1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMarkThread.inline.hpp"
  28 #include "gc/g1/g1Analytics.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectionSet.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1DefaultPolicy.hpp"
  33 #include "gc/g1/g1HotCardCache.hpp"
  34 #include "gc/g1/g1IHOPControl.hpp"
  35 #include "gc/g1/g1GCPhaseTimes.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1SurvivorRegions.hpp"
  38 #include "gc/g1/g1YoungGenSizer.hpp"
  39 #include "gc/g1/heapRegion.inline.hpp"
  40 #include "gc/g1/heapRegionRemSet.hpp"
  41 #include "gc/shared/gcPolicyCounters.hpp"
  42 #include "logging/logStream.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "utilities/debug.hpp"
  47 #include "utilities/growableArray.hpp"
  48 #include "utilities/pair.hpp"
  49 
  50 G1DefaultPolicy::G1DefaultPolicy() :
  51   _predictor(G1ConfidencePercent / 100.0),
  52   _analytics(new G1Analytics(&_predictor)),
  53   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  54   _ihop_control(create_ihop_control(&_predictor)),
  55   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 3)),
  56   _young_list_fixed_length(0),
  57   _short_lived_surv_rate_group(new SurvRateGroup()),
  58   _survivor_surv_rate_group(new SurvRateGroup()),
  59   _reserve_factor((double) G1ReservePercent / 100.0),
  60   _reserve_regions(0),
  61   _rs_lengths_prediction(0),
  62   _bytes_allocated_in_old_since_last_gc(0),
  63   _initial_mark_to_mixed(),
  64   _collection_set(NULL),
  65   _g1(NULL),
  66   _phase_times(new G1GCPhaseTimes(ParallelGCThreads)),
  67   _tenuring_threshold(MaxTenuringThreshold),
  68   _max_survivor_regions(0),
  69   _survivors_age_table(true) { }
  70 
  71 G1DefaultPolicy::~G1DefaultPolicy() {
  72   delete _ihop_control;
  73 }
  74 
  75 G1CollectorState* G1DefaultPolicy::collector_state() const { return _g1->collector_state(); }
  76 
  77 void G1DefaultPolicy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
  78   _g1 = g1h;
  79   _collection_set = collection_set;
  80 
  81   assert(Heap_lock->owned_by_self(), "Locking discipline.");
  82 
  83   if (!adaptive_young_list_length()) {
  84     _young_list_fixed_length = _young_gen_sizer.min_desired_young_length();
  85   }
  86   _young_gen_sizer.adjust_max_new_size(_g1->max_regions());
  87 
  88   _free_regions_at_end_of_collection = _g1->num_free_regions();
  89 
  90   update_young_list_max_and_target_length();
  91   // We may immediately start allocating regions and placing them on the
  92   // collection set list. Initialize the per-collection set info
  93   _collection_set->start_incremental_building();
  94 }
  95 
  96 void G1DefaultPolicy::note_gc_start() {
  97   phase_times()->note_gc_start();
  98 }
  99 
 100 bool G1DefaultPolicy::predict_will_fit(uint young_length,
 101                                        double base_time_ms,
 102                                        uint base_free_regions,
 103                                        double target_pause_time_ms) const {
 104   if (young_length >= base_free_regions) {
 105     // end condition 1: not enough space for the young regions
 106     return false;
 107   }
 108 
 109   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 110   size_t bytes_to_copy =
 111                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 112   double copy_time_ms = _analytics->predict_object_copy_time_ms(bytes_to_copy,
 113                                                                 collector_state()->during_concurrent_mark());
 114   double young_other_time_ms = _analytics->predict_young_other_time_ms(young_length);
 115   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 116   if (pause_time_ms > target_pause_time_ms) {
 117     // end condition 2: prediction is over the target pause time
 118     return false;
 119   }
 120 
 121   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 122 
 123   // When copying, we will likely need more bytes free than is live in the region.
 124   // Add some safety margin to factor in the confidence of our guess, and the
 125   // natural expected waste.
 126   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 127   // of the calculation: the lower the confidence, the more headroom.
 128   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 129   // copying due to anticipated waste in the PLABs.
 130   double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 131   size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 132 
 133   if (expected_bytes_to_copy > free_bytes) {
 134     // end condition 3: out-of-space
 135     return false;
 136   }
 137 
 138   // success!
 139   return true;
 140 }
 141 
 142 void G1DefaultPolicy::record_new_heap_size(uint new_number_of_regions) {
 143   // re-calculate the necessary reserve
 144   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 145   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 146   // smaller than 1.0) we'll get 1.
 147   _reserve_regions = (uint) ceil(reserve_regions_d);
 148 
 149   _young_gen_sizer.heap_size_changed(new_number_of_regions);
 150 
 151   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 152 }
 153 
 154 uint G1DefaultPolicy::calculate_young_list_desired_min_length(uint base_min_length) const {
 155   uint desired_min_length = 0;
 156   if (adaptive_young_list_length()) {
 157     if (_analytics->num_alloc_rate_ms() > 3) {
 158       double now_sec = os::elapsedTime();
 159       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 160       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 161       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 162     } else {
 163       // otherwise we don't have enough info to make the prediction
 164     }
 165   }
 166   desired_min_length += base_min_length;
 167   // make sure we don't go below any user-defined minimum bound
 168   return MAX2(_young_gen_sizer.min_desired_young_length(), desired_min_length);
 169 }
 170 
 171 uint G1DefaultPolicy::calculate_young_list_desired_max_length() const {
 172   // Here, we might want to also take into account any additional
 173   // constraints (i.e., user-defined minimum bound). Currently, we
 174   // effectively don't set this bound.
