1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMarkThread.inline.hpp"
  28 #include "gc/g1/g1Analytics.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectionSet.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1DefaultPolicy.hpp"
  33 #include "gc/g1/g1HotCardCache.hpp"
  34 #include "gc/g1/g1IHOPControl.hpp"
  35 #include "gc/g1/g1GCPhaseTimes.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1SurvivorRegions.hpp"
  38 #include "gc/g1/g1YoungGenSizer.hpp"
  39 #include "gc/g1/heapRegion.inline.hpp"
  40 #include "gc/g1/heapRegionRemSet.hpp"
  41 #include "gc/shared/gcPolicyCounters.hpp"
  42 #include "logging/logStream.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "utilities/debug.hpp"
  47 #include "utilities/growableArray.hpp"
  48 #include "utilities/pair.hpp"
  49 
  50 G1DefaultPolicy::G1DefaultPolicy() :
  51   _predictor(G1ConfidencePercent / 100.0),
  52   _analytics(new G1Analytics(&_predictor)),
  53   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  54   _ihop_control(create_ihop_control(&_predictor)),
  55   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 3)),
  56   _young_list_fixed_length(0),
  57   _short_lived_surv_rate_group(new SurvRateGroup()),
  58   _survivor_surv_rate_group(new SurvRateGroup()),
  59   _reserve_factor((double) G1ReservePercent / 100.0),
  60   _reserve_regions(0),
  61   _rs_lengths_prediction(0),
  62   _bytes_allocated_in_old_since_last_gc(0),
  63   _initial_mark_to_mixed(),
  64   _collection_set(NULL),
  65   _g1(NULL),
  66   _phase_times(new G1GCPhaseTimes(ParallelGCThreads)),
  67   _tenuring_threshold(MaxTenuringThreshold),
  68   _max_survivor_regions(0),
  69   _survivors_age_table(true) { }
  70 
  71 G1DefaultPolicy::~G1DefaultPolicy() {
  72   delete _ihop_control;
  73 }
  74 
  75 G1CollectorState* G1DefaultPolicy::collector_state() const { return _g1->collector_state(); }
  76 
  77 void G1DefaultPolicy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
  78   _g1 = g1h;
  79   _collection_set = collection_set;
  80 
  81   assert(Heap_lock->owned_by_self(), "Locking discipline.");
  82 
  83   if (!adaptive_young_list_length()) {
  84     _young_list_fixed_length = _young_gen_sizer.min_desired_young_length();
  85   }
  86   _young_gen_sizer.adjust_max_new_size(_g1->max_regions());
  87 
  88   _free_regions_at_end_of_collection = _g1->num_free_regions();
  89 
  90   update_young_list_max_and_target_length();
  91   // We may immediately start allocating regions and placing them on the
  92   // collection set list. Initialize the per-collection set info
  93   _collection_set->start_incremental_building();
  94 }
  95 
  96 void G1DefaultPolicy::note_gc_start() {
  97   phase_times()->note_gc_start();
  98 }
  99 
 100 class G1YoungLengthPredictor VALUE_OBJ_CLASS_SPEC {
 101   const bool _during_cm;
 102   const double _base_time_ms;
 103   const double _base_free_regions;
 104   const double _target_pause_time_ms;
 105   const G1DefaultPolicy* const _policy;
 106 
 107  public:
 108   G1YoungLengthPredictor(bool during_cm,
 109                          double base_time_ms,
 110                          double base_free_regions,
 111                          double target_pause_time_ms,
 112                          const G1DefaultPolicy* policy) :
 113     _during_cm(during_cm),
 114     _base_time_ms(base_time_ms),
 115     _base_free_regions(base_free_regions),
 116     _target_pause_time_ms(target_pause_time_ms),
 117     _policy(policy) {}
 118 
 119   bool will_fit(uint young_length) const {
 120     if (young_length >= _base_free_regions) {
 121       // end condition 1: not enough space for the young regions
 122       return false;
 123     }
 124 
 125     const double accum_surv_rate = _policy->accum_yg_surv_rate_pred((int) young_length - 1);
 126     const size_t bytes_to_copy =
 127                  (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 128     const double copy_time_ms =
 129       _policy->analytics()->predict_object_copy_time_ms(bytes_to_copy, _during_cm);
 130     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
 131     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
 132     if (pause_time_ms > _target_pause_time_ms) {
 133       // end condition 2: prediction is over the target pause time
 134       return false;
 135     }
 136 
 137     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
 138 
 139     // When copying, we will likely need more bytes free than is live in the region.
 140     // Add some safety margin to factor in the confidence of our guess, and the
 141     // natural expected waste.
 142     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 143     // of the calculation: the lower the confidence, the more headroom.
 144     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 145     // copying due to anticipated waste in the PLABs.
 146     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 147     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 148 
 149     if (expected_bytes_to_copy > free_bytes) {
 150       // end condition 3: out-of-space
 151       return false;
 152     }
 153 
 154     // success!
 155     return true;
 156   }
 157 };
 158 
 159 void G1DefaultPolicy::record_new_heap_size(uint new_number_of_regions) {
 160   // re-calculate the necessary reserve
 161   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 162   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 163   // smaller than 1.0) we'll get 1.
