1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_HEAPREGION_HPP
  26 #define SHARE_VM_GC_G1_HEAPREGION_HPP
  27 
  28 #include "gc/g1/g1AllocationContext.hpp"
  29 #include "gc/g1/g1BlockOffsetTable.hpp"
  30 #include "gc/g1/g1HeapRegionTraceType.hpp"
  31 #include "gc/g1/heapRegionTracer.hpp"
  32 #include "gc/g1/heapRegionType.hpp"
  33 #include "gc/g1/survRateGroup.hpp"
  34 #include "gc/shared/ageTable.hpp"
  35 #include "gc/shared/spaceDecorator.hpp"
  36 #include "utilities/macros.hpp"
  37 
  38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  39 // can be collected independently.
  40 
  41 // NOTE: Although a HeapRegion is a Space, its
  42 // Space::initDirtyCardClosure method must not be called.
  43 // The problem is that the existence of this method breaks
  44 // the independence of barrier sets from remembered sets.
  45 // The solution is to remove this method from the definition
  46 // of a Space.
  47 
  48 // Each heap region is self contained. top() and end() can never
  49 // be set beyond the end of the region. For humongous objects,
  50 // the first region is a StartsHumongous region. If the humongous
  51 // object is larger than a heap region, the following regions will
  52 // be of type ContinuesHumongous. In this case the top() of the
  53 // StartHumongous region and all ContinuesHumongous regions except
  54 // the last will point to their own end. The last ContinuesHumongous
  55 // region may have top() equal the end of object if there isn't
  56 // room for filler objects to pad out to the end of the region.
  57 
  58 class G1CollectedHeap;
  59 class G1CMBitMapRO;
  60 class HeapRegionRemSet;
  61 class HeapRegionRemSetIterator;
  62 class HeapRegion;
  63 class HeapRegionSetBase;
  64 class nmethod;
  65 
  66 #define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]"
  67 #define HR_FORMAT_PARAMS(_hr_) \
  68                 (_hr_)->hrm_index(), \
  69                 (_hr_)->get_short_type_str(), \
  70                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
  71 
  72 // sentinel value for hrm_index
  73 #define G1_NO_HRM_INDEX ((uint) -1)
  74 
  75 // The complicating factor is that BlockOffsetTable diverged
  76 // significantly, and we need functionality that is only in the G1 version.
  77 // So I copied that code, which led to an alternate G1 version of
  78 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
  79 // be reconciled, then G1OffsetTableContigSpace could go away.
  80 
  81 // The idea behind time stamps is the following. We want to keep track of
  82 // the highest address where it's safe to scan objects for each region.
  83 // This is only relevant for current GC alloc regions so we keep a time stamp
  84 // per region to determine if the region has been allocated during the current
  85 // GC or not. If the time stamp is current we report a scan_top value which
  86 // was saved at the end of the previous GC for retained alloc regions and which is
  87 // equal to the bottom for all other regions.
  88 // There is a race between card scanners and allocating gc workers where we must ensure
  89 // that card scanners do not read the memory allocated by the gc workers.
  90 // In order to enforce that, we must not return a value of _top which is more recent than the
  91 // time stamp. This is due to the fact that a region may become a gc alloc region at
  92 // some point after we've read the timestamp value as being < the current time stamp.
  93 // The time stamps are re-initialized to zero at cleanup and at Full GCs.
  94 // The current scheme that uses sequential unsigned ints will fail only if we have 4b
  95 // evacuation pauses between two cleanups, which is _highly_ unlikely.
  96 class G1ContiguousSpace: public CompactibleSpace {
  97   friend class VMStructs;
  98   HeapWord* volatile _top;
  99   HeapWord* volatile _scan_top;
 100  protected:
 101   G1BlockOffsetTablePart _bot_part;
 102   Mutex _par_alloc_lock;
 103   volatile uint _gc_time_stamp;
 104   // When we need to retire an allocation region, while other threads
 105   // are also concurrently trying to allocate into it, we typically
 106   // allocate a dummy object at the end of the region to ensure that
 107   // no more allocations can take place in it. However, sometimes we
 108   // want to know where the end of the last "real" object we allocated
 109   // into the region was and this is what this keeps track.
 110   HeapWord* _pre_dummy_top;
 111 
 112  public:
 113   G1ContiguousSpace(G1BlockOffsetTable* bot);
 114 
 115   void set_top(HeapWord* value) { _top = value; }
 116   HeapWord* top() const { return _top; }
 117 
 118  protected:
 119   // Reset the G1ContiguousSpace.
 120   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 121 
 122   HeapWord* volatile* top_addr() { return &_top; }
 123   // Try to allocate at least min_word_size and up to desired_size from this Space.
 124   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
 125   // space allocated.
 126   // This version assumes that all allocation requests to this Space are properly
 127   // synchronized.
 128   inline HeapWord* allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 129   // Try to allocate at least min_word_size and up to desired_size from this Space.
 130   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
 131   // space allocated.
 132   // This version synchronizes with other calls to par_allocate_impl().
 133   inline HeapWord* par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 134 
 135  public:
 136   void reset_after_compaction() { set_top(compaction_top()); }
 137 
 138   size_t used() const { return byte_size(bottom(), top()); }
 139   size_t free() const { return byte_size(top(), end()); }
 140   bool is_free_block(const HeapWord* p) const { return p >= top(); }
 141 
 142   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 143 
 144   void object_iterate(ObjectClosure* blk);
 145   void safe_object_iterate(ObjectClosure* blk);
 146 
 147   void mangle_unused_area() PRODUCT_RETURN;
 148   void mangle_unused_area_complete() PRODUCT_RETURN;
 149 
 150   HeapWord* scan_top() const;
 151   void record_timestamp();
 152   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
 153   uint get_gc_time_stamp() { return _gc_time_stamp; }
 154   void record_retained_region();
 155 
 156   // See the comment above in the declaration of _pre_dummy_top for an
 157   // explanation of what it is.
 158   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
 159     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
 160     _pre_dummy_top = pre_dummy_top;
 161   }
 162   HeapWord* pre_dummy_top() {
 163     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
 164   }
 165   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
 166 
 167   virtual void clear(bool mangle_space);
 168 
 169   HeapWord* block_start(const void* p);
 170   HeapWord* block_start_const(const void* p) const;
 171 
 172   // Allocation (return NULL if full).  Assumes the caller has established
 173   // mutually exclusive access to the space.
 174   HeapWord* allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 175   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
 176   HeapWord* par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 177 
 178   virtual HeapWord* allocate(size_t word_size);
 179   virtual HeapWord* par_allocate(size_t word_size);
 180 
 181   HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; }
 182 
 183   // MarkSweep support phase3
 184   virtual HeapWord* initialize_threshold();
 185   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 186 
 187   virtual void print() const;
 188 
 189   void reset_bot() {
 190     _bot_part.reset_bot();
 191   }
 192 
 193   void print_bot_on(outputStream* out) {
 194     _bot_part.print_on(out);
 195   }
 196 };
 197 
 198 class HeapRegion: public G1ContiguousSpace {
 199   friend class VMStructs;
 200   // Allow scan_and_forward to call (private) overrides for auxiliary functions on this class
 201   template <typename SpaceType>
 202   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
 203  private:
 204 
 205   // The remembered set for this region.
 206   // (Might want to make this "inline" later, to avoid some alloc failure
 207   // issues.)
 208   HeapRegionRemSet* _rem_set;
 209 
 210   // Auxiliary functions for scan_and_forward support.
 211   // See comments for CompactibleSpace for more information.
 212   inline HeapWord* scan_limit() const {
 213     return top();
 214   }
 215 
 216   inline bool scanned_block_is_obj(const HeapWord* addr) const {
 217     return true; // Always true, since scan_limit is top
 218   }
 219 
 220   inline size_t scanned_block_size(const HeapWord* addr) const {
 221     return HeapRegion::block_size(addr); // Avoid virtual call
 222   }
 223 
 224   void report_region_type_change(G1HeapRegionTraceType::Type to);
 225 
 226   // Returns whether the given object address refers to a dead address, and either the
 227   // size of the object (if live) or the size of the block (if dead) in size.
