1 /*
   2  * Copyright (c) 2014, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Allocator.inline.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1CollectionSet.hpp"
  29 #include "gc/g1/g1OopClosures.inline.hpp"
  30 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  31 #include "gc/g1/g1RootClosures.hpp"
  32 #include "gc/g1/g1StringDedup.hpp"
  33 #include "gc/shared/taskqueue.inline.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "runtime/prefetch.inline.hpp"
  36 
  37 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id, size_t young_cset_length)
  38   : _g1h(g1h),
  39     _refs(g1h->task_queue(worker_id)),
  40     _dcq(&g1h->dirty_card_queue_set()),
  41     _ct_bs(g1h->g1_barrier_set()),
  42     _closures(NULL),
  43     _hash_seed(17),
  44     _worker_id(worker_id),
  45     _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
  46     _age_table(false),
  47     _scanner(g1h, this),
  48     _old_gen_is_full(false)
  49 {
  50   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  51   // we "sacrifice" entry 0 to keep track of surviving bytes for
  52   // non-young regions (where the age is -1)
  53   // We also add a few elements at the beginning and at the end in
  54   // an attempt to eliminate cache contention
  55   size_t real_length = 1 + young_cset_length;
  56   size_t array_length = PADDING_ELEM_NUM +
  57                       real_length +
  58                       PADDING_ELEM_NUM;
  59   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  60   if (_surviving_young_words_base == NULL)
  61     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  62                           "Not enough space for young surv histo.");
  63   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  64   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  65 
  66   _plab_allocator = G1PLABAllocator::create_allocator(_g1h->allocator());
  67 
  68   _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
  69   // The dest for Young is used when the objects are aged enough to
  70   // need to be moved to the next space.
  71   _dest[InCSetState::Young]        = InCSetState::Old;
  72   _dest[InCSetState::Old]          = InCSetState::Old;
  73 
  74   _closures = G1EvacuationRootClosures::create_root_closures(this, _g1h);
  75 }
  76 
  77 // Pass locally gathered statistics to global state.
  78 void G1ParScanThreadState::flush(size_t* surviving_young_words) {
  79   _dcq.flush();
  80   // Update allocation statistics.
  81   _plab_allocator->flush_and_retire_stats();
  82   _g1h->g1_policy()->record_age_table(&_age_table);
  83 
  84   uint length = _g1h->collection_set()->young_region_length();
  85   for (uint region_index = 0; region_index < length; region_index++) {
  86     surviving_young_words[region_index] += _surviving_young_words[region_index];
  87   }
  88 }
  89 
  90 G1ParScanThreadState::~G1ParScanThreadState() {
  91   delete _plab_allocator;
  92   delete _closures;
  93   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  94 }
  95 
  96 void G1ParScanThreadState::waste(size_t& wasted, size_t& undo_wasted) {
  97   _plab_allocator->waste(wasted, undo_wasted);
  98 }
  99 
 100 #ifdef ASSERT
 101 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
 102   assert(ref != NULL, "invariant");
 103   assert(UseCompressedOops, "sanity");
 104   assert(!has_partial_array_mask(ref), "ref=" PTR_FORMAT, p2i(ref));
 105   oop p = oopDesc::load_decode_heap_oop(ref);
 106   assert(_g1h->is_in_g1_reserved(p),
 107          "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 108   return true;
 109 }
 110 
 111 bool G1ParScanThreadState::verify_ref(oop* ref) const {
 112   assert(ref != NULL, "invariant");
 113   if (has_partial_array_mask(ref)) {
 114     // Must be in the collection set--it's already been copied.
 115     oop p = clear_partial_array_mask(ref);
 116     assert(_g1h->obj_in_cs(p),
 117            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 118   } else {
 119     oop p = oopDesc::load_decode_heap_oop(ref);
 120     assert(_g1h->is_in_g1_reserved(p),
 121            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 122   }
 123   return true;
 124 }
 125 
 126 bool G1ParScanThreadState::verify_task(StarTask ref) const {
 127   if (ref.is_narrow()) {
 128     return verify_ref((narrowOop*) ref);
 129   } else {
 130     return verify_ref((oop*) ref);
 131   }
 132 }
 133 #endif // ASSERT
 134 
 135 void G1ParScanThreadState::trim_queue() {
 136   StarTask ref;
 137   do {
 138     // Drain the overflow stack first, so other threads can steal.