 164   _reserve_regions = (uint) ceil(reserve_regions_d);
 165 
 166   _young_gen_sizer.heap_size_changed(new_number_of_regions);
 167 
 168   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 169 }
 170 
 171 uint G1DefaultPolicy::calculate_young_list_desired_min_length(uint base_min_length) const {
 172   uint desired_min_length = 0;
 173   if (adaptive_young_list_length()) {
 174     if (_analytics->num_alloc_rate_ms() > 3) {
 175       double now_sec = os::elapsedTime();
 176       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 177       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 178       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 179     } else {
 180       // otherwise we don't have enough info to make the prediction
 181     }
 182   }
 183   desired_min_length += base_min_length;
 184   // make sure we don't go below any user-defined minimum bound
 185   return MAX2(_young_gen_sizer.min_desired_young_length(), desired_min_length);
 186 }
 187 
 188 uint G1DefaultPolicy::calculate_young_list_desired_max_length() const {
 189   // Here, we might want to also take into account any additional
 190   // constraints (i.e., user-defined minimum bound). Currently, we
 191   // effectively don't set this bound.
 192   return _young_gen_sizer.max_desired_young_length();
 193 }
 194 
 195 uint G1DefaultPolicy::update_young_list_max_and_target_length() {
 196   return update_young_list_max_and_target_length(_analytics->predict_rs_lengths());
 197 }
 198 
 199 uint G1DefaultPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 200   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 201   update_max_gc_locker_expansion();
 202   return unbounded_target_length;
 203 }
 204 
 205 uint G1DefaultPolicy::update_young_list_target_length(size_t rs_lengths) {
 206   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 207   _young_list_target_length = young_lengths.first;
 208   return young_lengths.second;
 209 }
 210 
 211 G1DefaultPolicy::YoungTargetLengths G1DefaultPolicy::young_list_target_lengths(size_t rs_lengths) const {
 212   YoungTargetLengths result;
 213 
 214   // Calculate the absolute and desired min bounds first.
 215 
 216   // This is how many young regions we already have (currently: the survivors).
 217   const uint base_min_length = _g1->survivor_regions_count();
 218   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 219   // This is the absolute minimum young length. Ensure that we
 220   // will at least have one eden region available for allocation.
 221   uint absolute_min_length = base_min_length + MAX2(_g1->eden_regions_count(), (uint)1);
 222   // If we shrank the young list target it should not shrink below the current size.
 223   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 224   // Calculate the absolute and desired max bounds.
 225 
 226   uint desired_max_length = calculate_young_list_desired_max_length();
 227 
 228   uint young_list_target_length = 0;
 229   if (adaptive_young_list_length()) {
 230     if (collector_state()->gcs_are_young()) {
 231       young_list_target_length =
 232                         calculate_young_list_target_length(rs_lengths,
 233                                                            base_min_length,
 234                                                            desired_min_length,
 235                                                            desired_max_length);
 236     } else {
 237       // Don't calculate anything and let the code below bound it to
 238       // the desired_min_length, i.e., do the next GC as soon as
 239       // possible to maximize how many old regions we can add to it.
 240     }
 241   } else {
 242     // The user asked for a fixed young gen so we'll fix the young gen
 243     // whether the next GC is young or mixed.
 244     young_list_target_length = _young_list_fixed_length;
 245   }
 246 
 247   result.second = young_list_target_length;
 248 
 249   // We will try our best not to "eat" into the reserve.
 250   uint absolute_max_length = 0;
 251   if (_free_regions_at_end_of_collection > _reserve_regions) {
 252     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 253   }
 254   if (desired_max_length > absolute_max_length) {
 255     desired_max_length = absolute_max_length;
 256   }
 257 
 258   // Make sure we don't go over the desired max length, nor under the
 259   // desired min length. In case they clash, desired_min_length wins
 260   // which is why that test is second.
 261   if (young_list_target_length > desired_max_length) {
 262     young_list_target_length = desired_max_length;
 263   }
 264   if (young_list_target_length < desired_min_length) {
 265     young_list_target_length = desired_min_length;
 266   }
 267 
 268   assert(young_list_target_length > base_min_length,
 269          "we should be able to allocate at least one eden region");
 270   assert(young_list_target_length >= absolute_min_length, "post-condition");
 271 
 272   result.first = young_list_target_length;
 273   return result;
 274 }
 275 
 276 uint
 277 G1DefaultPolicy::calculate_young_list_target_length(size_t rs_lengths,
 278                                                     uint base_min_length,
 279                                                     uint desired_min_length,
 280                                                     uint desired_max_length) const {
 281   assert(adaptive_young_list_length(), "pre-condition");
 282   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 283 
 284   // In case some edge-condition makes the desired max length too small...
 285   if (desired_max_length <= desired_min_length) {
 286     return desired_min_length;
 287   }
 288 
 289   // We'll adjust min_young_length and max_young_length not to include
 290   // the already allocated young regions (i.e., so they reflect the
 291   // min and max eden regions we'll allocate). The base_min_length
 292   // will be reflected in the predictions by the
 293   // survivor_regions_evac_time prediction.
