1 /*
   2  * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1CollectedHeap.hpp"
  27 #include "gc/g1/g1CollectionSet.hpp"
  28 #include "gc/g1/g1CollectorState.hpp"
  29 #include "gc/g1/g1FixedSizeStack.inline.hpp"
  30 #include "gc/g1/g1Policy.hpp"
  31 #include "gc/g1/heapRegion.inline.hpp"
  32 #include "gc/g1/heapRegionRemSet.hpp"
  33 #include "gc/g1/heapRegionSet.hpp"
  34 #include "logging/logStream.hpp"
  35 #include "utilities/debug.hpp"
  36 
  37 G1CollectorState* G1CollectionSet::collector_state() {
  38   return _g1->collector_state();
  39 }
  40 
  41 G1GCPhaseTimes* G1CollectionSet::phase_times() {
  42   return _policy->phase_times();
  43 }
  44 
  45 CollectionSetChooser* G1CollectionSet::cset_chooser() {
  46   return _cset_chooser;
  47 }
  48 
  49 double G1CollectionSet::predict_region_elapsed_time_ms(HeapRegion* hr) {
  50   return _policy->predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
  51 }
  52 
  53 G1CollectionSet::G1CollectionSet(G1CollectedHeap* g1h, G1Policy* policy) :
  54   _g1(g1h),
  55   _policy(policy),
  56   _cset_chooser(new CollectionSetChooser()),
  57   _eden_region_length(0),
  58   _survivor_region_length(0),
  59   _old_region_length(0),
  60   _collection_set_regions(),
  61   _bytes_used_before(0),
  62   _recorded_rs_lengths(0),
  63   // Incremental CSet attributes
  64   _inc_build_state(Inactive),
  65   _inc_bytes_used_before(0),
  66   _inc_recorded_rs_lengths(0),
  67   _inc_recorded_rs_lengths_diffs(0),
  68   _inc_predicted_elapsed_time_ms(0.0),
  69   _inc_predicted_elapsed_time_ms_diffs(0.0) {
  70 }
  71 
  72 G1CollectionSet::~G1CollectionSet() {
  73   delete _cset_chooser;
  74 }
  75 
  76 void G1CollectionSet::init_region_lengths(uint eden_cset_region_length,
  77                                           uint survivor_cset_region_length) {
  78   _eden_region_length     = eden_cset_region_length;
  79   _survivor_region_length = survivor_cset_region_length;
  80 
  81   assert((size_t) young_region_length() == _collection_set_regions.length(),
  82          "Young region length %u should match collection set length " SIZE_FORMAT, young_region_length(), _collection_set_regions.length());
  83 
  84   _old_region_length      = 0;
  85 }
  86 
  87 void G1CollectionSet::set_max_length(uint max_region_length) {
  88   guarantee(_collection_set_regions.max_length() == 0, "Must only initialize once.");
  89   _collection_set_regions.initialize(max_region_length);
  90 }
  91 
  92 void G1CollectionSet::set_recorded_rs_lengths(size_t rs_lengths) {
  93   _recorded_rs_lengths = rs_lengths;
  94 }
  95 
  96 // Add the heap region at the head of the non-incremental collection set
  97 void G1CollectionSet::add_old_region(HeapRegion* hr) {
  98   assert(_inc_build_state == Active, "Precondition");
  99   assert(hr->is_old(), "the region should be old");
 100 
 101   assert(!hr->in_collection_set(), "should not already be in the CSet");
 102   _g1->register_old_region_with_cset(hr);
 103 
 104   _collection_set_regions.par_push(hr->hrm_index());
 105   
 106   _bytes_used_before += hr->used();
 107   size_t rs_length = hr->rem_set()->occupied();
 108   _recorded_rs_lengths += rs_length;
 109   _old_region_length += 1;
 110 }
 111 
 112 // Initialize the per-collection-set information
 113 void G1CollectionSet::start_incremental_building() {
 114   assert(_collection_set_regions.length() == 0, "Must be empty before starting a new collection set.");
 115   assert(_inc_build_state == Inactive, "Precondition");
 116 
 117   _collection_set_regions.clear();
 118 
 119   _inc_bytes_used_before = 0;
 120 
 121   _inc_recorded_rs_lengths = 0;
 122   _inc_recorded_rs_lengths_diffs = 0;
 123   _inc_predicted_elapsed_time_ms = 0.0;
 124   _inc_predicted_elapsed_time_ms_diffs = 0.0;
 125   _inc_build_state = Active;
 126 }
 127 
 128 void G1CollectionSet::finalize_incremental_building() {
 129   assert(_inc_build_state == Active, "Precondition");
 130   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
 131 
 132   // The two "main" fields, _inc_recorded_rs_lengths and
 133   // _inc_predicted_elapsed_time_ms, are updated by the thread
 134   // that adds a new region to the CSet. Further updates by the
 135   // concurrent refinement thread that samples the young RSet lengths
 136   // are accumulated in the *_diffs fields. Here we add the diffs to
 137   // the "main" fields.