 175   return _young_gen_sizer.max_desired_young_length();
 176 }
 177 
 178 uint G1DefaultPolicy::update_young_list_max_and_target_length() {
 179   return update_young_list_max_and_target_length(_analytics->predict_rs_lengths());
 180 }
 181 
 182 uint G1DefaultPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 183   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 184   update_max_gc_locker_expansion();
 185   return unbounded_target_length;
 186 }
 187 
 188 uint G1DefaultPolicy::update_young_list_target_length(size_t rs_lengths) {
 189   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 190   _young_list_target_length = young_lengths.first;
 191   return young_lengths.second;
 192 }
 193 
 194 G1DefaultPolicy::YoungTargetLengths G1DefaultPolicy::young_list_target_lengths(size_t rs_lengths) const {
 195   YoungTargetLengths result;
 196 
 197   // Calculate the absolute and desired min bounds first.
 198 
 199   // This is how many young regions we already have (currently: the survivors).
 200   const uint base_min_length = _g1->survivor_regions_count();
 201   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 202   // This is the absolute minimum young length. Ensure that we
 203   // will at least have one eden region available for allocation.
 204   uint absolute_min_length = base_min_length + MAX2(_g1->eden_regions_count(), (uint)1);
 205   // If we shrank the young list target it should not shrink below the current size.
 206   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 207   // Calculate the absolute and desired max bounds.
 208 
 209   uint desired_max_length = calculate_young_list_desired_max_length();
 210 
 211   uint young_list_target_length = 0;
 212   if (adaptive_young_list_length()) {
 213     if (collector_state()->gcs_are_young()) {
 214       young_list_target_length =
 215                         calculate_young_list_target_length(rs_lengths,
 216                                                            base_min_length,
 217                                                            desired_min_length,
 218                                                            desired_max_length);
 219     } else {
 220       // Don't calculate anything and let the code below bound it to
 221       // the desired_min_length, i.e., do the next GC as soon as
 222       // possible to maximize how many old regions we can add to it.
 223     }
 224   } else {
 225     // The user asked for a fixed young gen so we'll fix the young gen
 226     // whether the next GC is young or mixed.
 227     young_list_target_length = _young_list_fixed_length;
 228   }
 229 
 230   result.second = young_list_target_length;
 231 
 232   // We will try our best not to "eat" into the reserve.
 233   uint absolute_max_length = 0;
 234   if (_free_regions_at_end_of_collection > _reserve_regions) {
 235     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 236   }
 237   if (desired_max_length > absolute_max_length) {
 238     desired_max_length = absolute_max_length;
 239   }
 240 
 241   // Make sure we don't go over the desired max length, nor under the
 242   // desired min length. In case they clash, desired_min_length wins
 243   // which is why that test is second.
 244   if (young_list_target_length > desired_max_length) {
 245     young_list_target_length = desired_max_length;
 246   }
 247   if (young_list_target_length < desired_min_length) {
 248     young_list_target_length = desired_min_length;
 249   }
 250 
 251   assert(young_list_target_length > base_min_length,
 252          "we should be able to allocate at least one eden region");
 253   assert(young_list_target_length >= absolute_min_length, "post-condition");
 254 
 255   result.first = young_list_target_length;
 256   return result;
 257 }
 258 
 259 uint
 260 G1DefaultPolicy::calculate_young_list_target_length(size_t rs_lengths,
 261                                                     uint base_min_length,
 262                                                     uint desired_min_length,
 263                                                     uint desired_max_length) const {
 264   assert(adaptive_young_list_length(), "pre-condition");
 265   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 266 
 267   // In case some edge-condition makes the desired max length too small...
 268   if (desired_max_length <= desired_min_length) {
 269     return desired_min_length;
 270   }
 271 
 272   // We'll adjust min_young_length and max_young_length not to include
 273   // the already allocated young regions (i.e., so they reflect the
 274   // min and max eden regions we'll allocate). The base_min_length
 275   // will be reflected in the predictions by the
 276   // survivor_regions_evac_time prediction.
 277   assert(desired_min_length > base_min_length, "invariant");
 278   uint min_young_length = desired_min_length - base_min_length;
 279   assert(desired_max_length > base_min_length, "invariant");
 280   uint max_young_length = desired_max_length - base_min_length;
 281 
 282   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 283   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 284   size_t pending_cards = _analytics->predict_pending_cards();
 285   size_t adj_rs_lengths = rs_lengths + _analytics->predict_rs_length_diff();
 286   size_t scanned_cards = _analytics->predict_card_num(adj_rs_lengths, /* gcs_are_young */ true);
 287   double base_time_ms =
 288     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 289     survivor_regions_evac_time;
 290   uint available_free_regions = _free_regions_at_end_of_collection;
 291   uint base_free_regions = 0;
 292   if (available_free_regions > _reserve_regions) {
 293     base_free_regions = available_free_regions - _reserve_regions;
 294   }
 295 
 296   // Here, we will make sure that the shortest young length that
 297   // makes sense fits within the target pause time.