 294   assert(desired_min_length > base_min_length, "invariant");
 295   uint min_young_length = desired_min_length - base_min_length;
 296   assert(desired_max_length > base_min_length, "invariant");
 297   uint max_young_length = desired_max_length - base_min_length;
 298 
 299   const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 300   const double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 301   const size_t pending_cards = _analytics->predict_pending_cards();
 302   const size_t adj_rs_lengths = rs_lengths + _analytics->predict_rs_length_diff();
 303   const size_t scanned_cards = _analytics->predict_card_num(adj_rs_lengths, /* gcs_are_young */ true);
 304   const double base_time_ms =
 305     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 306     survivor_regions_evac_time;
 307   const uint available_free_regions = _free_regions_at_end_of_collection;
 308   const uint base_free_regions =
 309     available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
 310 
 311   // Here, we will make sure that the shortest young length that
 312   // makes sense fits within the target pause time.
 313 
 314   G1YoungLengthPredictor p(collector_state()->during_concurrent_mark(),
 315                            base_time_ms,
 316                            base_free_regions,
 317                            target_pause_time_ms,
 318                            this);
 319   if (p.will_fit(min_young_length)) {
 320     // The shortest young length will fit into the target pause time;
 321     // we'll now check whether the absolute maximum number of young
 322     // regions will fit in the target pause time. If not, we'll do
 323     // a binary search between min_young_length and max_young_length.
 324     if (p.will_fit(max_young_length)) {
 325       // The maximum young length will fit into the target pause time.
 326       // We are done so set min young length to the maximum length (as
 327       // the result is assumed to be returned in min_young_length).
 328       min_young_length = max_young_length;
 329     } else {
 330       // The maximum possible number of young regions will not fit within
 331       // the target pause time so we'll search for the optimal
 332       // length. The loop invariants are:
 333       //
 334       // min_young_length < max_young_length
 335       // min_young_length is known to fit into the target pause time
 336       // max_young_length is known not to fit into the target pause time
 337       //
 338       // Going into the loop we know the above hold as we've just
 339       // checked them. Every time around the loop we check whether
 340       // the middle value between min_young_length and
 341       // max_young_length fits into the target pause time. If it
 342       // does, it becomes the new min. If it doesn't, it becomes
 343       // the new max. This way we maintain the loop invariants.
 344 
 345       assert(min_young_length < max_young_length, "invariant");
 346       uint diff = (max_young_length - min_young_length) / 2;
 347       while (diff > 0) {
 348         uint young_length = min_young_length + diff;
 349         if (p.will_fit(young_length)) {
 350           min_young_length = young_length;
 351         } else {
 352           max_young_length = young_length;
 353         }
 354         assert(min_young_length <  max_young_length, "invariant");
 355         diff = (max_young_length - min_young_length) / 2;
 356       }
 357       // The results is min_young_length which, according to the
 358       // loop invariants, should fit within the target pause time.
 359 
 360       // These are the post-conditions of the binary search above:
 361       assert(min_young_length < max_young_length,
 362              "otherwise we should have discovered that max_young_length "
 363              "fits into the pause target and not done the binary search");
 364       assert(p.will_fit(min_young_length),
 365              "min_young_length, the result of the binary search, should "
 366              "fit into the pause target");
 367       assert(!p.will_fit(min_young_length + 1),
 368              "min_young_length, the result of the binary search, should be "
 369              "optimal, so no larger length should fit into the pause target");
 370     }
 371   } else {
 372     // Even the minimum length doesn't fit into the pause time
 373     // target, return it as the result nevertheless.
 374   }
 375   return base_min_length + min_young_length;
 376 }
 377 
 378 double G1DefaultPolicy::predict_survivor_regions_evac_time() const {
 379   double survivor_regions_evac_time = 0.0;
 380   const GrowableArray<HeapRegion*>* survivor_regions = _g1->survivor()->regions();
 381 
 382   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 383        it != survivor_regions->end();
 384        ++it) {
 385     survivor_regions_evac_time += predict_region_elapsed_time_ms(*it, collector_state()->gcs_are_young());
 386   }
 387   return survivor_regions_evac_time;
 388 }
 389 
 390 void G1DefaultPolicy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
 391   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 392 
 393   if (rs_lengths > _rs_lengths_prediction) {
 394     // add 10% to avoid having to recalculate often
 395     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 396     update_rs_lengths_prediction(rs_lengths_prediction);
 397 
 398     update_young_list_max_and_target_length(rs_lengths_prediction);
 399   }
 400 }
 401 
 402 void G1DefaultPolicy::update_rs_lengths_prediction() {
 403   update_rs_lengths_prediction(_analytics->predict_rs_lengths());
 404 }
 405 
 406 void G1DefaultPolicy::update_rs_lengths_prediction(size_t prediction) {
 407   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 408     _rs_lengths_prediction = prediction;
 409   }
 410 }
 411 
 412 void G1DefaultPolicy::record_full_collection_start() {
 413   _full_collection_start_sec = os::elapsedTime();
 414   // Release the future to-space so that it is available for compaction into.
 415   collector_state()->set_full_collection(true);
 416 }
 417 
 418 void G1DefaultPolicy::record_full_collection_end() {
 419   // Consider this like a collection pause for the purposes of allocation
 420   // since last pause.
 421   double end_sec = os::elapsedTime();
 422   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 423   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 424 
 425   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 426 
 427   collector_state()->set_full_collection(false);
 428 
 429   // "Nuke" the heuristics that control the young/mixed GC
 430   // transitions and make sure we start with young GCs after the Full GC.