 139     while (_refs->pop_overflow(ref)) {
 140       if (!_refs->try_push_to_taskqueue(ref)) {
 141         dispatch_reference(ref);
 142       }
 143     }
 144 
 145     while (_refs->pop_local(ref)) {
 146       dispatch_reference(ref);
 147     }
 148   } while (!_refs->is_empty());
 149 }
 150 
 151 HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
 152                                                       InCSetState* dest,
 153                                                       size_t word_sz,
 154                                                       AllocationContext_t const context,
 155                                                       bool previous_plab_refill_failed) {
 156   assert(state.is_in_cset_or_humongous(), "Unexpected state: " CSETSTATE_FORMAT, state.value());
 157   assert(dest->is_in_cset_or_humongous(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
 158 
 159   // Right now we only have two types of regions (young / old) so
 160   // let's keep the logic here simple. We can generalize it when necessary.
 161   if (dest->is_young()) {
 162     bool plab_refill_in_old_failed = false;
 163     HeapWord* const obj_ptr = _plab_allocator->allocate(InCSetState::Old,
 164                                                         word_sz,
 165                                                         context,
 166                                                         &plab_refill_in_old_failed);
 167     // Make sure that we won't attempt to copy any other objects out
 168     // of a survivor region (given that apparently we cannot allocate
 169     // any new ones) to avoid coming into this slow path again and again.
 170     // Only consider failed PLAB refill here: failed inline allocations are
 171     // typically large, so not indicative of remaining space.
 172     if (previous_plab_refill_failed) {
 173       _tenuring_threshold = 0;
 174     }
 175 
 176     if (obj_ptr != NULL) {
 177       dest->set_old();
 178     } else {
 179       // We just failed to allocate in old gen. The same idea as explained above
 180       // for making survivor gen unavailable for allocation applies for old gen.
 181       _old_gen_is_full = plab_refill_in_old_failed;
 182     }
 183     return obj_ptr;
 184   } else {
 185     _old_gen_is_full = previous_plab_refill_failed;
 186     assert(dest->is_old(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
 187     // no other space to try.
 188     return NULL;
 189   }
 190 }
 191 
 192 InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
 193   if (state.is_young()) {
 194     age = !m->has_displaced_mark_helper() ? m->age()
 195                                           : m->displaced_mark_helper()->age();
 196     if (age < _tenuring_threshold) {
 197       return state;
 198     }
 199   }
 200   return dest(state);
 201 }
 202 
 203 void G1ParScanThreadState::report_promotion_event(InCSetState const dest_state,
 204                                                   oop const old, size_t word_sz, uint age,
 205                                                   HeapWord * const obj_ptr,
 206                                                   const AllocationContext_t context) const {
 207   G1PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_state, context);
 208   if (alloc_buf->contains(obj_ptr)) {
 209     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz, age,
 210                                                              dest_state.value() == InCSetState::Old,
 211                                                              alloc_buf->word_sz());
 212   } else {
 213     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz, age,
 214                                                               dest_state.value() == InCSetState::Old);
 215   }
 216 }
 217 
 218 oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
 219                                                  oop const old,
 220                                                  markOop const old_mark) {
 221   const size_t word_sz = old->size();
 222   HeapRegion* const from_region = _g1h->heap_region_containing(old);
 223   // +1 to make the -1 indexes valid...
 224   const int young_index = from_region->young_index_in_cset()+1;
 225   assert( (from_region->is_young() && young_index >  0) ||
 226          (!from_region->is_young() && young_index == 0), "invariant" );
 227   const AllocationContext_t context = from_region->allocation_context();
 228 
 229   uint age = 0;
 230   InCSetState dest_state = next_state(state, old_mark, age);
 231   // The second clause is to prevent premature evacuation failure in case there
 232   // is still space in survivor, but old gen is full.
 233   if (_old_gen_is_full && dest_state.is_old()) {
 234     return handle_evacuation_failure_par(old, old_mark);
 235   }
 236   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_state, word_sz, context);
 237 
 238   // PLAB allocations should succeed most of the time, so we'll
 239   // normally check against NULL once and that's it.
 240   if (obj_ptr == NULL) {
 241     bool plab_refill_failed = false;
 242     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context, &plab_refill_failed);
 243     if (obj_ptr == NULL) {
 244       obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context, plab_refill_failed);
 245       if (obj_ptr == NULL) {
 246         // This will either forward-to-self, or detect that someone else has
 247         // installed a forwarding pointer.
 248         return handle_evacuation_failure_par(old, old_mark);
 249       }
 250     }
 251     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
 252       // The events are checked individually as part of the actual commit
 253       report_promotion_event(dest_state, old, word_sz, age, obj_ptr, context);
 254     }
 255   }
 256 
 257   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 258   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 259 
 260 #ifndef PRODUCT
 261   // Should this evacuation fail?
 262   if (_g1h->evacuation_should_fail()) {
 263     // Doing this after all the allocation attempts also tests the
 264     // undo_allocation() method too.
 265     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 266     return handle_evacuation_failure_par(old, old_mark);
 267   }
 268 #endif // !PRODUCT
 269 
 270   // We're going to allocate linearly, so might as well prefetch ahead.