 298 
 299   if (predict_will_fit(min_young_length, base_time_ms,
 300                        base_free_regions, target_pause_time_ms)) {
 301     // The shortest young length will fit into the target pause time;
 302     // we'll now check whether the absolute maximum number of young
 303     // regions will fit in the target pause time. If not, we'll do
 304     // a binary search between min_young_length and max_young_length.
 305     if (predict_will_fit(max_young_length, base_time_ms,
 306                          base_free_regions, target_pause_time_ms)) {
 307       // The maximum young length will fit into the target pause time.
 308       // We are done so set min young length to the maximum length (as
 309       // the result is assumed to be returned in min_young_length).
 310       min_young_length = max_young_length;
 311     } else {
 312       // The maximum possible number of young regions will not fit within
 313       // the target pause time so we'll search for the optimal
 314       // length. The loop invariants are:
 315       //
 316       // min_young_length < max_young_length
 317       // min_young_length is known to fit into the target pause time
 318       // max_young_length is known not to fit into the target pause time
 319       //
 320       // Going into the loop we know the above hold as we've just
 321       // checked them. Every time around the loop we check whether
 322       // the middle value between min_young_length and
 323       // max_young_length fits into the target pause time. If it
 324       // does, it becomes the new min. If it doesn't, it becomes
 325       // the new max. This way we maintain the loop invariants.
 326 
 327       assert(min_young_length < max_young_length, "invariant");
 328       uint diff = (max_young_length - min_young_length) / 2;
 329       while (diff > 0) {
 330         uint young_length = min_young_length + diff;
 331         if (predict_will_fit(young_length, base_time_ms,
 332                              base_free_regions, target_pause_time_ms)) {
 333           min_young_length = young_length;
 334         } else {
 335           max_young_length = young_length;
 336         }
 337         assert(min_young_length <  max_young_length, "invariant");
 338         diff = (max_young_length - min_young_length) / 2;
 339       }
 340       // The results is min_young_length which, according to the
 341       // loop invariants, should fit within the target pause time.
 342 
 343       // These are the post-conditions of the binary search above:
 344       assert(min_young_length < max_young_length,
 345              "otherwise we should have discovered that max_young_length "
 346              "fits into the pause target and not done the binary search");
 347       assert(predict_will_fit(min_young_length, base_time_ms,
 348                               base_free_regions, target_pause_time_ms),
 349              "min_young_length, the result of the binary search, should "
 350              "fit into the pause target");
 351       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 352                                base_free_regions, target_pause_time_ms),
 353              "min_young_length, the result of the binary search, should be "
 354              "optimal, so no larger length should fit into the pause target");
 355     }
 356   } else {
 357     // Even the minimum length doesn't fit into the pause time
 358     // target, return it as the result nevertheless.
 359   }
 360   return base_min_length + min_young_length;
 361 }
 362 
 363 double G1DefaultPolicy::predict_survivor_regions_evac_time() const {
 364   double survivor_regions_evac_time = 0.0;
 365   const GrowableArray<HeapRegion*>* survivor_regions = _g1->survivor()->regions();
 366 
 367   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 368        it != survivor_regions->end();
 369        ++it) {
 370     survivor_regions_evac_time += predict_region_elapsed_time_ms(*it, collector_state()->gcs_are_young());
 371   }
 372   return survivor_regions_evac_time;
 373 }
 374 
 375 void G1DefaultPolicy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
 376   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 377 
 378   if (rs_lengths > _rs_lengths_prediction) {
 379     // add 10% to avoid having to recalculate often
 380     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 381     update_rs_lengths_prediction(rs_lengths_prediction);
 382 
 383     update_young_list_max_and_target_length(rs_lengths_prediction);
 384   }
 385 }
 386 
 387 void G1DefaultPolicy::update_rs_lengths_prediction() {
 388   update_rs_lengths_prediction(_analytics->predict_rs_lengths());
 389 }
 390 
 391 void G1DefaultPolicy::update_rs_lengths_prediction(size_t prediction) {
 392   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 393     _rs_lengths_prediction = prediction;
 394   }
 395 }
 396 
 397 #ifndef PRODUCT
 398 bool G1DefaultPolicy::verify_young_ages() {
 399   bool ret = true;
 400 
 401   for (HeapRegion* curr = _collection_set->inc_head();
 402        curr != NULL;
 403        curr = curr->next_in_collection_set()) {
 404     guarantee(curr->is_young(), "Region must be young");
 405 
 406     SurvRateGroup* group = curr->surv_rate_group();
 407 
 408     if (group == NULL) {
 409       log_error(gc, verify)("## encountered NULL surv_rate_group in young region");
 410       ret = false;
 411     }
 412 
 413     if (curr->age_in_surv_rate_group() < 0) {
 414       log_error(gc, verify)("## encountered negative age in young region");
 415       ret = false;
 416     }
 417   }
 418 
 419   if (!ret) {
 420     LogStreamHandle(Error, gc, verify) log;
 421     _collection_set->print(_collection_set->inc_head(), &log);
 422   }
 423 
 424   return ret;
 425 }
 426 #endif // PRODUCT
 427 
 428 void G1DefaultPolicy::record_full_collection_start() {
 429   _full_collection_start_sec = os::elapsedTime();
 430   // Release the future to-space so that it is available for compaction into.