 138 
 139   if (_inc_recorded_rs_lengths_diffs >= 0) {
 140     _inc_recorded_rs_lengths += _inc_recorded_rs_lengths_diffs;
 141   } else {
 142     // This is defensive. The diff should in theory be always positive
 143     // as RSets can only grow between GCs. However, given that we
 144     // sample their size concurrently with other threads updating them
 145     // it's possible that we might get the wrong size back, which
 146     // could make the calculations somewhat inaccurate.
 147     size_t diffs = (size_t) (-_inc_recorded_rs_lengths_diffs);
 148     if (_inc_recorded_rs_lengths >= diffs) {
 149       _inc_recorded_rs_lengths -= diffs;
 150     } else {
 151       _inc_recorded_rs_lengths = 0;
 152     }
 153   }
 154   _inc_predicted_elapsed_time_ms += _inc_predicted_elapsed_time_ms_diffs;
 155 
 156   _inc_recorded_rs_lengths_diffs = 0;
 157   _inc_predicted_elapsed_time_ms_diffs = 0.0;
 158 }
 159 
 160 void G1CollectionSet::iterate(HeapRegionClosure* cl) {
 161   iterate_from(cl, 0, 1, true);
 162 }
 163 
 164 void G1CollectionSet::iterate_from(HeapRegionClosure* cl, uint worker_id, uint total_workers, bool may_be_aborted) {
 165   size_t len = _collection_set_regions.length();
 166   if (len == 0) {
 167     return;
 168   }
 169   size_t start_pos = (worker_id * len) / total_workers;
 170   size_t cur_pos = start_pos;
 171 
 172   do {
 173     HeapRegion* r = G1CollectedHeap::heap()->region_at(_collection_set_regions.get_by_index(cur_pos));
 174     bool result = cl->doHeapRegion(r);
 175     guarantee(may_be_aborted || !result, "This iteration should not abort.");
 176     if (result) {
 177       return;
 178     }
 179     cur_pos++;
 180     if (cur_pos == len) {
 181       cur_pos = 0;
 182     }
 183   } while (cur_pos != start_pos);
 184 }
 185 
 186 void G1CollectionSet::update_young_region_prediction(HeapRegion* hr,
 187                                                      size_t new_rs_length) {
 188   // Update the CSet information that is dependent on the new RS length
 189   assert(hr->is_young(), "Precondition");
 190   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at a safepoint");
 191 
 192   // We could have updated _inc_recorded_rs_lengths and
 193   // _inc_predicted_elapsed_time_ms directly but we'd need to do
 194   // that atomically, as this code is executed by a concurrent
 195   // refinement thread, potentially concurrently with a mutator thread
 196   // allocating a new region and also updating the same fields. To
 197   // avoid the atomic operations we accumulate these updates on two
 198   // separate fields (*_diffs) and we'll just add them to the "main"
 199   // fields at the start of a GC.