 431   collector_state()->set_gcs_are_young(true);
 432   collector_state()->set_last_young_gc(false);
 433   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 434   collector_state()->set_during_initial_mark_pause(false);
 435   collector_state()->set_in_marking_window(false);
 436   collector_state()->set_in_marking_window_im(false);
 437 
 438   _short_lived_surv_rate_group->start_adding_regions();
 439   // also call this on any additional surv rate groups
 440 
 441   _free_regions_at_end_of_collection = _g1->num_free_regions();
 442   // Reset survivors SurvRateGroup.
 443   _survivor_surv_rate_group->reset();
 444   update_young_list_max_and_target_length();
 445   update_rs_lengths_prediction();
 446   cset_chooser()->clear();
 447 
 448   _bytes_allocated_in_old_since_last_gc = 0;
 449 
 450   record_pause(FullGC, _full_collection_start_sec, end_sec);
 451 }
 452 
 453 void G1DefaultPolicy::record_collection_pause_start(double start_time_sec) {
 454   // We only need to do this here as the policy will only be applied
 455   // to the GC we're about to start. so, no point is calculating this
 456   // every time we calculate / recalculate the target young length.
 457   update_survivors_policy();
 458 
 459   assert(_g1->used() == _g1->recalculate_used(),
 460          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 461          _g1->used(), _g1->recalculate_used());
 462 
 463   phase_times()->record_cur_collection_start_sec(start_time_sec);
 464   _pending_cards = _g1->pending_card_num();
 465 
 466   _collection_set->reset_bytes_used_before();
 467   _bytes_copied_during_gc = 0;
 468 
 469   collector_state()->set_last_gc_was_young(false);
 470 
 471   // do that for any other surv rate groups
 472   _short_lived_surv_rate_group->stop_adding_regions();
 473   _survivors_age_table.clear();
 474 
 475   assert(_g1->collection_set()->verify_young_ages(), "region age verification failed");
 476 }
 477 
 478 void G1DefaultPolicy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 479   collector_state()->set_during_marking(true);
 480   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 481   collector_state()->set_during_initial_mark_pause(false);
 482 }
 483 
 484 void G1DefaultPolicy::record_concurrent_mark_remark_start() {
 485   _mark_remark_start_sec = os::elapsedTime();
 486   collector_state()->set_during_marking(false);
 487 }
 488 
 489 void G1DefaultPolicy::record_concurrent_mark_remark_end() {
 490   double end_time_sec = os::elapsedTime();
 491   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 492   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 493   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 494 
 495   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 496 }
 497 
 498 void G1DefaultPolicy::record_concurrent_mark_cleanup_start() {
 499   _mark_cleanup_start_sec = os::elapsedTime();
 500 }
 501 
 502 void G1DefaultPolicy::record_concurrent_mark_cleanup_completed() {
 503   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 504                                                               "skip last young-only gc");
 505   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 506   // We skip the marking phase.
 507   if (!should_continue_with_reclaim) {
 508     abort_time_to_mixed_tracking();
 509   }
 510   collector_state()->set_in_marking_window(false);
 511 }
 512 
 513 double G1DefaultPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 514   return phase_times()->average_time_ms(phase);
 515 }
 516 
 517 double G1DefaultPolicy::young_other_time_ms() const {
 518   return phase_times()->young_cset_choice_time_ms() +
 519          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
 520 }
 521 
 522 double G1DefaultPolicy::non_young_other_time_ms() const {
 523   return phase_times()->non_young_cset_choice_time_ms() +
 524          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
 525 }
 526 
 527 double G1DefaultPolicy::other_time_ms(double pause_time_ms) const {
 528   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 529 }
 530 
 531 double G1DefaultPolicy::constant_other_time_ms(double pause_time_ms) const {
 532   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms();
 533 }
 534 
 535 CollectionSetChooser* G1DefaultPolicy::cset_chooser() const {
 536   return _collection_set->cset_chooser();
 537 }
 538 
 539 bool G1DefaultPolicy::about_to_start_mixed_phase() const {
 540   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 541 }
 542 
 543 bool G1DefaultPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 544   if (about_to_start_mixed_phase()) {
 545     return false;
 546   }
 547 
 548   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 549 
 550   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 551   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 552   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 553 
 554   bool result = false;
 555   if (marking_request_bytes > marking_initiating_used_threshold) {
 556     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
 557     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 558                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 559                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
 560   }
 561 
 562   return result;
 563 }
 564 
 565 // Anything below that is considered to be zero
 566 #define MIN_TIMER_GRANULARITY 0.0000001
 567 
 568 void G1DefaultPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
 569   double end_time_sec = os::elapsedTime();
 570 
 571   size_t cur_used_bytes = _g1->used();
 572   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 573   bool last_pause_included_initial_mark = false;
 574   bool update_stats = !_g1->evacuation_failed();
 575 
 576   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 577 
 578   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 579   if (last_pause_included_initial_mark) {
 580     record_concurrent_mark_init_end(0.0);
 581   } else {
 582     maybe_start_marking();
 583   }
 584 
 585   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 586   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 587     // This usually happens due to the timer not having the required
 588     // granularity. Some Linuxes are the usual culprits.
 589     // We'll just set it to something (arbitrarily) small.