 228   // Performs some optimizations if is_gc_active is set.
 229   template <bool is_gc_active>
 230   inline bool is_obj_dead_with_size(const oop obj, G1CMBitMapRO* bitmap, size_t* size) const;
 231 
 232  protected:
 233   // The index of this region in the heap region sequence.
 234   uint  _hrm_index;
 235 
 236   AllocationContext_t _allocation_context;
 237 
 238   HeapRegionType _type;
 239 
 240   // For a humongous region, region in which it starts.
 241   HeapRegion* _humongous_start_region;
 242 
 243   // True iff an attempt to evacuate an object in the region failed.
 244   bool _evacuation_failed;
 245 
 246   // Fields used by the HeapRegionSetBase class and subclasses.
 247   HeapRegion* _next;
 248   HeapRegion* _prev;
 249 #ifdef ASSERT
 250   HeapRegionSetBase* _containing_set;
 251 #endif // ASSERT
 252 
 253   // We use concurrent marking to determine the amount of live data
 254   // in each heap region.
 255   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
 256   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
 257 
 258   // The calculated GC efficiency of the region.
 259   double _gc_efficiency;
 260 
 261   int  _young_index_in_cset;
 262   SurvRateGroup* _surv_rate_group;
 263   int  _age_index;
 264 
 265   // The start of the unmarked area. The unmarked area extends from this
 266   // word until the top and/or end of the region, and is the part
 267   // of the region for which no marking was done, i.e. objects may
 268   // have been allocated in this part since the last mark phase.
 269   // "prev" is the top at the start of the last completed marking.
 270   // "next" is the top at the start of the in-progress marking (if any.)
 271   HeapWord* _prev_top_at_mark_start;
 272   HeapWord* _next_top_at_mark_start;
 273   // If a collection pause is in progress, this is the top at the start
 274   // of that pause.
 275 
 276   void init_top_at_mark_start() {
 277     assert(_prev_marked_bytes == 0 &&
 278            _next_marked_bytes == 0,
 279            "Must be called after zero_marked_bytes.");
 280     HeapWord* bot = bottom();
 281     _prev_top_at_mark_start = bot;
 282     _next_top_at_mark_start = bot;
 283   }
 284 
 285   // Cached attributes used in the collection set policy information
 286 
 287   // The RSet length that was added to the total value
 288   // for the collection set.
 289   size_t _recorded_rs_length;
 290 
 291   // The predicted elapsed time that was added to total value
 292   // for the collection set.
 293   double _predicted_elapsed_time_ms;
 294 
 295   // Returns the object size for all valid block starts. Must only be called for
 296   // blocks with an address < top().
 297   size_t block_size_during_gc(const HeapWord* p, const G1CMBitMapRO* bitmap) const;
 298 
 299   // Iterate over the references in a humongous objects and apply the given closure
 300   // to them.
 301   // Humongous objects are allocated directly in the old-gen. So we need special
 302   // handling for concurrent processing encountering an in-progress allocation.
 303   template <class Closure, bool is_gc_active>
 304   inline bool do_oops_on_card_in_humongous(MemRegion mr,
 305                                            Closure* cl,
 306                                            G1CollectedHeap* g1h);
 307  public:
 308   HeapRegion(uint hrm_index,
 309              G1BlockOffsetTable* bot,
 310              MemRegion mr);
 311 
 312   // Initializing the HeapRegion not only resets the data structure, but also
 313   // resets the BOT for that heap region.
 314   // The default values for clear_space means that we will do the clearing if
 315   // there's clearing to be done ourselves. We also always mangle the space.
 316   virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
 317 
 318   static int    LogOfHRGrainBytes;
 319   static int    LogOfHRGrainWords;
 320 
 321   static size_t GrainBytes;
 322   static size_t GrainWords;
 323   static size_t CardsPerRegion;
 324 
 325   static size_t align_up_to_region_byte_size(size_t sz) {
 326     return (sz + (size_t) GrainBytes - 1) &
 327                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
 328   }
 329 
 330 
 331   // Returns whether a field is in the same region as the obj it points to.