 200 
 201   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
 202   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
 203   _inc_recorded_rs_lengths_diffs += rs_lengths_diff;
 204 
 205   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
 206   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr);
 207   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
 208   _inc_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
 209 
 210   hr->set_recorded_rs_length(new_rs_length);
 211   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
 212 }
 213 
 214 void G1CollectionSet::add_young_region_common(HeapRegion* hr) {
 215   assert(hr->is_young(), "invariant");
 216   assert(_inc_build_state == Active, "Precondition");
 217 
 218   size_t collection_set_length = _collection_set_regions.length();
 219   assert(collection_set_length <= INT_MAX, "Collection set is too large with %d entries", (int)collection_set_length);
 220   hr->set_young_index_in_cset((int)collection_set_length);
 221   _collection_set_regions.par_push(hr->hrm_index());
 222 
 223   // This routine is used when:
 224   // * adding survivor regions to the incremental cset at the end of an
 225   //   evacuation pause or
 226   // * adding the current allocation region to the incremental cset
 227   //   when it is retired.
 228   // Therefore this routine may be called at a safepoint by the
 229   // VM thread, or in-between safepoints by mutator threads (when
 230   // retiring the current allocation region)
 231   // We need to clear and set the cached recorded/cached collection set
 232   // information in the heap region here (before the region gets added
 233   // to the collection set). An individual heap region's cached values
 234   // are calculated, aggregated with the policy collection set info,
 235   // and cached in the heap region here (initially) and (subsequently)
 236   // by the Young List sampling code.
 237 
 238   size_t rs_length = hr->rem_set()->occupied();
 239   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr);
 240 
 241   // Cache the values we have added to the aggregated information
 242   // in the heap region in case we have to remove this region from
 243   // the incremental collection set, or it is updated by the
 244   // rset sampling code
 245   hr->set_recorded_rs_length(rs_length);
 246   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
 247 
 248   size_t used_bytes = hr->used();
 249   _inc_recorded_rs_lengths += rs_length;
 250   _inc_predicted_elapsed_time_ms += region_elapsed_time_ms;
 251   _inc_bytes_used_before += used_bytes;
 252 
 253   assert(!hr->in_collection_set(), "invariant");
 254   _g1->register_young_region_with_cset(hr);
 255 }
 256 
 257 void G1CollectionSet::add_survivor_regions(HeapRegion* hr) {
 258   assert(hr->is_survivor(), "Must only add survivor regions, but is %s", hr->get_type_str());
 259   add_young_region_common(hr);
 260 }
 261 
 262 void G1CollectionSet::add_eden_region(HeapRegion* hr) {
 263   assert(hr->is_eden(), "Must only add eden regions, but is %s", hr->get_type_str());
 264   add_young_region_common(hr);
 265 }
 266 
 267 #ifndef PRODUCT
 268 bool G1CollectionSet::verify_young_ages() {
 269   bool ret = true;
 270 
 271   size_t length = _collection_set_regions.length();
 272   for (size_t i = 0; i < length; i++) {
 273     HeapRegion* curr = G1CollectedHeap::heap()->region_at(_collection_set_regions.get_by_index(i));
 274 
 275     guarantee(curr->is_young(), "Region must be young but is %s", curr->get_type_str());
 276 
 277     SurvRateGroup* group = curr->surv_rate_group();
 278 
 279     if (group == NULL) {
 280       log_error(gc, verify)("## encountered NULL surv_rate_group in young region");
 281       ret = false;
 282     }
 283 
 284     if (curr->age_in_surv_rate_group() < 0) {
 285       log_error(gc, verify)("## encountered negative age in young region");
 286       ret = false;
 287     }
 288   }
 289 
 290   if (!ret) {
 291     LogStreamHandle(Error, gc, verify) log;
 292     print(&log);
 293   }
 294 
 295   return ret;
 296 }
 297 
 298 class G1PrintCollectionSetClosure : public HeapRegionClosure {
 299   outputStream* _st;
 300 public:
 301   G1PrintCollectionSetClosure(outputStream* st) : HeapRegionClosure(), _st(st) { }
 302 
 303   virtual bool doHeapRegion(HeapRegion* r) {
 304     assert(r->in_collection_set(), "Region %u should be in collection set", r->hrm_index());
