1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  27 
  28 #include "classfile/javaClasses.hpp"
  29 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp"
  30 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  31 #include "gc/g1/heapRegionSet.hpp"
  32 #include "gc/shared/taskqueue.hpp"
  33 
  34 class G1CollectedHeap;
  35 class G1CMBitMap;
  36 class G1CMTask;
  37 class G1ConcurrentMark;
  38 class ConcurrentGCTimer;
  39 class G1OldTracer;
  40 class G1SurvivorRegions;
  41 
  42 #ifdef _MSC_VER
  43 #pragma warning(push)
  44 // warning C4522: multiple assignment operators specified
  45 #pragma warning(disable:4522)
  46 #endif
  47 
  48 // This is a container class for either an oop or a continuation address for
  49 // mark stack entries. Both are pushed onto the mark stack.
  50 class G1TaskQueueEntry VALUE_OBJ_CLASS_SPEC {
  51 private:
  52   void* _holder;
  53 
  54   static const uintptr_t ArraySliceBit = 1;
  55 public:
  56   G1TaskQueueEntry() : _holder(NULL) { }
  57   G1TaskQueueEntry(oop obj) : _holder(obj) { }
  58   G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { }
  59 
  60   G1TaskQueueEntry& operator=(const G1TaskQueueEntry& t) {
  61     _holder = t._holder;
  62     return *this;
  63   }
  64 
  65   volatile G1TaskQueueEntry& operator=(const volatile G1TaskQueueEntry& t) volatile {
  66     _holder = t._holder;
  67     return *this;
  68   }
  69 
  70   oop obj() const {
  71     assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder));
  72     return (oop)_holder;
  73   }
  74 
  75   HeapWord* slice() const {
  76     assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder));
  77     return (HeapWord*)((uintptr_t)_holder &~ ArraySliceBit);
  78   }
  79 
  80   bool is_oop() const { return !is_array_slice(); }
  81   bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; }
  82   bool is_null() const { return _holder == NULL; }
  83 };
  84 
  85 #ifdef _MSC_VER
  86 #pragma warning(pop)
  87 #endif
  88 
  89 typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue;
  90 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
  91 
  92 // Closure used by CM during concurrent reference discovery
  93 // and reference processing (during remarking) to determine
  94 // if a particular object is alive. It is primarily used
  95 // to determine if referents of discovered reference objects
  96 // are alive. An instance is also embedded into the
  97 // reference processor as the _is_alive_non_header field
  98 class G1CMIsAliveClosure: public BoolObjectClosure {
  99   G1CollectedHeap* _g1;
 100  public:
 101   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
 102 
 103   bool do_object_b(oop obj);
 104 };
 105 
 106 // A generic CM bit map.  This is essentially a wrapper around the BitMap
 107 // class, with one bit per (1<<_shifter) HeapWords.
 108 
 109 class G1CMBitMapRO VALUE_OBJ_CLASS_SPEC {
 110  protected:
 111   HeapWord*  _bmStartWord; // base address of range covered by map
 112   size_t     _bmWordSize;  // map size (in #HeapWords covered)
 113   const int  _shifter;     // map to char or bit
 114   BitMapView _bm;          // the bit map itself
 115 
 116  public:
 117   // constructor
 118   G1CMBitMapRO(int shifter);
 119 
 120   // inquiries
 121   HeapWord* startWord()   const { return _bmStartWord; }
 122   // the following is one past the last word in space
 123   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
 124 
 125   // read marks
 126 
 127   bool isMarked(HeapWord* addr) const {
 128     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 129            "outside underlying space?");
 130     return _bm.at(heapWordToOffset(addr));
 131   }
 132 
 133   // iteration
 134   inline bool iterate(BitMapClosure* cl, MemRegion mr);
 135 
 136   // Return the address corresponding to the next marked bit at or after
 137   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
 138   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
 139   HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
 140                                      const HeapWord* limit = NULL) const;
 141 
 142   // conversion utilities
 143   HeapWord* offsetToHeapWord(size_t offset) const {
 144     return _bmStartWord + (offset << _shifter);
 145   }
 146   size_t heapWordToOffset(const HeapWord* addr) const {
 147     return pointer_delta(addr, _bmStartWord) >> _shifter;
 148   }
 149 
 150   // The argument addr should be the start address of a valid object
 151   inline HeapWord* nextObject(HeapWord* addr);
 152 
 153   void print_on_error(outputStream* st, const char* prefix) const;
 154 
 155   // debugging
 156   NOT_PRODUCT(bool covers(MemRegion rs) const;)
 157 };
 158 
 159 class G1CMBitMapMappingChangedListener : public G1MappingChangedListener {
 160  private:
 161   G1CMBitMap* _bm;
 162  public:
 163   G1CMBitMapMappingChangedListener() : _bm(NULL) {}
 164 
 165   void set_bitmap(G1CMBitMap* bm) { _bm = bm; }
 166 
 167   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 168 };
 169 
 170 class G1CMBitMap : public G1CMBitMapRO {
 171  private:
 172   G1CMBitMapMappingChangedListener _listener;
 173 
 174  public:
 175   static size_t compute_size(size_t heap_size);
 176   // Returns the amount of bytes on the heap between two marks in the bitmap.
 177   static size_t mark_distance();
 178   // Returns how many bytes (or bits) of the heap a single byte (or bit) of the
 179   // mark bitmap corresponds to. This is the same as the mark distance above.
 180   static size_t heap_map_factor() {
 181     return mark_distance();
 182   }
 183 
 184   G1CMBitMap() : G1CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); }
 185 
 186   // Initializes the underlying BitMap to cover the given area.
 187   void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
 188 
 189   // Write marks.
 190   inline void mark(HeapWord* addr);
 191   inline void clear(HeapWord* addr);
 192   inline bool parMark(HeapWord* addr);
 193 
 194   void clear_range(MemRegion mr);
 195 };
 196 
 197 // Represents the overflow mark stack used by concurrent marking.
 198 //
 199 // Stores oops in a huge buffer in virtual memory that is always fully committed.
 200 // Resizing may only happen during a STW pause when the stack is empty.
 201 //
 202 // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark
 203 // stack memory is split into evenly sized chunks of oops. Users can only
 204 // add or remove entries on that basis.
 205 // Chunks are filled in increasing address order. Not completely filled chunks
 206 // have a NULL element as a terminating element.
 207 //
 208 // Every chunk has a header containing a single pointer element used for memory
 209 // management. This wastes some space, but is negligible (< .1% with current sizing).
 210 //
 211 // Memory management is done using a mix of tracking a high water-mark indicating
 212 // that all chunks at a lower address are valid chunks, and a singly linked free
 213 // list connecting all empty chunks.
 214 class G1CMMarkStack VALUE_OBJ_CLASS_SPEC {
 215 public:
 216   // Number of oops that can fit in a single chunk.
 217   static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */;
 218 private:
 219   struct OopChunk {
 220     OopChunk* next;
 221     G1TaskQueueEntry data[EntriesPerChunk];
 222   };
 223 
 224   size_t _max_chunk_capacity;    // Maximum number of OopChunk elements on the stack.
 225 
 226   OopChunk* _base;               // Bottom address of allocated memory area.
 227   size_t _chunk_capacity;        // Current maximum number of OopChunk elements.
 228 
 229   char _pad0[DEFAULT_CACHE_LINE_SIZE];
 230   OopChunk* volatile _free_list;  // Linked list of free chunks that can be allocated by users.
 231   char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(OopChunk*)];
 232   OopChunk* volatile _chunk_list; // List of chunks currently containing data.
 233   volatile size_t _chunks_in_chunk_list;
 234   char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(OopChunk*) - sizeof(size_t)];
 235 
 236   volatile size_t _hwm;          // High water mark within the reserved space.
 237   char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)];
 238 
 239   // Allocate a new chunk from the reserved memory, using the high water mark. Returns
 240   // NULL if out of memory.
 241   OopChunk* allocate_new_chunk();
 242 
 243   volatile bool _out_of_memory;
 244 
 245   // Atomically add the given chunk to the list.
 246   void add_chunk_to_list(OopChunk* volatile* list, OopChunk* elem);
 247   // Atomically remove and return a chunk from the given list. Returns NULL if the
 248   // list is empty.
 249   OopChunk* remove_chunk_from_list(OopChunk* volatile* list);
 250 
 251   void add_chunk_to_chunk_list(OopChunk* elem);
 252   void add_chunk_to_free_list(OopChunk* elem);
 253 
 254   OopChunk* remove_chunk_from_chunk_list();
 255   OopChunk* remove_chunk_from_free_list();
 256 
 257   bool  _should_expand;
 258 
 259   // Resizes the mark stack to the given new capacity. Releases any previous
 260   // memory if successful.
 261   bool resize(size_t new_capacity);
 262 
 263  public:
 264   G1CMMarkStack();
 265   ~G1CMMarkStack();
 266 
 267   // Alignment and minimum capacity of this mark stack in number of oops.
 268   static size_t capacity_alignment();
 269 
 270   // Allocate and initialize the mark stack with the given number of oops.
 271   bool initialize(size_t initial_capacity, size_t max_capacity);
 272 
 273   // Pushes the given buffer containing at most OopsPerChunk elements on the mark
 274   // stack. If less than OopsPerChunk elements are to be pushed, the array must
 275   // be terminated with a NULL.
 276   // Returns whether the buffer contents were successfully pushed to the global mark
 277   // stack.
 278   bool par_push_chunk(G1TaskQueueEntry* buffer);
 279 
 280   // Pops a chunk from this mark stack, copying them into the given buffer. This
 281   // chunk may contain up to OopsPerChunk elements. If there are less, the last
 282   // element in the array is a NULL pointer.
 283   bool par_pop_chunk(G1TaskQueueEntry* buffer);
 284 
 285   // Return whether the chunk list is empty. Racy due to unsynchronized access to
 286   // _chunk_list.
 287   bool is_empty() const { return _chunk_list == NULL; }
 288 
 289   size_t capacity() const  { return _chunk_capacity; }
 290 
 291   bool is_out_of_memory() const { return _out_of_memory; }
 292   void clear_out_of_memory() { _out_of_memory = false; }
 293 
 294   bool should_expand() const { return _should_expand; }
 295   void set_should_expand(bool value) { _should_expand = value; }
 296 
 297   // Expand the stack, typically in response to an overflow condition
 298   void expand();
 299 
 300   // Return the approximate number of oops on this mark stack. Racy due to
 301   // unsynchronized access to _chunks_in_chunk_list.
 302   size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; }
 303 
 304   void set_empty();
 305 
 306   // Apply Fn to every oop on the mark stack. The mark stack must not
 307   // be modified while iterating.
 308   template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN;
 309 };
 310 
 311 // Root Regions are regions that are not empty at the beginning of a
 312 // marking cycle and which we might collect during an evacuation pause
 313 // while the cycle is active. Given that, during evacuation pauses, we
 314 // do not copy objects that are explicitly marked, what we have to do
 315 // for the root regions is to scan them and mark all objects reachable
 316 // from them. According to the SATB assumptions, we only need to visit
 317 // each object once during marking. So, as long as we finish this scan
 318 // before the next evacuation pause, we can copy the objects from the
 319 // root regions without having to mark them or do anything else to them.
 320 //
 321 // Currently, we only support root region scanning once (at the start
 322 // of the marking cycle) and the root regions are all the survivor
 323 // regions populated during the initial-mark pause.
 324 class G1CMRootRegions VALUE_OBJ_CLASS_SPEC {
 325 private:
 326   const G1SurvivorRegions* _survivors;
 327   G1ConcurrentMark*        _cm;
 328 
 329   volatile bool            _scan_in_progress;
 330   volatile bool            _should_abort;
 331   volatile int             _claimed_survivor_index;
 332 
 333   void notify_scan_done();
 334 
 335 public:
 336   G1CMRootRegions();
 337   // We actually do most of the initialization in this method.
 338   void init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm);
 339 
 340   // Reset the claiming / scanning of the root regions.
 341   void prepare_for_scan();
 342 
 343   // Forces get_next() to return NULL so that the iteration aborts early.
 344   void abort() { _should_abort = true; }
 345 
 346   // Return true if the CM thread are actively scanning root regions,
 347   // false otherwise.
 348   bool scan_in_progress() { return _scan_in_progress; }
 349 
 350   // Claim the next root region to scan atomically, or return NULL if
 351   // all have been claimed.
 352   HeapRegion* claim_next();
 353 
 354   // The number of root regions to scan.
 355   uint num_root_regions() const;
 356 
 357   void cancel_scan();
 358 
 359   // Flag that we're done with root region scanning and notify anyone
 360   // who's waiting on it. If aborted is false, assume that all regions
 361   // have been claimed.
 362   void scan_finished();
 363 
 364   // If CM threads are still scanning root regions, wait until they
 365   // are done. Return true if we had to wait, false otherwise.
 366   bool wait_until_scan_finished();
 367 };
 368 
 369 class ConcurrentMarkThread;
 370 
 371 class G1ConcurrentMark: public CHeapObj<mtGC> {
 372   friend class ConcurrentMarkThread;
 373   friend class G1ParNoteEndTask;
 374   friend class G1VerifyLiveDataClosure;
 375   friend class G1CMRefProcTaskProxy;
 376   friend class G1CMRefProcTaskExecutor;
 377   friend class G1CMKeepAliveAndDrainClosure;
 378   friend class G1CMDrainMarkingStackClosure;
 379   friend class G1CMBitMapClosure;
 380   friend class G1CMConcurrentMarkingTask;
 381   friend class G1CMRemarkTask;
 382   friend class G1CMTask;
 383 
 384 protected:
 385   ConcurrentMarkThread* _cmThread;   // The thread doing the work
 386   G1CollectedHeap*      _g1h;        // The heap
 387   uint                  _parallel_marking_threads; // The number of marking
 388                                                    // threads we're using
 389   uint                  _max_parallel_marking_threads; // Max number of marking
 390                                                        // threads we'll ever use
 391   double                _sleep_factor; // How much we have to sleep, with
 392                                        // respect to the work we just did, to
 393                                        // meet the marking overhead goal
 394   double                _marking_task_overhead; // Marking target overhead for
 395                                                 // a single task
 396 
 397   FreeRegionList        _cleanup_list;
 398 
 399   // Concurrent marking support structures
 400   G1CMBitMap              _markBitMap1;
 401   G1CMBitMap              _markBitMap2;
 402   G1CMBitMapRO*           _prevMarkBitMap; // Completed mark bitmap
 403   G1CMBitMap*             _nextMarkBitMap; // Under-construction mark bitmap
 404 
 405   // Heap bounds
 406   HeapWord*               _heap_start;
 407   HeapWord*               _heap_end;
 408 
 409   // Root region tracking and claiming
 410   G1CMRootRegions         _root_regions;
 411 
 412   // For gray objects
 413   G1CMMarkStack           _global_mark_stack; // Grey objects behind global finger
 414   HeapWord* volatile      _finger;  // The global finger, region aligned,
 415                                     // always points to the end of the
 416                                     // last claimed region
 417 
 418   // Marking tasks
 419   uint                    _max_worker_id;// Maximum worker id
 420   uint                    _active_tasks; // Task num currently active
 421   G1CMTask**              _tasks;        // Task queue array (max_worker_id len)
 422   G1CMTaskQueueSet*       _task_queues;  // Task queue set
 423   ParallelTaskTerminator  _terminator;   // For termination
 424 
 425   // Two sync barriers that are used to synchronize tasks when an
 426   // overflow occurs. The algorithm is the following. All tasks enter
 427   // the first one to ensure that they have all stopped manipulating
 428   // the global data structures. After they exit it, they re-initialize
 429   // their data structures and task 0 re-initializes the global data
 430   // structures. Then, they enter the second sync barrier. This
 431   // ensure, that no task starts doing work before all data
 432   // structures (local and global) have been re-initialized. When they
 433   // exit it, they are free to start working again.
 434   WorkGangBarrierSync     _first_overflow_barrier_sync;
 435   WorkGangBarrierSync     _second_overflow_barrier_sync;
 436 
 437   // This is set by any task, when an overflow on the global data
 438   // structures is detected
 439   volatile bool           _has_overflown;
 440   // True: marking is concurrent, false: we're in remark
 441   volatile bool           _concurrent;
 442   // Set at the end of a Full GC so that marking aborts
 443   volatile bool           _has_aborted;
 444 
 445   // Used when remark aborts due to an overflow to indicate that
 446   // another concurrent marking phase should start
 447   volatile bool           _restart_for_overflow;
 448 
 449   // This is true from the very start of concurrent marking until the
 450   // point when all the tasks complete their work. It is really used
 451   // to determine the points between the end of concurrent marking and
 452   // time of remark.
 453   volatile bool           _concurrent_marking_in_progress;
 454 
 455   ConcurrentGCTimer*      _gc_timer_cm;
 456 
 457   G1OldTracer*            _gc_tracer_cm;
 458 
 459   // All of these times are in ms
 460   NumberSeq _init_times;
 461   NumberSeq _remark_times;
 462   NumberSeq _remark_mark_times;
 463   NumberSeq _remark_weak_ref_times;
 464   NumberSeq _cleanup_times;
 465   double    _total_counting_time;
 466   double    _total_rs_scrub_time;
 467 
 468   double*   _accum_task_vtime;   // Accumulated task vtime
 469 
 470   WorkGang* _parallel_workers;
 471 
 472   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
 473   void weakRefsWork(bool clear_all_soft_refs);
 474 
 475   void swapMarkBitMaps();
 476 
 477   // It resets the global marking data structures, as well as the
 478   // task local ones; should be called during initial mark.
 479   void reset();
 480 
 481   // Resets all the marking data structures. Called when we have to restart
 482   // marking or when marking completes (via set_non_marking_state below).
 483   void reset_marking_state(bool clear_overflow = true);
 484 
 485   // We do this after we're done with marking so that the marking data
 486   // structures are initialized to a sensible and predictable state.
 487   void set_non_marking_state();
 488 
 489   // Called to indicate how many threads are currently active.
 490   void set_concurrency(uint active_tasks);
 491 
 492   // It should be called to indicate which phase we're in (concurrent
 493   // mark or remark) and how many threads are currently active.
 494   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 495 
 496   // Prints all gathered CM-related statistics
 497   void print_stats();
 498 
 499   bool cleanup_list_is_empty() {
 500     return _cleanup_list.is_empty();
 501   }
 502 
 503   // Accessor methods
 504   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
 505   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
 506   double sleep_factor()                     { return _sleep_factor; }
 507   double marking_task_overhead()            { return _marking_task_overhead;}
 508 
 509   HeapWord*               finger()          { return _finger;   }
 510   bool                    concurrent()      { return _concurrent; }
 511   uint                    active_tasks()    { return _active_tasks; }
 512   ParallelTaskTerminator* terminator()      { return &_terminator; }
 513 
 514   // It claims the next available region to be scanned by a marking
 515   // task/thread. It might return NULL if the next region is empty or
 516   // we have run out of regions. In the latter case, out_of_regions()
 517   // determines whether we've really run out of regions or the task
 518   // should call claim_region() again. This might seem a bit
 519   // awkward. Originally, the code was written so that claim_region()
 520   // either successfully returned with a non-empty region or there
 521   // were no more regions to be claimed. The problem with this was
 522   // that, in certain circumstances, it iterated over large chunks of
 523   // the heap finding only empty regions and, while it was working, it
 524   // was preventing the calling task to call its regular clock
 525   // method. So, this way, each task will spend very little time in
 526   // claim_region() and is allowed to call the regular clock method
 527   // frequently.
 528   HeapRegion* claim_region(uint worker_id);
 529 
 530   // It determines whether we've run out of regions to scan. Note that
 531   // the finger can point past the heap end in case the heap was expanded
 532   // to satisfy an allocation without doing a GC. This is fine, because all
 533   // objects in those regions will be considered live anyway because of
 534   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 535   bool        out_of_regions() { return _finger >= _heap_end; }
 536 
 537   // Returns the task with the given id
 538   G1CMTask* task(int id) {
 539     assert(0 <= id && id < (int) _active_tasks,
 540            "task id not within active bounds");
 541     return _tasks[id];
 542   }
 543 
 544   // Returns the task queue with the given id
 545   G1CMTaskQueue* task_queue(int id) {
 546     assert(0 <= id && id < (int) _active_tasks,
 547            "task queue id not within active bounds");
 548     return (G1CMTaskQueue*) _task_queues->queue(id);
 549   }
 550 
 551   // Returns the task queue set
 552   G1CMTaskQueueSet* task_queues()  { return _task_queues; }
 553 
 554   // Access / manipulation of the overflow flag which is set to
 555   // indicate that the global stack has overflown
 556   bool has_overflown()           { return _has_overflown; }
 557   void set_has_overflown()       { _has_overflown = true; }
 558   void clear_has_overflown()     { _has_overflown = false; }
 559   bool restart_for_overflow()    { return _restart_for_overflow; }
 560 
 561   // Methods to enter the two overflow sync barriers
 562   void enter_first_sync_barrier(uint worker_id);
 563   void enter_second_sync_barrier(uint worker_id);
 564 
 565   // Card index of the bottom of the G1 heap. Used for biasing indices into
 566   // the card bitmaps.
 567   intptr_t _heap_bottom_card_num;
 568 
 569   // Set to true when initialization is complete
 570   bool _completed_initialization;
 571 
 572   // end_timer, true to end gc timer after ending concurrent phase.
 573   void register_concurrent_phase_end_common(bool end_timer);
 574 
 575   // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
 576   // true, periodically insert checks to see if this method should exit prematurely.
 577   void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
 578 public:
 579   // Manipulation of the global mark stack.
 580   // The push and pop operations are used by tasks for transfers
 581   // between task-local queues and the global mark stack.
 582   bool mark_stack_push(G1TaskQueueEntry* arr) {
 583     if (!_global_mark_stack.par_push_chunk(arr)) {
 584       set_has_overflown();
 585       return false;
 586     }
 587     return true;
 588   }
 589   bool mark_stack_pop(G1TaskQueueEntry* arr) {
 590     return _global_mark_stack.par_pop_chunk(arr);
 591   }
 592   size_t mark_stack_size()                { return _global_mark_stack.size(); }
 593   size_t partial_mark_stack_size_target() { return _global_mark_stack.capacity()/3; }
 594   bool mark_stack_overflow()              { return _global_mark_stack.is_out_of_memory(); }
 595   bool mark_stack_empty()                 { return _global_mark_stack.is_empty(); }
 596 
 597   G1CMRootRegions* root_regions() { return &_root_regions; }
 598 
 599   bool concurrent_marking_in_progress() {
 600     return _concurrent_marking_in_progress;
 601   }
 602   void set_concurrent_marking_in_progress() {
 603     _concurrent_marking_in_progress = true;
 604   }
 605   void clear_concurrent_marking_in_progress() {
 606     _concurrent_marking_in_progress = false;
 607   }
 608 
 609   void concurrent_cycle_start();
 610   void concurrent_cycle_end();
 611 
 612   void update_accum_task_vtime(int i, double vtime) {
 613     _accum_task_vtime[i] += vtime;
 614   }
 615 
 616   double all_task_accum_vtime() {
 617     double ret = 0.0;
 618     for (uint i = 0; i < _max_worker_id; ++i)
 619       ret += _accum_task_vtime[i];
 620     return ret;
 621   }
 622 
 623   // Attempts to steal an object from the task queues of other tasks
 624   bool try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry);
 625 
 626   G1ConcurrentMark(G1CollectedHeap* g1h,
 627                    G1RegionToSpaceMapper* prev_bitmap_storage,
 628                    G1RegionToSpaceMapper* next_bitmap_storage);
 629   ~G1ConcurrentMark();
 630 
 631   ConcurrentMarkThread* cmThread() { return _cmThread; }
 632 
 633   G1CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 634   G1CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 635 
 636   // Returns the number of GC threads to be used in a concurrent
 637   // phase based on the number of GC threads being used in a STW
 638   // phase.
 639   uint scale_parallel_threads(uint n_par_threads);
 640 
 641   // Calculates the number of GC threads to be used in a concurrent phase.
 642   uint calc_parallel_marking_threads();
 643 
 644   // The following three are interaction between CM and
 645   // G1CollectedHeap
 646 
 647   // This notifies CM that a root during initial-mark needs to be
 648   // grayed. It is MT-safe. hr is the region that
 649   // contains the object and it's passed optionally from callers who
 650   // might already have it (no point in recalculating it).
 651   inline void grayRoot(oop obj,
 652                        HeapRegion* hr = NULL);
 653 
 654   // Prepare internal data structures for the next mark cycle. This includes clearing
 655   // the next mark bitmap and some internal data structures. This method is intended
 656   // to be called concurrently to the mutator. It will yield to safepoint requests.
 657   void cleanup_for_next_mark();
 658 
 659   // Clear the previous marking bitmap during safepoint.
 660   void clear_prev_bitmap(WorkGang* workers);
 661 
 662   // Return whether the next mark bitmap has no marks set. To be used for assertions
 663   // only. Will not yield to pause requests.
 664   bool nextMarkBitmapIsClear();
 665 
 666   // These two do the work that needs to be done before and after the
 667   // initial root checkpoint. Since this checkpoint can be done at two
 668   // different points (i.e. an explicit pause or piggy-backed on a
 669   // young collection), then it's nice to be able to easily share the
 670   // pre/post code. It might be the case that we can put everything in
 671   // the post method. TP
 672   void checkpointRootsInitialPre();
 673   void checkpointRootsInitialPost();
 674 
 675   // Scan all the root regions and mark everything reachable from
 676   // them.
 677   void scan_root_regions();
 678 
 679   // Scan a single root region and mark everything reachable from it.
 680   void scanRootRegion(HeapRegion* hr);
 681 
 682   // Do concurrent phase of marking, to a tentative transitive closure.
 683   void mark_from_roots();
 684 
 685   void checkpointRootsFinal(bool clear_all_soft_refs);
 686   void checkpointRootsFinalWork();
 687   void cleanup();
 688   void complete_cleanup();
 689 
 690   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 691   // this carefully!
 692   inline void markPrev(oop p);
 693 
 694   // Clears marks for all objects in the given range, for the prev or
 695   // next bitmaps.  NB: the previous bitmap is usually
 696   // read-only, so use this carefully!
 697   void clearRangePrevBitmap(MemRegion mr);
 698 
 699   // Verify that there are no CSet oops on the stacks (taskqueues /
 700   // global mark stack) and fingers (global / per-task).
 701   // If marking is not in progress, it's a no-op.
 702   void verify_no_cset_oops() PRODUCT_RETURN;
 703 
 704   inline bool isPrevMarked(oop p) const;
 705 
 706   inline bool do_yield_check();
 707 
 708   // Abandon current marking iteration due to a Full GC.
 709   void abort();
 710 
 711   bool has_aborted()      { return _has_aborted; }
 712 
 713   void print_summary_info();
 714 
 715   void print_worker_threads_on(outputStream* st) const;
 716   void threads_do(ThreadClosure* tc) const;
 717 
 718   void print_on_error(outputStream* st) const;
 719 
 720   // Attempts to mark the given object on the next mark bitmap.
 721   inline bool par_mark(oop obj);
 722 
 723   // Returns true if initialization was successfully completed.
 724   bool completed_initialization() const {
 725     return _completed_initialization;
 726   }
 727 
 728   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
 729   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
 730 
 731 private:
 732   // Clear (Reset) all liveness count data.
 733   void clear_live_data(WorkGang* workers);
 734 
 735 #ifdef ASSERT
 736   // Verify all of the above data structures that they are in initial state.
 737   void verify_live_data_clear();
 738 #endif
 739 
 740   // Aggregates the per-card liveness data based on the current marking. Also sets
 741   // the amount of marked bytes for each region.
 742   void create_live_data();
 743 
 744   void finalize_live_data();
 745 
 746   void verify_live_data();
 747 };
 748 
 749 // A class representing a marking task.
 750 class G1CMTask : public TerminatorTerminator {
 751 private:
 752   enum PrivateConstants {
 753     // The regular clock call is called once the scanned words reaches
 754     // this limit
 755     words_scanned_period          = 12*1024,
 756     // The regular clock call is called once the number of visited
 757     // references reaches this limit
 758     refs_reached_period           = 1024,
 759     // Initial value for the hash seed, used in the work stealing code
 760     init_hash_seed                = 17
 761   };
 762 
 763   G1CMObjArrayProcessor       _objArray_processor;
 764 
 765   uint                        _worker_id;
 766   G1CollectedHeap*            _g1h;
 767   G1ConcurrentMark*           _cm;
 768   G1CMBitMap*                 _nextMarkBitMap;
 769   // the task queue of this task
 770   G1CMTaskQueue*              _task_queue;
 771 private:
 772   // the task queue set---needed for stealing
 773   G1CMTaskQueueSet*           _task_queues;
 774   // indicates whether the task has been claimed---this is only  for
 775   // debugging purposes
 776   bool                        _claimed;
 777 
 778   // number of calls to this task
 779   int                         _calls;
 780 
 781   // when the virtual timer reaches this time, the marking step should
 782   // exit
 783   double                      _time_target_ms;
 784   // the start time of the current marking step
 785   double                      _start_time_ms;
 786 
 787   // the oop closure used for iterations over oops
 788   G1CMOopClosure*             _cm_oop_closure;
 789 
 790   // the region this task is scanning, NULL if we're not scanning any
 791   HeapRegion*                 _curr_region;
 792   // the local finger of this task, NULL if we're not scanning a region
 793   HeapWord*                   _finger;
 794   // limit of the region this task is scanning, NULL if we're not scanning one
 795   HeapWord*                   _region_limit;
 796 
 797   // the number of words this task has scanned
 798   size_t                      _words_scanned;
 799   // When _words_scanned reaches this limit, the regular clock is
 800   // called. Notice that this might be decreased under certain
 801   // circumstances (i.e. when we believe that we did an expensive
 802   // operation).
 803   size_t                      _words_scanned_limit;
 804   // the initial value of _words_scanned_limit (i.e. what it was
 805   // before it was decreased).
 806   size_t                      _real_words_scanned_limit;
 807 
 808   // the number of references this task has visited
 809   size_t                      _refs_reached;
 810   // When _refs_reached reaches this limit, the regular clock is
 811   // called. Notice this this might be decreased under certain
 812   // circumstances (i.e. when we believe that we did an expensive
 813   // operation).
 814   size_t                      _refs_reached_limit;
 815   // the initial value of _refs_reached_limit (i.e. what it was before
 816   // it was decreased).
 817   size_t                      _real_refs_reached_limit;
 818 
 819   // used by the work stealing stuff
 820   int                         _hash_seed;
 821   // if this is true, then the task has aborted for some reason
 822   bool                        _has_aborted;
 823   // set when the task aborts because it has met its time quota
 824   bool                        _has_timed_out;
 825   // true when we're draining SATB buffers; this avoids the task
 826   // aborting due to SATB buffers being available (as we're already
 827   // dealing with them)
 828   bool                        _draining_satb_buffers;
 829 
 830   // number sequence of past step times
 831   NumberSeq                   _step_times_ms;
 832   // elapsed time of this task
 833   double                      _elapsed_time_ms;
 834   // termination time of this task
 835   double                      _termination_time_ms;
 836   // when this task got into the termination protocol
 837   double                      _termination_start_time_ms;
 838 
 839   // true when the task is during a concurrent phase, false when it is
 840   // in the remark phase (so, in the latter case, we do not have to
 841   // check all the things that we have to check during the concurrent
 842   // phase, i.e. SATB buffer availability...)
 843   bool                        _concurrent;
 844 
 845   TruncatedSeq                _marking_step_diffs_ms;
 846 
 847   // it updates the local fields after this task has claimed
 848   // a new region to scan
 849   void setup_for_region(HeapRegion* hr);
 850   // it brings up-to-date the limit of the region
 851   void update_region_limit();
 852 
 853   // called when either the words scanned or the refs visited limit
 854   // has been reached
 855   void reached_limit();
 856   // recalculates the words scanned and refs visited limits
 857   void recalculate_limits();
 858   // decreases the words scanned and refs visited limits when we reach
 859   // an expensive operation
 860   void decrease_limits();
 861   // it checks whether the words scanned or refs visited reached their
 862   // respective limit and calls reached_limit() if they have
 863   void check_limits() {
 864     if (_words_scanned >= _words_scanned_limit ||
 865         _refs_reached >= _refs_reached_limit) {
 866       reached_limit();
 867     }
 868   }
 869   // this is supposed to be called regularly during a marking step as
 870   // it checks a bunch of conditions that might cause the marking step
 871   // to abort
 872   void regular_clock_call();
 873   bool concurrent() { return _concurrent; }
 874 
 875   // Test whether obj might have already been passed over by the
 876   // mark bitmap scan, and so needs to be pushed onto the mark stack.
 877   bool is_below_finger(oop obj, HeapWord* global_finger) const;
 878 
 879   template<bool scan> void process_grey_object(G1TaskQueueEntry task_entry);
 880 public:
 881   // Apply the closure on the given area of the objArray. Return the number of words
 882   // scanned.
 883   inline size_t scan_objArray(objArrayOop obj, MemRegion mr);
 884   // It resets the task; it should be called right at the beginning of
 885   // a marking phase.
 886   void reset(G1CMBitMap* _nextMarkBitMap);
 887   // it clears all the fields that correspond to a claimed region.
 888   void clear_region_fields();
 889 
 890   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
 891 
 892   // The main method of this class which performs a marking step
 893   // trying not to exceed the given duration. However, it might exit
 894   // prematurely, according to some conditions (i.e. SATB buffers are
 895   // available for processing).
 896   void do_marking_step(double target_ms,
 897                        bool do_termination,
 898                        bool is_serial);
 899 
 900   // These two calls start and stop the timer
 901   void record_start_time() {
 902     _elapsed_time_ms = os::elapsedTime() * 1000.0;
 903   }
 904   void record_end_time() {
 905     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
 906   }
 907 
 908   // returns the worker ID associated with this task.
 909   uint worker_id() { return _worker_id; }
 910 
 911   // From TerminatorTerminator. It determines whether this task should
 912   // exit the termination protocol after it's entered it.
 913   virtual bool should_exit_termination();
 914 
 915   // Resets the local region fields after a task has finished scanning a
 916   // region; or when they have become stale as a result of the region
 917   // being evacuated.
 918   void giveup_current_region();
 919 
 920   HeapWord* finger()            { return _finger; }
 921 
 922   bool has_aborted()            { return _has_aborted; }
 923   void set_has_aborted()        { _has_aborted = true; }
 924   void clear_has_aborted()      { _has_aborted = false; }
 925   bool has_timed_out()          { return _has_timed_out; }
 926   bool claimed()                { return _claimed; }
 927 
 928   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
 929 
 930   // Increment the number of references this task has visited.
 931   void increment_refs_reached() { ++_refs_reached; }
 932 
 933   // Grey the object by marking it.  If not already marked, push it on
 934   // the local queue if below the finger.
 935   // obj is below its region's NTAMS.
 936   inline void make_reference_grey(oop obj);
 937 
 938   // Grey the object (by calling make_grey_reference) if required,
 939   // e.g. obj is below its containing region's NTAMS.
 940   // Precondition: obj is a valid heap object.
 941   inline void deal_with_reference(oop obj);
 942 
 943   // It scans an object and visits its children.
 944   inline void scan_object(G1TaskQueueEntry task_entry);
 945 
 946   // It pushes an object on the local queue.
 947   inline void push(G1TaskQueueEntry task_entry);
 948 
 949   // Move entries to the global stack.
 950   void move_entries_to_global_stack();
 951   // Move entries from the global stack, return true if we were successful to do so.
 952   bool get_entries_from_global_stack();
 953 
 954   // It pops and scans objects from the local queue. If partially is
 955   // true, then it stops when the queue size is of a given limit. If
 956   // partially is false, then it stops when the queue is empty.
 957   void drain_local_queue(bool partially);
 958   // It moves entries from the global stack to the local queue and
 959   // drains the local queue. If partially is true, then it stops when
 960   // both the global stack and the local queue reach a given size. If
 961   // partially if false, it tries to empty them totally.
 962   void drain_global_stack(bool partially);
 963   // It keeps picking SATB buffers and processing them until no SATB
 964   // buffers are available.
 965   void drain_satb_buffers();
 966 
 967   // moves the local finger to a new location
 968   inline void move_finger_to(HeapWord* new_finger) {
 969     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
 970     _finger = new_finger;
 971   }
 972 
 973   G1CMTask(uint worker_id,
 974            G1ConcurrentMark *cm,
 975            G1CMTaskQueue* task_queue,
 976            G1CMTaskQueueSet* task_queues);
 977 
 978   // it prints statistics associated with this task
 979   void print_stats();
 980 };
 981 
 982 // Class that's used to to print out per-region liveness
 983 // information. It's currently used at the end of marking and also
 984 // after we sort the old regions at the end of the cleanup operation.
 985 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
 986 private:
 987   // Accumulators for these values.
 988   size_t _total_used_bytes;
 989   size_t _total_capacity_bytes;
 990   size_t _total_prev_live_bytes;
 991   size_t _total_next_live_bytes;
 992 
 993   // Accumulator for the remembered set size
 994   size_t _total_remset_bytes;
 995 
 996   // Accumulator for strong code roots memory size
 997   size_t _total_strong_code_roots_bytes;
 998 
 999   static double perc(size_t val, size_t total) {
1000     if (total == 0) {
1001       return 0.0;
1002     } else {
1003       return 100.0 * ((double) val / (double) total);
1004     }
1005   }
1006 
1007   static double bytes_to_mb(size_t val) {
1008     return (double) val / (double) M;
1009   }
1010 
1011 public:
1012   // The header and footer are printed in the constructor and
1013   // destructor respectively.
1014   G1PrintRegionLivenessInfoClosure(const char* phase_name);
1015   virtual bool doHeapRegion(HeapRegion* r);
1016   ~G1PrintRegionLivenessInfoClosure();
1017 };
1018 
1019 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP