1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/evacuationInfo.hpp"
  29 #include "gc/g1/g1AllocationContext.hpp"
  30 #include "gc/g1/g1BiasedArray.hpp"
  31 #include "gc/g1/g1CollectionSet.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.hpp"
  34 #include "gc/g1/g1EdenRegions.hpp"
  35 #include "gc/g1/g1EvacFailure.hpp"
  36 #include "gc/g1/g1EvacStats.hpp"
  37 #include "gc/g1/g1HeapVerifier.hpp"
  38 #include "gc/g1/g1HRPrinter.hpp"
  39 #include "gc/g1/g1InCSetState.hpp"
  40 #include "gc/g1/g1MonitoringSupport.hpp"
  41 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  42 #include "gc/g1/g1SurvivorRegions.hpp"
  43 #include "gc/g1/g1YCTypes.hpp"
  44 #include "gc/g1/hSpaceCounters.hpp"
  45 #include "gc/g1/heapRegionManager.hpp"
  46 #include "gc/g1/heapRegionSet.hpp"
  47 #include "gc/shared/barrierSet.hpp"
  48 #include "gc/shared/collectedHeap.hpp"
  49 #include "gc/shared/plab.hpp"
  50 #include "gc/shared/preservedMarks.hpp"
  51 #include "memory/memRegion.hpp"
  52 #include "utilities/stack.hpp"
  53 
  54 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  55 // It uses the "Garbage First" heap organization and algorithm, which
  56 // may combine concurrent marking with parallel, incremental compaction of
  57 // heap subsets that will yield large amounts of garbage.
  58 
  59 // Forward declarations
  60 class HeapRegion;
  61 class HRRSCleanupTask;
  62 class GenerationSpec;
  63 class OopsInHeapRegionClosure;
  64 class G1ParScanThreadState;
  65 class G1ParScanThreadStateSet;
  66 class G1KlassScanClosure;
  67 class G1ParScanThreadState;
  68 class ObjectClosure;
  69 class SpaceClosure;
  70 class CompactibleSpaceClosure;
  71 class Space;
  72 class G1CollectionSet;
  73 class G1CollectorPolicy;
  74 class G1Policy;
  75 class G1HotCardCache;
  76 class G1RemSet;
  77 class HeapRegionRemSetIterator;
  78 class G1ConcurrentMark;
  79 class ConcurrentMarkThread;
  80 class ConcurrentG1Refine;
  81 class GenerationCounters;
  82 class STWGCTimer;
  83 class G1NewTracer;
  84 class EvacuationFailedInfo;
  85 class nmethod;
  86 class Ticks;
  87 class WorkGang;
  88 class G1Allocator;
  89 class G1ArchiveAllocator;
  90 class G1HeapVerifier;
  91 class G1HeapSizingPolicy;
  92 
  93 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  94 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  95 
  96 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  97 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  98 
  99 // The G1 STW is alive closure.
 100 // An instance is embedded into the G1CH and used as the
 101 // (optional) _is_alive_non_header closure in the STW
 102 // reference processor. It is also extensively used during
 103 // reference processing during STW evacuation pauses.
 104 class G1STWIsAliveClosure: public BoolObjectClosure {
 105   G1CollectedHeap* _g1;
 106 public:
 107   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 108   bool do_object_b(oop p);
 109 };
 110 
 111 class RefineCardTableEntryClosure;
 112 
 113 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 114  private:
 115   void reset_from_card_cache(uint start_idx, size_t num_regions);
 116  public:
 117   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 118 };
 119 
 120 class G1CollectedHeap : public CollectedHeap {
 121   friend class VM_CollectForMetadataAllocation;
 122   friend class VM_G1CollectForAllocation;
 123   friend class VM_G1CollectFull;
 124   friend class VM_G1IncCollectionPause;
 125   friend class VMStructs;
 126   friend class MutatorAllocRegion;
 127   friend class G1GCAllocRegion;
 128   friend class G1HeapVerifier;
 129 
 130   // Closures used in implementation.
 131   friend class G1ParScanThreadState;
 132   friend class G1ParScanThreadStateSet;
 133   friend class G1ParTask;
 134   friend class G1PLABAllocator;
 135   friend class G1PrepareCompactClosure;
 136 
 137   // Other related classes.
 138   friend class HeapRegionClaimer;
 139 
 140   // Testing classes.
 141   friend class G1CheckCSetFastTableClosure;
 142 
 143 private:
 144   WorkGang* _workers;
 145   G1CollectorPolicy* _collector_policy;
 146 
 147   static size_t _humongous_object_threshold_in_words;
 148 
 149   // The secondary free list which contains regions that have been
 150   // freed up during the cleanup process. This will be appended to
 151   // the master free list when appropriate.
 152   FreeRegionList _secondary_free_list;
 153 
 154   // It keeps track of the old regions.
 155   HeapRegionSet _old_set;
 156 
 157   // It keeps track of the humongous regions.
 158   HeapRegionSet _humongous_set;
 159 
 160   void eagerly_reclaim_humongous_regions();
 161 
 162   // The number of regions we could create by expansion.
 163   uint _expansion_regions;
 164 
 165   // The block offset table for the G1 heap.
 166   G1BlockOffsetTable* _bot;
 167 
 168   // Tears down the region sets / lists so that they are empty and the
 169   // regions on the heap do not belong to a region set / list. The
 170   // only exception is the humongous set which we leave unaltered. If
 171   // free_list_only is true, it will only tear down the master free
 172   // list. It is called before a Full GC (free_list_only == false) or
 173   // before heap shrinking (free_list_only == true).
 174   void tear_down_region_sets(bool free_list_only);
 175 
 176   // Rebuilds the region sets / lists so that they are repopulated to
 177   // reflect the contents of the heap. The only exception is the
 178   // humongous set which was not torn down in the first place. If
 179   // free_list_only is true, it will only rebuild the master free
 180   // list. It is called after a Full GC (free_list_only == false) or
 181   // after heap shrinking (free_list_only == true).
 182   void rebuild_region_sets(bool free_list_only);
 183 
 184   // Callback for region mapping changed events.
 185   G1RegionMappingChangedListener _listener;
 186 
 187   // The sequence of all heap regions in the heap.
 188   HeapRegionManager _hrm;
 189 
 190   // Manages all allocations with regions except humongous object allocations.
 191   G1Allocator* _allocator;
 192 
 193   // Manages all heap verification.
 194   G1HeapVerifier* _verifier;
 195 
 196   // Outside of GC pauses, the number of bytes used in all regions other
 197   // than the current allocation region(s).
 198   size_t _summary_bytes_used;
 199 
 200   void increase_used(size_t bytes);
 201   void decrease_used(size_t bytes);
 202 
 203   void set_used(size_t bytes);
 204 
 205   // Class that handles archive allocation ranges.
 206   G1ArchiveAllocator* _archive_allocator;
 207 
 208   // Statistics for each allocation context
 209   AllocationContextStats _allocation_context_stats;
 210 
 211   // GC allocation statistics policy for survivors.
 212   G1EvacStats _survivor_evac_stats;
 213 
 214   // GC allocation statistics policy for tenured objects.
