     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2278     bool success = _task_queue->push(task_entry);
2279     // We only call this when the local queue is empty or under a
2280     // given target limit. So, we do not expect this push to fail.
2281     assert(success, "invariant");
2282   }
2283 
2284   // This operation was quite expensive, so decrease the limits
2285   decrease_limits();
2286   return true;
2287 }
2288 
2289 void G1CMTask::drain_local_queue(bool partially) {
2290   if (has_aborted()) {
2291     return;
2292   }
2293 
2294   // Decide what the target size is, depending whether we're going to
2295   // drain it partially (so that other tasks can steal if they run out
2296   // of things to do) or totally (at the very end).
2297   size_t target_size;
2298   if (partially) {
2299     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2300   } else {
2301     target_size = 0;
2302   }
2303 
2304   if (_task_queue->size() > target_size) {
2305     G1TaskQueueEntry entry;
2306     bool ret = _task_queue->pop_local(entry);
2307     while (ret) {
2308       scan_task_entry(entry);
2309       if (_task_queue->size() <= target_size || has_aborted()) {
2310         ret = false;
2311       } else {
2312         ret = _task_queue->pop_local(entry);
2313       }
2314     }
2315   }
2316 }
2317 
2318 void G1CMTask::drain_global_stack(bool partially) {
2319   if (has_aborted()) {
2320     return;
2321   }
2322 
2323   // We have a policy to drain the local queue before we attempt to
2324   // drain the global stack.
2325   assert(partially || _task_queue->size() == 0, "invariant");
2326 
2327   // Decide what the target size is, depending whether we're going to
2328   // drain it partially (so that other tasks can steal if they run out
2329   // of things to do) or totally (at the very end).
2330   // Notice that when draining the global mark stack partially, due to the racyness
2331   // of the mark stack size update we might in fact drop below the target. But,
2332   // this is not a problem.
2333   // In case of total draining, we simply process until the global mark stack is
2334   // totally empty, disregarding the size counter.
2335   if (partially) {
2336     size_t const target_size = _cm->partial_mark_stack_size_target();
2337     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2338       if (get_entries_from_global_stack()) {
2339         drain_local_queue(partially);
2340       }
2341     }
2342   } else {
2343     while (!has_aborted() && get_entries_from_global_stack()) {
2344       drain_local_queue(partially);
2345     }
2346   }
2347 }
2348 
2349 // SATB Queue has several assumptions on whether to call the par or
2350 // non-par versions of the methods. this is why some of the code is
2351 // replicated. We should really get rid of the single-threaded version
2352 // of the code to simplify things.
2353 void G1CMTask::drain_satb_buffers() {
2354   if (has_aborted()) {
2355     return;
2356   }
2357 
2358   // We set this so that the regular clock knows that we're in the
2359   // middle of draining buffers and doesn't set the abort flag when it
2360   // notices that SATB buffers are available for draining. It'd be
2361   // very counter productive if it did that. :-)
2362   _draining_satb_buffers = true;
2363 
2364   G1CMSATBBufferClosure satb_cl(this, _g1h);
2365   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2366 
2367   // This keeps claiming and applying the closure to completed buffers
2368   // until we run out of buffers or we need to abort.
