1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapSizingPolicy.hpp"
  43 #include "gc/g1/g1HeapTransition.hpp"
  44 #include "gc/g1/g1HeapVerifier.hpp"
  45 #include "gc/g1/g1HotCardCache.hpp"
  46 #include "gc/g1/g1MarkSweep.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1StringDedup.hpp"
  55 #include "gc/g1/g1YCTypes.hpp"
  56 #include "gc/g1/heapRegion.inline.hpp"
  57 #include "gc/g1/heapRegionRemSet.hpp"
  58 #include "gc/g1/heapRegionSet.inline.hpp"
  59 #include "gc/g1/suspendibleThreadSet.hpp"
  60 #include "gc/g1/vm_operations_g1.hpp"
  61 #include "gc/shared/gcHeapSummary.hpp"
  62 #include "gc/shared/gcId.hpp"
  63 #include "gc/shared/gcLocker.inline.hpp"
  64 #include "gc/shared/gcTimer.hpp"
  65 #include "gc/shared/gcTrace.hpp"
  66 #include "gc/shared/gcTraceTime.inline.hpp"
  67 #include "gc/shared/generationSpec.hpp"
  68 #include "gc/shared/isGCActiveMark.hpp"
  69 #include "gc/shared/preservedMarks.inline.hpp"
  70 #include "gc/shared/referenceProcessor.inline.hpp"
  71 #include "gc/shared/taskqueue.inline.hpp"
  72 #include "logging/log.hpp"
  73 #include "memory/allocation.hpp"
  74 #include "memory/iterator.hpp"
  75 #include "memory/resourceArea.hpp"
  76 #include "oops/oop.inline.hpp"
  77 #include "runtime/atomic.hpp"
  78 #include "runtime/init.hpp"
  79 #include "runtime/orderAccess.inline.hpp"
  80 #include "runtime/vmThread.hpp"
  81 #include "utilities/globalDefinitions.hpp"
  82 #include "utilities/stack.inline.hpp"
  83 
  84 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  85 
  86 // INVARIANTS/NOTES
  87 //
  88 // All allocation activity covered by the G1CollectedHeap interface is
  89 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  90 // and allocate_new_tlab, which are the "entry" points to the
  91 // allocation code from the rest of the JVM.  (Note that this does not
  92 // apply to TLAB allocation, which is not part of this interface: it
  93 // is done by clients of this interface.)
  94 
  95 // Local to this file.
  96 
  97 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  98   bool _concurrent;
  99 public:
 100   RefineCardTableEntryClosure() : _concurrent(true) { }
 101 
 102   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 103     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, NULL);
 104     // This path is executed by the concurrent refine or mutator threads,
 105     // concurrently, and so we do not care if card_ptr contains references
 106     // that point into the collection set.
 107     assert(!oops_into_cset, "should be");
 108 
 109     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 110       // Caller will actually yield.
 111       return false;
 112     }
 113     // Otherwise, we finished successfully; return true.
 114     return true;
 115   }
 116 
 117   void set_concurrent(bool b) { _concurrent = b; }
 118 };
 119 
 120 
 121 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 122  private:
 123   size_t _num_dirtied;
 124   G1CollectedHeap* _g1h;
 125   G1SATBCardTableLoggingModRefBS* _g1_bs;
 126 
 127   HeapRegion* region_for_card(jbyte* card_ptr) const {
 128     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 129   }
 130 
 131   bool will_become_free(HeapRegion* hr) const {
 132     // A region will be freed by free_collection_set if the region is in the
 133     // collection set and has not had an evacuation failure.
 134     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 135   }
 136 
 137  public:
 138   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 139     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 140 
 141   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 142     HeapRegion* hr = region_for_card(card_ptr);
 143 
 144     // Should only dirty cards in regions that won't be freed.
 145     if (!will_become_free(hr)) {
 146       *card_ptr = CardTableModRefBS::dirty_card_val();
 147       _num_dirtied++;
 148     }
 149 
 150     return true;
 151   }
 152 
 153   size_t num_dirtied()   const { return _num_dirtied; }
 154 };
 155 
 156 
 157 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 158   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 159 }
 160 
 161 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 162   // The from card cache is not the memory that is actually committed. So we cannot
 163   // take advantage of the zero_filled parameter.
 164   reset_from_card_cache(start_idx, num_regions);
 165 }
 166 
 167 // Returns true if the reference points to an object that
 168 // can move in an incremental collection.
 169 bool G1CollectedHeap::is_scavengable(const void* p) {
 170   HeapRegion* hr = heap_region_containing(p);
 171   return !hr->is_pinned();
 172 }
 173 
 174 // Private methods.
 175 
 176 HeapRegion*
 177 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 178   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 179   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 180     if (!_secondary_free_list.is_empty()) {
 181       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 182                                       "secondary_free_list has %u entries",
 183                                       _secondary_free_list.length());
 184       // It looks as if there are free regions available on the
 185       // secondary_free_list. Let's move them to the free_list and try
 186       // again to allocate from it.
 187       append_secondary_free_list();
 188 
 189       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 190              "empty we should have moved at least one entry to the free_list");
 191       HeapRegion* res = _hrm.allocate_free_region(is_old);
 192       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 193                                       "allocated " HR_FORMAT " from secondary_free_list",
 194                                       HR_FORMAT_PARAMS(res));
 195       return res;
 196     }
 197 
 198     // Wait here until we get notified either when (a) there are no
 199     // more free regions coming or (b) some regions have been moved on
 200     // the secondary_free_list.
 201     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 202   }
 203 
 204   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 205                                   "could not allocate from secondary_free_list");
 206   return NULL;
 207 }
 208 
 209 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 210   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 211          "the only time we use this to allocate a humongous region is "
 212          "when we are allocating a single humongous region");
 213 
 214   HeapRegion* res;
 215   if (G1StressConcRegionFreeing) {
 216     if (!_secondary_free_list.is_empty()) {
 217       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 218                                       "forced to look at the secondary_free_list");
 219       res = new_region_try_secondary_free_list(is_old);
 220       if (res != NULL) {
 221         return res;
 222       }
 223     }
 224   }
 225 
 226   res = _hrm.allocate_free_region(is_old);
 227 
 228   if (res == NULL) {
 229     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 230                                     "res == NULL, trying the secondary_free_list");
 231     res = new_region_try_secondary_free_list(is_old);
 232   }
 233   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 234     // Currently, only attempts to allocate GC alloc regions set
 235     // do_expand to true. So, we should only reach here during a
 236     // safepoint. If this assumption changes we might have to
 237     // reconsider the use of _expand_heap_after_alloc_failure.
 238     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 239 
 240     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 241                               word_size * HeapWordSize);
 242 
 243     if (expand(word_size * HeapWordSize)) {
 244       // Given that expand() succeeded in expanding the heap, and we
 245       // always expand the heap by an amount aligned to the heap
 246       // region size, the free list should in theory not be empty.
 247       // In either case allocate_free_region() will check for NULL.
 248       res = _hrm.allocate_free_region(is_old);
 249     } else {
 250       _expand_heap_after_alloc_failure = false;
 251     }
 252   }
 253   return res;
 254 }
 255 
 256 HeapWord*
 257 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 258                                                            uint num_regions,
 259                                                            size_t word_size,
 260                                                            AllocationContext_t context) {
 261   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 262   assert(is_humongous(word_size), "word_size should be humongous");
 263   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 264 
 265   // Index of last region in the series.
 266   uint last = first + num_regions - 1;
 267 
 268   // We need to initialize the region(s) we just discovered. This is
 269   // a bit tricky given that it can happen concurrently with
 270   // refinement threads refining cards on these regions and
 271   // potentially wanting to refine the BOT as they are scanning
 272   // those cards (this can happen shortly after a cleanup; see CR
 273   // 6991377). So we have to set up the region(s) carefully and in
 274   // a specific order.
 275 
 276   // The word size sum of all the regions we will allocate.
 277   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 278   assert(word_size <= word_size_sum, "sanity");
 279 
 280   // This will be the "starts humongous" region.
 281   HeapRegion* first_hr = region_at(first);
 282   // The header of the new object will be placed at the bottom of
 283   // the first region.
 284   HeapWord* new_obj = first_hr->bottom();
 285   // This will be the new top of the new object.
 286   HeapWord* obj_top = new_obj + word_size;
 287 
 288   // First, we need to zero the header of the space that we will be
 289   // allocating. When we update top further down, some refinement
 290   // threads might try to scan the region. By zeroing the header we
 291   // ensure that any thread that will try to scan the region will
 292   // come across the zero klass word and bail out.
 293   //
 294   // NOTE: It would not have been correct to have used
 295   // CollectedHeap::fill_with_object() and make the space look like
 296   // an int array. The thread that is doing the allocation will
 297   // later update the object header to a potentially different array
 298   // type and, for a very short period of time, the klass and length
 299   // fields will be inconsistent. This could cause a refinement
 300   // thread to calculate the object size incorrectly.
 301   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 302 
 303   // How many words we use for filler objects.
 304   size_t word_fill_size = word_size_sum - word_size;
 305 
 306   // How many words memory we "waste" which cannot hold a filler object.
 307   size_t words_not_fillable = 0;
 308 
 309   if (word_fill_size >= min_fill_size()) {
 310     fill_with_objects(obj_top, word_fill_size);
 311   } else if (word_fill_size > 0) {
 312     // We have space to fill, but we cannot fit an object there.
 313     words_not_fillable = word_fill_size;
 314     word_fill_size = 0;
 315   }
 316 
 317   // We will set up the first region as "starts humongous". This
 318   // will also update the BOT covering all the regions to reflect
 319   // that there is a single object that starts at the bottom of the
 320   // first region.
 321   first_hr->set_starts_humongous(obj_top, word_fill_size);
 322   first_hr->set_allocation_context(context);
 323   // Then, if there are any, we will set up the "continues
 324   // humongous" regions.
 325   HeapRegion* hr = NULL;
 326   for (uint i = first + 1; i <= last; ++i) {
 327     hr = region_at(i);
 328     hr->set_continues_humongous(first_hr);
 329     hr->set_allocation_context(context);
 330   }
 331 
 332   // Up to this point no concurrent thread would have been able to
 333   // do any scanning on any region in this series. All the top
 334   // fields still point to bottom, so the intersection between
 335   // [bottom,top] and [card_start,card_end] will be empty. Before we
 336   // update the top fields, we'll do a storestore to make sure that
 337   // no thread sees the update to top before the zeroing of the
 338   // object header and the BOT initialization.
 339   OrderAccess::storestore();
 340 
 341   // Now, we will update the top fields of the "continues humongous"
 342   // regions except the last one.
 343   for (uint i = first; i < last; ++i) {
 344     hr = region_at(i);
 345     hr->set_top(hr->end());
 346   }
 347 
 348   hr = region_at(last);
 349   // If we cannot fit a filler object, we must set top to the end
 350   // of the humongous object, otherwise we cannot iterate the heap
 351   // and the BOT will not be complete.
 352   hr->set_top(hr->end() - words_not_fillable);
 353 
 354   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 355          "obj_top should be in last region");
 356 
 357   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 358 
 359   assert(words_not_fillable == 0 ||
 360          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 361          "Miscalculation in humongous allocation");
 362 
 363   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 364 
 365   for (uint i = first; i <= last; ++i) {
 366     hr = region_at(i);
 367     _humongous_set.add(hr);
 368     _hr_printer.alloc(hr);
 369   }
 370 
 371   return new_obj;
 372 }
 373 
 374 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 375   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 376   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 377 }
 378 
 379 // If could fit into free regions w/o expansion, try.
 380 // Otherwise, if can expand, do so.
 381 // Otherwise, if using ex regions might help, try with ex given back.
 382 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 383   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 384 
 385   _verifier->verify_region_sets_optional();
 386 
 387   uint first = G1_NO_HRM_INDEX;
 388   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 389 
 390   if (obj_regions == 1) {
 391     // Only one region to allocate, try to use a fast path by directly allocating
 392     // from the free lists. Do not try to expand here, we will potentially do that
 393     // later.
 394     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 395     if (hr != NULL) {
 396       first = hr->hrm_index();
 397     }
 398   } else {
 399     // We can't allocate humongous regions spanning more than one region while
 400     // cleanupComplete() is running, since some of the regions we find to be
 401     // empty might not yet be added to the free list. It is not straightforward
 402     // to know in which list they are on so that we can remove them. We only
 403     // need to do this if we need to allocate more than one region to satisfy the
 404     // current humongous allocation request. If we are only allocating one region
 405     // we use the one-region region allocation code (see above), that already
 406     // potentially waits for regions from the secondary free list.
 407     wait_while_free_regions_coming();
 408     append_secondary_free_list_if_not_empty_with_lock();
 409 
 410     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 411     // are lucky enough to find some.
 412     first = _hrm.find_contiguous_only_empty(obj_regions);
 413     if (first != G1_NO_HRM_INDEX) {
 414       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 415     }
 416   }
 417 
 418   if (first == G1_NO_HRM_INDEX) {
 419     // Policy: We could not find enough regions for the humongous object in the
 420     // free list. Look through the heap to find a mix of free and uncommitted regions.
 421     // If so, try expansion.
 422     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 423     if (first != G1_NO_HRM_INDEX) {
 424       // We found something. Make sure these regions are committed, i.e. expand
 425       // the heap. Alternatively we could do a defragmentation GC.
 426       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 427                                     word_size * HeapWordSize);
 428 
 429 
 430       _hrm.expand_at(first, obj_regions);
 431       g1_policy()->record_new_heap_size(num_regions());
 432 
 433 #ifdef ASSERT
 434       for (uint i = first; i < first + obj_regions; ++i) {
 435         HeapRegion* hr = region_at(i);
 436         assert(hr->is_free(), "sanity");
 437         assert(hr->is_empty(), "sanity");
 438         assert(is_on_master_free_list(hr), "sanity");
 439       }
 440 #endif
 441       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 442     } else {
 443       // Policy: Potentially trigger a defragmentation GC.
 444     }
 445   }
 446 
 447   HeapWord* result = NULL;
 448   if (first != G1_NO_HRM_INDEX) {
 449     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 450                                                        word_size, context);
 451     assert(result != NULL, "it should always return a valid result");
 452 
 453     // A successful humongous object allocation changes the used space
 454     // information of the old generation so we need to recalculate the
 455     // sizes and update the jstat counters here.
 456     g1mm()->update_sizes();
 457   }
 458 
 459   _verifier->verify_region_sets_optional();
 460 
 461   return result;
 462 }
 463 
 464 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 465   assert_heap_not_locked_and_not_at_safepoint();
 466   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 467 
 468   uint dummy_gc_count_before;
 469   uint dummy_gclocker_retry_count = 0;
 470   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 471 }
 472 
 473 HeapWord*
 474 G1CollectedHeap::mem_allocate(size_t word_size,
 475                               bool*  gc_overhead_limit_was_exceeded) {
 476   assert_heap_not_locked_and_not_at_safepoint();
 477 
 478   // Loop until the allocation is satisfied, or unsatisfied after GC.
 479   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 480     uint gc_count_before;
 481 
 482     HeapWord* result = NULL;
 483     if (!is_humongous(word_size)) {
 484       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 485     } else {
 486       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 487     }
 488     if (result != NULL) {
 489       return result;
 490     }
 491 
 492     // Create the garbage collection operation...
 493     VM_G1CollectForAllocation op(gc_count_before, word_size);
 494     op.set_allocation_context(AllocationContext::current());
 495 
 496     // ...and get the VM thread to execute it.
 497     VMThread::execute(&op);
 498 
 499     if (op.prologue_succeeded() && op.pause_succeeded()) {
 500       // If the operation was successful we'll return the result even
 501       // if it is NULL. If the allocation attempt failed immediately
 502       // after a Full GC, it's unlikely we'll be able to allocate now.
 503       HeapWord* result = op.result();
 504       if (result != NULL && !is_humongous(word_size)) {
 505         // Allocations that take place on VM operations do not do any
 506         // card dirtying and we have to do it here. We only have to do
 507         // this for non-humongous allocations, though.
 508         dirty_young_block(result, word_size);
 509       }
 510       return result;
 511     } else {
 512       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 513         return NULL;
 514       }
 515       assert(op.result() == NULL,
 516              "the result should be NULL if the VM op did not succeed");
 517     }
 518 
 519     // Give a warning if we seem to be looping forever.
 520     if ((QueuedAllocationWarningCount > 0) &&
 521         (try_count % QueuedAllocationWarningCount == 0)) {
 522       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 523     }
 524   }
 525 
 526   ShouldNotReachHere();
 527   return NULL;
 528 }
 529 
 530 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 531                                                    AllocationContext_t context,
 532                                                    uint* gc_count_before_ret,
 533                                                    uint* gclocker_retry_count_ret) {
 534   // Make sure you read the note in attempt_allocation_humongous().
 535 
 536   assert_heap_not_locked_and_not_at_safepoint();
 537   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 538          "be called for humongous allocation requests");
 539 
 540   // We should only get here after the first-level allocation attempt
 541   // (attempt_allocation()) failed to allocate.
 542 
 543   // We will loop until a) we manage to successfully perform the
 544   // allocation or b) we successfully schedule a collection which
 545   // fails to perform the allocation. b) is the only case when we'll
 546   // return NULL.
 547   HeapWord* result = NULL;
 548   for (int try_count = 1; /* we'll return */; try_count += 1) {
 549     bool should_try_gc;
 550     uint gc_count_before;
 551 
 552     {
 553       MutexLockerEx x(Heap_lock);
 554       result = _allocator->attempt_allocation_locked(word_size, context);
 555       if (result != NULL) {
 556         return result;
 557       }
 558 
 559       if (GCLocker::is_active_and_needs_gc()) {
 560         if (g1_policy()->can_expand_young_list()) {
 561           // No need for an ergo verbose message here,
 562           // can_expand_young_list() does this when it returns true.
 563           result = _allocator->attempt_allocation_force(word_size, context);
 564           if (result != NULL) {
 565             return result;
 566           }
 567         }
 568         should_try_gc = false;
 569       } else {
 570         // The GCLocker may not be active but the GCLocker initiated
 571         // GC may not yet have been performed (GCLocker::needs_gc()
 572         // returns true). In this case we do not try this GC and
 573         // wait until the GCLocker initiated GC is performed, and
 574         // then retry the allocation.
 575         if (GCLocker::needs_gc()) {
 576           should_try_gc = false;
 577         } else {
 578           // Read the GC count while still holding the Heap_lock.
 579           gc_count_before = total_collections();
 580           should_try_gc = true;
 581         }
 582       }
 583     }
 584 
 585     if (should_try_gc) {
 586       bool succeeded;
 587       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 588                                    GCCause::_g1_inc_collection_pause);
 589       if (result != NULL) {
 590         assert(succeeded, "only way to get back a non-NULL result");
 591         return result;
 592       }
 593 
 594       if (succeeded) {
 595         // If we get here we successfully scheduled a collection which
 596         // failed to allocate. No point in trying to allocate
 597         // further. We'll just return NULL.
 598         MutexLockerEx x(Heap_lock);
 599         *gc_count_before_ret = total_collections();
 600         return NULL;
 601       }
 602     } else {
 603       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 604         MutexLockerEx x(Heap_lock);
 605         *gc_count_before_ret = total_collections();
 606         return NULL;
 607       }
 608       // The GCLocker is either active or the GCLocker initiated
 609       // GC has not yet been performed. Stall until it is and
 610       // then retry the allocation.
 611       GCLocker::stall_until_clear();
 612       (*gclocker_retry_count_ret) += 1;
 613     }
 614 
 615     // We can reach here if we were unsuccessful in scheduling a
 616     // collection (because another thread beat us to it) or if we were
 617     // stalled due to the GC locker. In either can we should retry the
 618     // allocation attempt in case another thread successfully
 619     // performed a collection and reclaimed enough space. We do the
 620     // first attempt (without holding the Heap_lock) here and the
 621     // follow-on attempt will be at the start of the next loop
 622     // iteration (after taking the Heap_lock).
 623     result = _allocator->attempt_allocation(word_size, context);
 624     if (result != NULL) {
 625       return result;
 626     }
 627 
 628     // Give a warning if we seem to be looping forever.
 629     if ((QueuedAllocationWarningCount > 0) &&
 630         (try_count % QueuedAllocationWarningCount == 0)) {
 631       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 632                       "retries %d times", try_count);
 633     }
 634   }
 635 
 636   ShouldNotReachHere();
 637   return NULL;
 638 }
 639 
 640 void G1CollectedHeap::begin_archive_alloc_range() {
 641   assert_at_safepoint(true /* should_be_vm_thread */);
 642   if (_archive_allocator == NULL) {
 643     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 644   }
 645 }
 646 
 647 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 648   // Allocations in archive regions cannot be of a size that would be considered
 649   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 650   // may be different at archive-restore time.
 651   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 652 }
 653 
 654 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 655   assert_at_safepoint(true /* should_be_vm_thread */);
 656   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 657   if (is_archive_alloc_too_large(word_size)) {
 658     return NULL;
 659   }
 660   return _archive_allocator->archive_mem_allocate(word_size);
 661 }
 662 
 663 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 664                                               size_t end_alignment_in_bytes) {
 665   assert_at_safepoint(true /* should_be_vm_thread */);
 666   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 667 
 668   // Call complete_archive to do the real work, filling in the MemRegion
 669   // array with the archive regions.