 215   G1EvacStats _old_evac_stats;
 216 
 217   // It specifies whether we should attempt to expand the heap after a
 218   // region allocation failure. If heap expansion fails we set this to
 219   // false so that we don't re-attempt the heap expansion (it's likely
 220   // that subsequent expansion attempts will also fail if one fails).
 221   // Currently, it is only consulted during GC and it's reset at the
 222   // start of each GC.
 223   bool _expand_heap_after_alloc_failure;
 224 
 225   // Helper for monitoring and management support.
 226   G1MonitoringSupport* _g1mm;
 227 
 228   // Records whether the region at the given index is (still) a
 229   // candidate for eager reclaim.  Only valid for humongous start
 230   // regions; other regions have unspecified values.  Humongous start
 231   // regions are initialized at start of collection pause, with
 232   // candidates removed from the set as they are found reachable from
 233   // roots or the young generation.
 234   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 235    protected:
 236     bool default_value() const { return false; }
 237    public:
 238     void clear() { G1BiasedMappedArray<bool>::clear(); }
 239     void set_candidate(uint region, bool value) {
 240       set_by_index(region, value);
 241     }
 242     bool is_candidate(uint region) {
 243       return get_by_index(region);
 244     }
 245   };
 246 
 247   HumongousReclaimCandidates _humongous_reclaim_candidates;
 248   // Stores whether during humongous object registration we found candidate regions.
 249   // If not, we can skip a few steps.
 250   bool _has_humongous_reclaim_candidates;
 251 
 252   volatile uint _gc_time_stamp;
 253 
 254   G1HRPrinter _hr_printer;
 255 
 256   // It decides whether an explicit GC should start a concurrent cycle
 257   // instead of doing a STW GC. Currently, a concurrent cycle is
 258   // explicitly started if:
 259   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 260   // (b) cause == _g1_humongous_allocation
 261   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 262   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 263   // (e) cause == _update_allocation_context_stats_inc
 264   // (f) cause == _wb_conc_mark
 265   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 266 
 267   // indicates whether we are in young or mixed GC mode
 268   G1CollectorState _collector_state;
 269 
 270   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 271   // concurrent cycles) we have started.
 272   volatile uint _old_marking_cycles_started;
 273 
 274   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 275   // concurrent cycles) we have completed.
 276   volatile uint _old_marking_cycles_completed;
 277 
 278   // This is a non-product method that is helpful for testing. It is
 279   // called at the end of a GC and artificially expands the heap by
 280   // allocating a number of dead regions. This way we can induce very
 281   // frequent marking cycles and stress the cleanup / concurrent
 282   // cleanup code more (as all the regions that will be allocated by
 283   // this method will be found dead by the marking cycle).
 284   void allocate_dummy_regions() PRODUCT_RETURN;
 285 
 286   // Clear RSets after a compaction. It also resets the GC time stamps.
 287   void clear_rsets_post_compaction();
 288 
 289   // If the HR printer is active, dump the state of the regions in the
 290   // heap after a compaction.
 291   void print_hrm_post_compaction();
 292 
 293   // Create a memory mapper for auxiliary data structures of the given size and
 294   // translation factor.
 295   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 296                                                          size_t size,
 297                                                          size_t translation_factor);
 298 
 299   static G1Policy* create_g1_policy();
 300 
 301   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 302 
 303   void process_weak_jni_handles();
 304 
 305   // These are macros so that, if the assert fires, we get the correct
 306   // line number, file, etc.
 307 
 308 #define heap_locking_asserts_params(_extra_message_)                          \
 309   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 310   (_extra_message_),                                                          \
 311   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 312   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 313   BOOL_TO_STR(Thread::current()->is_VM_thread())
 314 
 315 #define assert_heap_locked()                                                  \
 316   do {                                                                        \
 317     assert(Heap_lock->owned_by_self(),                                        \
 318            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 319   } while (0)
 320 
 321 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 322   do {                                                                        \
 323     assert(Heap_lock->owned_by_self() ||                                      \
 324            (SafepointSynchronize::is_at_safepoint() &&                        \
 325              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 326            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 327                                         "should be at a safepoint"));         \
 328   } while (0)
 329 
 330 #define assert_heap_locked_and_not_at_safepoint()                             \
 331   do {                                                                        \
 332     assert(Heap_lock->owned_by_self() &&                                      \
 333                                     !SafepointSynchronize::is_at_safepoint(), \
 334           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 335                                        "should not be at a safepoint"));      \
 336   } while (0)
 337 
 338 #define assert_heap_not_locked()                                              \
 339   do {                                                                        \
 340     assert(!Heap_lock->owned_by_self(),                                       \
 341         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 342   } while (0)
 343 
 344 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 345   do {                                                                        \
 346     assert(!Heap_lock->owned_by_self() &&                                     \
 347                                     !SafepointSynchronize::is_at_safepoint(), \
 348       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 349                                    "should not be at a safepoint"));          \
 350   } while (0)
 351 
 352 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 353   do {                                                                        \
 354     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 355               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 356            heap_locking_asserts_params("should be at a safepoint"));          \
 357   } while (0)
 358 
 359 #define assert_not_at_safepoint()                                             \
 360   do {                                                                        \
 361     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 362            heap_locking_asserts_params("should not be at a safepoint"));      \
 363   } while (0)
 364 
 365 protected:
 366 
 367   // The young region list.
 368   G1EdenRegions _eden;
 369   G1SurvivorRegions _survivor;
 370 
 371   // The current policy object for the collector.
 372   G1Policy* _g1_policy;
 373   G1HeapSizingPolicy* _heap_sizing_policy;
 374 
 375   G1CollectionSet _collection_set;
 376 
 377   // This is the second level of trying to allocate a new region. If
 378   // new_region() didn't find a region on the free_list, this call will
 379   // check whether there's anything available on the
 380   // secondary_free_list and/or wait for more regions to appear on
 381   // that list, if _free_regions_coming is set.
 382   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 383 
 384   // Try to allocate a single non-humongous HeapRegion sufficient for
 385   // an allocation of the given word_size. If do_expand is true,
 386   // attempt to expand the heap if necessary to satisfy the allocation
 387   // request. If the region is to be used as an old region or for a
 388   // humongous object, set is_old to true. If not, to false.
 389   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 390 
 391   // Initialize a contiguous set of free regions of length num_regions
 392   // and starting at index first so that they appear as a single
 393   // humongous region.
 394   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 395                                                       uint num_regions,
 396                                                       size_t word_size,
 397                                                       AllocationContext_t context);
 398 
 399   // Attempt to allocate a humongous object of the given size. Return
 400   // NULL if unsuccessful.
 401   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 402 
 403   // The following two methods, allocate_new_tlab() and
 404   // mem_allocate(), are the two main entry points from the runtime
 405   // into the G1's allocation routines. They have the following
 406   // assumptions:
 407   //
 408   // * They should both be called outside safepoints.
 409   //
 410   // * They should both be called without holding the Heap_lock.
 411   //
 412   // * All allocation requests for new TLABs should go to
 413   //   allocate_new_tlab().
 414   //
 415   // * All non-TLAB allocation requests should go to mem_allocate().