2369   while (!has_aborted() &&
2370          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2371     regular_clock_call();
2372   }
2373 
2374   _draining_satb_buffers = false;
2375 
2376   assert(has_aborted() ||
2377          _cm->concurrent() ||
2378          satb_mq_set.completed_buffers_num() == 0, "invariant");
2379 
2380   // again, this was a potentially expensive operation, decrease the
2381   // limits to get the regular clock call early
2382   decrease_limits();
2383 }
2384 
2385 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2386   _mark_stats_cache.reset(region_idx);
2387 }
2388 
2389 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2390   return _mark_stats_cache.evict_all();
2391 }
2392 
2393 void G1CMTask::print_stats() {
2394   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2395   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2396                        _elapsed_time_ms, _termination_time_ms);
2397   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2398                        _step_times_ms.num(),
2399                        _step_times_ms.avg(),
2400                        _step_times_ms.sd(),
2401                        _step_times_ms.maximum(),
2402                        _step_times_ms.sum());
2403   size_t const hits = _mark_stats_cache.hits();
2404   size_t const misses = _mark_stats_cache.misses();
2405   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2406                        hits, misses, percent_of(hits, hits + misses));
2407 }
2408 
2409 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
2410   return _task_queues->steal(worker_id, hash_seed, task_entry);
2411 }
2412 
2413 /*****************************************************************************
2414 
2415     The do_marking_step(time_target_ms, ...) method is the building
2416     block of the parallel marking framework. It can be called in parallel
2417     with other invocations of do_marking_step() on different tasks
2418     (but only one per task, obviously) and concurrently with the
2419     mutator threads, or during remark, hence it eliminates the need
2420     for two versions of the code. When called during remark, it will
2421     pick up from where the task left off during the concurrent marking
2422     phase. Interestingly, tasks are also claimable during evacuation
2423     pauses too, since do_marking_step() ensures that it aborts before
2424     it needs to yield.
2425 
2426     The data structures that it uses to do marking work are the
2427     following:
2428 
2429       (1) Marking Bitmap. If there are gray objects that appear only
2430       on the bitmap (this happens either when dealing with an overflow
2431       or when the initial marking phase has simply marked the roots
2432       and didn't push them on the stack), then tasks claim heap
2433       regions whose bitmap they then scan to find gray objects. A
2434       global finger indicates where the end of the last claimed region
2435       is. A local finger indicates how far into the region a task has
2436       scanned. The two fingers are used to determine how to gray an
2437       object (i.e. whether simply marking it is OK, as it will be
2438       visited by a task in the future, or whether it needs to be also
2439       pushed on a stack).
2440 
2441       (2) Local Queue. The local queue of the task which is accessed
2442       reasonably efficiently by the task. Other tasks can steal from
2443       it when they run out of work. Throughout the marking phase, a
2444       task attempts to keep its local queue short but not totally
2445       empty, so that entries are available for stealing by other
2446       tasks. Only when there is no more work, a task will totally
2447       drain its local queue.
2448 
2449       (3) Global Mark Stack. This handles local queue overflow. During
2450       marking only sets of entries are moved between it and the local
2451       queues, as access to it requires a mutex and more fine-grain
2452       interaction with it which might cause contention. If it
2453       overflows, then the marking phase should restart and iterate
2454       over the bitmap to identify gray objects. Throughout the marking
2455       phase, tasks attempt to keep the global mark stack at a small
2456       length but not totally empty, so that entries are available for
2457       popping by other tasks. Only when there is no more work, tasks
2458       will totally drain the global mark stack.
2459 
2460       (4) SATB Buffer Queue. This is where completed SATB buffers are
2461       made available. Buffers are regularly removed from this queue
2462       and scanned for roots, so that the queue doesn't get too
2463       long. During remark, all completed buffers are processed, as
2464       well as the filled in parts of any uncompleted buffers.
2465 
2466     The do_marking_step() method tries to abort when the time target
2467     has been reached. There are a few other cases when the
2468     do_marking_step() method also aborts:
2469 
2470       (1) When the marking phase has been aborted (after a Full GC).
2471 
2472       (2) When a global overflow (on the global stack) has been
2473       triggered. Before the task aborts, it will actually sync up with
2474       the other tasks to ensure that all the marking data structures
2475       (local queues, stacks, fingers etc.)  are re-initialized so that
2476       when do_marking_step() completes, the marking phase can
2477       immediately restart.
2478 
2479       (3) When enough completed SATB buffers are available. The
2480       do_marking_step() method only tries to drain SATB buffers right
2481       at the beginning. So, if enough buffers are available, the
2482       marking step aborts and the SATB buffers are processed at
2483       the beginning of the next invocation.
2484 
2485       (4) To yield. when we have to yield then we abort and yield
2486       right at the end of do_marking_step(). This saves us from a lot
2487       of hassle as, by yielding we might allow a Full GC. If this
2488       happens then objects will be compacted underneath our feet, the
2489       heap might shrink, etc. We save checking for this by just
2490       aborting and doing the yield right at the end.