 431   collector_state()->set_full_collection(true);
 432 }
 433 
 434 void G1DefaultPolicy::record_full_collection_end() {
 435   // Consider this like a collection pause for the purposes of allocation
 436   // since last pause.
 437   double end_sec = os::elapsedTime();
 438   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 439   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 440 
 441   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 442 
 443   collector_state()->set_full_collection(false);
 444 
 445   // "Nuke" the heuristics that control the young/mixed GC
 446   // transitions and make sure we start with young GCs after the Full GC.
 447   collector_state()->set_gcs_are_young(true);
 448   collector_state()->set_last_young_gc(false);
 449   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 450   collector_state()->set_during_initial_mark_pause(false);
 451   collector_state()->set_in_marking_window(false);
 452   collector_state()->set_in_marking_window_im(false);
 453 
 454   _short_lived_surv_rate_group->start_adding_regions();
 455   // also call this on any additional surv rate groups
 456 
 457   _free_regions_at_end_of_collection = _g1->num_free_regions();
 458   // Reset survivors SurvRateGroup.
 459   _survivor_surv_rate_group->reset();
 460   update_young_list_max_and_target_length();
 461   update_rs_lengths_prediction();
 462   cset_chooser()->clear();
 463 
 464   _bytes_allocated_in_old_since_last_gc = 0;
 465 
 466   record_pause(FullGC, _full_collection_start_sec, end_sec);
 467 }
 468 
 469 void G1DefaultPolicy::record_collection_pause_start(double start_time_sec) {
 470   // We only need to do this here as the policy will only be applied
 471   // to the GC we're about to start. so, no point is calculating this
 472   // every time we calculate / recalculate the target young length.
 473   update_survivors_policy();
 474 
 475   assert(_g1->used() == _g1->recalculate_used(),
 476          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 477          _g1->used(), _g1->recalculate_used());
 478 
 479   phase_times()->record_cur_collection_start_sec(start_time_sec);
 480   _pending_cards = _g1->pending_card_num();
 481 
 482   _collection_set->reset_bytes_used_before();
 483   _bytes_copied_during_gc = 0;
 484 
 485   collector_state()->set_last_gc_was_young(false);
 486 
 487   // do that for any other surv rate groups
 488   _short_lived_surv_rate_group->stop_adding_regions();
 489   _survivors_age_table.clear();
 490 
 491   assert( verify_young_ages(), "region age verification" );
 492 }
 493 
 494 void G1DefaultPolicy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 495   collector_state()->set_during_marking(true);
 496   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 497   collector_state()->set_during_initial_mark_pause(false);
 498 }
 499 
 500 void G1DefaultPolicy::record_concurrent_mark_remark_start() {
 501   _mark_remark_start_sec = os::elapsedTime();
 502   collector_state()->set_during_marking(false);
 503 }
 504 
 505 void G1DefaultPolicy::record_concurrent_mark_remark_end() {
 506   double end_time_sec = os::elapsedTime();
 507   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 508   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 509   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 510 
 511   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 512 }
 513 
 514 void G1DefaultPolicy::record_concurrent_mark_cleanup_start() {
 515   _mark_cleanup_start_sec = os::elapsedTime();
 516 }
 517 
 518 void G1DefaultPolicy::record_concurrent_mark_cleanup_completed() {
 519   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 520                                                               "skip last young-only gc");
 521   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 522   // We skip the marking phase.
 523   if (!should_continue_with_reclaim) {
 524     abort_time_to_mixed_tracking();
 525   }
 526   collector_state()->set_in_marking_window(false);
 527 }
 528 
 529 double G1DefaultPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 530   return phase_times()->average_time_ms(phase);
 531 }
 532 
 533 double G1DefaultPolicy::young_other_time_ms() const {
 534   return phase_times()->young_cset_choice_time_ms() +
 535          phase_times()->young_free_cset_time_ms();
 536 }
 537 
 538 double G1DefaultPolicy::non_young_other_time_ms() const {
 539   return phase_times()->non_young_cset_choice_time_ms() +
 540          phase_times()->non_young_free_cset_time_ms();
 541 
 542 }
 543 
 544 double G1DefaultPolicy::other_time_ms(double pause_time_ms) const {
 545   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 546 }
 547 
 548 double G1DefaultPolicy::constant_other_time_ms(double pause_time_ms) const {
 549   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 550 }
 551 
 552 CollectionSetChooser* G1DefaultPolicy::cset_chooser() const {
 553   return _collection_set->cset_chooser();
 554 }
 555 
 556 bool G1DefaultPolicy::about_to_start_mixed_phase() const {
 557   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 558 }
 559 
 560 bool G1DefaultPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 561   if (about_to_start_mixed_phase()) {
 562     return false;
 563   }
 564 
 565   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 566 
 567   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 568   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 569   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 570 
 571   bool result = false;
 572   if (marking_request_bytes > marking_initiating_used_threshold) {
 573     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
 574     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 575                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 576                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
 577   }
 578 
 579   return result;
 580 }
 581 
 582 // Anything below that is considered to be zero
 583 #define MIN_TIMER_GRANULARITY 0.0000001
 584 
 585 void G1DefaultPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
 586   double end_time_sec = os::elapsedTime();
 587 
 588   size_t cur_used_bytes = _g1->used();
 589   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 590   bool last_pause_included_initial_mark = false;
 591   bool update_stats = !_g1->evacuation_failed();
 592 
 593   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 594 
 595   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 596   if (last_pause_included_initial_mark) {
 597     record_concurrent_mark_init_end(0.0);
 598   } else {
 599     maybe_start_marking();
 600   }
 601 
 602   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 603   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 604     // This usually happens due to the timer not having the required
 605     // granularity. Some Linuxes are the usual culprits.