 416   //
 417   // * If either call cannot satisfy the allocation request using the
 418   //   current allocating region, they will try to get a new one. If
 419   //   this fails, they will attempt to do an evacuation pause and
 420   //   retry the allocation.
 421   //
 422   // * If all allocation attempts fail, even after trying to schedule
 423   //   an evacuation pause, allocate_new_tlab() will return NULL,
 424   //   whereas mem_allocate() will attempt a heap expansion and/or
 425   //   schedule a Full GC.
 426   //
 427   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 428   //   should never be called with word_size being humongous. All
 429   //   humongous allocation requests should go to mem_allocate() which
 430   //   will satisfy them with a special path.
 431 
 432   virtual HeapWord* allocate_new_tlab(size_t word_size);
 433 
 434   virtual HeapWord* mem_allocate(size_t word_size,
 435                                  bool*  gc_overhead_limit_was_exceeded);
 436 
 437   // The following three methods take a gc_count_before_ret
 438   // parameter which is used to return the GC count if the method
 439   // returns NULL. Given that we are required to read the GC count
 440   // while holding the Heap_lock, and these paths will take the
 441   // Heap_lock at some point, it's easier to get them to read the GC
 442   // count while holding the Heap_lock before they return NULL instead
 443   // of the caller (namely: mem_allocate()) having to also take the
 444   // Heap_lock just to read the GC count.
 445 
 446   // First-level mutator allocation attempt: try to allocate out of
 447   // the mutator alloc region without taking the Heap_lock. This
 448   // should only be used for non-humongous allocations.
 449   inline HeapWord* attempt_allocation(size_t word_size,
 450                                       uint* gc_count_before_ret,
 451                                       uint* gclocker_retry_count_ret);
 452 
 453   // Second-level mutator allocation attempt: take the Heap_lock and
 454   // retry the allocation attempt, potentially scheduling a GC
 455   // pause. This should only be used for non-humongous allocations.
 456   HeapWord* attempt_allocation_slow(size_t word_size,
 457                                     AllocationContext_t context,
 458                                     uint* gc_count_before_ret,
 459                                     uint* gclocker_retry_count_ret);
 460 
 461   // Takes the Heap_lock and attempts a humongous allocation. It can
 462   // potentially schedule a GC pause.
 463   HeapWord* attempt_allocation_humongous(size_t word_size,
 464                                          uint* gc_count_before_ret,
 465                                          uint* gclocker_retry_count_ret);
 466 
 467   // Allocation attempt that should be called during safepoints (e.g.,
 468   // at the end of a successful GC). expect_null_mutator_alloc_region
 469   // specifies whether the mutator alloc region is expected to be NULL
 470   // or not.
 471   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 472                                             AllocationContext_t context,
 473                                             bool expect_null_mutator_alloc_region);
 474 
 475   // These methods are the "callbacks" from the G1AllocRegion class.
 476 
 477   // For mutator alloc regions.
 478   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 479   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 480                                    size_t allocated_bytes);
 481 
 482   // For GC alloc regions.
 483   bool has_more_regions(InCSetState dest);
 484   HeapRegion* new_gc_alloc_region(size_t word_size, InCSetState dest);
 485   void retire_gc_alloc_region(HeapRegion* alloc_region,
 486                               size_t allocated_bytes, InCSetState dest);
 487 
 488   // - if explicit_gc is true, the GC is for a System.gc() etc,
 489   //   otherwise it's for a failed allocation.
 490   // - if clear_all_soft_refs is true, all soft references should be
 491   //   cleared during the GC.
 492   // - it returns false if it is unable to do the collection due to the
 493   //   GC locker being active, true otherwise.
 494   bool do_full_collection(bool explicit_gc,
 495                           bool clear_all_soft_refs);
 496 
 497   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 498   virtual void do_full_collection(bool clear_all_soft_refs);
 499 
 500   // Resize the heap if necessary after a full collection.
 501   void resize_if_necessary_after_full_collection();
 502 
 503   // Callback from VM_G1CollectForAllocation operation.
 504   // This function does everything necessary/possible to satisfy a
 505   // failed allocation request (including collection, expansion, etc.)
 506   HeapWord* satisfy_failed_allocation(size_t word_size,
 507                                       AllocationContext_t context,
 508                                       bool* succeeded);
 509 private:
 510   // Helper method for satisfy_failed_allocation()
 511   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 512                                              AllocationContext_t context,
 513                                              bool do_gc,
 514                                              bool clear_all_soft_refs,
 515                                              bool expect_null_mutator_alloc_region,
 516                                              bool* gc_succeeded);
 517 
 518 protected:
 519   // Attempting to expand the heap sufficiently
 520   // to support an allocation of the given "word_size".  If
 521   // successful, perform the allocation and return the address of the
 522   // allocated block, or else "NULL".
 523   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 524 
 525   // Preserve any referents discovered by concurrent marking that have not yet been
 526   // copied by the STW pause.
 527   void preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states);
 528   // Process any reference objects discovered during
 529   // an incremental evacuation pause.
 530   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 531 
 532   // Enqueue any remaining discovered references
 533   // after processing.
 534   void enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 535 
 536   // Merges the information gathered on a per-thread basis for all worker threads
 537   // during GC into global variables.
 538   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 539 public:
 540   WorkGang* workers() const { return _workers; }
 541 
 542   G1Allocator* allocator() {
 543     return _allocator;
 544   }
 545 
 546   G1HeapVerifier* verifier() {
 547     return _verifier;
 548   }
 549 
 550   G1MonitoringSupport* g1mm() {
 551     assert(_g1mm != NULL, "should have been initialized");
 552     return _g1mm;
 553   }
 554 
 555   // Expand the garbage-first heap by at least the given size (in bytes!).
 556   // Returns true if the heap was expanded by the requested amount;
 557   // false otherwise.
 558   // (Rounds up to a HeapRegion boundary.)
 559   bool expand(size_t expand_bytes, double* expand_time_ms = NULL);
 560 
 561   // Returns the PLAB statistics for a given destination.
 562   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 563 
 564   // Determines PLAB size for a given destination.
 565   inline size_t desired_plab_sz(InCSetState dest);
 566 
 567   inline AllocationContextStats& allocation_context_stats();
 568 
 569   // Do anything common to GC's.
 570   void gc_prologue(bool full);
 571   void gc_epilogue(bool full);
 572 
 573   // Modify the reclaim candidate set and test for presence.
 574   // These are only valid for starts_humongous regions.
 575   inline void set_humongous_reclaim_candidate(uint region, bool value);
 576   inline bool is_humongous_reclaim_candidate(uint region);
 577 
 578   // Remove from the reclaim candidate set.  Also remove from the
 579   // collection set so that later encounters avoid the slow path.
 580   inline void set_humongous_is_live(oop obj);
 581 
 582   // Register the given region to be part of the collection set.
 583   inline void register_humongous_region_with_cset(uint index);
 584   // Register regions with humongous objects (actually on the start region) in
 585   // the in_cset_fast_test table.
 586   void register_humongous_regions_with_cset();
 587   // We register a region with the fast "in collection set" test. We
 588   // simply set to true the array slot corresponding to this region.