 332   template <typename T>
 333   static bool is_in_same_region(T* p, oop obj) {
 334     assert(p != NULL, "p can't be NULL");
 335     assert(obj != NULL, "obj can't be NULL");
 336     return (((uintptr_t) p ^ cast_from_oop<uintptr_t>(obj)) >> LogOfHRGrainBytes) == 0;
 337   }
 338 
 339   static size_t max_region_size();
 340   static size_t min_region_size_in_words();
 341 
 342   // It sets up the heap region size (GrainBytes / GrainWords), as
 343   // well as other related fields that are based on the heap region
 344   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
 345   // CardsPerRegion). All those fields are considered constant
 346   // throughout the JVM's execution, therefore they should only be set
 347   // up once during initialization time.
 348   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
 349 
 350   // All allocated blocks are occupied by objects in a HeapRegion
 351   bool block_is_obj(const HeapWord* p) const;
 352 
 353   // Returns the object size for all valid block starts
 354   // and the amount of unallocated words if called on top()
 355   size_t block_size(const HeapWord* p) const;
 356 
 357   // Override for scan_and_forward support.
 358   void prepare_for_compaction(CompactPoint* cp);
 359 
 360   inline HeapWord* par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* word_size);
 361   inline HeapWord* allocate_no_bot_updates(size_t word_size);
 362   inline HeapWord* allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_size);
 363 
 364   // If this region is a member of a HeapRegionManager, the index in that
 365   // sequence, otherwise -1.
 366   uint hrm_index() const { return _hrm_index; }
 367 
 368   // The number of bytes marked live in the region in the last marking phase.
 369   size_t marked_bytes()    { return _prev_marked_bytes; }
 370   size_t live_bytes() {
 371     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
 372   }
 373 
 374   // The number of bytes counted in the next marking.
 375   size_t next_marked_bytes() { return _next_marked_bytes; }
 376   // The number of bytes live wrt the next marking.
 377   size_t next_live_bytes() {
 378     return
 379       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
 380   }
 381 
 382   // A lower bound on the amount of garbage bytes in the region.
 383   size_t garbage_bytes() {
 384     size_t used_at_mark_start_bytes =
 385       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
 386     return used_at_mark_start_bytes - marked_bytes();
 387   }
 388 
 389   // Return the amount of bytes we'll reclaim if we collect this
 390   // region. This includes not only the known garbage bytes in the
 391   // region but also any unallocated space in it, i.e., [top, end),
 392   // since it will also be reclaimed if we collect the region.
 393   size_t reclaimable_bytes() {
 394     size_t known_live_bytes = live_bytes();
 395     assert(known_live_bytes <= capacity(), "sanity");
 396     return capacity() - known_live_bytes;
 397   }
 398 
 399   // An upper bound on the number of live bytes in the region.
 400   size_t max_live_bytes() { return used() - garbage_bytes(); }
 401 
 402   void add_to_marked_bytes(size_t incr_bytes) {
 403     _next_marked_bytes = _next_marked_bytes + incr_bytes;
 404   }
 405 
 406   void zero_marked_bytes()      {
 407     _prev_marked_bytes = _next_marked_bytes = 0;
 408   }
 409 
 410   const char* get_type_str() const { return _type.get_str(); }
 411   const char* get_short_type_str() const { return _type.get_short_str(); }
 412   G1HeapRegionTraceType::Type get_trace_type() { return _type.get_trace_type(); }
 413 
 414   bool is_free() const { return _type.is_free(); }
 415 
 416   bool is_young()    const { return _type.is_young();    }
 417   bool is_eden()     const { return _type.is_eden();     }
 418   bool is_survivor() const { return _type.is_survivor(); }
 419 
 420   bool is_humongous() const { return _type.is_humongous(); }
 421   bool is_starts_humongous() const { return _type.is_starts_humongous(); }
 422   bool is_continues_humongous() const { return _type.is_continues_humongous();   }
 423 
 424   bool is_old() const { return _type.is_old(); }
 425 
 426   bool is_old_or_humongous() const { return _type.is_old_or_humongous(); }
 427 
 428   // A pinned region contains objects which are not moved by garbage collections.