 606     // We'll just set it to something (arbitrarily) small.
 607     app_time_ms = 1.0;
 608   }
 609 
 610   if (update_stats) {
 611     // We maintain the invariant that all objects allocated by mutator
 612     // threads will be allocated out of eden regions. So, we can use
 613     // the eden region number allocated since the previous GC to
 614     // calculate the application's allocate rate. The only exception
 615     // to that is humongous objects that are allocated separately. But
 616     // given that humongous object allocations do not really affect
 617     // either the pause's duration nor when the next pause will take
 618     // place we can safely ignore them here.
 619     uint regions_allocated = _collection_set->eden_region_length();
 620     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 621     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 622 
 623     double interval_ms =
 624       (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
 625     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 626     _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
 627   }
 628 
 629   bool new_in_marking_window = collector_state()->in_marking_window();
 630   bool new_in_marking_window_im = false;
 631   if (last_pause_included_initial_mark) {
 632     new_in_marking_window = true;
 633     new_in_marking_window_im = true;
 634   }
 635 
 636   if (collector_state()->last_young_gc()) {
 637     // This is supposed to to be the "last young GC" before we start
 638     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
 639     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
 640 
 641     if (next_gc_should_be_mixed("start mixed GCs",
 642                                 "do not start mixed GCs")) {
 643       collector_state()->set_gcs_are_young(false);
 644     } else {
 645       // We aborted the mixed GC phase early.
 646       abort_time_to_mixed_tracking();
 647     }
 648 
 649     collector_state()->set_last_young_gc(false);
 650   }
 651 
 652   if (!collector_state()->last_gc_was_young()) {
 653     // This is a mixed GC. Here we decide whether to continue doing
 654     // mixed GCs or not.
 655     if (!next_gc_should_be_mixed("continue mixed GCs",
 656                                  "do not continue mixed GCs")) {
 657       collector_state()->set_gcs_are_young(true);
 658 
 659       maybe_start_marking();
 660     }
 661   }
 662 
 663   _short_lived_surv_rate_group->start_adding_regions();
 664   // Do that for any other surv rate groups
 665 
 666   double scan_hcc_time_ms = G1HotCardCache::default_use_cache() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
 667 
 668   if (update_stats) {
 669     double cost_per_card_ms = 0.0;
 670     if (_pending_cards > 0) {
 671       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms) / (double) _pending_cards;
 672       _analytics->report_cost_per_card_ms(cost_per_card_ms);
 673     }
 674     _analytics->report_cost_scan_hcc(scan_hcc_time_ms);
 675 
 676     double cost_per_entry_ms = 0.0;
 677     if (cards_scanned > 10) {
 678       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
 679       _analytics->report_cost_per_entry_ms(cost_per_entry_ms, collector_state()->last_gc_was_young());
 680     }
 681 
 682     if (_max_rs_lengths > 0) {
 683       double cards_per_entry_ratio =
 684         (double) cards_scanned / (double) _max_rs_lengths;
 685       _analytics->report_cards_per_entry_ratio(cards_per_entry_ratio, collector_state()->last_gc_was_young());
 686     }
 687 
 688     // This is defensive. For a while _max_rs_lengths could get
 689     // smaller than _recorded_rs_lengths which was causing
 690     // rs_length_diff to get very large and mess up the RSet length
 691     // predictions. The reason was unsafe concurrent updates to the
 692     // _inc_cset_recorded_rs_lengths field which the code below guards
 693     // against (see CR 7118202). This bug has now been fixed (see CR
 694     // 7119027). However, I'm still worried that
 695     // _inc_cset_recorded_rs_lengths might still end up somewhat
 696     // inaccurate. The concurrent refinement thread calculates an
 697     // RSet's length concurrently with other CR threads updating it
 698     // which might cause it to calculate the length incorrectly (if,
 699     // say, it's in mid-coarsening). So I'll leave in the defensive
 700     // conditional below just in case.
 701     size_t rs_length_diff = 0;
 702     size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
 703     if (_max_rs_lengths > recorded_rs_lengths) {
 704       rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
 705     }
 706     _analytics->report_rs_length_diff((double) rs_length_diff);
 707 
 708     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
 709     size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
 710     double cost_per_byte_ms = 0.0;
 711 
 712     if (copied_bytes > 0) {
 713       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
 714       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->in_marking_window());
 715     }
 716 
 717     if (_collection_set->young_region_length() > 0) {
 718       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 719                                                         _collection_set->young_region_length());
 720     }
 721 
 722     if (_collection_set->old_region_length() > 0) {
 723       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 724                                                             _collection_set->old_region_length());
 725     }
 726 
 727     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 728 
 729     _analytics->report_pending_cards((double) _pending_cards);
 730     _analytics->report_rs_lengths((double) _max_rs_lengths);
 731   }
 732 
 733   collector_state()->set_in_marking_window(new_in_marking_window);
 734   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
 735   _free_regions_at_end_of_collection = _g1->num_free_regions();
 736   // IHOP control wants to know the expected young gen length if it were not
 737   // restrained by the heap reserve. Using the actual length would make the
 738   // prediction too small and the limit the young gen every time we get to the
 739   // predicted target occupancy.