 589   void register_young_region_with_cset(HeapRegion* r) {
 590     _in_cset_fast_test.set_in_young(r->hrm_index());
 591   }
 592   void register_old_region_with_cset(HeapRegion* r) {
 593     _in_cset_fast_test.set_in_old(r->hrm_index());
 594   }
 595   inline void register_ext_region_with_cset(HeapRegion* r) {
 596     _in_cset_fast_test.set_ext(r->hrm_index());
 597   }
 598   void clear_in_cset(const HeapRegion* hr) {
 599     _in_cset_fast_test.clear(hr);
 600   }
 601 
 602   void clear_cset_fast_test() {
 603     _in_cset_fast_test.clear();
 604   }
 605 
 606   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 607 
 608   // This is called at the start of either a concurrent cycle or a Full
 609   // GC to update the number of old marking cycles started.
 610   void increment_old_marking_cycles_started();
 611 
 612   // This is called at the end of either a concurrent cycle or a Full
 613   // GC to update the number of old marking cycles completed. Those two
 614   // can happen in a nested fashion, i.e., we start a concurrent
 615   // cycle, a Full GC happens half-way through it which ends first,
 616   // and then the cycle notices that a Full GC happened and ends
 617   // too. The concurrent parameter is a boolean to help us do a bit
 618   // tighter consistency checking in the method. If concurrent is
 619   // false, the caller is the inner caller in the nesting (i.e., the
 620   // Full GC). If concurrent is true, the caller is the outer caller
 621   // in this nesting (i.e., the concurrent cycle). Further nesting is
 622   // not currently supported. The end of this call also notifies
 623   // the FullGCCount_lock in case a Java thread is waiting for a full
 624   // GC to happen (e.g., it called System.gc() with
 625   // +ExplicitGCInvokesConcurrent).
 626   void increment_old_marking_cycles_completed(bool concurrent);
 627 
 628   uint old_marking_cycles_completed() {
 629     return _old_marking_cycles_completed;
 630   }
 631 
 632   G1HRPrinter* hr_printer() { return &_hr_printer; }
 633 
 634   // Allocates a new heap region instance.
 635   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 636 
 637   // Allocate the highest free region in the reserved heap. This will commit
 638   // regions as necessary.
 639   HeapRegion* alloc_highest_free_region();
 640 
 641   // Frees a non-humongous region by initializing its contents and
 642   // adding it to the free list that's passed as a parameter (this is
 643   // usually a local list which will be appended to the master free
 644   // list later). The used bytes of freed regions are accumulated in
 645   // pre_used. If par is true, the region's RSet will not be freed
 646   // up. The assumption is that this will be done later.
 647   // The locked parameter indicates if the caller has already taken
 648   // care of proper synchronization. This may allow some optimizations.
 649   void free_region(HeapRegion* hr,
 650                    FreeRegionList* free_list,
 651                    bool par,
 652                    bool locked = false);
 653 
 654   // It dirties the cards that cover the block so that the post
 655   // write barrier never queues anything when updating objects on this
 656   // block. It is assumed (and in fact we assert) that the block
 657   // belongs to a young region.
 658   inline void dirty_young_block(HeapWord* start, size_t word_size);
 659 
 660   // Frees a humongous region by collapsing it into individual regions
 661   // and calling free_region() for each of them. The freed regions
 662   // will be added to the free list that's passed as a parameter (this
 663   // is usually a local list which will be appended to the master free
 664   // list later). The used bytes of freed regions are accumulated in
 665   // pre_used. If par is true, the region's RSet will not be freed
 666   // up. The assumption is that this will be done later.
 667   void free_humongous_region(HeapRegion* hr,
 668                              FreeRegionList* free_list,
 669                              bool par);
 670 
 671   // Facility for allocating in 'archive' regions in high heap memory and
 672   // recording the allocated ranges. These should all be called from the
 673   // VM thread at safepoints, without the heap lock held. They can be used
 674   // to create and archive a set of heap regions which can be mapped at the
 675   // same fixed addresses in a subsequent JVM invocation.
 676   void begin_archive_alloc_range();
 677 
 678   // Check if the requested size would be too large for an archive allocation.
 679   bool is_archive_alloc_too_large(size_t word_size);
 680 
 681   // Allocate memory of the requested size from the archive region. This will
 682   // return NULL if the size is too large or if no memory is available. It
 683   // does not trigger a garbage collection.
 684   HeapWord* archive_mem_allocate(size_t word_size);
 685 
 686   // Optionally aligns the end address and returns the allocated ranges in
 687   // an array of MemRegions in order of ascending addresses.
 688   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 689                                size_t end_alignment_in_bytes = 0);
 690 
 691   // Facility for allocating a fixed range within the heap and marking
 692   // the containing regions as 'archive'. For use at JVM init time, when the
 693   // caller may mmap archived heap data at the specified range(s).
 694   // Verify that the MemRegions specified in the argument array are within the
 695   // reserved heap.
 696   bool check_archive_addresses(MemRegion* range, size_t count);
 697 
 698   // Commit the appropriate G1 regions containing the specified MemRegions
 699   // and mark them as 'archive' regions. The regions in the array must be
 700   // non-overlapping and in order of ascending address.
 701   bool alloc_archive_regions(MemRegion* range, size_t count);
 702 
 703   // Insert any required filler objects in the G1 regions around the specified
 704   // ranges to make the regions parseable. This must be called after
 705   // alloc_archive_regions, and after class loading has occurred.
 706   void fill_archive_regions(MemRegion* range, size_t count);
 707 
 708   // For each of the specified MemRegions, uncommit the containing G1 regions
 709   // which had been allocated by alloc_archive_regions. This should be called
 710   // rather than fill_archive_regions at JVM init time if the archive file
 711   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 712   void dealloc_archive_regions(MemRegion* range, size_t count);
 713 
 714 protected:
 715 
 716   // Shrink the garbage-first heap by at most the given size (in bytes!).
 717   // (Rounds down to a HeapRegion boundary.)
 718   virtual void shrink(size_t expand_bytes);
 719   void shrink_helper(size_t expand_bytes);
 720 
 721   #if TASKQUEUE_STATS
 722   static void print_taskqueue_stats_hdr(outputStream* const st);
 723   void print_taskqueue_stats() const;
 724   void reset_taskqueue_stats();
 725   #endif // TASKQUEUE_STATS
 726 
 727   // Schedule the VM operation that will do an evacuation pause to
 728   // satisfy an allocation request of word_size. *succeeded will
 729   // return whether the VM operation was successful (it did do an
 730   // evacuation pause) or not (another thread beat us to it or the GC
 731   // locker was active). Given that we should not be holding the
 732   // Heap_lock when we enter this method, we will pass the
 733   // gc_count_before (i.e., total_collections()) as a parameter since
 734   // it has to be read while holding the Heap_lock. Currently, both
 735   // methods that call do_collection_pause() release the Heap_lock
 736   // before the call, so it's easy to read gc_count_before just before.