 590     app_time_ms = 1.0;
 591   }
 592 
 593   if (update_stats) {
 594     // We maintain the invariant that all objects allocated by mutator
 595     // threads will be allocated out of eden regions. So, we can use
 596     // the eden region number allocated since the previous GC to
 597     // calculate the application's allocate rate. The only exception
 598     // to that is humongous objects that are allocated separately. But
 599     // given that humongous object allocations do not really affect
 600     // either the pause's duration nor when the next pause will take
 601     // place we can safely ignore them here.
 602     uint regions_allocated = _collection_set->eden_region_length();
 603     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 604     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 605 
 606     double interval_ms =
 607       (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
 608     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 609     _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
 610   }
 611 
 612   bool new_in_marking_window = collector_state()->in_marking_window();
 613   bool new_in_marking_window_im = false;
 614   if (last_pause_included_initial_mark) {
 615     new_in_marking_window = true;
 616     new_in_marking_window_im = true;
 617   }
 618 
 619   if (collector_state()->last_young_gc()) {
 620     // This is supposed to to be the "last young GC" before we start
 621     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
 622     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
 623 
 624     if (next_gc_should_be_mixed("start mixed GCs",
 625                                 "do not start mixed GCs")) {
 626       collector_state()->set_gcs_are_young(false);
 627     } else {
 628       // We aborted the mixed GC phase early.
 629       abort_time_to_mixed_tracking();
 630     }
 631 
 632     collector_state()->set_last_young_gc(false);
 633   }
 634 
 635   if (!collector_state()->last_gc_was_young()) {
 636     // This is a mixed GC. Here we decide whether to continue doing
 637     // mixed GCs or not.
 638     if (!next_gc_should_be_mixed("continue mixed GCs",
 639                                  "do not continue mixed GCs")) {
 640       collector_state()->set_gcs_are_young(true);
 641 
 642       maybe_start_marking();
 643     }
 644   }
 645 
 646   _short_lived_surv_rate_group->start_adding_regions();
 647   // Do that for any other surv rate groups
 648 
 649   double scan_hcc_time_ms = G1HotCardCache::default_use_cache() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
 650 
 651   if (update_stats) {
 652     double cost_per_card_ms = 0.0;
 653     if (_pending_cards > 0) {
 654       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms) / (double) _pending_cards;
 655       _analytics->report_cost_per_card_ms(cost_per_card_ms);
 656     }
 657     _analytics->report_cost_scan_hcc(scan_hcc_time_ms);
 658 
 659     double cost_per_entry_ms = 0.0;
 660     if (cards_scanned > 10) {
 661       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
 662       _analytics->report_cost_per_entry_ms(cost_per_entry_ms, collector_state()->last_gc_was_young());
 663     }
 664 
 665     if (_max_rs_lengths > 0) {
 666       double cards_per_entry_ratio =
 667         (double) cards_scanned / (double) _max_rs_lengths;
 668       _analytics->report_cards_per_entry_ratio(cards_per_entry_ratio, collector_state()->last_gc_was_young());
 669     }
 670 
 671     // This is defensive. For a while _max_rs_lengths could get
 672     // smaller than _recorded_rs_lengths which was causing
 673     // rs_length_diff to get very large and mess up the RSet length
 674     // predictions. The reason was unsafe concurrent updates to the
 675     // _inc_cset_recorded_rs_lengths field which the code below guards
 676     // against (see CR 7118202). This bug has now been fixed (see CR
 677     // 7119027). However, I'm still worried that
 678     // _inc_cset_recorded_rs_lengths might still end up somewhat
 679     // inaccurate. The concurrent refinement thread calculates an
 680     // RSet's length concurrently with other CR threads updating it
 681     // which might cause it to calculate the length incorrectly (if,
 682     // say, it's in mid-coarsening). So I'll leave in the defensive
 683     // conditional below just in case.
 684     size_t rs_length_diff = 0;
 685     size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
 686     if (_max_rs_lengths > recorded_rs_lengths) {
 687       rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
 688     }
 689     _analytics->report_rs_length_diff((double) rs_length_diff);
 690 
 691     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
 692     size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
 693     double cost_per_byte_ms = 0.0;
 694 
 695     if (copied_bytes > 0) {
 696       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
 697       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->in_marking_window());
 698     }
 699 
 700     if (_collection_set->young_region_length() > 0) {
 701       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 702                                                         _collection_set->young_region_length());
 703     }
 704 
 705     if (_collection_set->old_region_length() > 0) {
 706       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 707                                                             _collection_set->old_region_length());
 708     }
 709 
 710     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 711 
 712     _analytics->report_pending_cards((double) _pending_cards);
 713     _analytics->report_rs_lengths((double) _max_rs_lengths);
 714   }
 715 
 716   collector_state()->set_in_marking_window(new_in_marking_window);
 717   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
 718   _free_regions_at_end_of_collection = _g1->num_free_regions();
 719   // IHOP control wants to know the expected young gen length if it were not
 720   // restrained by the heap reserve. Using the actual length would make the
 721   // prediction too small and the limit the young gen every time we get to the
 722   // predicted target occupancy.
 723   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 724   update_rs_lengths_prediction();
 725 
 726   update_ihop_prediction(app_time_ms / 1000.0,
 727                          _bytes_allocated_in_old_since_last_gc,
 728                          last_unrestrained_young_length * HeapRegion::GrainBytes);
 729   _bytes_allocated_in_old_since_last_gc = 0;
 730 
 731   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
 732 
 733   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 734   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 735 
 736   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
 737     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 738                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
 739                                 update_rs_time_goal_ms, scan_hcc_time_ms);
 740 
 741     update_rs_time_goal_ms = 0;
 742   } else {
 743     update_rs_time_goal_ms -= scan_hcc_time_ms;
 744   }
 745   _g1->concurrent_g1_refine()->adjust(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
 746                                       phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
 747                                       update_rs_time_goal_ms);
 748 
 749   cset_chooser()->verify();
 750 }
 751 
 752 G1IHOPControl* G1DefaultPolicy::create_ihop_control(const G1Predictions* predictor){
 753   if (G1UseAdaptiveIHOP) {
 754     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 755                                      predictor,
 756                                      G1ReservePercent,
 757                                      G1HeapWastePercent);
 758   } else {
 759     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 760   }
 761 }
 762 
 763 void G1DefaultPolicy::update_ihop_prediction(double mutator_time_s,
 764                                       size_t mutator_alloc_bytes,
 765                                       size_t young_gen_size) {
 766   // Always try to update IHOP prediction. Even evacuation failures give information
 767   // about e.g. whether to start IHOP earlier next time.
 768 
 769   // Avoid using really small application times that might create samples with
 770   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 771   double const min_valid_time = 1e-6;
 772 
 773   bool report = false;
 774 
 775   double marking_to_mixed_time = -1.0;
 776   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
 777     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 778     assert(marking_to_mixed_time > 0.0,
 779            "Initial mark to mixed time must be larger than zero but is %.3f",
 780            marking_to_mixed_time);
 781     if (marking_to_mixed_time > min_valid_time) {
 782       _ihop_control->update_marking_length(marking_to_mixed_time);
 783       report = true;
 784     }
 785   }
 786 
 787   // As an approximation for the young gc promotion rates during marking we use
 788   // all of them. In many applications there are only a few if any young gcs during
 789   // marking, which makes any prediction useless. This increases the accuracy of the
 790   // prediction.
 791   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
 792     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 793     report = true;
 794   }
 795 
 796   if (report) {
 797     report_ihop_statistics();
 798   }
 799 }
 800 
 801 void G1DefaultPolicy::report_ihop_statistics() {
 802   _ihop_control->print();
 803 }
 804 
 805 void G1DefaultPolicy::print_phases() {
 806   phase_times()->print();
 807 }
 808 
 809 double G1DefaultPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
 810   TruncatedSeq* seq = surv_rate_group->get_seq(age);
 811   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
 812   double pred = _predictor.get_new_prediction(seq);
 813   if (pred > 1.0) {
 814     pred = 1.0;
 815   }
 816   return pred;
 817 }
 818 
 819 double G1DefaultPolicy::accum_yg_surv_rate_pred(int age) const {
 820   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 821 }
 822 
 823 double G1DefaultPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
 824                                               size_t scanned_cards) const {
 825   return
 826     _analytics->predict_rs_update_time_ms(pending_cards) +
 827     _analytics->predict_rs_scan_time_ms(scanned_cards, collector_state()->gcs_are_young()) +
 828     _analytics->predict_constant_other_time_ms();
 829 }
 830 
 831 double G1DefaultPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
 832   size_t rs_length = _analytics->predict_rs_lengths() + _analytics->predict_rs_length_diff();
 833   size_t card_num = _analytics->predict_card_num(rs_length, collector_state()->gcs_are_young());
 834   return predict_base_elapsed_time_ms(pending_cards, card_num);
 835 }
 836 
 837 size_t G1DefaultPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
 838   size_t bytes_to_copy;
 839   if (hr->is_marked())
 840     bytes_to_copy = hr->max_live_bytes();
 841   else {
 842     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
 843     int age = hr->age_in_surv_rate_group();
 844     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
 845     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
 846   }
 847   return bytes_to_copy;
 848 }
 849 
 850 double G1DefaultPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
 851                                                 bool for_young_gc) const {
 852   size_t rs_length = hr->rem_set()->occupied();
 853   // Predicting the number of cards is based on which type of GC
 854   // we're predicting for.
 855   size_t card_num = _analytics->predict_card_num(rs_length, for_young_gc);
 856   size_t bytes_to_copy = predict_bytes_to_copy(hr);
 857 
 858   double region_elapsed_time_ms =
 859     _analytics->predict_rs_scan_time_ms(card_num, collector_state()->gcs_are_young()) +
 860     _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->during_concurrent_mark());
 861 
 862   // The prediction of the "other" time for this region is based
 863   // upon the region type and NOT the GC type.
 864   if (hr->is_young()) {
 865     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
 866   } else {
 867     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
 868   }
 869   return region_elapsed_time_ms;
 870 }
 871 
 872 bool G1DefaultPolicy::should_allocate_mutator_region() const {
 873   uint young_list_length = _g1->young_regions_count();
 874   uint young_list_target_length = _young_list_target_length;
 875   return young_list_length < young_list_target_length;
 876 }
 877 
 878 bool G1DefaultPolicy::can_expand_young_list() const {
 879   uint young_list_length = _g1->young_regions_count();
 880   uint young_list_max_length = _young_list_max_length;
 881   return young_list_length < young_list_max_length;
 882 }
 883 
 884 bool G1DefaultPolicy::adaptive_young_list_length() const {
 885   return _young_gen_sizer.adaptive_young_list_length();
 886 }
 887 
 888 size_t G1DefaultPolicy::desired_survivor_size() const {
 889   size_t const survivor_capacity = HeapRegion::GrainWords * _max_survivor_regions;
 890   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
 891 }
 892 
 893 void G1DefaultPolicy::print_age_table() {
 894   _survivors_age_table.print_age_table(_tenuring_threshold);
 895 }
 896 
 897 void G1DefaultPolicy::update_max_gc_locker_expansion() {
 898   uint expansion_region_num = 0;
 899   if (GCLockerEdenExpansionPercent > 0) {
 900     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
 901     double expansion_region_num_d = perc * (double) _young_list_target_length;
 902     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
 903     // less than 1.0) we'll get 1.
 904     expansion_region_num = (uint) ceil(expansion_region_num_d);
 905   } else {
 906     assert(expansion_region_num == 0, "sanity");
 907   }
 908   _young_list_max_length = _young_list_target_length + expansion_region_num;
 909   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
 910 }
 911 
 912 // Calculates survivor space parameters.
 913 void G1DefaultPolicy::update_survivors_policy() {
 914   double max_survivor_regions_d =
 915                  (double) _young_list_target_length / (double) SurvivorRatio;
 916   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
 917   // smaller than 1.0) we'll get 1.
 918   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
 919 
 920   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(desired_survivor_size());
 921   if (UsePerfData) {
 922     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
 923     _policy_counters->desired_survivor_size()->set_value(desired_survivor_size() * oopSize);
 924   }
 925 }
 926 
 927 bool G1DefaultPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
 928   // We actually check whether we are marking here and not if we are in a
 929   // reclamation phase. This means that we will schedule a concurrent mark
 930   // even while we are still in the process of reclaiming memory.
 931   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
 932   if (!during_cycle) {
 933     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
 934     collector_state()->set_initiate_conc_mark_if_possible(true);
 935     return true;
 936   } else {
 937     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
 938     return false;
 939   }
 940 }
 941 
 942 void G1DefaultPolicy::initiate_conc_mark() {
 943   collector_state()->set_during_initial_mark_pause(true);
 944   collector_state()->set_initiate_conc_mark_if_possible(false);
 945 }
 946 
 947 void G1DefaultPolicy::decide_on_conc_mark_initiation() {
 948   // We are about to decide on whether this pause will be an
 949   // initial-mark pause.
 950 
 951   // First, collector_state()->during_initial_mark_pause() should not be already set. We
 952   // will set it here if we have to. However, it should be cleared by
 953   // the end of the pause (it's only set for the duration of an
 954   // initial-mark pause).
 955   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
 956 
 957   if (collector_state()->initiate_conc_mark_if_possible()) {
 958     // We had noticed on a previous pause that the heap occupancy has
 959     // gone over the initiating threshold and we should start a
 960     // concurrent marking cycle. So we might initiate one.
 961 
 962     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
 963       // Initiate a new initial mark if there is no marking or reclamation going on.
 964       initiate_conc_mark();
 965       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
 966     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
 967       // Initiate a user requested initial mark. An initial mark must be young only
 968       // GC, so the collector state must be updated to reflect this.
 969       collector_state()->set_gcs_are_young(true);
 970       collector_state()->set_last_young_gc(false);
 971 
 972       abort_time_to_mixed_tracking();
 973       initiate_conc_mark();
 974       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
 975     } else {
 976       // The concurrent marking thread is still finishing up the
 977       // previous cycle. If we start one right now the two cycles
 978       // overlap. In particular, the concurrent marking thread might
 979       // be in the process of clearing the next marking bitmap (which
 980       // we will use for the next cycle if we start one). Starting a
 981       // cycle now will be bad given that parts of the marking
 982       // information might get cleared by the marking thread. And we
 983       // cannot wait for the marking thread to finish the cycle as it
 984       // periodically yields while clearing the next marking bitmap
 985       // and, if it's in a yield point, it's waiting for us to
 986       // finish. So, at this point we will not start a cycle and we'll
 987       // let the concurrent marking thread complete the last one.
 988       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
 989     }
 990   }
 991 }
 992 
 993 void G1DefaultPolicy::record_concurrent_mark_cleanup_end() {
 994   cset_chooser()->rebuild(_g1->workers(), _g1->num_regions());
 995 
 996   double end_sec = os::elapsedTime();
 997   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
 998   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
 999   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1000 
1001   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1002 }
1003 
1004 double G1DefaultPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
1005   // Returns the given amount of reclaimable bytes (that represents
1006   // the amount of reclaimable space still to be collected) as a
1007   // percentage of the current heap capacity.
1008   size_t capacity_bytes = _g1->capacity();
1009   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1010 }
1011 
1012 void G1DefaultPolicy::maybe_start_marking() {
1013   if (need_to_start_conc_mark("end of GC")) {
1014     // Note: this might have already been set, if during the last
1015     // pause we decided to start a cycle but at the beginning of
1016     // this pause we decided to postpone it. That's OK.
1017     collector_state()->set_initiate_conc_mark_if_possible(true);
1018   }
1019 }
1020 
1021 G1DefaultPolicy::PauseKind G1DefaultPolicy::young_gc_pause_kind() const {
1022   assert(!collector_state()->full_collection(), "must be");
1023   if (collector_state()->during_initial_mark_pause()) {
1024     assert(collector_state()->last_gc_was_young(), "must be");
1025     assert(!collector_state()->last_young_gc(), "must be");
1026     return InitialMarkGC;
1027   } else if (collector_state()->last_young_gc()) {
1028     assert(!collector_state()->during_initial_mark_pause(), "must be");
1029     assert(collector_state()->last_gc_was_young(), "must be");
1030     return LastYoungGC;
1031   } else if (!collector_state()->last_gc_was_young()) {
1032     assert(!collector_state()->during_initial_mark_pause(), "must be");
1033     assert(!collector_state()->last_young_gc(), "must be");
1034     return MixedGC;
1035   } else {
1036     assert(collector_state()->last_gc_was_young(), "must be");
1037     assert(!collector_state()->during_initial_mark_pause(), "must be");
1038     assert(!collector_state()->last_young_gc(), "must be");
1039     return YoungOnlyGC;
1040   }
1041 }
1042 
1043 void G1DefaultPolicy::record_pause(PauseKind kind, double start, double end) {
1044   // Manage the MMU tracker. For some reason it ignores Full GCs.
1045   if (kind != FullGC) {
1046     _mmu_tracker->add_pause(start, end);
1047   }
1048   // Manage the mutator time tracking from initial mark to first mixed gc.
1049   switch (kind) {
1050     case FullGC:
1051       abort_time_to_mixed_tracking();
1052       break;
1053     case Cleanup:
1054     case Remark:
1055     case YoungOnlyGC:
1056     case LastYoungGC:
1057       _initial_mark_to_mixed.add_pause(end - start);
1058       break;
1059     case InitialMarkGC:
1060       _initial_mark_to_mixed.record_initial_mark_end(end);
1061       break;
1062     case MixedGC:
1063       _initial_mark_to_mixed.record_mixed_gc_start(start);
1064       break;
1065     default:
1066       ShouldNotReachHere();
1067   }
1068 }
1069 
1070 void G1DefaultPolicy::abort_time_to_mixed_tracking() {
1071   _initial_mark_to_mixed.reset();
1072 }
1073 
1074 bool G1DefaultPolicy::next_gc_should_be_mixed(const char* true_action_str,
1075                                        const char* false_action_str) const {
1076   if (cset_chooser()->is_empty()) {
1077     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1078     return false;
1079   }
1080 
1081   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1082   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
1083   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1084   double threshold = (double) G1HeapWastePercent;
1085   if (reclaimable_perc <= threshold) {
1086     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1087                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1088     return false;
1089   }
1090   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1091                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1092   return true;
1093 }
1094 
1095 uint G1DefaultPolicy::calc_min_old_cset_length() const {
1096   // The min old CSet region bound is based on the maximum desired
1097   // number of mixed GCs after a cycle. I.e., even if some old regions
1098   // look expensive, we should add them to the CSet anyway to make
1099   // sure we go through the available old regions in no more than the
1100   // maximum desired number of mixed GCs.
1101   //
1102   // The calculation is based on the number of marked regions we added
1103   // to the CSet chooser in the first place, not how many remain, so
1104   // that the result is the same during all mixed GCs that follow a cycle.
1105 
1106   const size_t region_num = (size_t) cset_chooser()->length();
1107   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1108   size_t result = region_num / gc_num;
1109   // emulate ceiling
1110   if (result * gc_num < region_num) {
1111     result += 1;
1112   }
1113   return (uint) result;
1114 }
1115 
1116 uint G1DefaultPolicy::calc_max_old_cset_length() const {
1117   // The max old CSet region bound is based on the threshold expressed
1118   // as a percentage of the heap size. I.e., it should bound the
1119   // number of old regions added to the CSet irrespective of how many
1120   // of them are available.
1121 
1122   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1123   const size_t region_num = g1h->num_regions();
1124   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1125   size_t result = region_num * perc / 100;
1126   // emulate ceiling
1127   if (100 * result < region_num * perc) {
1128     result += 1;
1129   }
1130   return (uint) result;
1131 }
1132 
1133 void G1DefaultPolicy::finalize_collection_set(double target_pause_time_ms, G1SurvivorRegions* survivor) {
1134   double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms, survivor);
1135   _collection_set->finalize_old_part(time_remaining_ms);
1136 }
1137 
1138 void G1DefaultPolicy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1139 
1140   // Add survivor regions to SurvRateGroup.
1141   note_start_adding_survivor_regions();
1142   finished_recalculating_age_indexes(true /* is_survivors */);
1143 
1144   HeapRegion* last = NULL;
1145   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1146        it != survivors->regions()->end();
1147        ++it) {
1148     HeapRegion* curr = *it;
1149     set_region_survivor(curr);
1150 
1151     // The region is a non-empty survivor so let's add it to
1152     // the incremental collection set for the next evacuation
1153     // pause.
1154     _collection_set->add_survivor_regions(curr);
1155 
1156     last = curr;
1157   }
1158   note_stop_adding_survivor_regions();
1159 
1160   // Don't clear the survivor list handles until the start of
1161   // the next evacuation pause - we need it in order to re-tag
1162   // the survivor regions from this evacuation pause as 'young'
1163   // at the start of the next.
1164 
1165   finished_recalculating_age_indexes(false /* is_survivors */);
1166 }