 305     _st->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
 306                   HR_FORMAT_PARAMS(r),
 307                   p2i(r->prev_top_at_mark_start()),
 308                   p2i(r->next_top_at_mark_start()),
 309                   r->age_in_surv_rate_group_cond());
 310     return false;
 311   }
 312 };
 313 
 314 void G1CollectionSet::print(outputStream* st) {
 315   st->print_cr("\nCollection_set:");
 316 
 317   G1PrintCollectionSetClosure cl(st);
 318   iterate(&cl);
 319 }
 320 #endif // !PRODUCT
 321 
 322 double G1CollectionSet::finalize_young_part(double target_pause_time_ms, G1SurvivorRegions* survivors) {
 323   double young_start_time_sec = os::elapsedTime();
 324 
 325   finalize_incremental_building();
 326 
 327   guarantee(target_pause_time_ms > 0.0,
 328             "target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
 329 
 330   size_t pending_cards = _policy->pending_cards();
 331   double base_time_ms = _policy->predict_base_elapsed_time_ms(pending_cards);
 332   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
 333 
 334   log_trace(gc, ergo, cset)("Start choosing CSet. pending cards: " SIZE_FORMAT " predicted base time: %1.2fms remaining time: %1.2fms target pause time: %1.2fms",
 335                             pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
 336 
 337   collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
 338 
 339   // The young list is laid with the survivor regions from the previous
 340   // pause are appended to the RHS of the young list, i.e.
 341   //   [Newly Young Regions ++ Survivors from last pause].
 342 
 343   uint survivor_region_length = survivors->length();
 344   uint eden_region_length = _g1->eden_regions_count();
 345   init_region_lengths(eden_region_length, survivor_region_length);
 346 
 347   verify_young_cset_indices();
 348 
 349   // Clear the fields that point to the survivor list - they are all young now.
 350   survivors->convert_to_eden();
 351 
 352   _bytes_used_before = _inc_bytes_used_before;
 353   time_remaining_ms = MAX2(time_remaining_ms - _inc_predicted_elapsed_time_ms, 0.0);
 354 
 355   log_trace(gc, ergo, cset)("Add young regions to CSet. eden: %u regions, survivors: %u regions, predicted young region time: %1.2fms, target pause time: %1.2fms",
 356                             eden_region_length, survivor_region_length, _inc_predicted_elapsed_time_ms, target_pause_time_ms);
 357 
 358   // The number of recorded young regions is the incremental
 359   // collection set's current size
 360   set_recorded_rs_lengths(_inc_recorded_rs_lengths);
 361 
 362   double young_end_time_sec = os::elapsedTime();
 363   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
 364 
 365   return time_remaining_ms;
 366 }
 367 
 368 void G1CollectionSet::finalize_old_part(double time_remaining_ms) {
 369   double non_young_start_time_sec = os::elapsedTime();
 370   double predicted_old_time_ms = 0.0;
 371 
 372   if (!collector_state()->gcs_are_young()) {
 373     cset_chooser()->verify();
 374     const uint min_old_cset_length = _policy->calc_min_old_cset_length();
 375     const uint max_old_cset_length = _policy->calc_max_old_cset_length();
 376 
 377     uint expensive_region_num = 0;
 378     bool check_time_remaining = _policy->adaptive_young_list_length();
 379 
 380     HeapRegion* hr = cset_chooser()->peek();
 381     while (hr != NULL) {
 382       if (old_region_length() >= max_old_cset_length) {
 383         // Added maximum number of old regions to the CSet.
 384         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached max). old %u regions, max %u regions",
 385                                   old_region_length(), max_old_cset_length);
 386         break;
 387       }
 388 
 389       // Stop adding regions if the remaining reclaimable space is
 390       // not above G1HeapWastePercent.
 391       size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
 392       double reclaimable_perc = _policy->reclaimable_bytes_perc(reclaimable_bytes);
 393       double threshold = (double) G1HeapWastePercent;
 394       if (reclaimable_perc <= threshold) {
 395         // We've added enough old regions that the amount of uncollected
 396         // reclaimable space is at or below the waste threshold. Stop
 397         // adding old regions to the CSet.