 737   HeapWord* do_collection_pause(size_t         word_size,
 738                                 uint           gc_count_before,
 739                                 bool*          succeeded,
 740                                 GCCause::Cause gc_cause);
 741 
 742   void wait_for_root_region_scanning();
 743 
 744   // The guts of the incremental collection pause, executed by the vm
 745   // thread. It returns false if it is unable to do the collection due
 746   // to the GC locker being active, true otherwise
 747   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 748 
 749   // Actually do the work of evacuating the collection set.
 750   virtual void evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states);
 751 
 752   void pre_evacuate_collection_set();
 753   void post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 754 
 755   // Print the header for the per-thread termination statistics.
 756   static void print_termination_stats_hdr();
 757   // Print actual per-thread termination statistics.
 758   void print_termination_stats(uint worker_id,
 759                                double elapsed_ms,
 760                                double strong_roots_ms,
 761                                double term_ms,
 762                                size_t term_attempts,
 763                                size_t alloc_buffer_waste,
 764                                size_t undo_waste) const;
 765   // Update object copying statistics.
 766   void record_obj_copy_mem_stats();
 767 
 768   // The hot card cache for remembered set insertion optimization.
 769   G1HotCardCache* _hot_card_cache;
 770 
 771   // The g1 remembered set of the heap.
 772   G1RemSet* _g1_rem_set;
 773 
 774   // A set of cards that cover the objects for which the Rsets should be updated
 775   // concurrently after the collection.
 776   DirtyCardQueueSet _dirty_card_queue_set;
 777 
 778   // The closure used to refine a single card.
 779   RefineCardTableEntryClosure* _refine_cte_cl;
 780 
 781   // After a collection pause, convert the regions in the collection set into free
 782   // regions.
 783   void free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 784 
 785   // Abandon the current collection set without recording policy
 786   // statistics or updating free lists.
 787   void abandon_collection_set(G1CollectionSet* collection_set);
 788 
 789   // The concurrent marker (and the thread it runs in.)
 790   G1ConcurrentMark* _cm;
 791   ConcurrentMarkThread* _cmThread;
 792 
 793   // The concurrent refiner.
 794   ConcurrentG1Refine* _cg1r;
 795 
 796   // The parallel task queues
 797   RefToScanQueueSet *_task_queues;
 798 
 799   // True iff a evacuation has failed in the current collection.
 800   bool _evacuation_failed;
 801 
 802   EvacuationFailedInfo* _evacuation_failed_info_array;
 803 
 804   // Failed evacuations cause some logical from-space objects to have
 805   // forwarding pointers to themselves.  Reset them.
 806   void remove_self_forwarding_pointers();
 807 
 808   // Restore the objects in the regions in the collection set after an
 809   // evacuation failure.
 810   void restore_after_evac_failure();
 811 
 812   PreservedMarksSet _preserved_marks_set;
 813 
 814   // Preserve the mark of "obj", if necessary, in preparation for its mark
 815   // word being overwritten with a self-forwarding-pointer.
 816   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 817 
 818 #ifndef PRODUCT
 819   // Support for forcing evacuation failures. Analogous to
 820   // PromotionFailureALot for the other collectors.
 821 
 822   // Records whether G1EvacuationFailureALot should be in effect
 823   // for the current GC
 824   bool _evacuation_failure_alot_for_current_gc;
 825 
 826   // Used to record the GC number for interval checking when
 827   // determining whether G1EvaucationFailureALot is in effect
 828   // for the current GC.
 829   size_t _evacuation_failure_alot_gc_number;
 830 
 831   // Count of the number of evacuations between failures.
 832   volatile size_t _evacuation_failure_alot_count;
 833 
 834   // Set whether G1EvacuationFailureALot should be in effect
 835   // for the current GC (based upon the type of GC and which
 836   // command line flags are set);
 837   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 838                                                   bool during_initial_mark,
 839                                                   bool during_marking);
 840 
 841   inline void set_evacuation_failure_alot_for_current_gc();
 842 
 843   // Return true if it's time to cause an evacuation failure.
 844   inline bool evacuation_should_fail();
 845 
 846   // Reset the G1EvacuationFailureALot counters.  Should be called at
 847   // the end of an evacuation pause in which an evacuation failure occurred.
 848   inline void reset_evacuation_should_fail();
 849 #endif // !PRODUCT
 850 
 851   // ("Weak") Reference processing support.
 852   //
 853   // G1 has 2 instances of the reference processor class. One
 854   // (_ref_processor_cm) handles reference object discovery
 855   // and subsequent processing during concurrent marking cycles.
 856   //
 857   // The other (_ref_processor_stw) handles reference object
 858   // discovery and processing during full GCs and incremental
 859   // evacuation pauses.
 860   //
 861   // During an incremental pause, reference discovery will be
 862   // temporarily disabled for _ref_processor_cm and will be
 863   // enabled for _ref_processor_stw. At the end of the evacuation
 864   // pause references discovered by _ref_processor_stw will be
 865   // processed and discovery will be disabled. The previous
 866   // setting for reference object discovery for _ref_processor_cm
 867   // will be re-instated.
 868   //
 869   // At the start of marking:
 870   //  * Discovery by the CM ref processor is verified to be inactive
 871   //    and it's discovered lists are empty.
 872   //  * Discovery by the CM ref processor is then enabled.
 873   //
 874   // At the end of marking:
 875   //  * Any references on the CM ref processor's discovered
 876   //    lists are processed (possibly MT).
 877   //
 878   // At the start of full GC we:
 879   //  * Disable discovery by the CM ref processor and
 880   //    empty CM ref processor's discovered lists
 881   //    (without processing any entries).
 882   //  * Verify that the STW ref processor is inactive and it's
 883   //    discovered lists are empty.
 884   //  * Temporarily set STW ref processor discovery as single threaded.
 885   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 886   //    field.
 887   //  * Finally enable discovery by the STW ref processor.
 888   //
 889   // The STW ref processor is used to record any discovered
 890   // references during the full GC.
 891   //
 892   // At the end of a full GC we:
 893   //  * Enqueue any reference objects discovered by the STW ref processor
 894   //    that have non-live referents. This has the side-effect of
 895   //    making the STW ref processor inactive by disabling discovery.
 896   //  * Verify that the CM ref processor is still inactive
 897   //    and no references have been placed on it's discovered
 898   //    lists (also checked as a precondition during initial marking).
 899 
 900   // The (stw) reference processor...
 901   ReferenceProcessor* _ref_processor_stw;
 902 
 903   STWGCTimer* _gc_timer_stw;
 904 
 905   G1NewTracer* _gc_tracer_stw;
 906 
 907   // During reference object discovery, the _is_alive_non_header
 908   // closure (if non-null) is applied to the referent object to
 909   // determine whether the referent is live. If so then the
 910   // reference object does not need to be 'discovered' and can
 911   // be treated as a regular oop. This has the benefit of reducing
 912   // the number of 'discovered' reference objects that need to
 913   // be processed.
 914   //
 915   // Instance of the is_alive closure for embedding into the
 916   // STW reference processor as the _is_alive_non_header field.
 917   // Supplying a value for the _is_alive_non_header field is
 918   // optional but doing so prevents unnecessary additions to
 919   // the discovered lists during reference discovery.
 920   G1STWIsAliveClosure _is_alive_closure_stw;
 921 
 922   // The (concurrent marking) reference processor...