 740   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 741   update_rs_lengths_prediction();
 742 
 743   update_ihop_prediction(app_time_ms / 1000.0,
 744                          _bytes_allocated_in_old_since_last_gc,
 745                          last_unrestrained_young_length * HeapRegion::GrainBytes);
 746   _bytes_allocated_in_old_since_last_gc = 0;
 747 
 748   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
 749 
 750   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 751   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 752 
 753   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
 754     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 755                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
 756                                 update_rs_time_goal_ms, scan_hcc_time_ms);
 757 
 758     update_rs_time_goal_ms = 0;
 759   } else {
 760     update_rs_time_goal_ms -= scan_hcc_time_ms;
 761   }
 762   _g1->concurrent_g1_refine()->adjust(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
 763                                       phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
 764                                       update_rs_time_goal_ms);
 765 
 766   cset_chooser()->verify();
 767 }
 768 
 769 G1IHOPControl* G1DefaultPolicy::create_ihop_control(const G1Predictions* predictor){
 770   if (G1UseAdaptiveIHOP) {
 771     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 772                                      predictor,
 773                                      G1ReservePercent,
 774                                      G1HeapWastePercent);
 775   } else {
 776     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 777   }
 778 }
 779 
 780 void G1DefaultPolicy::update_ihop_prediction(double mutator_time_s,
 781                                       size_t mutator_alloc_bytes,
 782                                       size_t young_gen_size) {
 783   // Always try to update IHOP prediction. Even evacuation failures give information
 784   // about e.g. whether to start IHOP earlier next time.
 785 
 786   // Avoid using really small application times that might create samples with
 787   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 788   double const min_valid_time = 1e-6;
 789 
 790   bool report = false;
 791 
 792   double marking_to_mixed_time = -1.0;
 793   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
 794     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 795     assert(marking_to_mixed_time > 0.0,
 796            "Initial mark to mixed time must be larger than zero but is %.3f",
 797            marking_to_mixed_time);
 798     if (marking_to_mixed_time > min_valid_time) {
 799       _ihop_control->update_marking_length(marking_to_mixed_time);
 800       report = true;
 801     }
 802   }
 803 
 804   // As an approximation for the young gc promotion rates during marking we use
 805   // all of them. In many applications there are only a few if any young gcs during
 806   // marking, which makes any prediction useless. This increases the accuracy of the
 807   // prediction.
 808   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
 809     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 810     report = true;
 811   }
 812 
 813   if (report) {
 814     report_ihop_statistics();
 815   }
 816 }
 817 
 818 void G1DefaultPolicy::report_ihop_statistics() {
 819   _ihop_control->print();
 820 }
 821 
 822 void G1DefaultPolicy::print_phases() {
 823   phase_times()->print();
 824 }
 825 
 826 double G1DefaultPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
 827   TruncatedSeq* seq = surv_rate_group->get_seq(age);
 828   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
 829   double pred = _predictor.get_new_prediction(seq);
 830   if (pred > 1.0) {
 831     pred = 1.0;
 832   }
 833   return pred;
 834 }
 835 
 836 double G1DefaultPolicy::accum_yg_surv_rate_pred(int age) const {
 837   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 838 }
 839 
 840 double G1DefaultPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
 841                                               size_t scanned_cards) const {
 842   return
 843     _analytics->predict_rs_update_time_ms(pending_cards) +
 844     _analytics->predict_rs_scan_time_ms(scanned_cards, collector_state()->gcs_are_young()) +
 845     _analytics->predict_constant_other_time_ms();
 846 }
 847 
 848 double G1DefaultPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
 849   size_t rs_length = _analytics->predict_rs_lengths() + _analytics->predict_rs_length_diff();
 850   size_t card_num = _analytics->predict_card_num(rs_length, collector_state()->gcs_are_young());
 851   return predict_base_elapsed_time_ms(pending_cards, card_num);
 852 }
 853 
 854 size_t G1DefaultPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
 855   size_t bytes_to_copy;
 856   if (hr->is_marked())
 857     bytes_to_copy = hr->max_live_bytes();
 858   else {
 859     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
 860     int age = hr->age_in_surv_rate_group();
 861     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
 862     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
 863   }
 864   return bytes_to_copy;
 865 }
 866 
 867 double G1DefaultPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
 868                                                 bool for_young_gc) const {
 869   size_t rs_length = hr->rem_set()->occupied();
 870   // Predicting the number of cards is based on which type of GC
 871   // we're predicting for.
 872   size_t card_num = _analytics->predict_card_num(rs_length, for_young_gc);
 873   size_t bytes_to_copy = predict_bytes_to_copy(hr);
 874 
 875   double region_elapsed_time_ms =
 876     _analytics->predict_rs_scan_time_ms(card_num, collector_state()->gcs_are_young()) +
 877     _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->during_concurrent_mark());
 878 
 879   // The prediction of the "other" time for this region is based
 880   // upon the region type and NOT the GC type.
 881   if (hr->is_young()) {
 882     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
 883   } else {
 884     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
 885   }
 886   return region_elapsed_time_ms;
 887 }
 888 
 889 bool G1DefaultPolicy::should_allocate_mutator_region() const {
 890   uint young_list_length = _g1->young_regions_count();
 891   uint young_list_target_length = _young_list_target_length;
 892   return young_list_length < young_list_target_length;
 893 }
 894 
 895 bool G1DefaultPolicy::can_expand_young_list() const {
 896   uint young_list_length = _g1->young_regions_count();
 897   uint young_list_max_length = _young_list_max_length;
 898   return young_list_length < young_list_max_length;
 899 }
 900 
 901 bool G1DefaultPolicy::adaptive_young_list_length() const {
 902   return _young_gen_sizer.adaptive_young_list_length();
 903 }
 904 
 905 void G1DefaultPolicy::update_max_gc_locker_expansion() {
 906   uint expansion_region_num = 0;
 907   if (GCLockerEdenExpansionPercent > 0) {
 908     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
 909     double expansion_region_num_d = perc * (double) _young_list_target_length;
 910     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
 911     // less than 1.0) we'll get 1.
 912     expansion_region_num = (uint) ceil(expansion_region_num_d);
 913   } else {
 914     assert(expansion_region_num == 0, "sanity");
 915   }
 916   _young_list_max_length = _young_list_target_length + expansion_region_num;
 917   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
 918 }
 919 
 920 // Calculates survivor space parameters.
 921 void G1DefaultPolicy::update_survivors_policy() {
 922   double max_survivor_regions_d =
 923                  (double) _young_list_target_length / (double) SurvivorRatio;
 924   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
 925   // smaller than 1.0) we'll get 1.
 926   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
 927 
 928   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
 929       HeapRegion::GrainWords * _max_survivor_regions, _policy_counters);
 930 }
 931 
 932 bool G1DefaultPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
 933   // We actually check whether we are marking here and not if we are in a
 934   // reclamation phase. This means that we will schedule a concurrent mark
 935   // even while we are still in the process of reclaiming memory.
 936   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
 937   if (!during_cycle) {
 938     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
 939     collector_state()->set_initiate_conc_mark_if_possible(true);
 940     return true;
 941   } else {
 942     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
 943     return false;
 944   }
 945 }
 946 
 947 void G1DefaultPolicy::initiate_conc_mark() {
 948   collector_state()->set_during_initial_mark_pause(true);
 949   collector_state()->set_initiate_conc_mark_if_possible(false);
 950 }
 951 
 952 void G1DefaultPolicy::decide_on_conc_mark_initiation() {
 953   // We are about to decide on whether this pause will be an
 954   // initial-mark pause.
 955 
 956   // First, collector_state()->during_initial_mark_pause() should not be already set. We
 957   // will set it here if we have to. However, it should be cleared by
 958   // the end of the pause (it's only set for the duration of an
 959   // initial-mark pause).
 960   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
 961 
 962   if (collector_state()->initiate_conc_mark_if_possible()) {
 963     // We had noticed on a previous pause that the heap occupancy has
 964     // gone over the initiating threshold and we should start a
 965     // concurrent marking cycle. So we might initiate one.
 966 
 967     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
 968       // Initiate a new initial mark if there is no marking or reclamation going on.
 969       initiate_conc_mark();
 970       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
 971     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
 972       // Initiate a user requested initial mark. An initial mark must be young only
 973       // GC, so the collector state must be updated to reflect this.
 974       collector_state()->set_gcs_are_young(true);
 975       collector_state()->set_last_young_gc(false);
 976 
 977       abort_time_to_mixed_tracking();
 978       initiate_conc_mark();
 979       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
 980     } else {
 981       // The concurrent marking thread is still finishing up the
 982       // previous cycle. If we start one right now the two cycles
 983       // overlap. In particular, the concurrent marking thread might
 984       // be in the process of clearing the next marking bitmap (which
 985       // we will use for the next cycle if we start one). Starting a
 986       // cycle now will be bad given that parts of the marking
 987       // information might get cleared by the marking thread. And we
 988       // cannot wait for the marking thread to finish the cycle as it
 989       // periodically yields while clearing the next marking bitmap
 990       // and, if it's in a yield point, it's waiting for us to
 991       // finish. So, at this point we will not start a cycle and we'll
 992       // let the concurrent marking thread complete the last one.
 993       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
 994     }
 995   }
 996 }
 997 
 998 void G1DefaultPolicy::record_concurrent_mark_cleanup_end() {
 999   cset_chooser()->rebuild(_g1->workers(), _g1->num_regions());
1000 
1001   double end_sec = os::elapsedTime();
1002   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1003   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1004   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1005 
1006   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1007 }
1008 
1009 double G1DefaultPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
1010   // Returns the given amount of reclaimable bytes (that represents
1011   // the amount of reclaimable space still to be collected) as a
1012   // percentage of the current heap capacity.
1013   size_t capacity_bytes = _g1->capacity();
1014   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1015 }
1016 
1017 void G1DefaultPolicy::maybe_start_marking() {
1018   if (need_to_start_conc_mark("end of GC")) {
1019     // Note: this might have already been set, if during the last
1020     // pause we decided to start a cycle but at the beginning of
1021     // this pause we decided to postpone it. That's OK.
1022     collector_state()->set_initiate_conc_mark_if_possible(true);
1023   }
1024 }
1025 
1026 G1DefaultPolicy::PauseKind G1DefaultPolicy::young_gc_pause_kind() const {
1027   assert(!collector_state()->full_collection(), "must be");
1028   if (collector_state()->during_initial_mark_pause()) {
1029     assert(collector_state()->last_gc_was_young(), "must be");
1030     assert(!collector_state()->last_young_gc(), "must be");
1031     return InitialMarkGC;
1032   } else if (collector_state()->last_young_gc()) {
1033     assert(!collector_state()->during_initial_mark_pause(), "must be");
1034     assert(collector_state()->last_gc_was_young(), "must be");
1035     return LastYoungGC;
1036   } else if (!collector_state()->last_gc_was_young()) {
1037     assert(!collector_state()->during_initial_mark_pause(), "must be");
1038     assert(!collector_state()->last_young_gc(), "must be");
1039     return MixedGC;
1040   } else {
1041     assert(collector_state()->last_gc_was_young(), "must be");
1042     assert(!collector_state()->during_initial_mark_pause(), "must be");
1043     assert(!collector_state()->last_young_gc(), "must be");
1044     return YoungOnlyGC;
1045   }
1046 }
1047 
1048 void G1DefaultPolicy::record_pause(PauseKind kind, double start, double end) {
1049   // Manage the MMU tracker. For some reason it ignores Full GCs.
1050   if (kind != FullGC) {
1051     _mmu_tracker->add_pause(start, end);
1052   }
1053   // Manage the mutator time tracking from initial mark to first mixed gc.
1054   switch (kind) {
1055     case FullGC:
1056       abort_time_to_mixed_tracking();
1057       break;
1058     case Cleanup:
1059     case Remark:
1060     case YoungOnlyGC:
1061     case LastYoungGC:
1062       _initial_mark_to_mixed.add_pause(end - start);
1063       break;
1064     case InitialMarkGC:
1065       _initial_mark_to_mixed.record_initial_mark_end(end);
1066       break;
1067     case MixedGC:
1068       _initial_mark_to_mixed.record_mixed_gc_start(start);
1069       break;
1070     default:
1071       ShouldNotReachHere();
1072   }
1073 }
1074 
1075 void G1DefaultPolicy::abort_time_to_mixed_tracking() {
1076   _initial_mark_to_mixed.reset();
1077 }
1078 
1079 bool G1DefaultPolicy::next_gc_should_be_mixed(const char* true_action_str,
1080                                        const char* false_action_str) const {
1081   if (cset_chooser()->is_empty()) {
1082     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1083     return false;
1084   }
1085 
1086   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1087   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
1088   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1089   double threshold = (double) G1HeapWastePercent;
1090   if (reclaimable_perc <= threshold) {
1091     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1092                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1093     return false;
1094   }
1095   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1096                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1097   return true;
1098 }
1099 
1100 uint G1DefaultPolicy::calc_min_old_cset_length() const {
1101   // The min old CSet region bound is based on the maximum desired
1102   // number of mixed GCs after a cycle. I.e., even if some old regions
1103   // look expensive, we should add them to the CSet anyway to make
1104   // sure we go through the available old regions in no more than the
1105   // maximum desired number of mixed GCs.
1106   //
1107   // The calculation is based on the number of marked regions we added
1108   // to the CSet chooser in the first place, not how many remain, so
1109   // that the result is the same during all mixed GCs that follow a cycle.
1110 
1111   const size_t region_num = (size_t) cset_chooser()->length();
1112   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1113   size_t result = region_num / gc_num;
1114   // emulate ceiling
1115   if (result * gc_num < region_num) {
1116     result += 1;
1117   }
1118   return (uint) result;
1119 }
1120 
1121 uint G1DefaultPolicy::calc_max_old_cset_length() const {
1122   // The max old CSet region bound is based on the threshold expressed
1123   // as a percentage of the heap size. I.e., it should bound the
1124   // number of old regions added to the CSet irrespective of how many
1125   // of them are available.
1126 
1127   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1128   const size_t region_num = g1h->num_regions();
1129   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1130   size_t result = region_num * perc / 100;
1131   // emulate ceiling
1132   if (100 * result < region_num * perc) {
1133     result += 1;
1134   }
1135   return (uint) result;
1136 }
1137 
1138 void G1DefaultPolicy::finalize_collection_set(double target_pause_time_ms, G1SurvivorRegions* survivor) {
1139   double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms, survivor);
1140   _collection_set->finalize_old_part(time_remaining_ms);
1141 }
1142 
1143 void G1DefaultPolicy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1144 
1145   // Add survivor regions to SurvRateGroup.
1146   note_start_adding_survivor_regions();
1147   finished_recalculating_age_indexes(true /* is_survivors */);
1148 
1149   HeapRegion* last = NULL;
1150   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1151        it != survivors->regions()->end();
1152        ++it) {
1153     HeapRegion* curr = *it;
1154     set_region_survivor(curr);
1155 
1156     // The region is a non-empty survivor so let's add it to
1157     // the incremental collection set for the next evacuation
1158     // pause.
1159     _collection_set->add_survivor_regions(curr);
1160 
1161     last = curr;
1162   }
1163   note_stop_adding_survivor_regions();
1164 
1165   // Don't clear the survivor list handles until the start of
1166   // the next evacuation pause - we need it in order to re-tag
1167   // the survivor regions from this evacuation pause as 'young'
1168   // at the start of the next.
1169 
1170   finished_recalculating_age_indexes(false /* is_survivors */);
1171 }