 398         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (reclaimable percentage not over threshold). "
 399                                   "old %u regions, max %u regions, reclaimable: " SIZE_FORMAT "B (%1.2f%%) threshold: " UINTX_FORMAT "%%",
 400                                   old_region_length(), max_old_cset_length, reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
 401         break;
 402       }
 403 
 404       double predicted_time_ms = predict_region_elapsed_time_ms(hr);
 405       if (check_time_remaining) {
 406         if (predicted_time_ms > time_remaining_ms) {
 407           // Too expensive for the current CSet.
 408 
 409           if (old_region_length() >= min_old_cset_length) {
 410             // We have added the minimum number of old regions to the CSet,
 411             // we are done with this CSet.
 412             log_debug(gc, ergo, cset)("Finish adding old regions to CSet (predicted time is too high). "
 413                                       "predicted time: %1.2fms, remaining time: %1.2fms old %u regions, min %u regions",
 414                                       predicted_time_ms, time_remaining_ms, old_region_length(), min_old_cset_length);
 415             break;
 416           }
 417 
 418           // We'll add it anyway given that we haven't reached the
 419           // minimum number of old regions.
 420           expensive_region_num += 1;
 421         }
 422       } else {
 423         if (old_region_length() >= min_old_cset_length) {
 424           // In the non-auto-tuning case, we'll finish adding regions
 425           // to the CSet if we reach the minimum.
 426 
 427           log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached min). old %u regions, min %u regions",
 428                                     old_region_length(), min_old_cset_length);
 429           break;
 430         }
 431       }
 432 
 433       // We will add this region to the CSet.
 434       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
 435       predicted_old_time_ms += predicted_time_ms;
 436       cset_chooser()->pop(); // already have region via peek()
 437       _g1->old_set_remove(hr);
 438       add_old_region(hr);
 439 
 440       hr = cset_chooser()->peek();
 441     }
 442     if (hr == NULL) {
 443       log_debug(gc, ergo, cset)("Finish adding old regions to CSet (candidate old regions not available)");
 444     }
 445 
 446     if (expensive_region_num > 0) {
 447       // We print the information once here at the end, predicated on
 448       // whether we added any apparently expensive regions or not, to
 449       // avoid generating output per region.
 450       log_debug(gc, ergo, cset)("Added expensive regions to CSet (old CSet region num not reached min)."
 451                                 "old: %u regions, expensive: %u regions, min: %u regions, remaining time: %1.2fms",
 452                                 old_region_length(), expensive_region_num, min_old_cset_length, time_remaining_ms);
 453     }
 454 
 455     cset_chooser()->verify();
 456   }
 457 
 458   stop_incremental_building();
 459 
 460   log_debug(gc, ergo, cset)("Finish choosing CSet. old: %u regions, predicted old region time: %1.2fms, time remaining: %1.2f",
 461                             old_region_length(), predicted_old_time_ms, time_remaining_ms);
 462 
 463   double non_young_end_time_sec = os::elapsedTime();
 464   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
 465 }
 466 
 467 #ifdef ASSERT
 468 void G1CollectionSet::verify_young_cset_indices() const {
 469   ResourceMark rm;
 470   uint* heap_region_indices = NEW_RESOURCE_ARRAY(uint, young_region_length());
 471   for (uint i = 0; i < young_region_length(); ++i) {
 472     heap_region_indices[i] = (uint)-1;
 473   }
 474 
 475   size_t length = _collection_set_regions.length();
 476   for (size_t i = 0; i < length; i++) {
 477     HeapRegion* hr = G1CollectedHeap::heap()->region_at(_collection_set_regions.get_by_index(i));
 478 
 479     const int idx = hr->young_index_in_cset();
 480     assert(idx > -1, "Young index must be set for all regions in the incremental collection set but is not for region %u.", hr->hrm_index());
 481     assert((uint)idx < young_region_length(), "Young cset index too large for region %u", hr->hrm_index());
 482 
 483     assert(heap_region_indices[idx] == (uint)-1,
 484            "Index %d used by multiple regions, first use by region %u, second by region %u",
 485            idx, heap_region_indices[idx], hr->hrm_index());
 486 
 487     heap_region_indices[idx] = hr->hrm_index();
 488   }
 489 }
 490 #endif