 923   ReferenceProcessor* _ref_processor_cm;
 924 
 925   // Instance of the concurrent mark is_alive closure for embedding
 926   // into the Concurrent Marking reference processor as the
 927   // _is_alive_non_header field. Supplying a value for the
 928   // _is_alive_non_header field is optional but doing so prevents
 929   // unnecessary additions to the discovered lists during reference
 930   // discovery.
 931   G1CMIsAliveClosure _is_alive_closure_cm;
 932 
 933   volatile bool _free_regions_coming;
 934 
 935 public:
 936 
 937   void set_refine_cte_cl_concurrency(bool concurrent);
 938 
 939   RefToScanQueue *task_queue(uint i) const;
 940 
 941   uint num_task_queues() const;
 942 
 943   // A set of cards where updates happened during the GC
 944   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 945 
 946   // Create a G1CollectedHeap with the specified policy.
 947   // Must call the initialize method afterwards.
 948   // May not return if something goes wrong.
 949   G1CollectedHeap(G1CollectorPolicy* policy);
 950 
 951   // Initialize the G1CollectedHeap to have the initial and
 952   // maximum sizes and remembered and barrier sets
 953   // specified by the policy object.
 954   jint initialize();
 955 
 956   virtual void stop();
 957 
 958   // Return the (conservative) maximum heap alignment for any G1 heap
 959   static size_t conservative_max_heap_alignment();
 960 
 961   // Does operations required after initialization has been done.
 962   void post_initialize();
 963 
 964   // Initialize weak reference processing.
 965   void ref_processing_init();
 966 
 967   virtual Name kind() const {
 968     return CollectedHeap::G1CollectedHeap;
 969   }
 970 
 971   virtual const char* name() const {
 972     return "G1";
 973   }
 974 
 975   const G1CollectorState* collector_state() const { return &_collector_state; }
 976   G1CollectorState* collector_state() { return &_collector_state; }
 977 
 978   // The current policy object for the collector.
 979   G1Policy* g1_policy() const { return _g1_policy; }
 980 
 981   const G1CollectionSet* collection_set() const { return &_collection_set; }
 982   G1CollectionSet* collection_set() { return &_collection_set; }
 983 
 984   virtual CollectorPolicy* collector_policy() const;
 985 
 986   // Adaptive size policy.  No such thing for g1.
 987   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
 988 
 989   // The rem set and barrier set.
 990   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
 991 
 992   // Try to minimize the remembered set.
 993   void scrub_rem_set();
 994 
 995   uint get_gc_time_stamp() {
 996     return _gc_time_stamp;
 997   }
 998 
 999   inline void reset_gc_time_stamp();
1000 
1001   void check_gc_time_stamps() PRODUCT_RETURN;
1002 
1003   inline void increment_gc_time_stamp();
1004 
1005   // Reset the given region's GC timestamp. If it's starts humongous,
1006   // also reset the GC timestamp of its corresponding
1007   // continues humongous regions too.
1008   void reset_gc_time_stamps(HeapRegion* hr);
1009 
1010   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
1011   void iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i);
1012 
1013   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
1014   void iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i);
1015 
1016   // The shared block offset table array.
1017   G1BlockOffsetTable* bot() const { return _bot; }
1018 
1019   // Reference Processing accessors
1020 
1021   // The STW reference processor....
1022   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1023 
1024   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1025 
1026   // The Concurrent Marking reference processor...
1027   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1028 
1029   virtual size_t capacity() const;
1030   virtual size_t used() const;
1031   // This should be called when we're not holding the heap lock. The
1032   // result might be a bit inaccurate.
1033   size_t used_unlocked() const;
1034   size_t recalculate_used() const;
1035 
1036   // These virtual functions do the actual allocation.
1037   // Some heaps may offer a contiguous region for shared non-blocking
1038   // allocation, via inlined code (by exporting the address of the top and
1039   // end fields defining the extent of the contiguous allocation region.)
1040   // But G1CollectedHeap doesn't yet support this.
1041 
1042   virtual bool is_maximal_no_gc() const {
1043     return _hrm.available() == 0;
1044   }
1045 
1046   // The current number of regions in the heap.
1047   uint num_regions() const { return _hrm.length(); }
1048 
1049   // The max number of regions in the heap.
1050   uint max_regions() const { return _hrm.max_length(); }
1051 
1052   // The number of regions that are completely free.
1053   uint num_free_regions() const { return _hrm.num_free_regions(); }
1054 
1055   MemoryUsage get_auxiliary_data_memory_usage() const {
1056     return _hrm.get_auxiliary_data_memory_usage();
1057   }
1058 
1059   // The number of regions that are not completely free.
1060   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1061 
1062 #ifdef ASSERT
1063   bool is_on_master_free_list(HeapRegion* hr) {
1064     return _hrm.is_free(hr);
1065   }
1066 #endif // ASSERT
1067 
1068   // Wrapper for the region list operations that can be called from
1069   // methods outside this class.
1070 
1071   void secondary_free_list_add(FreeRegionList* list) {
1072     _secondary_free_list.add_ordered(list);
1073   }
1074 
1075   void append_secondary_free_list() {
1076     _hrm.insert_list_into_free_list(&_secondary_free_list);
1077   }
1078 
1079   void append_secondary_free_list_if_not_empty_with_lock() {
1080     // If the secondary free list looks empty there's no reason to
1081     // take the lock and then try to append it.
1082     if (!_secondary_free_list.is_empty()) {
1083       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1084       append_secondary_free_list();
1085     }
1086   }
1087 
1088   inline void old_set_add(HeapRegion* hr);
1089   inline void old_set_remove(HeapRegion* hr);
1090 
1091   size_t non_young_capacity_bytes() {
1092     return (_old_set.length() + _humongous_set.length()) * HeapRegion::GrainBytes;
1093   }
1094 
1095   void set_free_regions_coming();
1096   void reset_free_regions_coming();
1097   bool free_regions_coming() { return _free_regions_coming; }
1098   void wait_while_free_regions_coming();
1099 
1100   // Determine whether the given region is one that we are using as an
1101   // old GC alloc region.
1102   bool is_old_gc_alloc_region(HeapRegion* hr);
1103 
1104   // Perform a collection of the heap; intended for use in implementing
1105   // "System.gc".  This probably implies as full a collection as the
1106   // "CollectedHeap" supports.
1107   virtual void collect(GCCause::Cause cause);
1108 
1109   virtual bool copy_allocation_context_stats(const jint* contexts,
1110                                              jlong* totals,
1111                                              jbyte* accuracy,
1112                                              jint len);
1113 
1114   // True iff an evacuation has failed in the most-recent collection.
1115   bool evacuation_failed() { return _evacuation_failed; }
1116 
1117   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1118   void prepend_to_freelist(FreeRegionList* list);
1119   void decrement_summary_bytes(size_t bytes);
1120 
1121   virtual bool is_in(const void* p) const;
1122 #ifdef ASSERT
1123   // Returns whether p is in one of the available areas of the heap. Slow but
1124   // extensive version.
1125   bool is_in_exact(const void* p) const;
1126 #endif
1127 
1128   // Return "TRUE" iff the given object address is within the collection
1129   // set. Slow implementation.