2491 
2492     From the above it follows that the do_marking_step() method should
2493     be called in a loop (or, otherwise, regularly) until it completes.
2494 
2495     If a marking step completes without its has_aborted() flag being
2496     true, it means it has completed the current marking phase (and
2497     also all other marking tasks have done so and have all synced up).
2498 
2499     A method called regular_clock_call() is invoked "regularly" (in
2500     sub ms intervals) throughout marking. It is this clock method that
2501     checks all the abort conditions which were mentioned above and
2502     decides when the task should abort. A work-based scheme is used to
2503     trigger this clock method: when the number of object words the
2504     marking phase has scanned or the number of references the marking
2505     phase has visited reach a given limit. Additional invocations to
2506     the method clock have been planted in a few other strategic places
2507     too. The initial reason for the clock method was to avoid calling
2508     vtime too regularly, as it is quite expensive. So, once it was in
2509     place, it was natural to piggy-back all the other conditions on it
2510     too and not constantly check them throughout the code.
2511 
2512     If do_termination is true then do_marking_step will enter its
2513     termination protocol.
2514 
2515     The value of is_serial must be true when do_marking_step is being
2516     called serially (i.e. by the VMThread) and do_marking_step should
2517     skip any synchronization in the termination and overflow code.
2518     Examples include the serial remark code and the serial reference
2519     processing closures.
2520 
2521     The value of is_serial must be false when do_marking_step is
2522     being called by any of the worker threads in a work gang.
2523     Examples include the concurrent marking code (CMMarkingTask),
2524     the MT remark code, and the MT reference processing closures.
2525 
2526  *****************************************************************************/
2527 
2528 void G1CMTask::do_marking_step(double time_target_ms,
2529                                bool do_termination,
2530                                bool is_serial) {
2531   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2532 
2533   _start_time_ms = os::elapsedVTime() * 1000.0;
2534 
2535   // If do_stealing is true then do_marking_step will attempt to
2536   // steal work from the other G1CMTasks. It only makes sense to
2537   // enable stealing when the termination protocol is enabled
2538   // and do_marking_step() is not being called serially.
2539   bool do_stealing = do_termination && !is_serial;
2540 
2541   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2542   _time_target_ms = time_target_ms - diff_prediction_ms;
2543 
2544   // set up the variables that are used in the work-based scheme to
2545   // call the regular clock method
2546   _words_scanned = 0;
2547   _refs_reached  = 0;
2548   recalculate_limits();
2549 
2550   // clear all flags
2551   clear_has_aborted();
2552   _has_timed_out = false;
2553   _draining_satb_buffers = false;
2554 
2555   ++_calls;
2556 
2557   // Set up the bitmap and oop closures. Anything that uses them is
2558   // eventually called from this method, so it is OK to allocate these
2559   // statically.
2560   G1CMBitMapClosure bitmap_closure(this, _cm);
2561   G1CMOopClosure cm_oop_closure(_g1h, this);
2562   set_cm_oop_closure(&cm_oop_closure);
2563 
2564   if (_cm->has_overflown()) {
2565     // This can happen if the mark stack overflows during a GC pause
2566     // and this task, after a yield point, restarts. We have to abort
2567     // as we need to get into the overflow protocol which happens
2568     // right at the end of this task.
2569     set_has_aborted();
2570   }
2571 
2572   // First drain any available SATB buffers. After this, we will not
2573   // look at SATB buffers before the next invocation of this method.
2574   // If enough completed SATB buffers are queued up, the regular clock
2575   // will abort this task so that it restarts.
2576   drain_satb_buffers();
2577   // ...then partially drain the local queue and the global stack
2578   drain_local_queue(true);
2579   drain_global_stack(true);
2580 
2581   do {
2582     if (!has_aborted() && _curr_region != NULL) {
2583       // This means that we're already holding on to a region.
2584       assert(_finger != NULL, "if region is not NULL, then the finger "
2585              "should not be NULL either");
2586 
2587       // We might have restarted this task after an evacuation pause
2588       // which might have evacuated the region we're holding on to
2589       // underneath our feet. Let's read its limit again to make sure
2590       // that we do not iterate over a region of the heap that
2591       // contains garbage (update_region_limit() will also move
2592       // _finger to the start of the region if it is found empty).
2593       update_region_limit();
2594       // We will start from _finger not from the start of the region,
2595       // as we might be restarting this task after aborting half-way
2596       // through scanning this region. In this case, _finger points to
2597       // the address where we last found a marked object. If this is a
2598       // fresh region, _finger points to start().
2599       MemRegion mr = MemRegion(_finger, _region_limit);
2600 
2601       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2602              "humongous regions should go around loop once only");
2603 
2604       // Some special cases:
2605       // If the memory region is empty, we can just give up the region.
2606       // If the current region is humongous then we only need to check
2607       // the bitmap for the bit associated with the start of the object,
2608       // scan the object if it's live, and give up the region.
2609       // Otherwise, let's iterate over the bitmap of the part of the region
2610       // that is left.
2611       // If the iteration is successful, give up the region.
2612       if (mr.is_empty()) {
2613         giveup_current_region();
2614         regular_clock_call();
2615       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2616         if (_next_mark_bitmap->is_marked(mr.start())) {
2617           // The object is marked - apply the closure
2618           bitmap_closure.do_addr(mr.start());
2619         }
2620         // Even if this task aborted while scanning the humongous object
2621         // we can (and should) give up the current region.
2622         giveup_current_region();
2623         regular_clock_call();
2624       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2625         giveup_current_region();
2626         regular_clock_call();
2627       } else {
2628         assert(has_aborted(), "currently the only way to do so");
2629         // The only way to abort the bitmap iteration is to return
2630         // false from the do_bit() method. However, inside the
2631         // do_bit() method we move the _finger to point to the
2632         // object currently being looked at. So, if we bail out, we
2633         // have definitely set _finger to something non-null.
2634         assert(_finger != NULL, "invariant");
2635 
2636         // Region iteration was actually aborted. So now _finger
2637         // points to the address of the object we last scanned. If we
2638         // leave it there, when we restart this task, we will rescan
2639         // the object. It is easy to avoid this. We move the finger by
2640         // enough to point to the next possible object header.
2641         assert(_finger < _region_limit, "invariant");
2642         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2643         // Check if bitmap iteration was aborted while scanning the last object
2644         if (new_finger >= _region_limit) {
2645           giveup_current_region();
2646         } else {
2647           move_finger_to(new_finger);
2648         }
2649       }
2650     }
2651     // At this point we have either completed iterating over the
2652     // region we were holding on to, or we have aborted.
2653 
2654     // We then partially drain the local queue and the global stack.
2655     // (Do we really need this?)
2656     drain_local_queue(true);
2657     drain_global_stack(true);
2658 
2659     // Read the note on the claim_region() method on why it might
2660     // return NULL with potentially more regions available for
2661     // claiming and why we have to check out_of_regions() to determine
2662     // whether we're done or not.
2663     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2664       // We are going to try to claim a new region. We should have
2665       // given up on the previous one.
2666       // Separated the asserts so that we know which one fires.
2667       assert(_curr_region  == NULL, "invariant");
2668       assert(_finger       == NULL, "invariant");
2669       assert(_region_limit == NULL, "invariant");
2670       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2671       if (claimed_region != NULL) {
2672         // Yes, we managed to claim one
2673         setup_for_region(claimed_region);
2674         assert(_curr_region == claimed_region, "invariant");
2675       }
2676       // It is important to call the regular clock here. It might take
2677       // a while to claim a region if, for example, we hit a large
2678       // block of empty regions. So we need to call the regular clock
2679       // method once round the loop to make sure it's called
2680       // frequently enough.
2681       regular_clock_call();
2682     }
2683 
2684     if (!has_aborted() && _curr_region == NULL) {
2685       assert(_cm->out_of_regions(),
2686              "at this point we should be out of regions");
2687     }
2688   } while ( _curr_region != NULL && !has_aborted());
2689 
2690   if (!has_aborted()) {
2691     // We cannot check whether the global stack is empty, since other
2692     // tasks might be pushing objects to it concurrently.
2693     assert(_cm->out_of_regions(),
2694            "at this point we should be out of regions");
2695     // Try to reduce the number of available SATB buffers so that
2696     // remark has less work to do.
2697     drain_satb_buffers();
2698   }
2699 
2700   // Since we've done everything else, we can now totally drain the
2701   // local queue and global stack.
2702   drain_local_queue(false);
2703   drain_global_stack(false);
2704 
2705   // Attempt at work stealing from other task's queues.
2706   if (do_stealing && !has_aborted()) {
2707     // We have not aborted. This means that we have finished all that
2708     // we could. Let's try to do some stealing...
2709 
2710     // We cannot check whether the global stack is empty, since other
2711     // tasks might be pushing objects to it concurrently.
2712     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2713            "only way to reach here");
2714     while (!has_aborted()) {
2715       G1TaskQueueEntry entry;
2716       if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
2717         scan_task_entry(entry);
2718 
2719         // And since we're towards the end, let's totally drain the
2720         // local queue and global stack.
2721         drain_local_queue(false);
2722         drain_global_stack(false);
2723       } else {
2724         break;
2725       }
2726     }
2727   }
2728 
2729   // We still haven't aborted. Now, let's try to get into the
2730   // termination protocol.
2731   if (do_termination && !has_aborted()) {
2732     // We cannot check whether the global stack is empty, since other
2733     // tasks might be concurrently pushing objects on it.
2734     // Separated the asserts so that we know which one fires.
2735     assert(_cm->out_of_regions(), "only way to reach here");
2736     assert(_task_queue->size() == 0, "only way to reach here");
2737     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2738 
2739     // The G1CMTask class also extends the TerminatorTerminator class,
2740     // hence its should_exit_termination() method will also decide
2741     // whether to exit the termination protocol or not.
2742     bool finished = (is_serial ||
2743                      _cm->terminator()->offer_termination(this));
2744     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2745     _termination_time_ms +=
2746       termination_end_time_ms - _termination_start_time_ms;
2747 
2748     if (finished) {
2749       // We're all done.
2750 
2751       // We can now guarantee that the global stack is empty, since
2752       // all other tasks have finished. We separated the guarantees so
2753       // that, if a condition is false, we can immediately find out
2754       // which one.
2755       guarantee(_cm->out_of_regions(), "only way to reach here");
2756       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2757       guarantee(_task_queue->size() == 0, "only way to reach here");
2758       guarantee(!_cm->has_overflown(), "only way to reach here");
2759     } else {
2760       // Apparently there's more work to do. Let's abort this task. It
2761       // will restart it and we can hopefully find more things to do.
2762       set_has_aborted();
2763     }
2764   }
2765 
2766   // Mainly for debugging purposes to make sure that a pointer to the
2767   // closure which was statically allocated in this frame doesn't
2768   // escape it by accident.
2769   set_cm_oop_closure(NULL);
2770   double end_time_ms = os::elapsedVTime() * 1000.0;
2771   double elapsed_time_ms = end_time_ms - _start_time_ms;
2772   // Update the step history.
2773   _step_times_ms.add(elapsed_time_ms);
2774 
2775   if (has_aborted()) {
2776     // The task was aborted for some reason.
2777     if (_has_timed_out) {
2778       double diff_ms = elapsed_time_ms - _time_target_ms;
2779       // Keep statistics of how well we did with respect to hitting
2780       // our target only if we actually timed out (if we aborted for
2781       // other reasons, then the results might get skewed).
2782       _marking_step_diffs_ms.add(diff_ms);
2783     }
2784 
2785     if (_cm->has_overflown()) {
2786       // This is the interesting one. We aborted because a global
2787       // overflow was raised. This means we have to restart the
2788       // marking phase and start iterating over regions. However, in
2789       // order to do this we have to make sure that all tasks stop
2790       // what they are doing and re-initialize in a safe manner. We
2791       // will achieve this with the use of two barrier sync points.
2792 
2793       if (!is_serial) {
2794         // We only need to enter the sync barrier if being called
2795         // from a parallel context
2796         _cm->enter_first_sync_barrier(_worker_id);
2797 
2798         // When we exit this sync barrier we know that all tasks have
2799         // stopped doing marking work. So, it's now safe to
2800         // re-initialize our data structures.
2801       }
2802 
2803       clear_region_fields();
2804       flush_mark_stats_cache();
2805 
2806       if (!is_serial) {
2807         // If we're executing the concurrent phase of marking, reset the marking
2808         // state; otherwise the marking state is reset after reference processing,
2809         // during the remark pause.
2810         // If we reset here as a result of an overflow during the remark we will
2811         // see assertion failures from any subsequent set_concurrency_and_phase()
2812         // calls.
2813         if (_cm->concurrent() && _worker_id == 0) {
2814           // Worker 0 is responsible for clearing the global data structures because
2815           // of an overflow. During STW we should not clear the overflow flag (in
2816           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2817           // method to abort the pause and restart concurrent marking.
2818           _cm->reset_marking_for_restart();
2819 
2820           log_info(gc, marking)("Concurrent Mark reset for overflow");
2821         }
2822 
2823         // ...and enter the second barrier.
2824         _cm->enter_second_sync_barrier(_worker_id);
2825       }
2826       // At this point, if we're during the concurrent phase of
2827       // marking, everything has been re-initialized and we're
2828       // ready to restart.
2829     }
2830   }
2831 }
2832 
2833 G1CMTask::G1CMTask(uint worker_id,
2834                    G1ConcurrentMark* cm,
2835                    G1CMTaskQueue* task_queue,
2836                    G1RegionMarkStats* mark_stats,
2837                    uint max_regions) :
2838   _objArray_processor(this),
2839   _worker_id(worker_id),
2840   _g1h(G1CollectedHeap::heap()),
2841   _cm(cm),
2842   _next_mark_bitmap(NULL),
2843   _task_queue(task_queue),
2844   _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize),
2845   _calls(0),
2846   _time_target_ms(0.0),
2847   _start_time_ms(0.0),
2848   _cm_oop_closure(NULL),
2849   _curr_region(NULL),
2850   _finger(NULL),
2851   _region_limit(NULL),
2852   _words_scanned(0),
2853   _words_scanned_limit(0),
2854   _real_words_scanned_limit(0),
2855   _refs_reached(0),
2856   _refs_reached_limit(0),
2857   _real_refs_reached_limit(0),
2858   _hash_seed(17),
2859   _has_aborted(false),
2860   _has_timed_out(false),
2861   _draining_satb_buffers(false),
2862   _step_times_ms(),
2863   _elapsed_time_ms(0.0),
2864   _termination_time_ms(0.0),
2865   _termination_start_time_ms(0.0),
2866   _marking_step_diffs_ms()
2867 {
2868   guarantee(task_queue != NULL, "invariant");
2869 
2870   _marking_step_diffs_ms.add(0.5);
2871 }
2872 
2873 // These are formatting macros that are used below to ensure
2874 // consistent formatting. The *_H_* versions are used to format the
2875 // header for a particular value and they should be kept consistent
2876 // with the corresponding macro. Also note that most of the macros add
2877 // the necessary white space (as a prefix) which makes them a bit
2878 // easier to compose.
2879 
2880 // All the output lines are prefixed with this string to be able to
2881 // identify them easily in a large log file.
2882 #define G1PPRL_LINE_PREFIX            "###"
2883 
2884 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2885 #ifdef _LP64
2886 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2887 #else // _LP64
2888 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2889 #endif // _LP64
2890 
2891 // For per-region info
2892 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2893 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2894 #define G1PPRL_STATE_FORMAT           "   %-5s"
2895 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2896 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2897 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2898 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2899 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2900 
2901 // For summary info
2902 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2903 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2904 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2905 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2906 
2907 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2908   _total_used_bytes(0), _total_capacity_bytes(0),
2909   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2910   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2911 {
2912   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2913   MemRegion g1_reserved = g1h->g1_reserved();
2914   double now = os::elapsedTime();
2915 
2916   // Print the header of the output.
2917   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2918   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2919                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2920                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2921                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2922                           HeapRegion::GrainBytes);
2923   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2924   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2925                           G1PPRL_TYPE_H_FORMAT
2926                           G1PPRL_ADDR_BASE_H_FORMAT
2927                           G1PPRL_BYTE_H_FORMAT
2928                           G1PPRL_BYTE_H_FORMAT
2929                           G1PPRL_BYTE_H_FORMAT
2930                           G1PPRL_DOUBLE_H_FORMAT
2931                           G1PPRL_BYTE_H_FORMAT
2932                           G1PPRL_STATE_H_FORMAT
2933                           G1PPRL_BYTE_H_FORMAT,
2934                           "type", "address-range",
2935                           "used", "prev-live", "next-live", "gc-eff",
2936                           "remset", "state", "code-roots");
2937   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2938                           G1PPRL_TYPE_H_FORMAT
2939                           G1PPRL_ADDR_BASE_H_FORMAT
2940                           G1PPRL_BYTE_H_FORMAT
2941                           G1PPRL_BYTE_H_FORMAT
2942                           G1PPRL_BYTE_H_FORMAT
2943                           G1PPRL_DOUBLE_H_FORMAT
2944                           G1PPRL_BYTE_H_FORMAT
2945                           G1PPRL_STATE_H_FORMAT
2946                           G1PPRL_BYTE_H_FORMAT,
2947                           "", "",
2948                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2949                           "(bytes)", "", "(bytes)");
2950 }
2951 
2952 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2953   const char* type       = r->get_type_str();
2954   HeapWord* bottom       = r->bottom();
2955   HeapWord* end          = r->end();
2956   size_t capacity_bytes  = r->capacity();
2957   size_t used_bytes      = r->used();
2958   size_t prev_live_bytes = r->live_bytes();
2959   size_t next_live_bytes = r->next_live_bytes();
2960   double gc_eff          = r->gc_efficiency();
2961   size_t remset_bytes    = r->rem_set()->mem_size();
2962   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
2963   const char* remset_type = r->rem_set()->get_short_state_str();
2964 
2965   _total_used_bytes      += used_bytes;
2966   _total_capacity_bytes  += capacity_bytes;
2967   _total_prev_live_bytes += prev_live_bytes;
2968   _total_next_live_bytes += next_live_bytes;
2969   _total_remset_bytes    += remset_bytes;
2970   _total_strong_code_roots_bytes += strong_code_roots_bytes;
2971 
2972   // Print a line for this particular region.
2973   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2974                           G1PPRL_TYPE_FORMAT
2975                           G1PPRL_ADDR_BASE_FORMAT
2976                           G1PPRL_BYTE_FORMAT
2977                           G1PPRL_BYTE_FORMAT
2978                           G1PPRL_BYTE_FORMAT
2979                           G1PPRL_DOUBLE_FORMAT
2980                           G1PPRL_BYTE_FORMAT
2981                           G1PPRL_STATE_FORMAT
2982                           G1PPRL_BYTE_FORMAT,
2983                           type, p2i(bottom), p2i(end),
2984                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
2985                           remset_bytes, remset_type, strong_code_roots_bytes);
2986 
2987   return false;
2988 }
2989 
2990 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
2991   // add static memory usages to remembered set sizes
2992   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
2993   // Print the footer of the output.
2994   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2995   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2996                          " SUMMARY"
2997                          G1PPRL_SUM_MB_FORMAT("capacity")
2998                          G1PPRL_SUM_MB_PERC_FORMAT("used")
2999                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3000                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3001                          G1PPRL_SUM_MB_FORMAT("remset")
3002                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3003                          bytes_to_mb(_total_capacity_bytes),
3004                          bytes_to_mb(_total_used_bytes),
3005                          percent_of(_total_used_bytes, _total_capacity_bytes),
3006                          bytes_to_mb(_total_prev_live_bytes),
3007                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
3008                          bytes_to_mb(_total_next_live_bytes),
3009                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
3010                          bytes_to_mb(_total_remset_bytes),
3011                          bytes_to_mb(_total_strong_code_roots_bytes));
3012 }