 670   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 671   delete _archive_allocator;
 672   _archive_allocator = NULL;
 673 }
 674 
 675 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 676   assert(ranges != NULL, "MemRegion array NULL");
 677   assert(count != 0, "No MemRegions provided");
 678   MemRegion reserved = _hrm.reserved();
 679   for (size_t i = 0; i < count; i++) {
 680     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 681       return false;
 682     }
 683   }
 684   return true;
 685 }
 686 
 687 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 688   assert(!is_init_completed(), "Expect to be called at JVM init time");
 689   assert(ranges != NULL, "MemRegion array NULL");
 690   assert(count != 0, "No MemRegions provided");
 691   MutexLockerEx x(Heap_lock);
 692 
 693   MemRegion reserved = _hrm.reserved();
 694   HeapWord* prev_last_addr = NULL;
 695   HeapRegion* prev_last_region = NULL;
 696 
 697   // Temporarily disable pretouching of heap pages. This interface is used
 698   // when mmap'ing archived heap data in, so pre-touching is wasted.
 699   FlagSetting fs(AlwaysPreTouch, false);
 700 
 701   // Enable archive object checking in G1MarkSweep. We have to let it know
 702   // about each archive range, so that objects in those ranges aren't marked.
 703   G1MarkSweep::enable_archive_object_check();
 704 
 705   // For each specified MemRegion range, allocate the corresponding G1
 706   // regions and mark them as archive regions. We expect the ranges in
 707   // ascending starting address order, without overlap.
 708   for (size_t i = 0; i < count; i++) {
 709     MemRegion curr_range = ranges[i];
 710     HeapWord* start_address = curr_range.start();
 711     size_t word_size = curr_range.word_size();
 712     HeapWord* last_address = curr_range.last();
 713     size_t commits = 0;
 714 
 715     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 716               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 717               p2i(start_address), p2i(last_address));
 718     guarantee(start_address > prev_last_addr,
 719               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 720               p2i(start_address), p2i(prev_last_addr));
 721     prev_last_addr = last_address;
 722 
 723     // Check for ranges that start in the same G1 region in which the previous
 724     // range ended, and adjust the start address so we don't try to allocate
 725     // the same region again. If the current range is entirely within that
 726     // region, skip it, just adjusting the recorded top.
 727     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 728     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 729       start_address = start_region->end();
 730       if (start_address > last_address) {
 731         increase_used(word_size * HeapWordSize);
 732         start_region->set_top(last_address + 1);
 733         continue;
 734       }
 735       start_region->set_top(start_address);
 736       curr_range = MemRegion(start_address, last_address + 1);
 737       start_region = _hrm.addr_to_region(start_address);
 738     }
 739 
 740     // Perform the actual region allocation, exiting if it fails.
 741     // Then note how much new space we have allocated.
 742     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 743       return false;
 744     }
 745     increase_used(word_size * HeapWordSize);
 746     if (commits != 0) {
 747       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 748                                 HeapRegion::GrainWords * HeapWordSize * commits);
 749 
 750     }
 751 
 752     // Mark each G1 region touched by the range as archive, add it to the old set,
 753     // and set the allocation context and top.
 754     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 755     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 756     prev_last_region = last_region;
 757 
 758     while (curr_region != NULL) {
 759       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 760              "Region already in use (index %u)", curr_region->hrm_index());
 761       curr_region->set_allocation_context(AllocationContext::system());
 762       curr_region->set_archive();
 763       _hr_printer.alloc(curr_region);
 764       _old_set.add(curr_region);
 765       if (curr_region != last_region) {
 766         curr_region->set_top(curr_region->end());
 767         curr_region = _hrm.next_region_in_heap(curr_region);
 768       } else {
 769         curr_region->set_top(last_address + 1);
 770         curr_region = NULL;
 771       }
 772     }
 773 
 774     // Notify mark-sweep of the archive range.
 775     G1MarkSweep::set_range_archive(curr_range, true);
 776   }
 777   return true;
 778 }
 779 
 780 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 781   assert(!is_init_completed(), "Expect to be called at JVM init time");
 782   assert(ranges != NULL, "MemRegion array NULL");
 783   assert(count != 0, "No MemRegions provided");
 784   MemRegion reserved = _hrm.reserved();
 785   HeapWord *prev_last_addr = NULL;
 786   HeapRegion* prev_last_region = NULL;
 787 
 788   // For each MemRegion, create filler objects, if needed, in the G1 regions
 789   // that contain the address range. The address range actually within the
 790   // MemRegion will not be modified. That is assumed to have been initialized
 791   // elsewhere, probably via an mmap of archived heap data.
 792   MutexLockerEx x(Heap_lock);
 793   for (size_t i = 0; i < count; i++) {
 794     HeapWord* start_address = ranges[i].start();
 795     HeapWord* last_address = ranges[i].last();
 796 
 797     assert(reserved.contains(start_address) && reserved.contains(last_address),
 798            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 799            p2i(start_address), p2i(last_address));
 800     assert(start_address > prev_last_addr,
 801            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 802            p2i(start_address), p2i(prev_last_addr));
 803 
 804     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 805     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 806     HeapWord* bottom_address = start_region->bottom();
 807 
 808     // Check for a range beginning in the same region in which the
 809     // previous one ended.
 810     if (start_region == prev_last_region) {
 811       bottom_address = prev_last_addr + 1;
 812     }
 813 
 814     // Verify that the regions were all marked as archive regions by
 815     // alloc_archive_regions.
 816     HeapRegion* curr_region = start_region;
 817     while (curr_region != NULL) {
 818       guarantee(curr_region->is_archive(),
 819                 "Expected archive region at index %u", curr_region->hrm_index());
 820       if (curr_region != last_region) {
 821         curr_region = _hrm.next_region_in_heap(curr_region);
 822       } else {
 823         curr_region = NULL;
 824       }
 825     }
 826 
 827     prev_last_addr = last_address;
 828     prev_last_region = last_region;
 829 
 830     // Fill the memory below the allocated range with dummy object(s),
 831     // if the region bottom does not match the range start, or if the previous
 832     // range ended within the same G1 region, and there is a gap.
 833     if (start_address != bottom_address) {
 834       size_t fill_size = pointer_delta(start_address, bottom_address);
 835       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 836       increase_used(fill_size * HeapWordSize);
 837     }
 838   }
 839 }
 840 
 841 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 842                                                      uint* gc_count_before_ret,
 843                                                      uint* gclocker_retry_count_ret) {
 844   assert_heap_not_locked_and_not_at_safepoint();
 845   assert(!is_humongous(word_size), "attempt_allocation() should not "
 846          "be called for humongous allocation requests");
 847 
 848   AllocationContext_t context = AllocationContext::current();
 849   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 850 
 851   if (result == NULL) {
 852     result = attempt_allocation_slow(word_size,
 853                                      context,
 854                                      gc_count_before_ret,
 855                                      gclocker_retry_count_ret);
 856   }
 857   assert_heap_not_locked();
 858   if (result != NULL) {
 859     dirty_young_block(result, word_size);
 860   }
 861   return result;
 862 }
 863 
 864 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 865   assert(!is_init_completed(), "Expect to be called at JVM init time");
 866   assert(ranges != NULL, "MemRegion array NULL");
 867   assert(count != 0, "No MemRegions provided");
 868   MemRegion reserved = _hrm.reserved();
 869   HeapWord* prev_last_addr = NULL;
 870   HeapRegion* prev_last_region = NULL;
 871   size_t size_used = 0;
 872   size_t uncommitted_regions = 0;
 873 
 874   // For each Memregion, free the G1 regions that constitute it, and
 875   // notify mark-sweep that the range is no longer to be considered 'archive.'
 876   MutexLockerEx x(Heap_lock);
 877   for (size_t i = 0; i < count; i++) {
 878     HeapWord* start_address = ranges[i].start();
 879     HeapWord* last_address = ranges[i].last();
 880 
 881     assert(reserved.contains(start_address) && reserved.contains(last_address),
 882            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 883            p2i(start_address), p2i(last_address));
 884     assert(start_address > prev_last_addr,
 885            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 886            p2i(start_address), p2i(prev_last_addr));
 887     size_used += ranges[i].byte_size();
 888     prev_last_addr = last_address;
 889 
 890     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 891     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 892 
 893     // Check for ranges that start in the same G1 region in which the previous
 894     // range ended, and adjust the start address so we don't try to free
 895     // the same region again. If the current range is entirely within that
 896     // region, skip it.
 897     if (start_region == prev_last_region) {
 898       start_address = start_region->end();
 899       if (start_address > last_address) {
 900         continue;
 901       }
 902       start_region = _hrm.addr_to_region(start_address);
 903     }
 904     prev_last_region = last_region;
 905 
 906     // After verifying that each region was marked as an archive region by
 907     // alloc_archive_regions, set it free and empty and uncommit it.
 908     HeapRegion* curr_region = start_region;
 909     while (curr_region != NULL) {
 910       guarantee(curr_region->is_archive(),
 911                 "Expected archive region at index %u", curr_region->hrm_index());
 912       uint curr_index = curr_region->hrm_index();
 913       _old_set.remove(curr_region);
 914       curr_region->set_free();
 915       curr_region->set_top(curr_region->bottom());
 916       if (curr_region != last_region) {
 917         curr_region = _hrm.next_region_in_heap(curr_region);
 918       } else {
 919         curr_region = NULL;
 920       }
 921       _hrm.shrink_at(curr_index, 1);
 922       uncommitted_regions++;
 923     }
 924 
 925     // Notify mark-sweep that this is no longer an archive range.
 926     G1MarkSweep::set_range_archive(ranges[i], false);
 927   }
 928 
 929   if (uncommitted_regions != 0) {
 930     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 931                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 932   }
 933   decrease_used(size_used);
 934 }
 935 
 936 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 937                                                         uint* gc_count_before_ret,
 938                                                         uint* gclocker_retry_count_ret) {
 939   // The structure of this method has a lot of similarities to
 940   // attempt_allocation_slow(). The reason these two were not merged
 941   // into a single one is that such a method would require several "if
 942   // allocation is not humongous do this, otherwise do that"
 943   // conditional paths which would obscure its flow. In fact, an early
 944   // version of this code did use a unified method which was harder to
 945   // follow and, as a result, it had subtle bugs that were hard to
 946   // track down. So keeping these two methods separate allows each to
 947   // be more readable. It will be good to keep these two in sync as
 948   // much as possible.
 949 
 950   assert_heap_not_locked_and_not_at_safepoint();
 951   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 952          "should only be called for humongous allocations");
 953 
 954   // Humongous objects can exhaust the heap quickly, so we should check if we
 955   // need to start a marking cycle at each humongous object allocation. We do
 956   // the check before we do the actual allocation. The reason for doing it
 957   // before the allocation is that we avoid having to keep track of the newly
 958   // allocated memory while we do a GC.
 959   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 960                                            word_size)) {
 961     collect(GCCause::_g1_humongous_allocation);
 962   }
 963 
 964   // We will loop until a) we manage to successfully perform the
 965   // allocation or b) we successfully schedule a collection which
 966   // fails to perform the allocation. b) is the only case when we'll
 967   // return NULL.
 968   HeapWord* result = NULL;
 969   for (int try_count = 1; /* we'll return */; try_count += 1) {
 970     bool should_try_gc;
 971     uint gc_count_before;
 972 
 973     {
 974       MutexLockerEx x(Heap_lock);
 975 
 976       // Given that humongous objects are not allocated in young
 977       // regions, we'll first try to do the allocation without doing a
 978       // collection hoping that there's enough space in the heap.
 979       result = humongous_obj_allocate(word_size, AllocationContext::current());
 980       if (result != NULL) {
 981         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 982         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 983         return result;
 984       }
 985 
 986       if (GCLocker::is_active_and_needs_gc()) {
 987         should_try_gc = false;
 988       } else {
 989          // The GCLocker may not be active but the GCLocker initiated
 990         // GC may not yet have been performed (GCLocker::needs_gc()
 991         // returns true). In this case we do not try this GC and
 992         // wait until the GCLocker initiated GC is performed, and
 993         // then retry the allocation.
 994         if (GCLocker::needs_gc()) {
 995           should_try_gc = false;
 996         } else {
 997           // Read the GC count while still holding the Heap_lock.
 998           gc_count_before = total_collections();
 999           should_try_gc = true;
1000         }
1001       }
1002     }
1003 
1004     if (should_try_gc) {
1005       // If we failed to allocate the humongous object, we should try to
1006       // do a collection pause (if we're allowed) in case it reclaims
1007       // enough space for the allocation to succeed after the pause.
1008 
1009       bool succeeded;
1010       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1011                                    GCCause::_g1_humongous_allocation);
1012       if (result != NULL) {
1013         assert(succeeded, "only way to get back a non-NULL result");
1014         return result;
1015       }
1016 
1017       if (succeeded) {
1018         // If we get here we successfully scheduled a collection which
1019         // failed to allocate. No point in trying to allocate
1020         // further. We'll just return NULL.
1021         MutexLockerEx x(Heap_lock);
1022         *gc_count_before_ret = total_collections();
1023         return NULL;
1024       }
1025     } else {
1026       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1027         MutexLockerEx x(Heap_lock);
1028         *gc_count_before_ret = total_collections();
1029         return NULL;
1030       }
1031       // The GCLocker is either active or the GCLocker initiated
1032       // GC has not yet been performed. Stall until it is and
1033       // then retry the allocation.
1034       GCLocker::stall_until_clear();
1035       (*gclocker_retry_count_ret) += 1;
1036     }
1037 
1038     // We can reach here if we were unsuccessful in scheduling a
1039     // collection (because another thread beat us to it) or if we were
1040     // stalled due to the GC locker. In either can we should retry the
1041     // allocation attempt in case another thread successfully
1042     // performed a collection and reclaimed enough space.  Give a
1043     // warning if we seem to be looping forever.
1044 
1045     if ((QueuedAllocationWarningCount > 0) &&
1046         (try_count % QueuedAllocationWarningCount == 0)) {
1047       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1048                       "retries %d times", try_count);
1049     }
1050   }
1051 
1052   ShouldNotReachHere();
1053   return NULL;
1054 }
1055 
1056 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1057                                                            AllocationContext_t context,
1058                                                            bool expect_null_mutator_alloc_region) {
1059   assert_at_safepoint(true /* should_be_vm_thread */);
1060   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1061          "the current alloc region was unexpectedly found to be non-NULL");
1062 
1063   if (!is_humongous(word_size)) {
1064     return _allocator->attempt_allocation_locked(word_size, context);
1065   } else {
1066     HeapWord* result = humongous_obj_allocate(word_size, context);
1067     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1068       collector_state()->set_initiate_conc_mark_if_possible(true);
1069     }
1070     return result;
1071   }
1072 
1073   ShouldNotReachHere();
1074 }
1075 
1076 class PostMCRemSetClearClosure: public HeapRegionClosure {
1077   G1CollectedHeap* _g1h;
1078   ModRefBarrierSet* _mr_bs;
1079 public:
1080   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1081     _g1h(g1h), _mr_bs(mr_bs) {}
1082 
1083   bool doHeapRegion(HeapRegion* r) {
1084     HeapRegionRemSet* hrrs = r->rem_set();
1085 
1086     _g1h->reset_gc_time_stamps(r);
1087 
1088     if (r->is_continues_humongous()) {
1089       // We'll assert that the strong code root list and RSet is empty
1090       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1091       assert(hrrs->occupied() == 0, "RSet should be empty");
1092     } else {
1093       hrrs->clear();
1094     }
1095     // You might think here that we could clear just the cards
1096     // corresponding to the used region.  But no: if we leave a dirty card
1097     // in a region we might allocate into, then it would prevent that card
1098     // from being enqueued, and cause it to be missed.
1099     // Re: the performance cost: we shouldn't be doing full GC anyway!
1100     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1101 
1102     return false;
1103   }
1104 };
1105 
1106 void G1CollectedHeap::clear_rsets_post_compaction() {
1107   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1108   heap_region_iterate(&rs_clear);
1109 }
1110 
1111 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1112   G1CollectedHeap*   _g1h;
1113   UpdateRSOopClosure _cl;
1114 public:
1115   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1116     _cl(g1->g1_rem_set(), worker_i),
1117     _g1h(g1)
1118   { }
1119 
1120   bool doHeapRegion(HeapRegion* r) {
1121     if (!r->is_continues_humongous()) {
1122       _cl.set_from(r);
1123       r->oop_iterate(&_cl);
1124     }
1125     return false;
1126   }
1127 };
1128 
1129 class ParRebuildRSTask: public AbstractGangTask {
1130   G1CollectedHeap* _g1;
1131   HeapRegionClaimer _hrclaimer;
1132 
1133 public:
1134   ParRebuildRSTask(G1CollectedHeap* g1) :
1135       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1136 
1137   void work(uint worker_id) {
1138     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1139     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1140   }
1141 };
1142 
1143 class PostCompactionPrinterClosure: public HeapRegionClosure {
1144 private:
1145   G1HRPrinter* _hr_printer;
1146 public:
1147   bool doHeapRegion(HeapRegion* hr) {
1148     assert(!hr->is_young(), "not expecting to find young regions");
1149     _hr_printer->post_compaction(hr);
1150     return false;
1151   }
1152 
1153   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1154     : _hr_printer(hr_printer) { }
1155 };
1156 
1157 void G1CollectedHeap::print_hrm_post_compaction() {
1158   if (_hr_printer.is_active()) {
1159     PostCompactionPrinterClosure cl(hr_printer());
1160     heap_region_iterate(&cl);
1161   }
1162 
1163 }
1164 
1165 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1166                                          bool clear_all_soft_refs) {
1167   assert_at_safepoint(true /* should_be_vm_thread */);
1168 
1169   if (GCLocker::check_active_before_gc()) {
1170     return false;
1171   }
1172 
1173   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1174   gc_timer->register_gc_start();
1175 
1176   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1177   GCIdMark gc_id_mark;
1178   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1179 
1180   SvcGCMarker sgcm(SvcGCMarker::FULL);
1181   ResourceMark rm;
1182 
1183   print_heap_before_gc();
1184   print_heap_regions();
1185   trace_heap_before_gc(gc_tracer);
1186 
1187   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1188 
1189   _verifier->verify_region_sets_optional();
1190 
1191   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1192                            collector_policy()->should_clear_all_soft_refs();
1193 
1194   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1195 
1196   {
1197     IsGCActiveMark x;
1198 
1199     // Timing
1200     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1201     GCTraceCPUTime tcpu;
1202 
1203     {
1204       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1205       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1206       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1207 
1208       G1HeapTransition heap_transition(this);
1209       g1_policy()->record_full_collection_start();
1210 
1211       // Note: When we have a more flexible GC logging framework that
1212       // allows us to add optional attributes to a GC log record we
1213       // could consider timing and reporting how long we wait in the
1214       // following two methods.
1215       wait_while_free_regions_coming();
1216       // If we start the compaction before the CM threads finish
1217       // scanning the root regions we might trip them over as we'll
1218       // be moving objects / updating references. So let's wait until
1219       // they are done. By telling them to abort, they should complete
1220       // early.
1221       _cm->root_regions()->abort();
1222       _cm->root_regions()->wait_until_scan_finished();
1223       append_secondary_free_list_if_not_empty_with_lock();
1224 
1225       gc_prologue(true);
1226       increment_total_collections(true /* full gc */);
1227       increment_old_marking_cycles_started();
1228 
1229       assert(used() == recalculate_used(), "Should be equal");
1230 
1231       _verifier->verify_before_gc();
1232 
1233       _verifier->check_bitmaps("Full GC Start");
1234       pre_full_gc_dump(gc_timer);
1235 
1236 #if defined(COMPILER2) || INCLUDE_JVMCI
1237       DerivedPointerTable::clear();
1238 #endif
1239 
1240       // Disable discovery and empty the discovered lists
1241       // for the CM ref processor.
1242       ref_processor_cm()->disable_discovery();
1243       ref_processor_cm()->abandon_partial_discovery();
1244       ref_processor_cm()->verify_no_references_recorded();
1245 
1246       // Abandon current iterations of concurrent marking and concurrent
1247       // refinement, if any are in progress.
1248       concurrent_mark()->abort();
1249 
1250       // Make sure we'll choose a new allocation region afterwards.
1251       _allocator->release_mutator_alloc_region();
1252       _allocator->abandon_gc_alloc_regions();
1253       g1_rem_set()->cleanupHRRS();
1254 
1255       // We may have added regions to the current incremental collection
1256       // set between the last GC or pause and now. We need to clear the
1257       // incremental collection set and then start rebuilding it afresh
1258       // after this full GC.
1259       abandon_collection_set(collection_set());
1260 
1261       tear_down_region_sets(false /* free_list_only */);
1262       collector_state()->set_gcs_are_young(true);
1263 
1264       // See the comments in g1CollectedHeap.hpp and
1265       // G1CollectedHeap::ref_processing_init() about
1266       // how reference processing currently works in G1.
1267 
1268       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1269       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1270 
1271       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1272       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1273 
1274       ref_processor_stw()->enable_discovery();
1275       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1276 
1277       // Do collection work
1278       {
1279         HandleMark hm;  // Discard invalid handles created during gc
1280         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1281       }
1282 
1283       assert(num_free_regions() == 0, "we should not have added any free regions");
1284       rebuild_region_sets(false /* free_list_only */);
1285 
1286       // Enqueue any discovered reference objects that have
1287       // not been removed from the discovered lists.
1288       ref_processor_stw()->enqueue_discovered_references();
1289 
1290 #if defined(COMPILER2) || INCLUDE_JVMCI
1291       DerivedPointerTable::update_pointers();
1292 #endif
1293 
1294       MemoryService::track_memory_usage();
1295 
1296       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1297       ref_processor_stw()->verify_no_references_recorded();
1298 
1299       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1300       ClassLoaderDataGraph::purge();
1301       MetaspaceAux::verify_metrics();
1302 
1303       // Note: since we've just done a full GC, concurrent
1304       // marking is no longer active. Therefore we need not
1305       // re-enable reference discovery for the CM ref processor.
1306       // That will be done at the start of the next marking cycle.
1307       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1308       ref_processor_cm()->verify_no_references_recorded();
1309 
1310       reset_gc_time_stamp();
1311       // Since everything potentially moved, we will clear all remembered
1312       // sets, and clear all cards.  Later we will rebuild remembered
1313       // sets. We will also reset the GC time stamps of the regions.
1314       clear_rsets_post_compaction();
1315       check_gc_time_stamps();
1316 
1317       resize_if_necessary_after_full_collection();
1318 
1319       // We should do this after we potentially resize the heap so
1320       // that all the COMMIT / UNCOMMIT events are generated before
1321       // the compaction events.
1322       print_hrm_post_compaction();
1323 
1324       if (_hot_card_cache->use_cache()) {
1325         _hot_card_cache->reset_card_counts();
1326         _hot_card_cache->reset_hot_cache();
1327       }
1328 
1329       // Rebuild remembered sets of all regions.
1330       uint n_workers =
1331         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1332                                                 workers()->active_workers(),
1333                                                 Threads::number_of_non_daemon_threads());
1334       workers()->update_active_workers(n_workers);
1335       log_info(gc,task)("Using %u workers of %u to rebuild remembered set", n_workers, workers()->total_workers());
1336 
1337       ParRebuildRSTask rebuild_rs_task(this);
1338       workers()->run_task(&rebuild_rs_task);
1339 
1340       // Rebuild the strong code root lists for each region
1341       rebuild_strong_code_roots();
1342 
1343       if (true) { // FIXME
1344         MetaspaceGC::compute_new_size();
1345       }
1346 
1347 #ifdef TRACESPINNING
1348       ParallelTaskTerminator::print_termination_counts();
1349 #endif
1350 
1351       // Discard all rset updates
1352       JavaThread::dirty_card_queue_set().abandon_logs();
1353       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1354 
1355       // At this point there should be no regions in the
1356       // entire heap tagged as young.
1357       assert(check_young_list_empty(), "young list should be empty at this point");
1358 
1359       // Update the number of full collections that have been completed.
1360       increment_old_marking_cycles_completed(false /* concurrent */);
1361 
1362       _hrm.verify_optional();
1363       _verifier->verify_region_sets_optional();
1364 
1365       _verifier->verify_after_gc();
1366 
1367       // Clear the previous marking bitmap, if needed for bitmap verification.
1368       // Note we cannot do this when we clear the next marking bitmap in
1369       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1370       // objects marked during a full GC against the previous bitmap.
1371       // But we need to clear it before calling check_bitmaps below since
1372       // the full GC has compacted objects and updated TAMS but not updated
1373       // the prev bitmap.
1374       if (G1VerifyBitmaps) {
1375         GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1376         _cm->clear_prev_bitmap(workers());
1377       }
1378       _verifier->check_bitmaps("Full GC End");
1379 
1380       // Start a new incremental collection set for the next pause
1381       collection_set()->start_incremental_building();
1382 
1383       clear_cset_fast_test();
1384 
1385       _allocator->init_mutator_alloc_region();
1386 
1387       g1_policy()->record_full_collection_end();
1388 
1389       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1390       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1391       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1392       // before any GC notifications are raised.
1393       g1mm()->update_sizes();
1394 
1395       gc_epilogue(true);
1396 
1397       heap_transition.print();
1398 
1399       print_heap_after_gc();
1400       print_heap_regions();
1401       trace_heap_after_gc(gc_tracer);
1402 
1403       post_full_gc_dump(gc_timer);
1404     }
1405 
1406     gc_timer->register_gc_end();
1407     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1408   }
1409 
1410   return true;
1411 }
1412 
1413 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1414   // Currently, there is no facility in the do_full_collection(bool) API to notify
1415   // the caller that the collection did not succeed (e.g., because it was locked
1416   // out by the GC locker). So, right now, we'll ignore the return value.
1417   bool dummy = do_full_collection(true,                /* explicit_gc */
1418                                   clear_all_soft_refs);
1419 }
1420 
1421 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1422   // Include bytes that will be pre-allocated to support collections, as "used".
1423   const size_t used_after_gc = used();
1424   const size_t capacity_after_gc = capacity();
1425   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1426 
1427   // This is enforced in arguments.cpp.
1428   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1429          "otherwise the code below doesn't make sense");
1430 
1431   // We don't have floating point command-line arguments
1432   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1433   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1434   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1435   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1436 
1437   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1438   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1439 
1440   // We have to be careful here as these two calculations can overflow
1441   // 32-bit size_t's.
1442   double used_after_gc_d = (double) used_after_gc;
1443   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1444   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1445 
1446   // Let's make sure that they are both under the max heap size, which
1447   // by default will make them fit into a size_t.
1448   double desired_capacity_upper_bound = (double) max_heap_size;
1449   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1450                                     desired_capacity_upper_bound);
1451   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1452                                     desired_capacity_upper_bound);
1453 
1454   // We can now safely turn them into size_t's.
1455   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1456   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1457 
1458   // This assert only makes sense here, before we adjust them
1459   // with respect to the min and max heap size.
1460   assert(minimum_desired_capacity <= maximum_desired_capacity,
1461          "minimum_desired_capacity = " SIZE_FORMAT ", "
1462          "maximum_desired_capacity = " SIZE_FORMAT,
1463          minimum_desired_capacity, maximum_desired_capacity);
1464 
1465   // Should not be greater than the heap max size. No need to adjust
1466   // it with respect to the heap min size as it's a lower bound (i.e.,
1467   // we'll try to make the capacity larger than it, not smaller).
1468   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1469   // Should not be less than the heap min size. No need to adjust it
1470   // with respect to the heap max size as it's an upper bound (i.e.,
1471   // we'll try to make the capacity smaller than it, not greater).
1472   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1473 
1474   if (capacity_after_gc < minimum_desired_capacity) {
1475     // Don't expand unless it's significant
1476     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1477 
1478     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1479                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1480                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1481 
1482     expand(expand_bytes, _workers);
1483 
1484     // No expansion, now see if we want to shrink
1485   } else if (capacity_after_gc > maximum_desired_capacity) {
1486     // Capacity too large, compute shrinking size
1487     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1488 
1489     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1490                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1491                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1492 
1493     shrink(shrink_bytes);
1494   }
1495 }
1496 
1497 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1498                                                             AllocationContext_t context,
1499                                                             bool do_gc,
1500                                                             bool clear_all_soft_refs,
1501                                                             bool expect_null_mutator_alloc_region,
1502                                                             bool* gc_succeeded) {
1503   *gc_succeeded = true;
1504   // Let's attempt the allocation first.
1505   HeapWord* result =
1506     attempt_allocation_at_safepoint(word_size,
1507                                     context,
1508                                     expect_null_mutator_alloc_region);
1509   if (result != NULL) {
1510     assert(*gc_succeeded, "sanity");
1511     return result;
1512   }
1513 
1514   // In a G1 heap, we're supposed to keep allocation from failing by
1515   // incremental pauses.  Therefore, at least for now, we'll favor
1516   // expansion over collection.  (This might change in the future if we can
1517   // do something smarter than full collection to satisfy a failed alloc.)
1518   result = expand_and_allocate(word_size, context);
1519   if (result != NULL) {
1520     assert(*gc_succeeded, "sanity");
1521     return result;
1522   }
1523 
1524   if (do_gc) {
1525     // Expansion didn't work, we'll try to do a Full GC.
1526     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1527                                        clear_all_soft_refs);
1528   }
1529 
1530   return NULL;
1531 }
1532 
1533 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1534                                                      AllocationContext_t context,
1535                                                      bool* succeeded) {
1536   assert_at_safepoint(true /* should_be_vm_thread */);
1537 
1538   // Attempts to allocate followed by Full GC.
1539   HeapWord* result =
1540     satisfy_failed_allocation_helper(word_size,
1541                                      context,
1542                                      true,  /* do_gc */
1543                                      false, /* clear_all_soft_refs */
1544                                      false, /* expect_null_mutator_alloc_region */
1545                                      succeeded);
1546 
1547   if (result != NULL || !*succeeded) {
1548     return result;
1549   }
1550 
1551   // Attempts to allocate followed by Full GC that will collect all soft references.
1552   result = satisfy_failed_allocation_helper(word_size,
1553                                             context,
1554                                             true, /* do_gc */
1555                                             true, /* clear_all_soft_refs */
1556                                             true, /* expect_null_mutator_alloc_region */
1557                                             succeeded);
1558 
1559   if (result != NULL || !*succeeded) {
1560     return result;
1561   }
1562 
1563   // Attempts to allocate, no GC
1564   result = satisfy_failed_allocation_helper(word_size,
1565                                             context,
1566                                             false, /* do_gc */
1567                                             false, /* clear_all_soft_refs */
1568                                             true,  /* expect_null_mutator_alloc_region */
1569                                             succeeded);
1570 
1571   if (result != NULL) {
1572     assert(*succeeded, "sanity");
1573     return result;
1574   }
1575 
1576   assert(!collector_policy()->should_clear_all_soft_refs(),
1577          "Flag should have been handled and cleared prior to this point");
1578 
1579   // What else?  We might try synchronous finalization later.  If the total
1580   // space available is large enough for the allocation, then a more
1581   // complete compaction phase than we've tried so far might be
1582   // appropriate.
1583   assert(*succeeded, "sanity");
1584   return NULL;
1585 }
1586 
1587 // Attempting to expand the heap sufficiently
1588 // to support an allocation of the given "word_size".  If
1589 // successful, perform the allocation and return the address of the
1590 // allocated block, or else "NULL".
1591 
1592 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1593   assert_at_safepoint(true /* should_be_vm_thread */);
1594 
1595   _verifier->verify_region_sets_optional();
1596 
1597   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1598   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1599                             word_size * HeapWordSize);
1600 
1601 
1602   if (expand(expand_bytes, _workers)) {
1603     _hrm.verify_optional();
1604     _verifier->verify_region_sets_optional();
1605     return attempt_allocation_at_safepoint(word_size,
1606                                            context,
1607                                            false /* expect_null_mutator_alloc_region */);
1608   }
1609   return NULL;
1610 }
1611 
1612 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1613   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1614   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1615                                        HeapRegion::GrainBytes);
1616 
1617   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B",
1618                             expand_bytes, aligned_expand_bytes);
1619 
1620   if (is_maximal_no_gc()) {
1621     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1622     return false;
1623   }
1624 
1625   double expand_heap_start_time_sec = os::elapsedTime();
1626   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1627   assert(regions_to_expand > 0, "Must expand by at least one region");
1628 
1629   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1630   if (expand_time_ms != NULL) {
1631     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1632   }
1633 
1634   if (expanded_by > 0) {
1635     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1636     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1637     g1_policy()->record_new_heap_size(num_regions());
1638   } else {
1639     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1640 
1641     // The expansion of the virtual storage space was unsuccessful.
1642     // Let's see if it was because we ran out of swap.
1643     if (G1ExitOnExpansionFailure &&
1644         _hrm.available() >= regions_to_expand) {
1645       // We had head room...
1646       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1647     }
1648   }
1649   return regions_to_expand > 0;
1650 }
1651 
1652 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1653   size_t aligned_shrink_bytes =
1654     ReservedSpace::page_align_size_down(shrink_bytes);
1655   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1656                                          HeapRegion::GrainBytes);
1657   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1658 
1659   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1660   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1661 
1662 
1663   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1664                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1665   if (num_regions_removed > 0) {
1666     g1_policy()->record_new_heap_size(num_regions());
1667   } else {
1668     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1669   }
1670 }
1671 
1672 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1673   _verifier->verify_region_sets_optional();
1674 
1675   // We should only reach here at the end of a Full GC which means we
1676   // should not not be holding to any GC alloc regions. The method
1677   // below will make sure of that and do any remaining clean up.
1678   _allocator->abandon_gc_alloc_regions();
1679 
1680   // Instead of tearing down / rebuilding the free lists here, we
1681   // could instead use the remove_all_pending() method on free_list to
1682   // remove only the ones that we need to remove.
1683   tear_down_region_sets(true /* free_list_only */);
1684   shrink_helper(shrink_bytes);
1685   rebuild_region_sets(true /* free_list_only */);
1686 
1687   _hrm.verify_optional();
1688   _verifier->verify_region_sets_optional();
1689 }
1690 
1691 // Public methods.
1692 
1693 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1694   CollectedHeap(),
1695   _collector_policy(collector_policy),
1696   _g1_policy(create_g1_policy()),
1697   _collection_set(this, _g1_policy),
1698   _dirty_card_queue_set(false),
1699   _is_alive_closure_cm(this),
1700   _is_alive_closure_stw(this),
1701   _ref_processor_cm(NULL),
1702   _ref_processor_stw(NULL),
1703   _bot(NULL),
1704   _hot_card_cache(NULL),
1705   _g1_rem_set(NULL),
1706   _cg1r(NULL),
1707   _g1mm(NULL),
1708   _refine_cte_cl(NULL),
1709   _preserved_marks_set(true /* in_c_heap */),
1710   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1711   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1712   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1713   _humongous_reclaim_candidates(),
1714   _has_humongous_reclaim_candidates(false),
1715   _archive_allocator(NULL),
1716   _free_regions_coming(false),
1717   _gc_time_stamp(0),
1718   _summary_bytes_used(0),
1719   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1720   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1721   _expand_heap_after_alloc_failure(true),
1722   _old_marking_cycles_started(0),
1723   _old_marking_cycles_completed(0),
1724   _in_cset_fast_test(),
1725   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1726   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1727 
1728   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1729                           /* are_GC_task_threads */true,
1730                           /* are_ConcurrentGC_threads */false);
1731   _workers->initialize_workers();
1732   _verifier = new G1HeapVerifier(this);
1733 
1734   _allocator = G1Allocator::create_allocator(this);
1735 
1736   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1737 
1738   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1739 
1740   // Override the default _filler_array_max_size so that no humongous filler
1741   // objects are created.
1742   _filler_array_max_size = _humongous_object_threshold_in_words;
1743 
1744   uint n_queues = ParallelGCThreads;
1745   _task_queues = new RefToScanQueueSet(n_queues);
1746 
1747   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1748 
1749   for (uint i = 0; i < n_queues; i++) {
1750     RefToScanQueue* q = new RefToScanQueue();
1751     q->initialize();
1752     _task_queues->register_queue(i, q);
1753     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1754   }
1755 
1756   // Initialize the G1EvacuationFailureALot counters and flags.
1757   NOT_PRODUCT(reset_evacuation_should_fail();)
1758 
1759   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1760 }
1761 
1762 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1763                                                                  size_t size,
1764                                                                  size_t translation_factor) {
1765   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1766   // Allocate a new reserved space, preferring to use large pages.
1767   ReservedSpace rs(size, preferred_page_size);
1768   G1RegionToSpaceMapper* result  =
1769     G1RegionToSpaceMapper::create_mapper(rs,
1770                                          size,
1771                                          rs.alignment(),
1772                                          HeapRegion::GrainBytes,
1773                                          translation_factor,
1774                                          mtGC);
1775 
1776   os::trace_page_sizes_for_requested_size(description,
1777                                           size,
1778                                           preferred_page_size,
1779                                           rs.alignment(),
1780                                           rs.base(),
1781                                           rs.size());
1782 
1783   return result;
1784 }
1785 
1786 jint G1CollectedHeap::initialize() {
1787   CollectedHeap::pre_initialize();
1788   os::enable_vtime();
1789 
1790   // Necessary to satisfy locking discipline assertions.
1791 
1792   MutexLocker x(Heap_lock);
1793 
1794   // While there are no constraints in the GC code that HeapWordSize
1795   // be any particular value, there are multiple other areas in the
1796   // system which believe this to be true (e.g. oop->object_size in some
1797   // cases incorrectly returns the size in wordSize units rather than
1798   // HeapWordSize).
1799   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1800 
1801   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1802   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1803   size_t heap_alignment = collector_policy()->heap_alignment();
1804 
1805   // Ensure that the sizes are properly aligned.
1806   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1807   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1808   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1809 
1810   _refine_cte_cl = new RefineCardTableEntryClosure();
1811 
1812   jint ecode = JNI_OK;
1813   _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode);
1814   if (_cg1r == NULL) {
1815     return ecode;
1816   }
1817 
1818   // Reserve the maximum.
1819 
1820   // When compressed oops are enabled, the preferred heap base
1821   // is calculated by subtracting the requested size from the
1822   // 32Gb boundary and using the result as the base address for
1823   // heap reservation. If the requested size is not aligned to
1824   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1825   // into the ReservedHeapSpace constructor) then the actual
1826   // base of the reserved heap may end up differing from the
1827   // address that was requested (i.e. the preferred heap base).
1828   // If this happens then we could end up using a non-optimal
1829   // compressed oops mode.
1830 
1831   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1832                                                  heap_alignment);
1833 
1834   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1835 
1836   // Create the barrier set for the entire reserved region.
1837   G1SATBCardTableLoggingModRefBS* bs
1838     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1839   bs->initialize();
1840   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1841   set_barrier_set(bs);
1842 
1843   // Create the hot card cache.
1844   _hot_card_cache = new G1HotCardCache(this);
1845 
1846   // Also create a G1 rem set.
1847   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1848 
1849   // Carve out the G1 part of the heap.
1850   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1851   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1852   G1RegionToSpaceMapper* heap_storage =
1853     G1RegionToSpaceMapper::create_mapper(g1_rs,
1854                                          g1_rs.size(),
1855                                          page_size,
1856                                          HeapRegion::GrainBytes,
1857                                          1,
1858                                          mtJavaHeap);
1859   os::trace_page_sizes("Heap",
1860                        collector_policy()->min_heap_byte_size(),
1861                        max_byte_size,
1862                        page_size,
1863                        heap_rs.base(),
1864                        heap_rs.size());
1865   heap_storage->set_mapping_changed_listener(&_listener);
1866 
1867   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1868   G1RegionToSpaceMapper* bot_storage =
1869     create_aux_memory_mapper("Block Offset Table",
1870                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1871                              G1BlockOffsetTable::heap_map_factor());
1872 
1873   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1874   G1RegionToSpaceMapper* cardtable_storage =
1875     create_aux_memory_mapper("Card Table",
1876                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1877                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1878 
1879   G1RegionToSpaceMapper* card_counts_storage =
1880     create_aux_memory_mapper("Card Counts Table",
1881                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1882                              G1CardCounts::heap_map_factor());
1883 
1884   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1885   G1RegionToSpaceMapper* prev_bitmap_storage =
1886     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1887   G1RegionToSpaceMapper* next_bitmap_storage =
1888     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1889 
1890   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1891   g1_barrier_set()->initialize(cardtable_storage);
1892   // Do later initialization work for concurrent refinement.
1893   _hot_card_cache->initialize(card_counts_storage);
1894 
1895   // 6843694 - ensure that the maximum region index can fit
1896   // in the remembered set structures.
1897   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1898   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1899 
1900   g1_rem_set()->initialize(max_capacity(), max_regions());
1901 
1902   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1903   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1904   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1905             "too many cards per region");
1906 
1907   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1908 
1909   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1910 
1911   {
1912     HeapWord* start = _hrm.reserved().start();
1913     HeapWord* end = _hrm.reserved().end();
1914     size_t granularity = HeapRegion::GrainBytes;
1915 
1916     _in_cset_fast_test.initialize(start, end, granularity);
1917     _humongous_reclaim_candidates.initialize(start, end, granularity);
1918   }
1919 
1920   // Create the G1ConcurrentMark data structure and thread.
1921   // (Must do this late, so that "max_regions" is defined.)
1922   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1923   if (_cm == NULL || !_cm->completed_initialization()) {
1924     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1925     return JNI_ENOMEM;
1926   }
1927   _cmThread = _cm->cmThread();
1928 
1929   // Now expand into the initial heap size.
1930   if (!expand(init_byte_size, _workers)) {
1931     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1932     return JNI_ENOMEM;
1933   }
1934 
1935   // Perform any initialization actions delegated to the policy.
1936   g1_policy()->init(this, &_collection_set);
1937 
1938   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1939                                                SATB_Q_FL_lock,
1940                                                G1SATBProcessCompletedThreshold,
1941                                                Shared_SATB_Q_lock);
1942 
1943   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1944                                                 DirtyCardQ_CBL_mon,
1945                                                 DirtyCardQ_FL_lock,
1946                                                 (int)concurrent_g1_refine()->yellow_zone(),
1947                                                 (int)concurrent_g1_refine()->red_zone(),
1948                                                 Shared_DirtyCardQ_lock,
1949                                                 NULL,  // fl_owner
1950                                                 true); // init_free_ids
1951 
1952   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1953                                     DirtyCardQ_CBL_mon,
1954                                     DirtyCardQ_FL_lock,
1955                                     -1, // never trigger processing
1956                                     -1, // no limit on length
1957                                     Shared_DirtyCardQ_lock,
1958                                     &JavaThread::dirty_card_queue_set());
1959 
1960   // Here we allocate the dummy HeapRegion that is required by the
1961   // G1AllocRegion class.
1962   HeapRegion* dummy_region = _hrm.get_dummy_region();
1963 
1964   // We'll re-use the same region whether the alloc region will
1965   // require BOT updates or not and, if it doesn't, then a non-young
1966   // region will complain that it cannot support allocations without
1967   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1968   dummy_region->set_eden();
1969   // Make sure it's full.
1970   dummy_region->set_top(dummy_region->end());
1971   G1AllocRegion::setup(this, dummy_region);
1972 
1973   _allocator->init_mutator_alloc_region();
1974 
1975   // Do create of the monitoring and management support so that
1976   // values in the heap have been properly initialized.
1977   _g1mm = new G1MonitoringSupport(this);
1978 
1979   G1StringDedup::initialize();
1980 
1981   _preserved_marks_set.init(ParallelGCThreads);
1982 
1983   _collection_set.initialize(max_regions());
1984 
1985   return JNI_OK;
1986 }
1987 
1988 void G1CollectedHeap::stop() {
1989   // Stop all concurrent threads. We do this to make sure these threads
1990   // do not continue to execute and access resources (e.g. logging)
1991   // that are destroyed during shutdown.
1992   _cg1r->stop();
1993   _cmThread->stop();
1994   if (G1StringDedup::is_enabled()) {
1995     G1StringDedup::stop();
1996   }
1997 }
1998 
1999 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2000   return HeapRegion::max_region_size();
2001 }
2002 
2003 void G1CollectedHeap::post_initialize() {
2004   ref_processing_init();
2005 }
2006 
2007 void G1CollectedHeap::ref_processing_init() {
2008   // Reference processing in G1 currently works as follows:
2009   //
2010   // * There are two reference processor instances. One is
2011   //   used to record and process discovered references
2012   //   during concurrent marking; the other is used to
2013   //   record and process references during STW pauses
2014   //   (both full and incremental).
2015   // * Both ref processors need to 'span' the entire heap as
2016   //   the regions in the collection set may be dotted around.
2017   //
2018   // * For the concurrent marking ref processor:
2019   //   * Reference discovery is enabled at initial marking.
2020   //   * Reference discovery is disabled and the discovered
2021   //     references processed etc during remarking.
2022   //   * Reference discovery is MT (see below).
2023   //   * Reference discovery requires a barrier (see below).
2024   //   * Reference processing may or may not be MT
2025   //     (depending on the value of ParallelRefProcEnabled
2026   //     and ParallelGCThreads).
2027   //   * A full GC disables reference discovery by the CM
2028   //     ref processor and abandons any entries on it's
2029   //     discovered lists.
2030   //
2031   // * For the STW processor:
2032   //   * Non MT discovery is enabled at the start of a full GC.
2033   //   * Processing and enqueueing during a full GC is non-MT.
2034   //   * During a full GC, references are processed after marking.
2035   //
2036   //   * Discovery (may or may not be MT) is enabled at the start
2037   //     of an incremental evacuation pause.
2038   //   * References are processed near the end of a STW evacuation pause.
2039   //   * For both types of GC:
2040   //     * Discovery is atomic - i.e. not concurrent.
2041   //     * Reference discovery will not need a barrier.
2042 
2043   MemRegion mr = reserved_region();
2044 
2045   // Concurrent Mark ref processor
2046   _ref_processor_cm =
2047     new ReferenceProcessor(mr,    // span
2048                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2049                                 // mt processing
2050                            ParallelGCThreads,
2051                                 // degree of mt processing
2052                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2053                                 // mt discovery
2054                            MAX2(ParallelGCThreads, ConcGCThreads),
2055                                 // degree of mt discovery
2056                            false,
2057                                 // Reference discovery is not atomic
2058                            &_is_alive_closure_cm);
2059                                 // is alive closure
2060                                 // (for efficiency/performance)
2061 
2062   // STW ref processor
2063   _ref_processor_stw =
2064     new ReferenceProcessor(mr,    // span
2065                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2066                                 // mt processing
2067                            ParallelGCThreads,
2068                                 // degree of mt processing
2069                            (ParallelGCThreads > 1),
2070                                 // mt discovery
2071                            ParallelGCThreads,
2072                                 // degree of mt discovery
2073                            true,
2074                                 // Reference discovery is atomic
2075                            &_is_alive_closure_stw);
2076                                 // is alive closure
2077                                 // (for efficiency/performance)
2078 }
2079 
2080 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2081   return _collector_policy;
2082 }
2083 
2084 size_t G1CollectedHeap::capacity() const {
2085   return _hrm.length() * HeapRegion::GrainBytes;
2086 }
2087 
2088 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2089   hr->reset_gc_time_stamp();
2090 }
2091 
2092 #ifndef PRODUCT
2093 
2094 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2095 private:
2096   unsigned _gc_time_stamp;
2097   bool _failures;
2098 
2099 public:
2100   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2101     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2102 
2103   virtual bool doHeapRegion(HeapRegion* hr) {
2104     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2105     if (_gc_time_stamp != region_gc_time_stamp) {
2106       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2107                             region_gc_time_stamp, _gc_time_stamp);
2108       _failures = true;
2109     }
2110     return false;
2111   }
2112 
2113   bool failures() { return _failures; }
2114 };
2115 
2116 void G1CollectedHeap::check_gc_time_stamps() {
2117   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2118   heap_region_iterate(&cl);
2119   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2120 }
2121 #endif // PRODUCT
2122 
2123 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2124   _hot_card_cache->drain(cl, worker_i);
2125 }
2126 
2127 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2128   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2129   size_t n_completed_buffers = 0;
2130   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2131     n_completed_buffers++;
2132   }
2133   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2134   dcqs.clear_n_completed_buffers();
2135   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2136 }
2137 
2138 // Computes the sum of the storage used by the various regions.
2139 size_t G1CollectedHeap::used() const {
2140   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2141   if (_archive_allocator != NULL) {
2142     result += _archive_allocator->used();
2143   }
2144   return result;
2145 }
2146 
2147 size_t G1CollectedHeap::used_unlocked() const {
2148   return _summary_bytes_used;
2149 }
2150 
2151 class SumUsedClosure: public HeapRegionClosure {
2152   size_t _used;
2153 public:
2154   SumUsedClosure() : _used(0) {}
2155   bool doHeapRegion(HeapRegion* r) {
2156     _used += r->used();
2157     return false;
2158   }
2159   size_t result() { return _used; }
2160 };
2161 
2162 size_t G1CollectedHeap::recalculate_used() const {
2163   double recalculate_used_start = os::elapsedTime();
2164 
2165   SumUsedClosure blk;
2166   heap_region_iterate(&blk);
2167 
2168   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2169   return blk.result();
2170 }
2171 
2172 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2173   switch (cause) {
2174     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2175     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2176     case GCCause::_update_allocation_context_stats_inc: return true;
2177     case GCCause::_wb_conc_mark:                        return true;
2178     default :                                           return false;
2179   }
2180 }
2181 
2182 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2183   switch (cause) {
2184     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2185     case GCCause::_g1_humongous_allocation: return true;
2186     default:                                return is_user_requested_concurrent_full_gc(cause);
2187   }
2188 }
2189 
2190 #ifndef PRODUCT
2191 void G1CollectedHeap::allocate_dummy_regions() {
2192   // Let's fill up most of the region
2193   size_t word_size = HeapRegion::GrainWords - 1024;
2194   // And as a result the region we'll allocate will be humongous.
2195   guarantee(is_humongous(word_size), "sanity");
2196 
2197   // _filler_array_max_size is set to humongous object threshold
2198   // but temporarily change it to use CollectedHeap::fill_with_object().
2199   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2200 
2201   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2202     // Let's use the existing mechanism for the allocation
2203     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2204                                                  AllocationContext::system());
2205     if (dummy_obj != NULL) {
2206       MemRegion mr(dummy_obj, word_size);
2207       CollectedHeap::fill_with_object(mr);
2208     } else {
2209       // If we can't allocate once, we probably cannot allocate
2210       // again. Let's get out of the loop.
2211       break;
2212     }
2213   }
2214 }
2215 #endif // !PRODUCT
2216 
2217 void G1CollectedHeap::increment_old_marking_cycles_started() {
2218   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2219          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2220          "Wrong marking cycle count (started: %d, completed: %d)",
2221          _old_marking_cycles_started, _old_marking_cycles_completed);
2222 
2223   _old_marking_cycles_started++;
2224 }
2225 
2226 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2227   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2228 
2229   // We assume that if concurrent == true, then the caller is a
2230   // concurrent thread that was joined the Suspendible Thread
2231   // Set. If there's ever a cheap way to check this, we should add an
2232   // assert here.
2233 
2234   // Given that this method is called at the end of a Full GC or of a
2235   // concurrent cycle, and those can be nested (i.e., a Full GC can
2236   // interrupt a concurrent cycle), the number of full collections
2237   // completed should be either one (in the case where there was no
2238   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2239   // behind the number of full collections started.
2240 
2241   // This is the case for the inner caller, i.e. a Full GC.
2242   assert(concurrent ||
2243          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2244          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2245          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2246          "is inconsistent with _old_marking_cycles_completed = %u",
2247          _old_marking_cycles_started, _old_marking_cycles_completed);
2248 
2249   // This is the case for the outer caller, i.e. the concurrent cycle.
2250   assert(!concurrent ||
2251          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2252          "for outer caller (concurrent cycle): "
2253          "_old_marking_cycles_started = %u "
2254          "is inconsistent with _old_marking_cycles_completed = %u",
2255          _old_marking_cycles_started, _old_marking_cycles_completed);
2256 
2257   _old_marking_cycles_completed += 1;
2258 
2259   // We need to clear the "in_progress" flag in the CM thread before
2260   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2261   // is set) so that if a waiter requests another System.gc() it doesn't
2262   // incorrectly see that a marking cycle is still in progress.
2263   if (concurrent) {
2264     _cmThread->set_idle();
2265   }
2266 
2267   // This notify_all() will ensure that a thread that called
2268   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2269   // and it's waiting for a full GC to finish will be woken up. It is
2270   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2271   FullGCCount_lock->notify_all();
2272 }
2273 
2274 void G1CollectedHeap::collect(GCCause::Cause cause) {
2275   assert_heap_not_locked();
2276 
2277   uint gc_count_before;
2278   uint old_marking_count_before;
2279   uint full_gc_count_before;
2280   bool retry_gc;
2281 
2282   do {
2283     retry_gc = false;
2284 
2285     {
2286       MutexLocker ml(Heap_lock);
2287 
2288       // Read the GC count while holding the Heap_lock
2289       gc_count_before = total_collections();
2290       full_gc_count_before = total_full_collections();
2291       old_marking_count_before = _old_marking_cycles_started;
2292     }
2293 
2294     if (should_do_concurrent_full_gc(cause)) {
2295       // Schedule an initial-mark evacuation pause that will start a
2296       // concurrent cycle. We're setting word_size to 0 which means that
2297       // we are not requesting a post-GC allocation.
2298       VM_G1IncCollectionPause op(gc_count_before,
2299                                  0,     /* word_size */
2300                                  true,  /* should_initiate_conc_mark */
2301                                  g1_policy()->max_pause_time_ms(),
2302                                  cause);
2303       op.set_allocation_context(AllocationContext::current());
2304 
2305       VMThread::execute(&op);
2306       if (!op.pause_succeeded()) {
2307         if (old_marking_count_before == _old_marking_cycles_started) {
2308           retry_gc = op.should_retry_gc();
2309         } else {
2310           // A Full GC happened while we were trying to schedule the
2311           // initial-mark GC. No point in starting a new cycle given
2312           // that the whole heap was collected anyway.
2313         }
2314 
2315         if (retry_gc) {
2316           if (GCLocker::is_active_and_needs_gc()) {
2317             GCLocker::stall_until_clear();
2318           }
2319         }
2320       }
2321     } else {
2322       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2323           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2324 
2325         // Schedule a standard evacuation pause. We're setting word_size
2326         // to 0 which means that we are not requesting a post-GC allocation.
2327         VM_G1IncCollectionPause op(gc_count_before,
2328                                    0,     /* word_size */
2329                                    false, /* should_initiate_conc_mark */
2330                                    g1_policy()->max_pause_time_ms(),
2331                                    cause);
2332         VMThread::execute(&op);
2333       } else {
2334         // Schedule a Full GC.
2335         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2336         VMThread::execute(&op);
2337       }
2338     }
2339   } while (retry_gc);
2340 }
2341 
2342 bool G1CollectedHeap::is_in(const void* p) const {
2343   if (_hrm.reserved().contains(p)) {
2344     // Given that we know that p is in the reserved space,
2345     // heap_region_containing() should successfully
2346     // return the containing region.
2347     HeapRegion* hr = heap_region_containing(p);
2348     return hr->is_in(p);
2349   } else {
2350     return false;
2351   }
2352 }
2353 
2354 #ifdef ASSERT
2355 bool G1CollectedHeap::is_in_exact(const void* p) const {
2356   bool contains = reserved_region().contains(p);
2357   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2358   if (contains && available) {
2359     return true;
2360   } else {
2361     return false;
2362   }
2363 }
2364 #endif
2365 
2366 bool G1CollectedHeap::obj_in_cs(oop obj) {
2367   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2368   return r != NULL && r->in_collection_set();
2369 }
2370 
2371 // Iteration functions.
2372 
2373 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2374 
2375 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2376   ExtendedOopClosure* _cl;
2377 public:
2378   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2379   bool doHeapRegion(HeapRegion* r) {
2380     if (!r->is_continues_humongous()) {
2381       r->oop_iterate(_cl);
2382     }
2383     return false;
2384   }
2385 };
2386 
2387 // Iterates an ObjectClosure over all objects within a HeapRegion.
2388 
2389 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2390   ObjectClosure* _cl;
2391 public:
2392   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2393   bool doHeapRegion(HeapRegion* r) {
2394     if (!r->is_continues_humongous()) {
2395       r->object_iterate(_cl);
2396     }
2397     return false;
2398   }
2399 };
2400 
2401 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2402   IterateObjectClosureRegionClosure blk(cl);
2403   heap_region_iterate(&blk);
2404 }
2405 
2406 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2407   _hrm.iterate(cl);
2408 }
2409 
2410 void
2411 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2412                                          uint worker_id,
2413                                          HeapRegionClaimer *hrclaimer,
2414                                          bool concurrent) const {
2415   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2416 }
2417 
2418 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2419   _collection_set.iterate(cl);
2420 }
2421 
2422 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2423   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2424 }
2425 
2426 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2427   HeapRegion* result = _hrm.next_region_in_heap(from);
2428   while (result != NULL && result->is_pinned()) {
2429     result = _hrm.next_region_in_heap(result);
2430   }
2431   return result;
2432 }
2433 
2434 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2435   HeapRegion* hr = heap_region_containing(addr);
2436   return hr->block_start(addr);
2437 }
2438 
2439 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2440   HeapRegion* hr = heap_region_containing(addr);
2441   return hr->block_size(addr);
2442 }
2443 
2444 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2445   HeapRegion* hr = heap_region_containing(addr);
2446   return hr->block_is_obj(addr);
2447 }
2448 
2449 bool G1CollectedHeap::supports_tlab_allocation() const {
2450   return true;
2451 }
2452 
2453 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2454   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2455 }
2456 
2457 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2458   return _eden.length() * HeapRegion::GrainBytes;
2459 }
2460 
2461 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2462 // must be equal to the humongous object limit.
2463 size_t G1CollectedHeap::max_tlab_size() const {
2464   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2465 }
2466 
2467 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2468   AllocationContext_t context = AllocationContext::current();
2469   return _allocator->unsafe_max_tlab_alloc(context);
2470 }
2471 
2472 size_t G1CollectedHeap::max_capacity() const {
2473   return _hrm.reserved().byte_size();
2474 }
2475 
2476 jlong G1CollectedHeap::millis_since_last_gc() {
2477   // See the notes in GenCollectedHeap::millis_since_last_gc()
2478   // for more information about the implementation.
2479   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2480     _g1_policy->collection_pause_end_millis();
2481   if (ret_val < 0) {
2482     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2483       ". returning zero instead.", ret_val);
2484     return 0;
2485   }
2486   return ret_val;
2487 }
2488 
2489 void G1CollectedHeap::prepare_for_verify() {
2490   _verifier->prepare_for_verify();
2491 }
2492 
2493 void G1CollectedHeap::verify(VerifyOption vo) {
2494   _verifier->verify(vo);
2495 }
2496 
2497 class PrintRegionClosure: public HeapRegionClosure {
2498   outputStream* _st;
2499 public:
2500   PrintRegionClosure(outputStream* st) : _st(st) {}
2501   bool doHeapRegion(HeapRegion* r) {
2502     r->print_on(_st);
2503     return false;
2504   }
2505 };
2506 
2507 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2508                                        const HeapRegion* hr,
2509                                        const VerifyOption vo) const {
2510   switch (vo) {
2511   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2512   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2513   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2514   default:                            ShouldNotReachHere();
2515   }
2516   return false; // keep some compilers happy
2517 }
2518 
2519 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2520                                        const VerifyOption vo) const {
2521   switch (vo) {
2522   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2523   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2524   case VerifyOption_G1UseMarkWord: {
2525     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2526     return !obj->is_gc_marked() && !hr->is_archive();
2527   }
2528   default:                            ShouldNotReachHere();
2529   }
2530   return false; // keep some compilers happy
2531 }
2532 
2533 void G1CollectedHeap::print_heap_regions() const {
2534   Log(gc, heap, region) log;
2535   if (log.is_trace()) {
2536     ResourceMark rm;
2537     print_regions_on(log.trace_stream());
2538   }
2539 }
2540 
2541 void G1CollectedHeap::print_on(outputStream* st) const {
2542   st->print(" %-20s", "garbage-first heap");
2543   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2544             capacity()/K, used_unlocked()/K);
2545   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2546             p2i(_hrm.reserved().start()),
2547             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2548             p2i(_hrm.reserved().end()));
2549   st->cr();
2550   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2551   uint young_regions = young_regions_count();
2552   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2553             (size_t) young_regions * HeapRegion::GrainBytes / K);
2554   uint survivor_regions = survivor_regions_count();
2555   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2556             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2557   st->cr();
2558   MetaspaceAux::print_on(st);
2559 }
2560 
2561 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2562   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2563                "HS=humongous(starts), HC=humongous(continues), "
2564                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2565                "AC=allocation context, "
2566                "TAMS=top-at-mark-start (previous, next)");
2567   PrintRegionClosure blk(st);
2568   heap_region_iterate(&blk);
2569 }
2570 
2571 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2572   print_on(st);
2573 
2574   // Print the per-region information.
2575   print_regions_on(st);
2576 }
2577 
2578 void G1CollectedHeap::print_on_error(outputStream* st) const {
2579   this->CollectedHeap::print_on_error(st);
2580 
2581   if (_cm != NULL) {
2582     st->cr();
2583     _cm->print_on_error(st);
2584   }
2585 }
2586 
2587 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2588   workers()->print_worker_threads_on(st);
2589   _cmThread->print_on(st);
2590   st->cr();
2591   _cm->print_worker_threads_on(st);
2592   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2593   if (G1StringDedup::is_enabled()) {
2594     G1StringDedup::print_worker_threads_on(st);
2595   }
2596 }
2597 
2598 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2599   workers()->threads_do(tc);
2600   tc->do_thread(_cmThread);
2601   _cm->threads_do(tc);
2602   _cg1r->threads_do(tc); // also iterates over the sample thread
2603   if (G1StringDedup::is_enabled()) {
2604     G1StringDedup::threads_do(tc);
2605   }
2606 }
2607 
2608 void G1CollectedHeap::print_tracing_info() const {
2609   g1_rem_set()->print_summary_info();
2610   concurrent_mark()->print_summary_info();
2611 }
2612 
2613 #ifndef PRODUCT
2614 // Helpful for debugging RSet issues.
2615 
2616 class PrintRSetsClosure : public HeapRegionClosure {
2617 private:
2618   const char* _msg;
2619   size_t _occupied_sum;
2620 
2621 public:
2622   bool doHeapRegion(HeapRegion* r) {
2623     HeapRegionRemSet* hrrs = r->rem_set();
2624     size_t occupied = hrrs->occupied();
2625     _occupied_sum += occupied;
2626 
2627     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2628     if (occupied == 0) {
2629       tty->print_cr("  RSet is empty");
2630     } else {
2631       hrrs->print();
2632     }
2633     tty->print_cr("----------");
2634     return false;
2635   }
2636 
2637   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2638     tty->cr();
2639     tty->print_cr("========================================");
2640     tty->print_cr("%s", msg);
2641     tty->cr();
2642   }
2643 
2644   ~PrintRSetsClosure() {
2645     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2646     tty->print_cr("========================================");
2647     tty->cr();
2648   }
2649 };
2650 
2651 void G1CollectedHeap::print_cset_rsets() {
2652   PrintRSetsClosure cl("Printing CSet RSets");
2653   collection_set_iterate(&cl);
2654 }
2655 
2656 void G1CollectedHeap::print_all_rsets() {
2657   PrintRSetsClosure cl("Printing All RSets");;
2658   heap_region_iterate(&cl);
2659 }
2660 #endif // PRODUCT
2661 
2662 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2663 
2664   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2665   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2666   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2667 
2668   size_t eden_capacity_bytes =
2669     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2670 
2671   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2672   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2673                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2674 }
2675 
2676 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2677   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2678                        stats->unused(), stats->used(), stats->region_end_waste(),
2679                        stats->regions_filled(), stats->direct_allocated(),
2680                        stats->failure_used(), stats->failure_waste());
2681 }
2682 
2683 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2684   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2685   gc_tracer->report_gc_heap_summary(when, heap_summary);
2686 
2687   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2688   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2689 }
2690 
2691 G1CollectedHeap* G1CollectedHeap::heap() {
2692   CollectedHeap* heap = Universe::heap();
2693   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2694   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2695   return (G1CollectedHeap*)heap;
2696 }
2697 
2698 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2699   // always_do_update_barrier = false;
2700   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2701   // Fill TLAB's and such
2702   accumulate_statistics_all_tlabs();
2703   ensure_parsability(true);
2704 
2705   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2706 }
2707 
2708 void G1CollectedHeap::gc_epilogue(bool full) {
2709   // we are at the end of the GC. Total collections has already been increased.
2710   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2711 
2712   // FIXME: what is this about?
2713   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2714   // is set.
2715 #if defined(COMPILER2) || INCLUDE_JVMCI
2716   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2717 #endif
2718   // always_do_update_barrier = true;
2719 
2720   resize_all_tlabs();
2721   allocation_context_stats().update(full);
2722 
2723   // We have just completed a GC. Update the soft reference
2724   // policy with the new heap occupancy
2725   Universe::update_heap_info_at_gc();
2726 }
2727 
2728 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2729                                                uint gc_count_before,
2730                                                bool* succeeded,
2731                                                GCCause::Cause gc_cause) {
2732   assert_heap_not_locked_and_not_at_safepoint();
2733   VM_G1IncCollectionPause op(gc_count_before,
2734                              word_size,
2735                              false, /* should_initiate_conc_mark */
2736                              g1_policy()->max_pause_time_ms(),
2737                              gc_cause);
2738 
2739   op.set_allocation_context(AllocationContext::current());
2740   VMThread::execute(&op);
2741 
2742   HeapWord* result = op.result();
2743   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2744   assert(result == NULL || ret_succeeded,
2745          "the result should be NULL if the VM did not succeed");
2746   *succeeded = ret_succeeded;
2747 
2748   assert_heap_not_locked();
2749   return result;
2750 }
2751 
2752 void
2753 G1CollectedHeap::doConcurrentMark() {
2754   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2755   if (!_cmThread->in_progress()) {
2756     _cmThread->set_started();
2757     CGC_lock->notify();
2758   }
2759 }
2760 
2761 size_t G1CollectedHeap::pending_card_num() {
2762   size_t extra_cards = 0;
2763   JavaThread *curr = Threads::first();
2764   while (curr != NULL) {
2765     DirtyCardQueue& dcq = curr->dirty_card_queue();
2766     extra_cards += dcq.size();
2767     curr = curr->next();
2768   }
2769   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2770   size_t buffer_size = dcqs.buffer_size();
2771   size_t buffer_num = dcqs.completed_buffers_num();
2772 
2773   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
2774   // in bytes - not the number of 'entries'. We need to convert
2775   // into a number of cards.
2776   return (buffer_size * buffer_num + extra_cards) / oopSize;
2777 }
2778 
2779 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2780  private:
2781   size_t _total_humongous;
2782   size_t _candidate_humongous;
2783 
2784   DirtyCardQueue _dcq;
2785 
2786   // We don't nominate objects with many remembered set entries, on
2787   // the assumption that such objects are likely still live.
2788   bool is_remset_small(HeapRegion* region) const {
2789     HeapRegionRemSet* const rset = region->rem_set();
2790     return G1EagerReclaimHumongousObjectsWithStaleRefs
2791       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2792       : rset->is_empty();
2793   }
2794 
2795   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2796     assert(region->is_starts_humongous(), "Must start a humongous object");
2797 
2798     oop obj = oop(region->bottom());
2799 
2800     // Dead objects cannot be eager reclaim candidates. Due to class
2801     // unloading it is unsafe to query their classes so we return early.
2802     if (heap->is_obj_dead(obj, region)) {
2803       return false;
2804     }
2805 
2806     // Candidate selection must satisfy the following constraints
2807     // while concurrent marking is in progress:
2808     //
2809     // * In order to maintain SATB invariants, an object must not be
2810     // reclaimed if it was allocated before the start of marking and
2811     // has not had its references scanned.  Such an object must have
2812     // its references (including type metadata) scanned to ensure no
2813     // live objects are missed by the marking process.  Objects
2814     // allocated after the start of concurrent marking don't need to
2815     // be scanned.
2816     //
2817     // * An object must not be reclaimed if it is on the concurrent
2818     // mark stack.  Objects allocated after the start of concurrent
2819     // marking are never pushed on the mark stack.
2820     //
2821     // Nominating only objects allocated after the start of concurrent
2822     // marking is sufficient to meet both constraints.  This may miss
2823     // some objects that satisfy the constraints, but the marking data
2824     // structures don't support efficiently performing the needed
2825     // additional tests or scrubbing of the mark stack.
2826     //
2827     // However, we presently only nominate is_typeArray() objects.
2828     // A humongous object containing references induces remembered
2829     // set entries on other regions.  In order to reclaim such an
2830     // object, those remembered sets would need to be cleaned up.
2831     //
2832     // We also treat is_typeArray() objects specially, allowing them
2833     // to be reclaimed even if allocated before the start of
2834     // concurrent mark.  For this we rely on mark stack insertion to
2835     // exclude is_typeArray() objects, preventing reclaiming an object
2836     // that is in the mark stack.  We also rely on the metadata for
2837     // such objects to be built-in and so ensured to be kept live.
2838     // Frequent allocation and drop of large binary blobs is an
2839     // important use case for eager reclaim, and this special handling
2840     // may reduce needed headroom.
2841 
2842     return obj->is_typeArray() && is_remset_small(region);
2843   }
2844 
2845  public:
2846   RegisterHumongousWithInCSetFastTestClosure()
2847   : _total_humongous(0),
2848     _candidate_humongous(0),
2849     _dcq(&JavaThread::dirty_card_queue_set()) {
2850   }
2851 
2852   virtual bool doHeapRegion(HeapRegion* r) {
2853     if (!r->is_starts_humongous()) {
2854       return false;
2855     }
2856     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2857 
2858     bool is_candidate = humongous_region_is_candidate(g1h, r);
2859     uint rindex = r->hrm_index();
2860     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2861     if (is_candidate) {
2862       _candidate_humongous++;
2863       g1h->register_humongous_region_with_cset(rindex);
2864       // Is_candidate already filters out humongous object with large remembered sets.
2865       // If we have a humongous object with a few remembered sets, we simply flush these
2866       // remembered set entries into the DCQS. That will result in automatic
2867       // re-evaluation of their remembered set entries during the following evacuation
2868       // phase.
2869       if (!r->rem_set()->is_empty()) {
2870         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2871                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2872         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2873         HeapRegionRemSetIterator hrrs(r->rem_set());
2874         size_t card_index;
2875         while (hrrs.has_next(card_index)) {
2876           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2877           // The remembered set might contain references to already freed
2878           // regions. Filter out such entries to avoid failing card table
2879           // verification.
2880           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2881             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2882               *card_ptr = CardTableModRefBS::dirty_card_val();
2883               _dcq.enqueue(card_ptr);
2884             }
2885           }
2886         }
2887         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2888                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2889                hrrs.n_yielded(), r->rem_set()->occupied());
2890         r->rem_set()->clear_locked();
2891       }
2892       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2893     }
2894     _total_humongous++;
2895 
2896     return false;
2897   }
2898 
2899   size_t total_humongous() const { return _total_humongous; }
2900   size_t candidate_humongous() const { return _candidate_humongous; }
2901 
2902   void flush_rem_set_entries() { _dcq.flush(); }
2903 };
2904 
2905 void G1CollectedHeap::register_humongous_regions_with_cset() {
2906   if (!G1EagerReclaimHumongousObjects) {
2907     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2908     return;
2909   }
2910   double time = os::elapsed_counter();
2911 
2912   // Collect reclaim candidate information and register candidates with cset.
2913   RegisterHumongousWithInCSetFastTestClosure cl;
2914   heap_region_iterate(&cl);
2915 
2916   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2917   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2918                                                                   cl.total_humongous(),
2919                                                                   cl.candidate_humongous());
2920   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2921 
2922   // Finally flush all remembered set entries to re-check into the global DCQS.
2923   cl.flush_rem_set_entries();
2924 }
2925 
2926 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2927   public:
2928     bool doHeapRegion(HeapRegion* hr) {
2929       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2930         hr->verify_rem_set();
2931       }
2932       return false;
2933     }
2934 };
2935 
2936 uint G1CollectedHeap::num_task_queues() const {
2937   return _task_queues->size();
2938 }
2939 
2940 #if TASKQUEUE_STATS
2941 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2942   st->print_raw_cr("GC Task Stats");
2943   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2944   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2945 }
2946 
2947 void G1CollectedHeap::print_taskqueue_stats() const {
2948   if (!log_is_enabled(Trace, gc, task, stats)) {
2949     return;
2950   }
2951   Log(gc, task, stats) log;
2952   ResourceMark rm;
2953   outputStream* st = log.trace_stream();
2954 
2955   print_taskqueue_stats_hdr(st);
2956 
2957   TaskQueueStats totals;
2958   const uint n = num_task_queues();
2959   for (uint i = 0; i < n; ++i) {
2960     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2961     totals += task_queue(i)->stats;
2962   }
2963   st->print_raw("tot "); totals.print(st); st->cr();
2964 
2965   DEBUG_ONLY(totals.verify());
2966 }
2967 
2968 void G1CollectedHeap::reset_taskqueue_stats() {
2969   const uint n = num_task_queues();
2970   for (uint i = 0; i < n; ++i) {
2971     task_queue(i)->stats.reset();
2972   }
2973 }
2974 #endif // TASKQUEUE_STATS
2975 
2976 void G1CollectedHeap::wait_for_root_region_scanning() {
2977   double scan_wait_start = os::elapsedTime();
2978   // We have to wait until the CM threads finish scanning the
2979   // root regions as it's the only way to ensure that all the
2980   // objects on them have been correctly scanned before we start
2981   // moving them during the GC.
2982   bool waited = _cm->root_regions()->wait_until_scan_finished();
2983   double wait_time_ms = 0.0;
2984   if (waited) {
2985     double scan_wait_end = os::elapsedTime();
2986     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2987   }
2988   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2989 }
2990 
2991 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2992 private:
2993   G1HRPrinter* _hr_printer;
2994 public:
2995   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2996 
2997   virtual bool doHeapRegion(HeapRegion* r) {
2998     _hr_printer->cset(r);
2999     return false;
3000   }
3001 };
3002 
3003 bool
3004 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3005   assert_at_safepoint(true /* should_be_vm_thread */);
3006   guarantee(!is_gc_active(), "collection is not reentrant");
3007 
3008   if (GCLocker::check_active_before_gc()) {
3009     return false;
3010   }
3011 
3012   _gc_timer_stw->register_gc_start();
3013 
3014   GCIdMark gc_id_mark;
3015   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3016 
3017   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3018   ResourceMark rm;
3019 
3020   g1_policy()->note_gc_start();
3021 
3022   wait_for_root_region_scanning();
3023 
3024   print_heap_before_gc();
3025   print_heap_regions();
3026   trace_heap_before_gc(_gc_tracer_stw);
3027 
3028   _verifier->verify_region_sets_optional();
3029   _verifier->verify_dirty_young_regions();
3030 
3031   // We should not be doing initial mark unless the conc mark thread is running
3032   if (!_cmThread->should_terminate()) {
3033     // This call will decide whether this pause is an initial-mark
3034     // pause. If it is, during_initial_mark_pause() will return true
3035     // for the duration of this pause.
3036     g1_policy()->decide_on_conc_mark_initiation();
3037   }
3038 
3039   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3040   assert(!collector_state()->during_initial_mark_pause() ||
3041           collector_state()->gcs_are_young(), "sanity");
3042 
3043   // We also do not allow mixed GCs during marking.
3044   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3045 
3046   // Record whether this pause is an initial mark. When the current
3047   // thread has completed its logging output and it's safe to signal
3048   // the CM thread, the flag's value in the policy has been reset.
3049   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3050 
3051   // Inner scope for scope based logging, timers, and stats collection
3052   {
3053     EvacuationInfo evacuation_info;
3054 
3055     if (collector_state()->during_initial_mark_pause()) {
3056       // We are about to start a marking cycle, so we increment the
3057       // full collection counter.
3058       increment_old_marking_cycles_started();
3059       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3060     }
3061 
3062     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3063 
3064     GCTraceCPUTime tcpu;
3065 
3066     FormatBuffer<> gc_string("Pause ");
3067     if (collector_state()->during_initial_mark_pause()) {
3068       gc_string.append("Initial Mark");
3069     } else if (collector_state()->gcs_are_young()) {
3070       gc_string.append("Young");
3071     } else {
3072       gc_string.append("Mixed");
3073     }
3074     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3075 
3076     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3077                                                                   workers()->active_workers(),
3078                                                                   Threads::number_of_non_daemon_threads());
3079     workers()->update_active_workers(active_workers);
3080     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3081 
3082     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3083     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3084 
3085     // If the secondary_free_list is not empty, append it to the
3086     // free_list. No need to wait for the cleanup operation to finish;
3087     // the region allocation code will check the secondary_free_list
3088     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3089     // set, skip this step so that the region allocation code has to
3090     // get entries from the secondary_free_list.
3091     if (!G1StressConcRegionFreeing) {
3092       append_secondary_free_list_if_not_empty_with_lock();
3093     }
3094 
3095     G1HeapTransition heap_transition(this);
3096     size_t heap_used_bytes_before_gc = used();
3097 
3098     // Don't dynamically change the number of GC threads this early.  A value of
3099     // 0 is used to indicate serial work.  When parallel work is done,
3100     // it will be set.
3101 
3102     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3103       IsGCActiveMark x;
3104 
3105       gc_prologue(false);
3106       increment_total_collections(false /* full gc */);
3107       increment_gc_time_stamp();
3108 
3109       if (VerifyRememberedSets) {
3110         log_info(gc, verify)("[Verifying RemSets before GC]");
3111         VerifyRegionRemSetClosure v_cl;
3112         heap_region_iterate(&v_cl);
3113       }
3114 
3115       _verifier->verify_before_gc();
3116 
3117       _verifier->check_bitmaps("GC Start");
3118 
3119 #if defined(COMPILER2) || INCLUDE_JVMCI
3120       DerivedPointerTable::clear();
3121 #endif
3122 
3123       // Please see comment in g1CollectedHeap.hpp and
3124       // G1CollectedHeap::ref_processing_init() to see how
3125       // reference processing currently works in G1.
3126 
3127       // Enable discovery in the STW reference processor
3128       if (g1_policy()->should_process_references()) {
3129         ref_processor_stw()->enable_discovery();
3130       } else {
3131         ref_processor_stw()->disable_discovery();
3132       }
3133 
3134       {
3135         // We want to temporarily turn off discovery by the
3136         // CM ref processor, if necessary, and turn it back on
3137         // on again later if we do. Using a scoped
3138         // NoRefDiscovery object will do this.
3139         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3140 
3141         // Forget the current alloc region (we might even choose it to be part
3142         // of the collection set!).
3143         _allocator->release_mutator_alloc_region();
3144 
3145         // This timing is only used by the ergonomics to handle our pause target.
3146         // It is unclear why this should not include the full pause. We will
3147         // investigate this in CR 7178365.
3148         //
3149         // Preserving the old comment here if that helps the investigation:
3150         //
3151         // The elapsed time induced by the start time below deliberately elides
3152         // the possible verification above.
3153         double sample_start_time_sec = os::elapsedTime();
3154 
3155         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3156 
3157         if (collector_state()->during_initial_mark_pause()) {
3158           concurrent_mark()->checkpointRootsInitialPre();
3159         }
3160 
3161         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3162 
3163         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3164 
3165         // Make sure the remembered sets are up to date. This needs to be
3166         // done before register_humongous_regions_with_cset(), because the
3167         // remembered sets are used there to choose eager reclaim candidates.
3168         // If the remembered sets are not up to date we might miss some
3169         // entries that need to be handled.
3170         g1_rem_set()->cleanupHRRS();
3171 
3172         register_humongous_regions_with_cset();
3173 
3174         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3175 
3176         // We call this after finalize_cset() to
3177         // ensure that the CSet has been finalized.
3178         _cm->verify_no_cset_oops();
3179 
3180         if (_hr_printer.is_active()) {
3181           G1PrintCollectionSetClosure cl(&_hr_printer);
3182           _collection_set.iterate(&cl);
3183         }
3184 
3185         // Initialize the GC alloc regions.
3186         _allocator->init_gc_alloc_regions(evacuation_info);
3187 
3188         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3189         pre_evacuate_collection_set();
3190 
3191         // Actually do the work...
3192         evacuate_collection_set(evacuation_info, &per_thread_states);
3193 
3194         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3195 
3196         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3197         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3198 
3199         eagerly_reclaim_humongous_regions();
3200 
3201         record_obj_copy_mem_stats();
3202         _survivor_evac_stats.adjust_desired_plab_sz();
3203         _old_evac_stats.adjust_desired_plab_sz();
3204 
3205         // Start a new incremental collection set for the next pause.
3206         collection_set()->start_incremental_building();
3207 
3208         clear_cset_fast_test();
3209 
3210         guarantee(_eden.length() == 0, "eden should have been cleared");
3211         g1_policy()->transfer_survivors_to_cset(survivor());
3212 
3213         if (evacuation_failed()) {
3214           set_used(recalculate_used());
3215           if (_archive_allocator != NULL) {
3216             _archive_allocator->clear_used();
3217           }
3218           for (uint i = 0; i < ParallelGCThreads; i++) {
3219             if (_evacuation_failed_info_array[i].has_failed()) {
3220               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3221             }
3222           }
3223         } else {
3224           // The "used" of the the collection set have already been subtracted
3225           // when they were freed.  Add in the bytes evacuated.
3226           increase_used(g1_policy()->bytes_copied_during_gc());
3227         }
3228 
3229         if (collector_state()->during_initial_mark_pause()) {
3230           // We have to do this before we notify the CM threads that
3231           // they can start working to make sure that all the
3232           // appropriate initialization is done on the CM object.
3233           concurrent_mark()->checkpointRootsInitialPost();
3234           collector_state()->set_mark_in_progress(true);
3235           // Note that we don't actually trigger the CM thread at
3236           // this point. We do that later when we're sure that
3237           // the current thread has completed its logging output.
3238         }
3239 
3240         allocate_dummy_regions();
3241 
3242         _allocator->init_mutator_alloc_region();
3243 
3244         {
3245           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3246           if (expand_bytes > 0) {
3247             size_t bytes_before = capacity();
3248             // No need for an ergo logging here,
3249             // expansion_amount() does this when it returns a value > 0.
3250             double expand_ms;
3251             if (!expand(expand_bytes, _workers, &expand_ms)) {
3252               // We failed to expand the heap. Cannot do anything about it.
3253             }
3254             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3255           }
3256         }
3257 
3258         // We redo the verification but now wrt to the new CSet which
3259         // has just got initialized after the previous CSet was freed.
3260         _cm->verify_no_cset_oops();
3261 
3262         // This timing is only used by the ergonomics to handle our pause target.
3263         // It is unclear why this should not include the full pause. We will
3264         // investigate this in CR 7178365.
3265         double sample_end_time_sec = os::elapsedTime();
3266         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3267         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3268         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3269 
3270         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3271         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3272 
3273         MemoryService::track_memory_usage();
3274 
3275         // In prepare_for_verify() below we'll need to scan the deferred
3276         // update buffers to bring the RSets up-to-date if
3277         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3278         // the update buffers we'll probably need to scan cards on the
3279         // regions we just allocated to (i.e., the GC alloc
3280         // regions). However, during the last GC we called
3281         // set_saved_mark() on all the GC alloc regions, so card
3282         // scanning might skip the [saved_mark_word()...top()] area of
3283         // those regions (i.e., the area we allocated objects into
3284         // during the last GC). But it shouldn't. Given that
3285         // saved_mark_word() is conditional on whether the GC time stamp
3286         // on the region is current or not, by incrementing the GC time
3287         // stamp here we invalidate all the GC time stamps on all the
3288         // regions and saved_mark_word() will simply return top() for
3289         // all the regions. This is a nicer way of ensuring this rather
3290         // than iterating over the regions and fixing them. In fact, the
3291         // GC time stamp increment here also ensures that
3292         // saved_mark_word() will return top() between pauses, i.e.,
3293         // during concurrent refinement. So we don't need the
3294         // is_gc_active() check to decided which top to use when
3295         // scanning cards (see CR 7039627).
3296         increment_gc_time_stamp();
3297 
3298         if (VerifyRememberedSets) {
3299           log_info(gc, verify)("[Verifying RemSets after GC]");
3300           VerifyRegionRemSetClosure v_cl;
3301           heap_region_iterate(&v_cl);
3302         }
3303 
3304         _verifier->verify_after_gc();
3305         _verifier->check_bitmaps("GC End");
3306 
3307         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3308         ref_processor_stw()->verify_no_references_recorded();
3309 
3310         // CM reference discovery will be re-enabled if necessary.
3311       }
3312 
3313 #ifdef TRACESPINNING
3314       ParallelTaskTerminator::print_termination_counts();
3315 #endif
3316 
3317       gc_epilogue(false);
3318     }
3319 
3320     // Print the remainder of the GC log output.
3321     if (evacuation_failed()) {
3322       log_info(gc)("To-space exhausted");
3323     }
3324 
3325     g1_policy()->print_phases();
3326     heap_transition.print();
3327 
3328     // It is not yet to safe to tell the concurrent mark to
3329     // start as we have some optional output below. We don't want the
3330     // output from the concurrent mark thread interfering with this
3331     // logging output either.
3332 
3333     _hrm.verify_optional();
3334     _verifier->verify_region_sets_optional();
3335 
3336     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3337     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3338 
3339     print_heap_after_gc();
3340     print_heap_regions();
3341     trace_heap_after_gc(_gc_tracer_stw);
3342 
3343     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3344     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3345     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3346     // before any GC notifications are raised.
3347     g1mm()->update_sizes();
3348 
3349     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3350     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3351     _gc_timer_stw->register_gc_end();
3352     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3353   }
3354   // It should now be safe to tell the concurrent mark thread to start
3355   // without its logging output interfering with the logging output
3356   // that came from the pause.
3357 
3358   if (should_start_conc_mark) {
3359     // CAUTION: after the doConcurrentMark() call below,
3360     // the concurrent marking thread(s) could be running
3361     // concurrently with us. Make sure that anything after
3362     // this point does not assume that we are the only GC thread
3363     // running. Note: of course, the actual marking work will
3364     // not start until the safepoint itself is released in
3365     // SuspendibleThreadSet::desynchronize().
3366     doConcurrentMark();
3367   }
3368 
3369   return true;
3370 }
3371 
3372 void G1CollectedHeap::remove_self_forwarding_pointers() {
3373   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3374   workers()->run_task(&rsfp_task);
3375 }
3376 
3377 void G1CollectedHeap::restore_after_evac_failure() {
3378   double remove_self_forwards_start = os::elapsedTime();
3379 
3380   remove_self_forwarding_pointers();
3381   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3382   _preserved_marks_set.restore(&task_executor);
3383 
3384   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3385 }
3386 
3387 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3388   if (!_evacuation_failed) {
3389     _evacuation_failed = true;
3390   }
3391 
3392   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3393   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3394 }
3395 
3396 bool G1ParEvacuateFollowersClosure::offer_termination() {
3397   G1ParScanThreadState* const pss = par_scan_state();
3398   start_term_time();
3399   const bool res = terminator()->offer_termination();
3400   end_term_time();
3401   return res;
3402 }
3403 
3404 void G1ParEvacuateFollowersClosure::do_void() {
3405   G1ParScanThreadState* const pss = par_scan_state();
3406   pss->trim_queue();
3407   do {
3408     pss->steal_and_trim_queue(queues());
3409   } while (!offer_termination());
3410 }
3411 
3412 class G1ParTask : public AbstractGangTask {
3413 protected:
3414   G1CollectedHeap*         _g1h;
3415   G1ParScanThreadStateSet* _pss;
3416   RefToScanQueueSet*       _queues;
3417   G1RootProcessor*         _root_processor;
3418   ParallelTaskTerminator   _terminator;
3419   uint                     _n_workers;
3420 
3421 public:
3422   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3423     : AbstractGangTask("G1 collection"),
3424       _g1h(g1h),
3425       _pss(per_thread_states),
3426       _queues(task_queues),
3427       _root_processor(root_processor),
3428       _terminator(n_workers, _queues),
3429       _n_workers(n_workers)
3430   {}
3431 
3432   void work(uint worker_id) {
3433     if (worker_id >= _n_workers) return;  // no work needed this round
3434 
3435     double start_sec = os::elapsedTime();
3436     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3437 
3438     {
3439       ResourceMark rm;
3440       HandleMark   hm;
3441 
3442       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3443 
3444       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3445       pss->set_ref_processor(rp);
3446 
3447       double start_strong_roots_sec = os::elapsedTime();
3448 
3449       _root_processor->evacuate_roots(pss->closures(), worker_id);
3450 
3451       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
3452 
3453       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3454       // treating the nmethods visited to act as roots for concurrent marking.
3455       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3456       // objects copied by the current evacuation.
3457       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
3458                                                                              pss->closures()->weak_codeblobs(),
3459                                                                              worker_id);
3460 
3461       _pss->add_cards_scanned(worker_id, cards_scanned);
3462 
3463       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3464 
3465       double term_sec = 0.0;
3466       size_t evac_term_attempts = 0;
3467       {
3468         double start = os::elapsedTime();
3469         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3470         evac.do_void();
3471 
3472         evac_term_attempts = evac.term_attempts();
3473         term_sec = evac.term_time();
3474         double elapsed_sec = os::elapsedTime() - start;
3475         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3476         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3477         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3478       }
3479 
3480       assert(pss->queue_is_empty(), "should be empty");
3481 
3482       if (log_is_enabled(Debug, gc, task, stats)) {
3483         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3484         size_t lab_waste;
3485         size_t lab_undo_waste;
3486         pss->waste(lab_waste, lab_undo_waste);
3487         _g1h->print_termination_stats(worker_id,
3488                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3489                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3490                                       term_sec * 1000.0,                          /* evac term time */
3491                                       evac_term_attempts,                         /* evac term attempts */
3492                                       lab_waste,                                  /* alloc buffer waste */
3493                                       lab_undo_waste                              /* undo waste */
3494                                       );
3495       }
3496 
3497       // Close the inner scope so that the ResourceMark and HandleMark
3498       // destructors are executed here and are included as part of the
3499       // "GC Worker Time".
3500     }
3501     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3502   }
3503 };
3504 
3505 void G1CollectedHeap::print_termination_stats_hdr() {
3506   log_debug(gc, task, stats)("GC Termination Stats");
3507   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3508   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3509   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3510 }
3511 
3512 void G1CollectedHeap::print_termination_stats(uint worker_id,
3513                                               double elapsed_ms,
3514                                               double strong_roots_ms,
3515                                               double term_ms,
3516                                               size_t term_attempts,
3517                                               size_t alloc_buffer_waste,
3518                                               size_t undo_waste) const {
3519   log_debug(gc, task, stats)
3520               ("%3d %9.2f %9.2f %6.2f "
3521                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3522                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3523                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3524                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3525                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3526                alloc_buffer_waste * HeapWordSize / K,
3527                undo_waste * HeapWordSize / K);
3528 }
3529 
3530 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
3531 private:
3532   BoolObjectClosure* _is_alive;
3533   int _initial_string_table_size;
3534   int _initial_symbol_table_size;
3535 
3536   bool  _process_strings;
3537   int _strings_processed;
3538   int _strings_removed;
3539 
3540   bool  _process_symbols;
3541   int _symbols_processed;
3542   int _symbols_removed;
3543 
3544 public:
3545   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
3546     AbstractGangTask("String/Symbol Unlinking"),
3547     _is_alive(is_alive),
3548     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3549     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
3550 
3551     _initial_string_table_size = StringTable::the_table()->table_size();
3552     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3553     if (process_strings) {
3554       StringTable::clear_parallel_claimed_index();
3555     }
3556     if (process_symbols) {
3557       SymbolTable::clear_parallel_claimed_index();
3558     }
3559   }
3560 
3561   ~G1StringSymbolTableUnlinkTask() {
3562     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3563               "claim value %d after unlink less than initial string table size %d",
3564               StringTable::parallel_claimed_index(), _initial_string_table_size);
3565     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3566               "claim value %d after unlink less than initial symbol table size %d",
3567               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3568 
3569     log_info(gc, stringtable)(
3570         "Cleaned string and symbol table, "
3571         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3572         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3573         strings_processed(), strings_removed(),
3574         symbols_processed(), symbols_removed());
3575   }
3576 
3577   void work(uint worker_id) {
3578     int strings_processed = 0;
3579     int strings_removed = 0;
3580     int symbols_processed = 0;
3581     int symbols_removed = 0;
3582     if (_process_strings) {
3583       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3584       Atomic::add(strings_processed, &_strings_processed);
3585       Atomic::add(strings_removed, &_strings_removed);
3586     }
3587     if (_process_symbols) {
3588       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3589       Atomic::add(symbols_processed, &_symbols_processed);
3590       Atomic::add(symbols_removed, &_symbols_removed);
3591     }
3592   }
3593 
3594   size_t strings_processed() const { return (size_t)_strings_processed; }
3595   size_t strings_removed()   const { return (size_t)_strings_removed; }
3596 
3597   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3598   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3599 };
3600 
3601 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3602 private:
3603   static Monitor* _lock;
3604 
3605   BoolObjectClosure* const _is_alive;
3606   const bool               _unloading_occurred;
3607   const uint               _num_workers;
3608 
3609   // Variables used to claim nmethods.
3610   CompiledMethod* _first_nmethod;
3611   volatile CompiledMethod* _claimed_nmethod;
3612 
3613   // The list of nmethods that need to be processed by the second pass.
3614   volatile CompiledMethod* _postponed_list;
3615   volatile uint            _num_entered_barrier;
3616 
3617  public:
3618   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3619       _is_alive(is_alive),
3620       _unloading_occurred(unloading_occurred),
3621       _num_workers(num_workers),
3622       _first_nmethod(NULL),
3623       _claimed_nmethod(NULL),
3624       _postponed_list(NULL),
3625       _num_entered_barrier(0)
3626   {
3627     CompiledMethod::increase_unloading_clock();
3628     // Get first alive nmethod
3629     CompiledMethodIterator iter = CompiledMethodIterator();
3630     if(iter.next_alive()) {
3631       _first_nmethod = iter.method();
3632     }
3633     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3634   }
3635 
3636   ~G1CodeCacheUnloadingTask() {
3637     CodeCache::verify_clean_inline_caches();
3638 
3639     CodeCache::set_needs_cache_clean(false);
3640     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3641 
3642     CodeCache::verify_icholder_relocations();
3643   }
3644 
3645  private:
3646   void add_to_postponed_list(CompiledMethod* nm) {
3647       CompiledMethod* old;
3648       do {
3649         old = (CompiledMethod*)_postponed_list;
3650         nm->set_unloading_next(old);
3651       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3652   }
3653 
3654   void clean_nmethod(CompiledMethod* nm) {
3655     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3656 
3657     if (postponed) {
3658       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3659       add_to_postponed_list(nm);
3660     }
3661 
3662     // Mark that this thread has been cleaned/unloaded.
3663     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3664     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3665   }
3666 
3667   void clean_nmethod_postponed(CompiledMethod* nm) {
3668     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3669   }
3670 
3671   static const int MaxClaimNmethods = 16;
3672 
3673   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3674     CompiledMethod* first;
3675     CompiledMethodIterator last;
3676 
3677     do {
3678       *num_claimed_nmethods = 0;
3679 
3680       first = (CompiledMethod*)_claimed_nmethod;
3681       last = CompiledMethodIterator(first);
3682 
3683       if (first != NULL) {
3684 
3685         for (int i = 0; i < MaxClaimNmethods; i++) {
3686           if (!last.next_alive()) {
3687             break;
3688           }
3689           claimed_nmethods[i] = last.method();
3690           (*num_claimed_nmethods)++;
3691         }
3692       }
3693 
3694     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3695   }
3696 
3697   CompiledMethod* claim_postponed_nmethod() {
3698     CompiledMethod* claim;
3699     CompiledMethod* next;
3700 
3701     do {
3702       claim = (CompiledMethod*)_postponed_list;
3703       if (claim == NULL) {
3704         return NULL;
3705       }
3706 
3707       next = claim->unloading_next();
3708 
3709     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3710 
3711     return claim;
3712   }
3713 
3714  public:
3715   // Mark that we're done with the first pass of nmethod cleaning.
3716   void barrier_mark(uint worker_id) {
3717     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3718     _num_entered_barrier++;
3719     if (_num_entered_barrier == _num_workers) {
3720       ml.notify_all();
3721     }
3722   }
3723 
3724   // See if we have to wait for the other workers to
3725   // finish their first-pass nmethod cleaning work.
3726   void barrier_wait(uint worker_id) {
3727     if (_num_entered_barrier < _num_workers) {
3728       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3729       while (_num_entered_barrier < _num_workers) {
3730           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3731       }
3732     }
3733   }
3734 
3735   // Cleaning and unloading of nmethods. Some work has to be postponed
3736   // to the second pass, when we know which nmethods survive.
3737   void work_first_pass(uint worker_id) {
3738     // The first nmethods is claimed by the first worker.
3739     if (worker_id == 0 && _first_nmethod != NULL) {
3740       clean_nmethod(_first_nmethod);
3741       _first_nmethod = NULL;
3742     }
3743 
3744     int num_claimed_nmethods;
3745     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3746 
3747     while (true) {
3748       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3749 
3750       if (num_claimed_nmethods == 0) {
3751         break;
3752       }
3753 
3754       for (int i = 0; i < num_claimed_nmethods; i++) {
3755         clean_nmethod(claimed_nmethods[i]);
3756       }
3757     }
3758   }
3759 
3760   void work_second_pass(uint worker_id) {
3761     CompiledMethod* nm;
3762     // Take care of postponed nmethods.
3763     while ((nm = claim_postponed_nmethod()) != NULL) {
3764       clean_nmethod_postponed(nm);
3765     }
3766   }
3767 };
3768 
3769 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3770 
3771 class G1KlassCleaningTask : public StackObj {
3772   BoolObjectClosure*                      _is_alive;
3773   volatile jint                           _clean_klass_tree_claimed;
3774   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3775 
3776  public:
3777   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3778       _is_alive(is_alive),
3779       _clean_klass_tree_claimed(0),
3780       _klass_iterator() {
3781   }
3782 
3783  private:
3784   bool claim_clean_klass_tree_task() {
3785     if (_clean_klass_tree_claimed) {
3786       return false;
3787     }
3788 
3789     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3790   }
3791 
3792   InstanceKlass* claim_next_klass() {
3793     Klass* klass;
3794     do {
3795       klass =_klass_iterator.next_klass();
3796     } while (klass != NULL && !klass->is_instance_klass());
3797 
3798     // this can be null so don't call InstanceKlass::cast
3799     return static_cast<InstanceKlass*>(klass);
3800   }
3801 
3802 public:
3803 
3804   void clean_klass(InstanceKlass* ik) {
3805     ik->clean_weak_instanceklass_links(_is_alive);
3806   }
3807 
3808   void work() {
3809     ResourceMark rm;
3810 
3811     // One worker will clean the subklass/sibling klass tree.
3812     if (claim_clean_klass_tree_task()) {
3813       Klass::clean_subklass_tree(_is_alive);
3814     }
3815 
3816     // All workers will help cleaning the classes,
3817     InstanceKlass* klass;
3818     while ((klass = claim_next_klass()) != NULL) {
3819       clean_klass(klass);
3820     }
3821   }
3822 };
3823 
3824 // To minimize the remark pause times, the tasks below are done in parallel.
3825 class G1ParallelCleaningTask : public AbstractGangTask {
3826 private:
3827   G1StringSymbolTableUnlinkTask _string_symbol_task;
3828   G1CodeCacheUnloadingTask      _code_cache_task;
3829   G1KlassCleaningTask           _klass_cleaning_task;
3830 
3831 public:
3832   // The constructor is run in the VMThread.
3833   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
3834       AbstractGangTask("Parallel Cleaning"),
3835       _string_symbol_task(is_alive, process_strings, process_symbols),
3836       _code_cache_task(num_workers, is_alive, unloading_occurred),
3837       _klass_cleaning_task(is_alive) {
3838   }
3839 
3840   // The parallel work done by all worker threads.
3841   void work(uint worker_id) {
3842     // Do first pass of code cache cleaning.
3843     _code_cache_task.work_first_pass(worker_id);
3844 
3845     // Let the threads mark that the first pass is done.
3846     _code_cache_task.barrier_mark(worker_id);
3847 
3848     // Clean the Strings and Symbols.
3849     _string_symbol_task.work(worker_id);
3850 
3851     // Wait for all workers to finish the first code cache cleaning pass.
3852     _code_cache_task.barrier_wait(worker_id);
3853 
3854     // Do the second code cache cleaning work, which realize on
3855     // the liveness information gathered during the first pass.
3856     _code_cache_task.work_second_pass(worker_id);
3857 
3858     // Clean all klasses that were not unloaded.
3859     _klass_cleaning_task.work();
3860   }
3861 };
3862 
3863 
3864 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
3865                                         bool process_strings,
3866                                         bool process_symbols,
3867                                         bool class_unloading_occurred) {
3868   uint n_workers = workers()->active_workers();
3869 
3870   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
3871                                         n_workers, class_unloading_occurred);
3872   workers()->run_task(&g1_unlink_task);
3873 }
3874 
3875 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
3876                                                      bool process_strings, bool process_symbols) {
3877   { // Timing scope
3878     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
3879     workers()->run_task(&g1_unlink_task);
3880   }
3881 }
3882 
3883 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3884  private:
3885   DirtyCardQueueSet* _queue;
3886   G1CollectedHeap* _g1h;
3887  public:
3888   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3889     _queue(queue), _g1h(g1h) { }
3890 
3891   virtual void work(uint worker_id) {
3892     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3893     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3894 
3895     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3896     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3897 
3898     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3899   }
3900 };
3901 
3902 void G1CollectedHeap::redirty_logged_cards() {
3903   double redirty_logged_cards_start = os::elapsedTime();
3904 
3905   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3906   dirty_card_queue_set().reset_for_par_iteration();
3907   workers()->run_task(&redirty_task);
3908 
3909   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3910   dcq.merge_bufferlists(&dirty_card_queue_set());
3911   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3912 
3913   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3914 }
3915 
3916 // Weak Reference Processing support
3917 
3918 // An always "is_alive" closure that is used to preserve referents.
3919 // If the object is non-null then it's alive.  Used in the preservation
3920 // of referent objects that are pointed to by reference objects
3921 // discovered by the CM ref processor.
3922 class G1AlwaysAliveClosure: public BoolObjectClosure {
3923   G1CollectedHeap* _g1;
3924 public:
3925   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3926   bool do_object_b(oop p) {
3927     if (p != NULL) {
3928       return true;
3929     }
3930     return false;
3931   }
3932 };
3933 
3934 bool G1STWIsAliveClosure::do_object_b(oop p) {
3935   // An object is reachable if it is outside the collection set,
3936   // or is inside and copied.
3937   return !_g1->is_in_cset(p) || p->is_forwarded();
3938 }
3939 
3940 // Non Copying Keep Alive closure
3941 class G1KeepAliveClosure: public OopClosure {
3942   G1CollectedHeap* _g1;
3943 public:
3944   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3945   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3946   void do_oop(oop* p) {
3947     oop obj = *p;
3948     assert(obj != NULL, "the caller should have filtered out NULL values");
3949 
3950     const InCSetState cset_state = _g1->in_cset_state(obj);
3951     if (!cset_state.is_in_cset_or_humongous()) {
3952       return;
3953     }
3954     if (cset_state.is_in_cset()) {
3955       assert( obj->is_forwarded(), "invariant" );
3956       *p = obj->forwardee();
3957     } else {
3958       assert(!obj->is_forwarded(), "invariant" );
3959       assert(cset_state.is_humongous(),
3960              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3961       _g1->set_humongous_is_live(obj);
3962     }
3963   }
3964 };
3965 
3966 // Copying Keep Alive closure - can be called from both
3967 // serial and parallel code as long as different worker
3968 // threads utilize different G1ParScanThreadState instances
3969 // and different queues.
3970 
3971 class G1CopyingKeepAliveClosure: public OopClosure {
3972   G1CollectedHeap*         _g1h;
3973   OopClosure*              _copy_non_heap_obj_cl;
3974   G1ParScanThreadState*    _par_scan_state;
3975 
3976 public:
3977   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3978                             OopClosure* non_heap_obj_cl,
3979                             G1ParScanThreadState* pss):
3980     _g1h(g1h),
3981     _copy_non_heap_obj_cl(non_heap_obj_cl),
3982     _par_scan_state(pss)
3983   {}
3984 
3985   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3986   virtual void do_oop(      oop* p) { do_oop_work(p); }
3987 
3988   template <class T> void do_oop_work(T* p) {
3989     oop obj = oopDesc::load_decode_heap_oop(p);
3990 
3991     if (_g1h->is_in_cset_or_humongous(obj)) {
3992       // If the referent object has been forwarded (either copied
3993       // to a new location or to itself in the event of an
3994       // evacuation failure) then we need to update the reference
3995       // field and, if both reference and referent are in the G1
3996       // heap, update the RSet for the referent.
3997       //
3998       // If the referent has not been forwarded then we have to keep
3999       // it alive by policy. Therefore we have copy the referent.
4000       //
4001       // If the reference field is in the G1 heap then we can push
4002       // on the PSS queue. When the queue is drained (after each
4003       // phase of reference processing) the object and it's followers
4004       // will be copied, the reference field set to point to the
4005       // new location, and the RSet updated. Otherwise we need to
4006       // use the the non-heap or metadata closures directly to copy
4007       // the referent object and update the pointer, while avoiding
4008       // updating the RSet.
4009 
4010       if (_g1h->is_in_g1_reserved(p)) {
4011         _par_scan_state->push_on_queue(p);
4012       } else {
4013         assert(!Metaspace::contains((const void*)p),
4014                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4015         _copy_non_heap_obj_cl->do_oop(p);
4016       }
4017     }
4018   }
4019 };
4020 
4021 // Serial drain queue closure. Called as the 'complete_gc'
4022 // closure for each discovered list in some of the
4023 // reference processing phases.
4024 
4025 class G1STWDrainQueueClosure: public VoidClosure {
4026 protected:
4027   G1CollectedHeap* _g1h;
4028   G1ParScanThreadState* _par_scan_state;
4029 
4030   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4031 
4032 public:
4033   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4034     _g1h(g1h),
4035     _par_scan_state(pss)
4036   { }
4037 
4038   void do_void() {
4039     G1ParScanThreadState* const pss = par_scan_state();
4040     pss->trim_queue();
4041   }
4042 };
4043 
4044 // Parallel Reference Processing closures
4045 
4046 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4047 // processing during G1 evacuation pauses.
4048 
4049 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4050 private:
4051   G1CollectedHeap*          _g1h;
4052   G1ParScanThreadStateSet*  _pss;
4053   RefToScanQueueSet*        _queues;
4054   WorkGang*                 _workers;
4055   uint                      _active_workers;
4056 
4057 public:
4058   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4059                            G1ParScanThreadStateSet* per_thread_states,
4060                            WorkGang* workers,
4061                            RefToScanQueueSet *task_queues,
4062                            uint n_workers) :
4063     _g1h(g1h),
4064     _pss(per_thread_states),
4065     _queues(task_queues),
4066     _workers(workers),
4067     _active_workers(n_workers)
4068   {
4069     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4070   }
4071 
4072   // Executes the given task using concurrent marking worker threads.
4073   virtual void execute(ProcessTask& task);
4074   virtual void execute(EnqueueTask& task);
4075 };
4076 
4077 // Gang task for possibly parallel reference processing
4078 
4079 class G1STWRefProcTaskProxy: public AbstractGangTask {
4080   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4081   ProcessTask&     _proc_task;
4082   G1CollectedHeap* _g1h;
4083   G1ParScanThreadStateSet* _pss;
4084   RefToScanQueueSet* _task_queues;
4085   ParallelTaskTerminator* _terminator;
4086 
4087 public:
4088   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4089                         G1CollectedHeap* g1h,
4090                         G1ParScanThreadStateSet* per_thread_states,
4091                         RefToScanQueueSet *task_queues,
4092                         ParallelTaskTerminator* terminator) :
4093     AbstractGangTask("Process reference objects in parallel"),
4094     _proc_task(proc_task),
4095     _g1h(g1h),
4096     _pss(per_thread_states),
4097     _task_queues(task_queues),
4098     _terminator(terminator)
4099   {}
4100 
4101   virtual void work(uint worker_id) {
4102     // The reference processing task executed by a single worker.
4103     ResourceMark rm;
4104     HandleMark   hm;
4105 
4106     G1STWIsAliveClosure is_alive(_g1h);
4107 
4108     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4109     pss->set_ref_processor(NULL);
4110 
4111     // Keep alive closure.
4112     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4113 
4114     // Complete GC closure
4115     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4116 
4117     // Call the reference processing task's work routine.
4118     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4119 
4120     // Note we cannot assert that the refs array is empty here as not all
4121     // of the processing tasks (specifically phase2 - pp2_work) execute
4122     // the complete_gc closure (which ordinarily would drain the queue) so
4123     // the queue may not be empty.
4124   }
4125 };
4126 
4127 // Driver routine for parallel reference processing.
4128 // Creates an instance of the ref processing gang
4129 // task and has the worker threads execute it.
4130 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4131   assert(_workers != NULL, "Need parallel worker threads.");
4132 
4133   ParallelTaskTerminator terminator(_active_workers, _queues);
4134   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4135 
4136   _workers->run_task(&proc_task_proxy);
4137 }
4138 
4139 // Gang task for parallel reference enqueueing.
4140 
4141 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4142   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4143   EnqueueTask& _enq_task;
4144 
4145 public:
4146   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4147     AbstractGangTask("Enqueue reference objects in parallel"),
4148     _enq_task(enq_task)
4149   { }
4150 
4151   virtual void work(uint worker_id) {
4152     _enq_task.work(worker_id);
4153   }
4154 };
4155 
4156 // Driver routine for parallel reference enqueueing.
4157 // Creates an instance of the ref enqueueing gang
4158 // task and has the worker threads execute it.
4159 
4160 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4161   assert(_workers != NULL, "Need parallel worker threads.");
4162 
4163   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4164 
4165   _workers->run_task(&enq_task_proxy);
4166 }
4167 
4168 // End of weak reference support closures
4169 
4170 // Abstract task used to preserve (i.e. copy) any referent objects
4171 // that are in the collection set and are pointed to by reference
4172 // objects discovered by the CM ref processor.
4173 
4174 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4175 protected:
4176   G1CollectedHeap*         _g1h;
4177   G1ParScanThreadStateSet* _pss;
4178   RefToScanQueueSet*       _queues;
4179   ParallelTaskTerminator   _terminator;
4180   uint                     _n_workers;
4181 
4182 public:
4183   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4184     AbstractGangTask("ParPreserveCMReferents"),
4185     _g1h(g1h),
4186     _pss(per_thread_states),
4187     _queues(task_queues),
4188     _terminator(workers, _queues),
4189     _n_workers(workers)
4190   {
4191     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4192   }
4193 
4194   void work(uint worker_id) {
4195     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4196 
4197     ResourceMark rm;
4198     HandleMark   hm;
4199 
4200     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4201     pss->set_ref_processor(NULL);
4202     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4203 
4204     // Is alive closure
4205     G1AlwaysAliveClosure always_alive(_g1h);
4206 
4207     // Copying keep alive closure. Applied to referent objects that need
4208     // to be copied.
4209     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4210 
4211     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4212 
4213     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4214     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4215 
4216     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4217     // So this must be true - but assert just in case someone decides to
4218     // change the worker ids.
4219     assert(worker_id < limit, "sanity");
4220     assert(!rp->discovery_is_atomic(), "check this code");
4221 
4222     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4223     for (uint idx = worker_id; idx < limit; idx += stride) {
4224       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4225 
4226       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4227       while (iter.has_next()) {
4228         // Since discovery is not atomic for the CM ref processor, we
4229         // can see some null referent objects.
4230         iter.load_ptrs(DEBUG_ONLY(true));
4231         oop ref = iter.obj();
4232 
4233         // This will filter nulls.
4234         if (iter.is_referent_alive()) {
4235           iter.make_referent_alive();
4236         }
4237         iter.move_to_next();
4238       }
4239     }
4240 
4241     // Drain the queue - which may cause stealing
4242     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4243     drain_queue.do_void();
4244     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4245     assert(pss->queue_is_empty(), "should be");
4246   }
4247 };
4248 
4249 void G1CollectedHeap::process_weak_jni_handles() {
4250   double ref_proc_start = os::elapsedTime();
4251 
4252   G1STWIsAliveClosure is_alive(this);
4253   G1KeepAliveClosure keep_alive(this);
4254   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4255 
4256   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4257   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4258 }
4259 
4260 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4261   // Any reference objects, in the collection set, that were 'discovered'
4262   // by the CM ref processor should have already been copied (either by
4263   // applying the external root copy closure to the discovered lists, or
4264   // by following an RSet entry).
4265   //
4266   // But some of the referents, that are in the collection set, that these
4267   // reference objects point to may not have been copied: the STW ref
4268   // processor would have seen that the reference object had already
4269   // been 'discovered' and would have skipped discovering the reference,
4270   // but would not have treated the reference object as a regular oop.
4271   // As a result the copy closure would not have been applied to the
4272   // referent object.
4273   //
4274   // We need to explicitly copy these referent objects - the references
4275   // will be processed at the end of remarking.
4276   //
4277   // We also need to do this copying before we process the reference
4278   // objects discovered by the STW ref processor in case one of these
4279   // referents points to another object which is also referenced by an
4280   // object discovered by the STW ref processor.
4281   double preserve_cm_referents_time = 0.0;
4282 
4283   // To avoid spawning task when there is no work to do, check that
4284   // a concurrent cycle is active and that some references have been
4285   // discovered.
4286   if (concurrent_mark()->cmThread()->during_cycle() &&
4287       ref_processor_cm()->has_discovered_references()) {
4288     double preserve_cm_referents_start = os::elapsedTime();
4289     uint no_of_gc_workers = workers()->active_workers();
4290     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4291                                                    per_thread_states,
4292                                                    no_of_gc_workers,
4293                                                    _task_queues);
4294     workers()->run_task(&keep_cm_referents);
4295     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4296   }
4297 
4298   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4299 }
4300 
4301 // Weak Reference processing during an evacuation pause (part 1).
4302 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4303   double ref_proc_start = os::elapsedTime();
4304 
4305   ReferenceProcessor* rp = _ref_processor_stw;
4306   assert(rp->discovery_enabled(), "should have been enabled");
4307 
4308   // Closure to test whether a referent is alive.
4309   G1STWIsAliveClosure is_alive(this);
4310 
4311   // Even when parallel reference processing is enabled, the processing
4312   // of JNI refs is serial and performed serially by the current thread
4313   // rather than by a worker. The following PSS will be used for processing
4314   // JNI refs.
4315 
4316   // Use only a single queue for this PSS.
4317   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4318   pss->set_ref_processor(NULL);
4319   assert(pss->queue_is_empty(), "pre-condition");
4320 
4321   // Keep alive closure.
4322   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4323 
4324   // Serial Complete GC closure
4325   G1STWDrainQueueClosure drain_queue(this, pss);
4326 
4327   // Setup the soft refs policy...
4328   rp->setup_policy(false);
4329 
4330   ReferenceProcessorStats stats;
4331   if (!rp->processing_is_mt()) {
4332     // Serial reference processing...
4333     stats = rp->process_discovered_references(&is_alive,
4334                                               &keep_alive,
4335                                               &drain_queue,
4336                                               NULL,
4337                                               _gc_timer_stw);
4338   } else {
4339     uint no_of_gc_workers = workers()->active_workers();
4340 
4341     // Parallel reference processing
4342     assert(no_of_gc_workers <= rp->max_num_q(),
4343            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4344            no_of_gc_workers,  rp->max_num_q());
4345 
4346     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4347     stats = rp->process_discovered_references(&is_alive,
4348                                               &keep_alive,
4349                                               &drain_queue,
4350                                               &par_task_executor,
4351                                               _gc_timer_stw);
4352   }
4353 
4354   _gc_tracer_stw->report_gc_reference_stats(stats);
4355 
4356   // We have completed copying any necessary live referent objects.
4357   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4358 
4359   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4360   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4361 }
4362 
4363 // Weak Reference processing during an evacuation pause (part 2).
4364 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4365   double ref_enq_start = os::elapsedTime();
4366 
4367   ReferenceProcessor* rp = _ref_processor_stw;
4368   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4369 
4370   // Now enqueue any remaining on the discovered lists on to
4371   // the pending list.
4372   if (!rp->processing_is_mt()) {
4373     // Serial reference processing...
4374     rp->enqueue_discovered_references();
4375   } else {
4376     // Parallel reference enqueueing
4377 
4378     uint n_workers = workers()->active_workers();
4379 
4380     assert(n_workers <= rp->max_num_q(),
4381            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4382            n_workers,  rp->max_num_q());
4383 
4384     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4385     rp->enqueue_discovered_references(&par_task_executor);
4386   }
4387 
4388   rp->verify_no_references_recorded();
4389   assert(!rp->discovery_enabled(), "should have been disabled");
4390 
4391   // FIXME
4392   // CM's reference processing also cleans up the string and symbol tables.
4393   // Should we do that here also? We could, but it is a serial operation
4394   // and could significantly increase the pause time.
4395 
4396   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4397   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4398 }
4399 
4400 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4401   double merge_pss_time_start = os::elapsedTime();
4402   per_thread_states->flush();
4403   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4404 }
4405 
4406 void G1CollectedHeap::pre_evacuate_collection_set() {
4407   _expand_heap_after_alloc_failure = true;
4408   _evacuation_failed = false;
4409 
4410   // Disable the hot card cache.
4411   _hot_card_cache->reset_hot_cache_claimed_index();
4412   _hot_card_cache->set_use_cache(false);
4413 
4414   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4415   _preserved_marks_set.assert_empty();
4416 }
4417 
4418 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4419   // Should G1EvacuationFailureALot be in effect for this GC?
4420   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4421 
4422   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4423 
4424   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4425 
4426   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4427   if (collector_state()->during_initial_mark_pause()) {
4428     double start_clear_claimed_marks = os::elapsedTime();
4429 
4430     ClassLoaderDataGraph::clear_claimed_marks();
4431 
4432     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4433     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4434   }
4435 
4436   double start_par_time_sec = os::elapsedTime();
4437   double end_par_time_sec;
4438 
4439   {
4440     const uint n_workers = workers()->active_workers();
4441     G1RootProcessor root_processor(this, n_workers);
4442     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4443 
4444     print_termination_stats_hdr();
4445 
4446     workers()->run_task(&g1_par_task);
4447     end_par_time_sec = os::elapsedTime();
4448 
4449     // Closing the inner scope will execute the destructor
4450     // for the G1RootProcessor object. We record the current
4451     // elapsed time before closing the scope so that time
4452     // taken for the destructor is NOT included in the
4453     // reported parallel time.
4454   }
4455 
4456   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4457   phase_times->record_par_time(par_time_ms);
4458 
4459   double code_root_fixup_time_ms =
4460         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4461   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4462 }
4463 
4464 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4465   // Process any discovered reference objects - we have
4466   // to do this _before_ we retire the GC alloc regions
4467   // as we may have to copy some 'reachable' referent
4468   // objects (and their reachable sub-graphs) that were
4469   // not copied during the pause.
4470   if (g1_policy()->should_process_references()) {
4471     preserve_cm_referents(per_thread_states);
4472     process_discovered_references(per_thread_states);
4473   } else {
4474     ref_processor_stw()->verify_no_references_recorded();
4475     process_weak_jni_handles();
4476   }
4477 
4478   if (G1StringDedup::is_enabled()) {
4479     double fixup_start = os::elapsedTime();
4480 
4481     G1STWIsAliveClosure is_alive(this);
4482     G1KeepAliveClosure keep_alive(this);
4483     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4484 
4485     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4486     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4487   }
4488 
4489   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4490 
4491   if (evacuation_failed()) {
4492     restore_after_evac_failure();
4493 
4494     // Reset the G1EvacuationFailureALot counters and flags
4495     // Note: the values are reset only when an actual
4496     // evacuation failure occurs.
4497     NOT_PRODUCT(reset_evacuation_should_fail();)
4498   }
4499 
4500   _preserved_marks_set.assert_empty();
4501 
4502   // Enqueue any remaining references remaining on the STW
4503   // reference processor's discovered lists. We need to do
4504   // this after the card table is cleaned (and verified) as
4505   // the act of enqueueing entries on to the pending list
4506   // will log these updates (and dirty their associated
4507   // cards). We need these updates logged to update any
4508   // RSets.
4509   if (g1_policy()->should_process_references()) {
4510     enqueue_discovered_references(per_thread_states);
4511   } else {
4512     g1_policy()->phase_times()->record_ref_enq_time(0);
4513   }
4514 
4515   _allocator->release_gc_alloc_regions(evacuation_info);
4516 
4517   merge_per_thread_state_info(per_thread_states);
4518 
4519   // Reset and re-enable the hot card cache.
4520   // Note the counts for the cards in the regions in the
4521   // collection set are reset when the collection set is freed.
4522   _hot_card_cache->reset_hot_cache();
4523   _hot_card_cache->set_use_cache(true);
4524 
4525   purge_code_root_memory();
4526 
4527   redirty_logged_cards();
4528 #if defined(COMPILER2) || INCLUDE_JVMCI
4529   DerivedPointerTable::update_pointers();
4530 #endif
4531   g1_policy()->print_age_table();
4532 }
4533 
4534 void G1CollectedHeap::record_obj_copy_mem_stats() {
4535   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4536 
4537   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4538                                                create_g1_evac_summary(&_old_evac_stats));
4539 }
4540 
4541 void G1CollectedHeap::free_region(HeapRegion* hr,
4542                                   FreeRegionList* free_list,
4543                                   bool skip_remset,
4544                                   bool skip_hot_card_cache,
4545                                   bool locked) {
4546   assert(!hr->is_free(), "the region should not be free");
4547   assert(!hr->is_empty(), "the region should not be empty");
4548   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4549   assert(free_list != NULL, "pre-condition");
4550 
4551   if (G1VerifyBitmaps) {
4552     MemRegion mr(hr->bottom(), hr->end());
4553     concurrent_mark()->clearRangePrevBitmap(mr);
4554   }
4555 
4556   // Clear the card counts for this region.
4557   // Note: we only need to do this if the region is not young
4558   // (since we don't refine cards in young regions).
4559   if (!skip_hot_card_cache && !hr->is_young()) {
4560     _hot_card_cache->reset_card_counts(hr);
4561   }
4562   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4563   free_list->add_ordered(hr);
4564 }
4565 
4566 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4567                                             FreeRegionList* free_list,
4568                                             bool skip_remset) {
4569   assert(hr->is_humongous(), "this is only for humongous regions");
4570   assert(free_list != NULL, "pre-condition");
4571   hr->clear_humongous();
4572   free_region(hr, free_list, skip_remset);
4573 }
4574 
4575 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4576                                            const uint humongous_regions_removed) {
4577   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4578     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4579     _old_set.bulk_remove(old_regions_removed);
4580     _humongous_set.bulk_remove(humongous_regions_removed);
4581   }
4582 
4583 }
4584 
4585 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4586   assert(list != NULL, "list can't be null");
4587   if (!list->is_empty()) {
4588     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4589     _hrm.insert_list_into_free_list(list);
4590   }
4591 }
4592 
4593 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4594   decrease_used(bytes);
4595 }
4596 
4597 class G1ParScrubRemSetTask: public AbstractGangTask {
4598 protected:
4599   G1RemSet* _g1rs;
4600   HeapRegionClaimer _hrclaimer;
4601 
4602 public:
4603   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4604     AbstractGangTask("G1 ScrubRS"),
4605     _g1rs(g1_rs),
4606     _hrclaimer(num_workers) {
4607   }
4608 
4609   void work(uint worker_id) {
4610     _g1rs->scrub(worker_id, &_hrclaimer);
4611   }
4612 };
4613 
4614 void G1CollectedHeap::scrub_rem_set() {
4615   uint num_workers = workers()->active_workers();
4616   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4617   workers()->run_task(&g1_par_scrub_rs_task);
4618 }
4619 
4620 class G1FreeCollectionSetTask : public AbstractGangTask {
4621 private:
4622 
4623   // Closure applied to all regions in the collection set to do work that needs to
4624   // be done serially in a single thread.
4625   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4626   private:
4627     EvacuationInfo* _evacuation_info;
4628     const size_t* _surviving_young_words;
4629 
4630     // Bytes used in successfully evacuated regions before the evacuation.
4631     size_t _before_used_bytes;
4632     // Bytes used in unsucessfully evacuated regions before the evacuation
4633     size_t _after_used_bytes;
4634 
4635     size_t _bytes_allocated_in_old_since_last_gc;
4636 
4637     size_t _failure_used_words;
4638     size_t _failure_waste_words;
4639 
4640     FreeRegionList _local_free_list;
4641   public:
4642     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4643       HeapRegionClosure(),
4644       _evacuation_info(evacuation_info),
4645       _surviving_young_words(surviving_young_words),
4646       _before_used_bytes(0),
4647       _after_used_bytes(0),
4648       _bytes_allocated_in_old_since_last_gc(0),
4649       _failure_used_words(0),
4650       _failure_waste_words(0),
4651       _local_free_list("Local Region List for CSet Freeing") {
4652     }
4653 
4654     virtual bool doHeapRegion(HeapRegion* r) {
4655       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4656 
4657       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4658       g1h->clear_in_cset(r);
4659 
4660       if (r->is_young()) {
4661         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4662                "Young index %d is wrong for region %u of type %s with %u young regions",
4663                r->young_index_in_cset(),
4664                r->hrm_index(),
4665                r->get_type_str(),
4666                g1h->collection_set()->young_region_length());
4667         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4668         r->record_surv_words_in_group(words_survived);
4669       }
4670 
4671       if (!r->evacuation_failed()) {
4672         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4673         _before_used_bytes += r->used();
4674         g1h->free_region(r,
4675                          &_local_free_list,
4676                          true, /* skip_remset */
4677                          true, /* skip_hot_card_cache */
4678                          true  /* locked */);
4679       } else {
4680         r->uninstall_surv_rate_group();
4681         r->set_young_index_in_cset(-1);
4682         r->set_evacuation_failed(false);
4683         // When moving a young gen region to old gen, we "allocate" that whole region
4684         // there. This is in addition to any already evacuated objects. Notify the
4685         // policy about that.
4686         // Old gen regions do not cause an additional allocation: both the objects
4687         // still in the region and the ones already moved are accounted for elsewhere.
4688         if (r->is_young()) {
4689           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4690         }
4691         // The region is now considered to be old.
4692         r->set_old();
4693         // Do some allocation statistics accounting. Regions that failed evacuation
4694         // are always made old, so there is no need to update anything in the young
4695         // gen statistics, but we need to update old gen statistics.
4696         size_t used_words = r->marked_bytes() / HeapWordSize;
4697 
4698         _failure_used_words += used_words;
4699         _failure_waste_words += HeapRegion::GrainWords - used_words;
4700 
4701         g1h->old_set_add(r);
4702         _after_used_bytes += r->used();
4703       }
4704       return false;
4705     }
4706 
4707     void complete_work() {
4708       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4709 
4710       _evacuation_info->set_regions_freed(_local_free_list.length());
4711       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4712 
4713       g1h->prepend_to_freelist(&_local_free_list);
4714       g1h->decrement_summary_bytes(_before_used_bytes);
4715 
4716       G1Policy* policy = g1h->g1_policy();
4717       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4718 
4719       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4720     }
4721   };
4722 
4723   G1CollectionSet* _collection_set;
4724   G1SerialFreeCollectionSetClosure _cl;
4725   const size_t* _surviving_young_words;
4726 
4727   size_t _rs_lengths;
4728 
4729   volatile jint _serial_work_claim;
4730 
4731   struct WorkItem {
4732     uint region_idx;
4733     bool is_young;
4734     bool evacuation_failed;
4735 
4736     WorkItem(HeapRegion* r) {
4737       region_idx = r->hrm_index();
4738       is_young = r->is_young();
4739       evacuation_failed = r->evacuation_failed();
4740     }
4741   };
4742 
4743   volatile size_t _parallel_work_claim;
4744   size_t _num_work_items;
4745   WorkItem* _work_items;
4746 
4747   void do_serial_work() {
4748     // Need to grab the lock to be allowed to modify the old region list.
4749     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4750     _collection_set->iterate(&_cl);
4751   }
4752 
4753   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4754     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4755 
4756     HeapRegion* r = g1h->region_at(region_idx);
4757     assert(!g1h->is_on_master_free_list(r), "sanity");
4758 
4759     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4760 
4761     if (!is_young) {
4762       g1h->_hot_card_cache->reset_card_counts(r);
4763     }
4764 
4765     if (!evacuation_failed) {
4766       r->rem_set()->clear_locked();
4767     }
4768   }
4769 
4770   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4771   private:
4772     size_t _cur_idx;
4773     WorkItem* _work_items;
4774   public:
4775     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4776 
4777     virtual bool doHeapRegion(HeapRegion* r) {
4778       _work_items[_cur_idx++] = WorkItem(r);
4779       return false;
4780     }
4781   };
4782 
4783   void prepare_work() {
4784     G1PrepareFreeCollectionSetClosure cl(_work_items);
4785     _collection_set->iterate(&cl);
4786   }
4787 
4788   void complete_work() {
4789     _cl.complete_work();
4790 
4791     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4792     policy->record_max_rs_lengths(_rs_lengths);
4793     policy->cset_regions_freed();
4794   }
4795 public:
4796   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4797     AbstractGangTask("G1 Free Collection Set"),
4798     _cl(evacuation_info, surviving_young_words),
4799     _collection_set(collection_set),
4800     _surviving_young_words(surviving_young_words),
4801     _serial_work_claim(0),
4802     _rs_lengths(0),
4803     _parallel_work_claim(0),
4804     _num_work_items(collection_set->region_length()),
4805     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4806     prepare_work();
4807   }
4808 
4809   ~G1FreeCollectionSetTask() {
4810     complete_work();
4811     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4812   }
4813 
4814   // Chunk size for work distribution. The chosen value has been determined experimentally
4815   // to be a good tradeoff between overhead and achievable parallelism.
4816   static uint chunk_size() { return 32; }
4817 
4818   virtual void work(uint worker_id) {
4819     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4820 
4821     // Claim serial work.
4822     if (_serial_work_claim == 0) {
4823       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4824       if (value == 0) {
4825         double serial_time = os::elapsedTime();
4826         do_serial_work();
4827         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4828       }
4829     }
4830 
4831     // Start parallel work.
4832     double young_time = 0.0;
4833     bool has_young_time = false;
4834     double non_young_time = 0.0;
4835     bool has_non_young_time = false;
4836 
4837     while (true) {
4838       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4839       size_t cur = end - chunk_size();
4840 
4841       if (cur >= _num_work_items) {
4842         break;
4843       }
4844 
4845       double start_time = os::elapsedTime();
4846 
4847       end = MIN2(end, _num_work_items);
4848 
4849       for (; cur < end; cur++) {
4850         bool is_young = _work_items[cur].is_young;
4851 
4852         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4853 
4854         double end_time = os::elapsedTime();
4855         double time_taken = end_time - start_time;
4856         if (is_young) {
4857           young_time += time_taken;
4858           has_young_time = true;
4859         } else {
4860           non_young_time += time_taken;
4861           has_non_young_time = true;
4862         }
4863         start_time = end_time;
4864       }
4865     }
4866 
4867     if (has_young_time) {
4868       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4869     }
4870     if (has_non_young_time) {
4871       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4872     }
4873   }
4874 };
4875 
4876 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4877   _eden.clear();
4878 
4879   double free_cset_start_time = os::elapsedTime();
4880 
4881   {
4882     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4883     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4884 
4885     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4886 
4887     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4888                         cl.name(),
4889                         num_workers,
4890                         _collection_set.region_length());
4891     workers()->run_task(&cl, num_workers);
4892   }
4893   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4894 
4895   collection_set->clear();
4896 }
4897 
4898 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4899  private:
4900   FreeRegionList* _free_region_list;
4901   HeapRegionSet* _proxy_set;
4902   uint _humongous_regions_removed;
4903   size_t _freed_bytes;
4904  public:
4905 
4906   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4907     _free_region_list(free_region_list), _humongous_regions_removed(0), _freed_bytes(0) {
4908   }
4909 
4910   virtual bool doHeapRegion(HeapRegion* r) {
4911     if (!r->is_starts_humongous()) {
4912       return false;
4913     }
4914 
4915     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4916 
4917     oop obj = (oop)r->bottom();
4918     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4919 
4920     // The following checks whether the humongous object is live are sufficient.
4921     // The main additional check (in addition to having a reference from the roots
4922     // or the young gen) is whether the humongous object has a remembered set entry.
4923     //
4924     // A humongous object cannot be live if there is no remembered set for it
4925     // because:
4926     // - there can be no references from within humongous starts regions referencing
4927     // the object because we never allocate other objects into them.
4928     // (I.e. there are no intra-region references that may be missed by the
4929     // remembered set)
4930     // - as soon there is a remembered set entry to the humongous starts region
4931     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4932     // until the end of a concurrent mark.
4933     //
4934     // It is not required to check whether the object has been found dead by marking
4935     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4936     // all objects allocated during that time are considered live.
4937     // SATB marking is even more conservative than the remembered set.
4938     // So if at this point in the collection there is no remembered set entry,
4939     // nobody has a reference to it.
4940     // At the start of collection we flush all refinement logs, and remembered sets
4941     // are completely up-to-date wrt to references to the humongous object.
4942     //
4943     // Other implementation considerations:
4944     // - never consider object arrays at this time because they would pose
4945     // considerable effort for cleaning up the the remembered sets. This is
4946     // required because stale remembered sets might reference locations that
4947     // are currently allocated into.
4948     uint region_idx = r->hrm_index();
4949     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4950         !r->rem_set()->is_empty()) {
4951       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4952                                region_idx,
4953                                (size_t)obj->size() * HeapWordSize,
4954                                p2i(r->bottom()),
4955                                r->rem_set()->occupied(),
4956                                r->rem_set()->strong_code_roots_list_length(),
4957                                next_bitmap->isMarked(r->bottom()),
4958                                g1h->is_humongous_reclaim_candidate(region_idx),
4959                                obj->is_typeArray()
4960                               );
4961       return false;
4962     }
4963 
4964     guarantee(obj->is_typeArray(),
4965               "Only eagerly reclaiming type arrays is supported, but the object "
4966               PTR_FORMAT " is not.", p2i(r->bottom()));
4967 
4968     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4969                              region_idx,
4970                              (size_t)obj->size() * HeapWordSize,
4971                              p2i(r->bottom()),
4972                              r->rem_set()->occupied(),
4973                              r->rem_set()->strong_code_roots_list_length(),
4974                              next_bitmap->isMarked(r->bottom()),
4975                              g1h->is_humongous_reclaim_candidate(region_idx),
4976                              obj->is_typeArray()
4977                             );
4978 
4979     // Need to clear mark bit of the humongous object if already set.
4980     if (next_bitmap->isMarked(r->bottom())) {
4981       next_bitmap->clear(r->bottom());
4982     }
4983     do {
4984       HeapRegion* next = g1h->next_region_in_humongous(r);
4985       _freed_bytes += r->used();
4986       r->set_containing_set(NULL);
4987       _humongous_regions_removed++;
4988       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4989       r = next;
4990     } while (r != NULL);
4991 
4992     return false;
4993   }
4994 
4995   uint humongous_free_count() {
4996     return _humongous_regions_removed;
4997   }
4998 
4999   size_t bytes_freed() const {
5000     return _freed_bytes;
5001   }
5002 };
5003 
5004 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5005   assert_at_safepoint(true);
5006 
5007   if (!G1EagerReclaimHumongousObjects ||
5008       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5009     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5010     return;
5011   }
5012 
5013   double start_time = os::elapsedTime();
5014 
5015   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5016 
5017   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5018   heap_region_iterate(&cl);
5019 
5020   remove_from_old_sets(0, cl.humongous_free_count());
5021 
5022   G1HRPrinter* hrp = hr_printer();
5023   if (hrp->is_active()) {
5024     FreeRegionListIterator iter(&local_cleanup_list);
5025     while (iter.more_available()) {
5026       HeapRegion* hr = iter.get_next();
5027       hrp->cleanup(hr);
5028     }
5029   }
5030 
5031   prepend_to_freelist(&local_cleanup_list);
5032   decrement_summary_bytes(cl.bytes_freed());
5033 
5034   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5035                                                                     cl.humongous_free_count());
5036 }
5037 
5038 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
5039 public:
5040   virtual bool doHeapRegion(HeapRegion* r) {
5041     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
5042     G1CollectedHeap::heap()->clear_in_cset(r);
5043     r->set_young_index_in_cset(-1);
5044     return false;
5045   }
5046 };
5047 
5048 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
5049   G1AbandonCollectionSetClosure cl;
5050   collection_set->iterate(&cl);
5051 
5052   collection_set->clear();
5053   collection_set->stop_incremental_building();
5054 }
5055 
5056 void G1CollectedHeap::set_free_regions_coming() {
5057   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5058 
5059   assert(!free_regions_coming(), "pre-condition");
5060   _free_regions_coming = true;
5061 }
5062 
5063 void G1CollectedHeap::reset_free_regions_coming() {
5064   assert(free_regions_coming(), "pre-condition");
5065 
5066   {
5067     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5068     _free_regions_coming = false;
5069     SecondaryFreeList_lock->notify_all();
5070   }
5071 
5072   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5073 }
5074 
5075 void G1CollectedHeap::wait_while_free_regions_coming() {
5076   // Most of the time we won't have to wait, so let's do a quick test
5077   // first before we take the lock.
5078   if (!free_regions_coming()) {
5079     return;
5080   }
5081 
5082   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5083 
5084   {
5085     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5086     while (free_regions_coming()) {
5087       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5088     }
5089   }
5090 
5091   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5092 }
5093 
5094 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5095   return _allocator->is_retained_old_region(hr);
5096 }
5097 
5098 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5099   _eden.add(hr);
5100   _g1_policy->set_region_eden(hr);
5101 }
5102 
5103 #ifdef ASSERT
5104 
5105 class NoYoungRegionsClosure: public HeapRegionClosure {
5106 private:
5107   bool _success;
5108 public:
5109   NoYoungRegionsClosure() : _success(true) { }
5110   bool doHeapRegion(HeapRegion* r) {
5111     if (r->is_young()) {
5112       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5113                             p2i(r->bottom()), p2i(r->end()));
5114       _success = false;
5115     }
5116     return false;
5117   }
5118   bool success() { return _success; }
5119 };
5120 
5121 bool G1CollectedHeap::check_young_list_empty() {
5122   bool ret = (young_regions_count() == 0);
5123 
5124   NoYoungRegionsClosure closure;
5125   heap_region_iterate(&closure);
5126   ret = ret && closure.success();
5127 
5128   return ret;
5129 }
5130 
5131 #endif // ASSERT
5132 
5133 class TearDownRegionSetsClosure : public HeapRegionClosure {
5134 private:
5135   HeapRegionSet *_old_set;
5136 
5137 public:
5138   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5139 
5140   bool doHeapRegion(HeapRegion* r) {
5141     if (r->is_old()) {
5142       _old_set->remove(r);
5143     } else if(r->is_young()) {
5144       r->uninstall_surv_rate_group();
5145     } else {
5146       // We ignore free regions, we'll empty the free list afterwards.
5147       // We ignore humongous regions, we're not tearing down the
5148       // humongous regions set.
5149       assert(r->is_free() || r->is_humongous(),
5150              "it cannot be another type");
5151     }
5152     return false;
5153   }
5154 
5155   ~TearDownRegionSetsClosure() {
5156     assert(_old_set->is_empty(), "post-condition");
5157   }
5158 };
5159 
5160 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5161   assert_at_safepoint(true /* should_be_vm_thread */);
5162 
5163   if (!free_list_only) {
5164     TearDownRegionSetsClosure cl(&_old_set);
5165     heap_region_iterate(&cl);
5166 
5167     // Note that emptying the _young_list is postponed and instead done as
5168     // the first step when rebuilding the regions sets again. The reason for
5169     // this is that during a full GC string deduplication needs to know if
5170     // a collected region was young or old when the full GC was initiated.
5171   }
5172   _hrm.remove_all_free_regions();
5173 }
5174 
5175 void G1CollectedHeap::increase_used(size_t bytes) {
5176   _summary_bytes_used += bytes;
5177 }
5178 
5179 void G1CollectedHeap::decrease_used(size_t bytes) {
5180   assert(_summary_bytes_used >= bytes,
5181          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5182          _summary_bytes_used, bytes);
5183   _summary_bytes_used -= bytes;
5184 }
5185 
5186 void G1CollectedHeap::set_used(size_t bytes) {
5187   _summary_bytes_used = bytes;
5188 }
5189 
5190 class RebuildRegionSetsClosure : public HeapRegionClosure {
5191 private:
5192   bool            _free_list_only;
5193   HeapRegionSet*   _old_set;
5194   HeapRegionManager*   _hrm;
5195   size_t          _total_used;
5196 
5197 public:
5198   RebuildRegionSetsClosure(bool free_list_only,
5199                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5200     _free_list_only(free_list_only),
5201     _old_set(old_set), _hrm(hrm), _total_used(0) {
5202     assert(_hrm->num_free_regions() == 0, "pre-condition");
5203     if (!free_list_only) {
5204       assert(_old_set->is_empty(), "pre-condition");
5205     }
5206   }
5207 
5208   bool doHeapRegion(HeapRegion* r) {
5209     if (r->is_empty()) {
5210       // Add free regions to the free list
5211       r->set_free();
5212       r->set_allocation_context(AllocationContext::system());
5213       _hrm->insert_into_free_list(r);
5214     } else if (!_free_list_only) {
5215 
5216       if (r->is_humongous()) {
5217         // We ignore humongous regions. We left the humongous set unchanged.
5218       } else {
5219         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5220         // We now consider all regions old, so register as such. Leave
5221         // archive regions set that way, however, while still adding
5222         // them to the old set.
5223         if (!r->is_archive()) {
5224           r->set_old();
5225         }
5226         _old_set->add(r);
5227       }
5228       _total_used += r->used();
5229     }
5230 
5231     return false;
5232   }
5233 
5234   size_t total_used() {
5235     return _total_used;
5236   }
5237 };
5238 
5239 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5240   assert_at_safepoint(true /* should_be_vm_thread */);
5241 
5242   if (!free_list_only) {
5243     _eden.clear();
5244     _survivor.clear();
5245   }
5246 
5247   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5248   heap_region_iterate(&cl);
5249 
5250   if (!free_list_only) {
5251     set_used(cl.total_used());
5252     if (_archive_allocator != NULL) {
5253       _archive_allocator->clear_used();
5254     }
5255   }
5256   assert(used_unlocked() == recalculate_used(),
5257          "inconsistent used_unlocked(), "
5258          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5259          used_unlocked(), recalculate_used());
5260 }
5261 
5262 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5263   _refine_cte_cl->set_concurrent(concurrent);
5264 }
5265 
5266 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5267   HeapRegion* hr = heap_region_containing(p);
5268   return hr->is_in(p);
5269 }
5270 
5271 // Methods for the mutator alloc region
5272 
5273 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5274                                                       bool force) {
5275   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5276   assert(!force || g1_policy()->can_expand_young_list(),
5277          "if force is true we should be able to expand the young list");
5278   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5279   if (force || should_allocate) {
5280     HeapRegion* new_alloc_region = new_region(word_size,
5281                                               false /* is_old */,
5282                                               false /* do_expand */);
5283     if (new_alloc_region != NULL) {
5284       set_region_short_lived_locked(new_alloc_region);
5285       _hr_printer.alloc(new_alloc_region, !should_allocate);
5286       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5287       return new_alloc_region;
5288     }
5289   }
5290   return NULL;
5291 }
5292 
5293 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5294                                                   size_t allocated_bytes) {
5295   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5296   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5297 
5298   collection_set()->add_eden_region(alloc_region);
5299   increase_used(allocated_bytes);
5300   _hr_printer.retire(alloc_region);
5301   // We update the eden sizes here, when the region is retired,
5302   // instead of when it's allocated, since this is the point that its
5303   // used space has been recored in _summary_bytes_used.
5304   g1mm()->update_eden_size();
5305 }
5306 
5307 // Methods for the GC alloc regions
5308 
5309 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5310   if (dest.is_old()) {
5311     return true;
5312   } else {
5313     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5314   }
5315 }
5316 
5317 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5318   assert(FreeList_lock->owned_by_self(), "pre-condition");
5319 
5320   if (!has_more_regions(dest)) {
5321     return NULL;
5322   }
5323 
5324   const bool is_survivor = dest.is_young();
5325 
5326   HeapRegion* new_alloc_region = new_region(word_size,
5327                                             !is_survivor,
5328                                             true /* do_expand */);
5329   if (new_alloc_region != NULL) {
5330     // We really only need to do this for old regions given that we
5331     // should never scan survivors. But it doesn't hurt to do it
5332     // for survivors too.
5333     new_alloc_region->record_timestamp();
5334     if (is_survivor) {
5335       new_alloc_region->set_survivor();
5336       _survivor.add(new_alloc_region);
5337       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5338     } else {
5339       new_alloc_region->set_old();
5340       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5341     }
5342     _hr_printer.alloc(new_alloc_region);
5343     bool during_im = collector_state()->during_initial_mark_pause();
5344     new_alloc_region->note_start_of_copying(during_im);
5345     return new_alloc_region;
5346   }
5347   return NULL;
5348 }
5349 
5350 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5351                                              size_t allocated_bytes,
5352                                              InCSetState dest) {
5353   bool during_im = collector_state()->during_initial_mark_pause();
5354   alloc_region->note_end_of_copying(during_im);
5355   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5356   if (dest.is_old()) {
5357     _old_set.add(alloc_region);
5358   }
5359   _hr_printer.retire(alloc_region);
5360 }
5361 
5362 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5363   bool expanded = false;
5364   uint index = _hrm.find_highest_free(&expanded);
5365 
5366   if (index != G1_NO_HRM_INDEX) {
5367     if (expanded) {
5368       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5369                                 HeapRegion::GrainWords * HeapWordSize);
5370     }
5371     _hrm.allocate_free_regions_starting_at(index, 1);
5372     return region_at(index);
5373   }
5374   return NULL;
5375 }
5376 
5377 // Optimized nmethod scanning
5378 
5379 class RegisterNMethodOopClosure: public OopClosure {
5380   G1CollectedHeap* _g1h;
5381   nmethod* _nm;
5382 
5383   template <class T> void do_oop_work(T* p) {
5384     T heap_oop = oopDesc::load_heap_oop(p);
5385     if (!oopDesc::is_null(heap_oop)) {
5386       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5387       HeapRegion* hr = _g1h->heap_region_containing(obj);
5388       assert(!hr->is_continues_humongous(),
5389              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5390              " starting at " HR_FORMAT,
5391              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5392 
5393       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5394       hr->add_strong_code_root_locked(_nm);
5395     }
5396   }
5397 
5398 public:
5399   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5400     _g1h(g1h), _nm(nm) {}
5401 
5402   void do_oop(oop* p)       { do_oop_work(p); }
5403   void do_oop(narrowOop* p) { do_oop_work(p); }
5404 };
5405 
5406 class UnregisterNMethodOopClosure: public OopClosure {
5407   G1CollectedHeap* _g1h;
5408   nmethod* _nm;
5409 
5410   template <class T> void do_oop_work(T* p) {
5411     T heap_oop = oopDesc::load_heap_oop(p);
5412     if (!oopDesc::is_null(heap_oop)) {
5413       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5414       HeapRegion* hr = _g1h->heap_region_containing(obj);
5415       assert(!hr->is_continues_humongous(),
5416              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5417              " starting at " HR_FORMAT,
5418              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5419 
5420       hr->remove_strong_code_root(_nm);
5421     }
5422   }
5423 
5424 public:
5425   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5426     _g1h(g1h), _nm(nm) {}
5427 
5428   void do_oop(oop* p)       { do_oop_work(p); }
5429   void do_oop(narrowOop* p) { do_oop_work(p); }
5430 };
5431 
5432 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5433   CollectedHeap::register_nmethod(nm);
5434 
5435   guarantee(nm != NULL, "sanity");
5436   RegisterNMethodOopClosure reg_cl(this, nm);
5437   nm->oops_do(&reg_cl);
5438 }
5439 
5440 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5441   CollectedHeap::unregister_nmethod(nm);
5442 
5443   guarantee(nm != NULL, "sanity");
5444   UnregisterNMethodOopClosure reg_cl(this, nm);
5445   nm->oops_do(&reg_cl, true);
5446 }
5447 
5448 void G1CollectedHeap::purge_code_root_memory() {
5449   double purge_start = os::elapsedTime();
5450   G1CodeRootSet::purge();
5451   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5452   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5453 }
5454 
5455 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5456   G1CollectedHeap* _g1h;
5457 
5458 public:
5459   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5460     _g1h(g1h) {}
5461 
5462   void do_code_blob(CodeBlob* cb) {
5463     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5464     if (nm == NULL) {
5465       return;
5466     }
5467 
5468     if (ScavengeRootsInCode) {
5469       _g1h->register_nmethod(nm);
5470     }
5471   }
5472 };
5473 
5474 void G1CollectedHeap::rebuild_strong_code_roots() {
5475   RebuildStrongCodeRootClosure blob_cl(this);
5476   CodeCache::blobs_do(&blob_cl);
5477 }