1130   bool obj_in_cs(oop obj);
1131 
1132   inline bool is_in_cset(const HeapRegion *hr);
1133   inline bool is_in_cset(oop obj);
1134 
1135   inline bool is_in_cset_or_humongous(const oop obj);
1136 
1137  private:
1138   // This array is used for a quick test on whether a reference points into
1139   // the collection set or not. Each of the array's elements denotes whether the
1140   // corresponding region is in the collection set or not.
1141   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1142 
1143  public:
1144 
1145   inline InCSetState in_cset_state(const oop obj);
1146 
1147   // Return "TRUE" iff the given object address is in the reserved
1148   // region of g1.
1149   bool is_in_g1_reserved(const void* p) const {
1150     return _hrm.reserved().contains(p);
1151   }
1152 
1153   // Returns a MemRegion that corresponds to the space that has been
1154   // reserved for the heap
1155   MemRegion g1_reserved() const {
1156     return _hrm.reserved();
1157   }
1158 
1159   virtual bool is_in_closed_subset(const void* p) const;
1160 
1161   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1162     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1163   }
1164 
1165   // Iteration functions.
1166 
1167   // Iterate over all objects, calling "cl.do_object" on each.
1168   virtual void object_iterate(ObjectClosure* cl);
1169 
1170   virtual void safe_object_iterate(ObjectClosure* cl) {
1171     object_iterate(cl);
1172   }
1173 
1174   // Iterate over heap regions, in address order, terminating the
1175   // iteration early if the "doHeapRegion" method returns "true".
1176   void heap_region_iterate(HeapRegionClosure* blk) const;
1177 
1178   // Return the region with the given index. It assumes the index is valid.
1179   inline HeapRegion* region_at(uint index) const;
1180 
1181   // Return the next region (by index) that is part of the same
1182   // humongous object that hr is part of.
1183   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1184 
1185   // Calculate the region index of the given address. Given address must be
1186   // within the heap.
1187   inline uint addr_to_region(HeapWord* addr) const;
1188 
1189   inline HeapWord* bottom_addr_for_region(uint index) const;
1190 
1191   // Iterate over the heap regions in parallel. Assumes that this will be called
1192   // in parallel by ParallelGCThreads worker threads with distinct worker ids
1193   // in the range [0..max(ParallelGCThreads-1, 1)]. Applies "blk->doHeapRegion"
1194   // to each of the regions, by attempting to claim the region using the
1195   // HeapRegionClaimer and, if successful, applying the closure to the claimed
1196   // region. The concurrent argument should be set to true if iteration is
1197   // performed concurrently, during which no assumptions are made for consistent
1198   // attributes of the heap regions (as they might be modified while iterating).
1199   void heap_region_par_iterate(HeapRegionClosure* cl,
1200                                uint worker_id,
1201                                HeapRegionClaimer* hrclaimer,
1202                                bool concurrent = false) const;
1203 
1204   // Iterate over the regions (if any) in the current collection set.
1205   void collection_set_iterate(HeapRegionClosure* blk);
1206 
1207   // Iterate over the regions (if any) in the current collection set. Starts the
1208   // iteration over the entire collection set so that a given worker id over the
1209   // set of 0..active_workers-1 are distributed across the set of collection set
1210   // regions.
1211   void collection_set_iterate_from(HeapRegionClosure *blk, uint worker_id, uint active_workers);
1212 
1213   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1214 
1215   // Returns the HeapRegion that contains addr. addr must not be NULL.
1216   template <class T>
1217   inline HeapRegion* heap_region_containing(const T addr) const;
1218 
1219   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1220   // each address in the (reserved) heap is a member of exactly
1221   // one block.  The defining characteristic of a block is that it is
1222   // possible to find its size, and thus to progress forward to the next
1223   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1224   // represent Java objects, or they might be free blocks in a
1225   // free-list-based heap (or subheap), as long as the two kinds are
1226   // distinguishable and the size of each is determinable.
1227 
1228   // Returns the address of the start of the "block" that contains the
1229   // address "addr".  We say "blocks" instead of "object" since some heaps
1230   // may not pack objects densely; a chunk may either be an object or a
1231   // non-object.
1232   virtual HeapWord* block_start(const void* addr) const;
1233 
1234   // Requires "addr" to be the start of a chunk, and returns its size.
1235   // "addr + size" is required to be the start of a new chunk, or the end
1236   // of the active area of the heap.
1237   virtual size_t block_size(const HeapWord* addr) const;
1238 
1239   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1240   // the block is an object.
1241   virtual bool block_is_obj(const HeapWord* addr) const;
1242 
1243   // Section on thread-local allocation buffers (TLABs)
1244   // See CollectedHeap for semantics.
1245 
1246   bool supports_tlab_allocation() const;
1247   size_t tlab_capacity(Thread* ignored) const;
1248   size_t tlab_used(Thread* ignored) const;
1249   size_t max_tlab_size() const;
1250   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1251 
1252   // Can a compiler initialize a new object without store barriers?
1253   // This permission only extends from the creation of a new object
1254   // via a TLAB up to the first subsequent safepoint. If such permission
1255   // is granted for this heap type, the compiler promises to call
1256   // defer_store_barrier() below on any slow path allocation of
1257   // a new object for which such initializing store barriers will
1258   // have been elided. G1, like CMS, allows this, but should be
1259   // ready to provide a compensating write barrier as necessary
1260   // if that storage came out of a non-young region. The efficiency
1261   // of this implementation depends crucially on being able to
1262   // answer very efficiently in constant time whether a piece of
1263   // storage in the heap comes from a young region or not.
1264   // See ReduceInitialCardMarks.
1265   virtual bool can_elide_tlab_store_barriers() const {
1266     return true;
1267   }
1268 
1269   virtual bool card_mark_must_follow_store() const {
1270     return true;
1271   }
1272 
1273   // The reference pending list lock is acquired from from the
1274   // ConcurrentMarkThread.
1275   virtual bool needs_reference_pending_list_locker_thread() const {
1276     return true;
1277   }
1278 
1279   inline bool is_in_young(const oop obj);
1280 
1281   virtual bool is_scavengable(const void* addr);
1282 
1283   // We don't need barriers for initializing stores to objects
1284   // in the young gen: for the SATB pre-barrier, there is no
1285   // pre-value that needs to be remembered; for the remembered-set
1286   // update logging post-barrier, we don't maintain remembered set
1287   // information for young gen objects.
1288   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1289 
1290   // Returns "true" iff the given word_size is "very large".
1291   static bool is_humongous(size_t word_size) {
1292     // Note this has to be strictly greater-than as the TLABs
1293     // are capped at the humongous threshold and we want to
1294     // ensure that we don't try to allocate a TLAB as
1295     // humongous and that we don't allocate a humongous
1296     // object in a TLAB.
1297     return word_size > _humongous_object_threshold_in_words;
1298   }
1299 
1300   // Returns the humongous threshold for a specific region size
1301   static size_t humongous_threshold_for(size_t region_size) {
1302     return (region_size / 2);
1303   }
1304 
1305   // Returns the number of regions the humongous object of the given word size
1306   // requires.