 271   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 272 
 273   const oop obj = oop(obj_ptr);
 274   const oop forward_ptr = old->forward_to_atomic(obj);
 275   if (forward_ptr == NULL) {
 276     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
 277 
 278     if (dest_state.is_young()) {
 279       if (age < markOopDesc::max_age) {
 280         age++;
 281       }
 282       if (old_mark->has_displaced_mark_helper()) {
 283         // In this case, we have to install the mark word first,
 284         // otherwise obj looks to be forwarded (the old mark word,
 285         // which contains the forward pointer, was copied)
 286         obj->set_mark(old_mark);
 287         markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
 288         old_mark->set_displaced_mark_helper(new_mark);
 289       } else {
 290         obj->set_mark(old_mark->set_age(age));
 291       }
 292       _age_table.add(age, word_sz);
 293     } else {
 294       obj->set_mark(old_mark);
 295     }
 296 
 297     if (G1StringDedup::is_enabled()) {
 298       const bool is_from_young = state.is_young();
 299       const bool is_to_young = dest_state.is_young();
 300       assert(is_from_young == _g1h->heap_region_containing(old)->is_young(),
 301              "sanity");
 302       assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(),
 303              "sanity");
 304       G1StringDedup::enqueue_from_evacuation(is_from_young,
 305                                              is_to_young,
 306                                              _worker_id,
 307                                              obj);
 308     }
 309 
 310     _surviving_young_words[young_index] += word_sz;
 311 
 312     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 313       // We keep track of the next start index in the length field of
 314       // the to-space object. The actual length can be found in the
 315       // length field of the from-space object.
 316       arrayOop(obj)->set_length(0);
 317       oop* old_p = set_partial_array_mask(old);
 318       push_on_queue(old_p);
 319     } else {
 320       HeapRegion* const to_region = _g1h->heap_region_containing(obj_ptr);
 321       _scanner.set_region(to_region);
 322       obj->oop_iterate_backwards(&_scanner);
 323     }
 324     return obj;
 325   } else {
 326     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 327     return forward_ptr;
 328   }
 329 }
 330 
 331 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
 332   assert(worker_id < _n_workers, "out of bounds access");
 333   if (_states[worker_id] == NULL) {
 334     _states[worker_id] = new_par_scan_state(worker_id, _young_cset_length);
 335   }
 336   return _states[worker_id];
 337 }
 338 
 339 void G1ParScanThreadStateSet::add_cards_scanned(uint worker_id, size_t cards_scanned) {
 340   assert(worker_id < _n_workers, "out of bounds access");
 341   _cards_scanned[worker_id] += cards_scanned;
 342 }
 343 
 344 size_t G1ParScanThreadStateSet::total_cards_scanned() const {
 345   assert(_flushed, "thread local state from the per thread states should have been flushed");
 346   return _total_cards_scanned;
 347 }
 348 
 349 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
 350   assert(_flushed, "thread local state from the per thread states should have been flushed");
 351   return _surviving_young_words_total;
 352 }
 353 
 354 void G1ParScanThreadStateSet::flush() {
 355   assert(!_flushed, "thread local state from the per thread states should be flushed once");
 356   assert(_total_cards_scanned == 0, "should have been cleared");
 357 
 358   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
 359     G1ParScanThreadState* pss = _states[worker_index];
 360 
 361     if (pss == NULL) {
 362       continue;
 363     }
 364 
 365     _total_cards_scanned += _cards_scanned[worker_index];
 366 
 367     pss->flush(_surviving_young_words_total);
 368     delete pss;
 369     _states[worker_index] = NULL;
 370   }
 371   _flushed = true;
 372 }
 373 
 374 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
 375   assert(_g1h->obj_in_cs(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
 376 
 377   oop forward_ptr = old->forward_to_atomic(old);
 378   if (forward_ptr == NULL) {
 379     // Forward-to-self succeeded. We are the "owner" of the object.
 380     HeapRegion* r = _g1h->heap_region_containing(old);
 381 
 382     if (!r->evacuation_failed()) {
 383       r->set_evacuation_failed(true);
 384      _g1h->hr_printer()->evac_failure(r);
 385     }
 386 
 387     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
 388 
 389     _scanner.set_region(r);
 390     old->oop_iterate_backwards(&_scanner);
 391 
 392     return old;
 393   } else {
 394     // Forward-to-self failed. Either someone else managed to allocate
 395     // space for this object (old != forward_ptr) or they beat us in
 396     // self-forwarding it (old == forward_ptr).
 397     assert(old == forward_ptr || !_g1h->obj_in_cs(forward_ptr),
 398            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
 399            "should not be in the CSet",
 400            p2i(old), p2i(forward_ptr));
 401     return forward_ptr;
 402   }
 403 }
 404