 429   // Humongous regions and archive regions are pinned.
 430   bool is_pinned() const { return _type.is_pinned(); }
 431 
 432   // An archive region is a pinned region, also tagged as old, which
 433   // should not be marked during mark/sweep. This allows the address
 434   // space to be shared by JVM instances.
 435   bool is_archive() const { return _type.is_archive(); }
 436 
 437   // For a humongous region, region in which it starts.
 438   HeapRegion* humongous_start_region() const {
 439     return _humongous_start_region;
 440   }
 441 
 442   // Makes the current region be a "starts humongous" region, i.e.,
 443   // the first region in a series of one or more contiguous regions
 444   // that will contain a single "humongous" object.
 445   //
 446   // obj_top : points to the top of the humongous object.
 447   // fill_size : size of the filler object at the end of the region series.
 448   void set_starts_humongous(HeapWord* obj_top, size_t fill_size);
 449 
 450   // Makes the current region be a "continues humongous'
 451   // region. first_hr is the "start humongous" region of the series
 452   // which this region will be part of.
 453   void set_continues_humongous(HeapRegion* first_hr);
 454 
 455   // Unsets the humongous-related fields on the region.
 456   void clear_humongous();
 457 
 458   // If the region has a remembered set, return a pointer to it.
 459   HeapRegionRemSet* rem_set() const {
 460     return _rem_set;
 461   }
 462 
 463   inline bool in_collection_set() const;
 464 
 465   void set_allocation_context(AllocationContext_t context) {
 466     _allocation_context = context;
 467   }
 468 
 469   AllocationContext_t  allocation_context() const {
 470     return _allocation_context;
 471   }
 472 
 473   // Methods used by the HeapRegionSetBase class and subclasses.
 474 
 475   // Getter and setter for the next and prev fields used to link regions into
 476   // linked lists.
 477   HeapRegion* next()              { return _next; }
 478   HeapRegion* prev()              { return _prev; }
 479 
 480   void set_next(HeapRegion* next) { _next = next; }
 481   void set_prev(HeapRegion* prev) { _prev = prev; }
 482 
 483   // Every region added to a set is tagged with a reference to that
 484   // set. This is used for doing consistency checking to make sure that
 485   // the contents of a set are as they should be and it's only
 486   // available in non-product builds.
 487 #ifdef ASSERT
 488   void set_containing_set(HeapRegionSetBase* containing_set) {
 489     assert((containing_set == NULL && _containing_set != NULL) ||
 490            (containing_set != NULL && _containing_set == NULL),
 491            "containing_set: " PTR_FORMAT " "
 492            "_containing_set: " PTR_FORMAT,
 493            p2i(containing_set), p2i(_containing_set));
 494 
 495     _containing_set = containing_set;
 496   }
 497 
 498   HeapRegionSetBase* containing_set() { return _containing_set; }
 499 #else // ASSERT
 500   void set_containing_set(HeapRegionSetBase* containing_set) { }
 501 
 502   // containing_set() is only used in asserts so there's no reason
 503   // to provide a dummy version of it.
 504 #endif // ASSERT
 505 
 506 
 507   // Reset the HeapRegion to default values.
 508   // If skip_remset is true, do not clear the remembered set.
 509   void hr_clear(bool skip_remset, bool clear_space, bool locked = false);
 510   // Clear the parts skipped by skip_remset in hr_clear() in the HeapRegion during
 511   // a concurrent phase.
 512   void par_clear();
 513 
 514   // Get the start of the unmarked area in this region.
 515   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
 516   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
 517 
 518   // Note the start or end of marking. This tells the heap region
 519   // that the collector is about to start or has finished (concurrently)
 520   // marking the heap.
 521 
 522   // Notify the region that concurrent marking is starting. Initialize
 523   // all fields related to the next marking info.
 524   inline void note_start_of_marking();
 525 
 526   // Notify the region that concurrent marking has finished. Copy the
 527   // (now finalized) next marking info fields into the prev marking
 528   // info fields.
 529   inline void note_end_of_marking();
 530 
 531   // Notify the region that it will be used as to-space during a GC
 532   // and we are about to start copying objects into it.
 533   inline void note_start_of_copying(bool during_initial_mark);
 534 
 535   // Notify the region that it ceases being to-space during a GC and
 536   // we will not copy objects into it any more.
 537   inline void note_end_of_copying(bool during_initial_mark);
 538 
 539   // Notify the region that we are about to start processing
 540   // self-forwarded objects during evac failure handling.
 541   void note_self_forwarding_removal_start(bool during_initial_mark,
 542                                           bool during_conc_mark);
 543 
 544   // Notify the region that we have finished processing self-forwarded
 545   // objects during evac failure handling.
 546   void note_self_forwarding_removal_end(size_t marked_bytes);
 547 
 548   // Returns "false" iff no object in the region was allocated when the
 549   // last mark phase ended.
 550   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
 551 
 552   void reset_during_compaction() {
 553     assert(is_humongous(),
 554            "should only be called for humongous regions");
 555 
 556     zero_marked_bytes();
 557     init_top_at_mark_start();
 558   }
 559 
 560   void calc_gc_efficiency(void);
 561   double gc_efficiency() { return _gc_efficiency;}
 562 
 563   int  young_index_in_cset() const { return _young_index_in_cset; }
 564   void set_young_index_in_cset(int index) {
 565     assert( (index == -1) || is_young(), "pre-condition" );
 566     _young_index_in_cset = index;
 567   }
 568 
 569   int age_in_surv_rate_group() {
 570     assert( _surv_rate_group != NULL, "pre-condition" );
 571     assert( _age_index > -1, "pre-condition" );
 572     return _surv_rate_group->age_in_group(_age_index);
 573   }
 574 
 575   void record_surv_words_in_group(size_t words_survived) {
 576     assert( _surv_rate_group != NULL, "pre-condition" );
 577     assert( _age_index > -1, "pre-condition" );
 578     int age_in_group = age_in_surv_rate_group();
 579     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
 580   }
 581 
 582   int age_in_surv_rate_group_cond() {
 583     if (_surv_rate_group != NULL)
 584       return age_in_surv_rate_group();
 585     else
 586       return -1;
 587   }
 588 
 589   SurvRateGroup* surv_rate_group() {
 590     return _surv_rate_group;
 591   }
 592 
 593   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
 594     assert( surv_rate_group != NULL, "pre-condition" );
 595     assert( _surv_rate_group == NULL, "pre-condition" );
 596     assert( is_young(), "pre-condition" );
 597 
 598     _surv_rate_group = surv_rate_group;
 599     _age_index = surv_rate_group->next_age_index();
 600   }
 601 
 602   void uninstall_surv_rate_group() {
 603     if (_surv_rate_group != NULL) {
 604       assert( _age_index > -1, "pre-condition" );
 605       assert( is_young(), "pre-condition" );
 606 
 607       _surv_rate_group = NULL;
 608       _age_index = -1;
 609     } else {
 610       assert( _age_index == -1, "pre-condition" );
 611     }
 612   }
 613 
 614   void set_free();
 615 
 616   void set_eden();
 617   void set_eden_pre_gc();
 618   void set_survivor();
 619 
 620   void set_old();
 621 
 622   void set_archive();
 623 
 624   // Determine if an object has been allocated since the last
 625   // mark performed by the collector. This returns true iff the object
 626   // is within the unmarked area of the region.
 627   bool obj_allocated_since_prev_marking(oop obj) const {
 628     return (HeapWord *) obj >= prev_top_at_mark_start();
 629   }
 630   bool obj_allocated_since_next_marking(oop obj) const {
 631     return (HeapWord *) obj >= next_top_at_mark_start();
 632   }
 633 
 634   // Returns the "evacuation_failed" property of the region.
 635   bool evacuation_failed() { return _evacuation_failed; }
 636 
 637   // Sets the "evacuation_failed" property of the region.
 638   void set_evacuation_failed(bool b) {
 639     _evacuation_failed = b;
 640 
 641     if (b) {
 642       _next_marked_bytes = 0;
 643     }
 644   }
 645 
 646   // Iterate over the objects overlapping part of a card, applying cl
 647   // to all references in the region.  This is a helper for
 648   // G1RemSet::refine_card, and is tightly coupled with it.
 649   // mr: the memory region covered by the card, trimmed to the
 650   // allocated space for this region.  Must not be empty.
 651   // This region must be old or humongous.
 652   // Returns true if the designated objects were successfully
 653   // processed, false if an unparsable part of the heap was
 654   // encountered; that only happens when invoked concurrently with the
 655   // mutator.
 656   template <bool is_gc_active, class Closure>
 657   inline bool oops_on_card_seq_iterate_careful(MemRegion mr, Closure* cl);
 658 
 659   size_t recorded_rs_length() const        { return _recorded_rs_length; }
 660   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
 661 
 662   void set_recorded_rs_length(size_t rs_length) {
 663     _recorded_rs_length = rs_length;
 664   }
 665 
 666   void set_predicted_elapsed_time_ms(double ms) {
 667     _predicted_elapsed_time_ms = ms;
 668   }
 669 
 670   virtual CompactibleSpace* next_compaction_space() const;
 671 
 672   virtual void reset_after_compaction();
 673 
 674   // Routines for managing a list of code roots (attached to the
 675   // this region's RSet) that point into this heap region.
 676   void add_strong_code_root(nmethod* nm);
 677   void add_strong_code_root_locked(nmethod* nm);
 678   void remove_strong_code_root(nmethod* nm);
 679 
 680   // Applies blk->do_code_blob() to each of the entries in
 681   // the strong code roots list for this region
 682   void strong_code_roots_do(CodeBlobClosure* blk) const;
 683 
 684   // Verify that the entries on the strong code root list for this
 685   // region are live and include at least one pointer into this region.
 686   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
 687 
 688   void print() const;
 689   void print_on(outputStream* st) const;
 690 
 691   // vo == UsePrevMarking  -> use "prev" marking information,
 692   // vo == UseNextMarking -> use "next" marking information
 693   // vo == UseMarkWord    -> use the mark word in the object header
 694   //
 695   // NOTE: Only the "prev" marking information is guaranteed to be
 696   // consistent most of the time, so most calls to this should use
 697   // vo == UsePrevMarking.
 698   // Currently, there is only one case where this is called with
 699   // vo == UseNextMarking, which is to verify the "next" marking
 700   // information at the end of remark.
 701   // Currently there is only one place where this is called with
 702   // vo == UseMarkWord, which is to verify the marking during a
 703   // full GC.
 704   void verify(VerifyOption vo, bool *failures) const;
 705 
 706   // Override; it uses the "prev" marking information
 707   virtual void verify() const;
 708 
 709   void verify_rem_set(VerifyOption vo, bool *failures) const;
 710   void verify_rem_set() const;
 711 };
 712 
 713 // HeapRegionClosure is used for iterating over regions.
 714 // Terminates the iteration when the "doHeapRegion" method returns "true".
 715 class HeapRegionClosure : public StackObj {
 716   friend class HeapRegionManager;
 717   friend class G1CollectionSet;
 718 
 719   bool _complete;
 720   void incomplete() { _complete = false; }
 721 
 722  public:
 723   HeapRegionClosure(): _complete(true) {}
 724 
 725   // Typically called on each region until it returns true.
 726   virtual bool doHeapRegion(HeapRegion* r) = 0;
 727 
 728   // True after iteration if the closure was applied to all heap regions
 729   // and returned "false" in all cases.
 730   bool complete() { return _complete; }
 731 };
 732 
 733 #endif // SHARE_VM_GC_G1_HEAPREGION_HPP