1307   static size_t humongous_obj_size_in_regions(size_t word_size);
1308 
1309   // Print the maximum heap capacity.
1310   virtual size_t max_capacity() const;
1311 
1312   virtual jlong millis_since_last_gc();
1313 
1314 
1315   // Convenience function to be used in situations where the heap type can be
1316   // asserted to be this type.
1317   static G1CollectedHeap* heap();
1318 
1319   void set_region_short_lived_locked(HeapRegion* hr);
1320   // add appropriate methods for any other surv rate groups
1321 
1322   const G1SurvivorRegions* survivor() const { return &_survivor; }
1323 
1324   uint survivor_regions_count() const {
1325     return _survivor.length();
1326   }
1327 
1328   uint eden_regions_count() const {
1329     return _eden.length();
1330   }
1331 
1332   uint young_regions_count() const {
1333     return _eden.length() + _survivor.length();
1334   }
1335 
1336   uint old_regions_count() const { return _old_set.length(); }
1337 
1338   uint humongous_regions_count() const { return _humongous_set.length(); }
1339 
1340 #ifdef ASSERT
1341   bool check_young_list_empty();
1342 #endif
1343 
1344   // *** Stuff related to concurrent marking.  It's not clear to me that so
1345   // many of these need to be public.
1346 
1347   // The functions below are helper functions that a subclass of
1348   // "CollectedHeap" can use in the implementation of its virtual
1349   // functions.
1350   // This performs a concurrent marking of the live objects in a
1351   // bitmap off to the side.
1352   void doConcurrentMark();
1353 
1354   bool isMarkedPrev(oop obj) const;
1355   bool isMarkedNext(oop obj) const;
1356 
1357   // Determine if an object is dead, given the object and also
1358   // the region to which the object belongs. An object is dead
1359   // iff a) it was not allocated since the last mark, b) it
1360   // is not marked, and c) it is not in an archive region.
1361   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1362     return
1363       !hr->obj_allocated_since_prev_marking(obj) &&
1364       !isMarkedPrev(obj) &&
1365       !hr->is_archive();
1366   }
1367 
1368   // This function returns true when an object has been
1369   // around since the previous marking and hasn't yet
1370   // been marked during this marking, and is not in an archive region.
1371   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1372     return
1373       !hr->obj_allocated_since_next_marking(obj) &&
1374       !isMarkedNext(obj) &&
1375       !hr->is_archive();
1376   }
1377 
1378   // Determine if an object is dead, given only the object itself.
1379   // This will find the region to which the object belongs and
1380   // then call the region version of the same function.
1381 
1382   // Added if it is NULL it isn't dead.
1383 
1384   inline bool is_obj_dead(const oop obj) const;
1385 
1386   inline bool is_obj_ill(const oop obj) const;
1387 
1388   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1389 
1390   // Refinement
1391 
1392   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1393 
1394   // Optimized nmethod scanning support routines
1395 
1396   // Register the given nmethod with the G1 heap.
1397   virtual void register_nmethod(nmethod* nm);
1398 
1399   // Unregister the given nmethod from the G1 heap.
1400   virtual void unregister_nmethod(nmethod* nm);
1401 
1402   // Free up superfluous code root memory.
1403   void purge_code_root_memory();
1404 
1405   // Rebuild the strong code root lists for each region
1406   // after a full GC.
1407   void rebuild_strong_code_roots();
1408 
1409   // Delete entries for dead interned string and clean up unreferenced symbols
1410   // in symbol table, possibly in parallel.
1411   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
1412 
1413   // Parallel phase of unloading/cleaning after G1 concurrent mark.
1414   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
1415 
1416   // Redirty logged cards in the refinement queue.
1417   void redirty_logged_cards();
1418   // Verification
1419 
1420   // Perform any cleanup actions necessary before allowing a verification.
1421   virtual void prepare_for_verify();
1422 
1423   // Perform verification.
1424 
1425   // vo == UsePrevMarking  -> use "prev" marking information,
1426   // vo == UseNextMarking -> use "next" marking information
1427   // vo == UseMarkWord    -> use the mark word in the object header
1428   //
1429   // NOTE: Only the "prev" marking information is guaranteed to be
1430   // consistent most of the time, so most calls to this should use
1431   // vo == UsePrevMarking.
1432   // Currently, there is only one case where this is called with
1433   // vo == UseNextMarking, which is to verify the "next" marking
1434   // information at the end of remark.
1435   // Currently there is only one place where this is called with
1436   // vo == UseMarkWord, which is to verify the marking during a
1437   // full GC.
1438   void verify(VerifyOption vo);
1439 
1440   // The methods below are here for convenience and dispatch the
1441   // appropriate method depending on value of the given VerifyOption
1442   // parameter. The values for that parameter, and their meanings,
1443   // are the same as those above.
1444 
1445   bool is_obj_dead_cond(const oop obj,
1446                         const HeapRegion* hr,
1447                         const VerifyOption vo) const;
1448 
1449   bool is_obj_dead_cond(const oop obj,
1450                         const VerifyOption vo) const;
1451 
1452   G1HeapSummary create_g1_heap_summary();
1453   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1454 
1455   // Printing
1456 private:
1457   void print_heap_regions() const;
1458   void print_regions_on(outputStream* st) const;
1459 
1460 public:
1461   virtual void print_on(outputStream* st) const;
1462   virtual void print_extended_on(outputStream* st) const;
1463   virtual void print_on_error(outputStream* st) const;
1464 
1465   virtual void print_gc_threads_on(outputStream* st) const;
1466   virtual void gc_threads_do(ThreadClosure* tc) const;
1467 
1468   // Override
1469   void print_tracing_info() const;
1470 
1471   // The following two methods are helpful for debugging RSet issues.
1472   void print_cset_rsets() PRODUCT_RETURN;
1473   void print_all_rsets() PRODUCT_RETURN;
1474 
1475 public:
1476   size_t pending_card_num();
1477 
1478 protected:
1479   size_t _max_heap_capacity;
1480 };
1481 
1482 class G1ParEvacuateFollowersClosure : public VoidClosure {
1483 private:
1484   double _start_term;
1485   double _term_time;
1486   size_t _term_attempts;
1487 
1488   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1489   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
1490 protected:
1491   G1CollectedHeap*              _g1h;
1492   G1ParScanThreadState*         _par_scan_state;
1493   RefToScanQueueSet*            _queues;
1494   ParallelTaskTerminator*       _terminator;
1495 
1496   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1497   RefToScanQueueSet*      queues()         { return _queues; }
1498   ParallelTaskTerminator* terminator()     { return _terminator; }
1499 
1500 public:
1501   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1502                                 G1ParScanThreadState* par_scan_state,
1503                                 RefToScanQueueSet* queues,
1504                                 ParallelTaskTerminator* terminator)
1505     : _g1h(g1h), _par_scan_state(par_scan_state),
1506       _queues(queues), _terminator(terminator),
1507       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
1508 
1509   void do_void();
1510 
1511   double term_time() const { return _term_time; }
1512   size_t term_attempts() const { return _term_attempts; }
1513 
1514 private:
1515   inline bool offer_termination();
1516 };
1517 
1518 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP