1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorState.hpp"
  32 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  33 #include "gc/g1/g1OopClosures.inline.hpp"
  34 #include "gc/g1/g1Policy.hpp"
  35 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  36 #include "gc/g1/g1StringDedup.hpp"
  37 #include "gc/g1/heapRegion.inline.hpp"
  38 #include "gc/g1/heapRegionRemSet.hpp"
  39 #include "gc/g1/heapRegionSet.inline.hpp"
  40 #include "gc/shared/adaptiveSizePolicy.hpp"
  41 #include "gc/shared/gcId.hpp"
  42 #include "gc/shared/gcTimer.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/genOopClosures.inline.hpp"
  46 #include "gc/shared/referencePolicy.hpp"
  47 #include "gc/shared/strongRootsScope.hpp"
  48 #include "gc/shared/suspendibleThreadSet.hpp"
  49 #include "gc/shared/taskqueue.inline.hpp"
  50 #include "gc/shared/vmGCOperations.hpp"
  51 #include "gc/shared/weakProcessor.hpp"
  52 #include "include/jvm.h"
  53 #include "logging/log.hpp"
  54 #include "memory/allocation.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "oops/access.inline.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/handles.inline.hpp"
  60 #include "runtime/java.hpp"
  61 #include "runtime/prefetch.inline.hpp"
  62 #include "services/memTracker.hpp"
  63 #include "utilities/align.hpp"
  64 #include "utilities/growableArray.hpp"
  65 
  66 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  67   assert(addr < _cm->finger(), "invariant");
  68   assert(addr >= _task->finger(), "invariant");
  69 
  70   // We move that task's local finger along.
  71   _task->move_finger_to(addr);
  72 
  73   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  74   // we only partially drain the local queue and global stack
  75   _task->drain_local_queue(true);
  76   _task->drain_global_stack(true);
  77 
  78   // if the has_aborted flag has been raised, we need to bail out of
  79   // the iteration
  80   return !_task->has_aborted();
  81 }
  82 
  83 G1CMMarkStack::G1CMMarkStack() :
  84   _max_chunk_capacity(0),
  85   _base(NULL),
  86   _chunk_capacity(0) {
  87   set_empty();
  88 }
  89 
  90 bool G1CMMarkStack::resize(size_t new_capacity) {
  91   assert(is_empty(), "Only resize when stack is empty.");
  92   assert(new_capacity <= _max_chunk_capacity,
  93          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  94 
  95   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
  96 
  97   if (new_base == NULL) {
  98     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
  99     return false;
 100   }
 101   // Release old mapping.
 102   if (_base != NULL) {
 103     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 104   }
 105 
 106   _base = new_base;
 107   _chunk_capacity = new_capacity;
 108   set_empty();
 109 
 110   return true;
 111 }
 112 
 113 size_t G1CMMarkStack::capacity_alignment() {
 114   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 115 }
 116 
 117 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 118   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 119 
 120   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 121 
 122   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 123   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 124 
 125   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 126             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 127             _max_chunk_capacity,
 128             initial_chunk_capacity);
 129 
 130   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 131                 initial_chunk_capacity, _max_chunk_capacity);
 132 
 133   return resize(initial_chunk_capacity);
 134 }
 135 
 136 void G1CMMarkStack::expand() {
 137   if (_chunk_capacity == _max_chunk_capacity) {
 138     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 139     return;
 140   }
 141   size_t old_capacity = _chunk_capacity;
 142   // Double capacity if possible
 143   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 144 
 145   if (resize(new_capacity)) {
 146     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 147                   old_capacity, new_capacity);
 148   } else {
 149     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 150                     old_capacity, new_capacity);
 151   }
 152 }
 153 
 154 G1CMMarkStack::~G1CMMarkStack() {
 155   if (_base != NULL) {
 156     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 157   }
 158 }
 159 
 160 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 161   elem->next = *list;
 162   *list = elem;
 163 }
 164 
 165 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 166   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 167   add_chunk_to_list(&_chunk_list, elem);
 168   _chunks_in_chunk_list++;
 169 }
 170 
 171 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 172   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 173   add_chunk_to_list(&_free_list, elem);
 174 }
 175 
 176 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 177   TaskQueueEntryChunk* result = *list;
 178   if (result != NULL) {
 179     *list = (*list)->next;
 180   }
 181   return result;
 182 }
 183 
 184 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 185   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 186   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 187   if (result != NULL) {
 188     _chunks_in_chunk_list--;
 189   }
 190   return result;
 191 }
 192 
 193 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 194   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 195   return remove_chunk_from_list(&_free_list);
 196 }
 197 
 198 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 199   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 200   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 201   // wraparound of _hwm.
 202   if (_hwm >= _chunk_capacity) {
 203     return NULL;
 204   }
 205 
 206   size_t cur_idx = Atomic::add(1u, &_hwm) - 1;
 207   if (cur_idx >= _chunk_capacity) {
 208     return NULL;
 209   }
 210 
 211   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 212   result->next = NULL;
 213   return result;
 214 }
 215 
 216 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 217   // Get a new chunk.
 218   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 219 
 220   if (new_chunk == NULL) {
 221     // Did not get a chunk from the free list. Allocate from backing memory.
 222     new_chunk = allocate_new_chunk();
 223 
 224     if (new_chunk == NULL) {
 225       return false;
 226     }
 227   }
 228 
 229   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 230 
 231   add_chunk_to_chunk_list(new_chunk);
 232 
 233   return true;
 234 }
 235 
 236 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 237   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 238 
 239   if (cur == NULL) {
 240     return false;
 241   }
 242 
 243   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 244 
 245   add_chunk_to_free_list(cur);
 246   return true;
 247 }
 248 
 249 void G1CMMarkStack::set_empty() {
 250   _chunks_in_chunk_list = 0;
 251   _hwm = 0;
 252   _chunk_list = NULL;
 253   _free_list = NULL;
 254 }
 255 
 256 G1CMRootRegions::G1CMRootRegions() :
 257   _survivors(NULL), _cm(NULL), _scan_in_progress(false),
 258   _should_abort(false), _claimed_survivor_index(0) { }
 259 
 260 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 261   _survivors = survivors;
 262   _cm = cm;
 263 }
 264 
 265 void G1CMRootRegions::prepare_for_scan() {
 266   assert(!scan_in_progress(), "pre-condition");
 267 
 268   // Currently, only survivors can be root regions.
 269   _claimed_survivor_index = 0;
 270   _scan_in_progress = _survivors->regions()->is_nonempty();
 271   _should_abort = false;
 272 }
 273 
 274 HeapRegion* G1CMRootRegions::claim_next() {
 275   if (_should_abort) {
 276     // If someone has set the should_abort flag, we return NULL to
 277     // force the caller to bail out of their loop.
 278     return NULL;
 279   }
 280 
 281   // Currently, only survivors can be root regions.
 282   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 283 
 284   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 285   if (claimed_index < survivor_regions->length()) {
 286     return survivor_regions->at(claimed_index);
 287   }
 288   return NULL;
 289 }
 290 
 291 uint G1CMRootRegions::num_root_regions() const {
 292   return (uint)_survivors->regions()->length();
 293 }
 294 
 295 void G1CMRootRegions::notify_scan_done() {
 296   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 297   _scan_in_progress = false;
 298   RootRegionScan_lock->notify_all();
 299 }
 300 
 301 void G1CMRootRegions::cancel_scan() {
 302   notify_scan_done();
 303 }
 304 
 305 void G1CMRootRegions::scan_finished() {
 306   assert(scan_in_progress(), "pre-condition");
 307 
 308   // Currently, only survivors can be root regions.
 309   if (!_should_abort) {
 310     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 311     assert((uint)_claimed_survivor_index >= _survivors->length(),
 312            "we should have claimed all survivors, claimed index = %u, length = %u",
 313            (uint)_claimed_survivor_index, _survivors->length());
 314   }
 315 
 316   notify_scan_done();
 317 }
 318 
 319 bool G1CMRootRegions::wait_until_scan_finished() {
 320   if (!scan_in_progress()) {
 321     return false;
 322   }
 323 
 324   {
 325     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 326     while (scan_in_progress()) {
 327       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 328     }
 329   }
 330   return true;
 331 }
 332 
 333 // Returns the maximum number of workers to be used in a concurrent
 334 // phase based on the number of GC workers being used in a STW
 335 // phase.
 336 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 337   return MAX2((num_gc_workers + 2) / 4, 1U);
 338 }
 339 
 340 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 341                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 342                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 343   // _cm_thread set inside the constructor
 344   _g1h(g1h),
 345   _completed_initialization(false),
 346 
 347   _mark_bitmap_1(),
 348   _mark_bitmap_2(),
 349   _prev_mark_bitmap(&_mark_bitmap_1),
 350   _next_mark_bitmap(&_mark_bitmap_2),
 351 
 352   _heap(_g1h->reserved_region()),
 353 
 354   _root_regions(),
 355 
 356   _global_mark_stack(),
 357 
 358   // _finger set in set_non_marking_state
 359 
 360   _worker_id_offset(DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 361   _max_num_tasks(ParallelGCThreads),
 362   // _num_active_tasks set in set_non_marking_state()
 363   // _tasks set inside the constructor
 364 
 365   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 366   _terminator(ParallelTaskTerminator((int) _max_num_tasks, _task_queues)),
 367 
 368   _first_overflow_barrier_sync(),
 369   _second_overflow_barrier_sync(),
 370 
 371   _has_overflown(false),
 372   _concurrent(false),
 373   _has_aborted(false),
 374   _restart_for_overflow(false),
 375   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 376   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 377 
 378   // _verbose_level set below
 379 
 380   _init_times(),
 381   _remark_times(),
 382   _remark_mark_times(),
 383   _remark_weak_ref_times(),
 384   _cleanup_times(),
 385   _total_cleanup_time(0.0),
 386 
 387   _accum_task_vtime(NULL),
 388 
 389   _concurrent_workers(NULL),
 390   _num_concurrent_workers(0),
 391   _max_concurrent_workers(0),
 392 
 393   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 394   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 395 {
 396   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 397   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 398 
 399   // Create & start ConcurrentMark thread.
 400   _cm_thread = new ConcurrentMarkThread(this);
 401   if (_cm_thread->osthread() == NULL) {
 402     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 403   }
 404 
 405   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 406 
 407   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 408   satb_qs.set_buffer_size(G1SATBBufferSize);
 409 
 410   _root_regions.init(_g1h->survivor(), this);
 411 
 412   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 413     // Calculate the number of concurrent worker threads by scaling
 414     // the number of parallel GC threads.
 415     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 416     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 417   }
 418 
 419   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 420   if (ConcGCThreads > ParallelGCThreads) {
 421     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 422                     ConcGCThreads, ParallelGCThreads);
 423     return;
 424   }
 425 
 426   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 427   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 428 
 429   _num_concurrent_workers = ConcGCThreads;
 430   _max_concurrent_workers = _num_concurrent_workers;
 431 
 432   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 433   _concurrent_workers->initialize_workers();
 434 
 435   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 436     size_t mark_stack_size =
 437       MIN2(MarkStackSizeMax,
 438           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 439     // Verify that the calculated value for MarkStackSize is in range.
 440     // It would be nice to use the private utility routine from Arguments.
 441     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 442       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 443                       "must be between 1 and " SIZE_FORMAT,
 444                       mark_stack_size, MarkStackSizeMax);
 445       return;
 446     }
 447     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 448   } else {
 449     // Verify MarkStackSize is in range.
 450     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 451       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 452         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 453           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 454                           "must be between 1 and " SIZE_FORMAT,
 455                           MarkStackSize, MarkStackSizeMax);
 456           return;
 457         }
 458       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 459         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 460           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 461                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 462                           MarkStackSize, MarkStackSizeMax);
 463           return;
 464         }
 465       }
 466     }
 467   }
 468 
 469   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 470     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 471   }
 472 
 473   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 474   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 475 
 476   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 477   _num_active_tasks = _max_num_tasks;
 478 
 479   for (uint i = 0; i < _max_num_tasks; ++i) {
 480     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 481     task_queue->initialize();
 482     _task_queues->register_queue(i, task_queue);
 483 
 484     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions());
 485 
 486     _accum_task_vtime[i] = 0.0;
 487   }
 488 
 489   reset_at_marking_complete();
 490   _completed_initialization = true;
 491 }
 492 
 493 void G1ConcurrentMark::reset() {
 494   _has_aborted = false;
 495 
 496   reset_marking_for_restart();
 497 
 498   // Reset all tasks, since different phases will use different number of active
 499   // threads. So, it's easiest to have all of them ready.
 500   for (uint i = 0; i < _max_num_tasks; ++i) {
 501     _tasks[i]->reset(_next_mark_bitmap);
 502   }
 503 
 504   uint max_regions = _g1h->max_regions();
 505   for (uint i = 0; i < max_regions; i++) {
 506     _top_at_rebuild_starts[i] = NULL;
 507     _region_mark_stats[i].clear();
 508   }
 509 }
 510 
 511 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 512   for (uint j = 0; j < _max_num_tasks; ++j) {
 513     _tasks[j]->clear_mark_stats_cache(region_idx);
 514   }
 515   _top_at_rebuild_starts[region_idx] = NULL;
 516   _region_mark_stats[region_idx].clear();
 517 }
 518 
 519 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 520   uint const region_idx = r->hrm_index();
 521   if (r->is_humongous()) {
 522     assert(r->is_starts_humongous(), "Got humongous continues region here");
 523     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 524     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 525       clear_statistics_in_region(j);
 526     }
 527   } else {
 528     clear_statistics_in_region(region_idx);
 529   } 
 530 }
 531 
 532 static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 533   if (bitmap->is_marked(addr)) {
 534     bitmap->clear(addr);
 535   }
 536 }
 537 
 538 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 539   assert_at_safepoint_on_vm_thread();
 540 
 541   // Need to clear all mark bits of the humongous object.
 542   clear_mark_if_set(_prev_mark_bitmap, r->bottom());
 543   clear_mark_if_set(_next_mark_bitmap, r->bottom());
 544 
 545   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
 546     return;
 547   }
 548 
 549   // Clear any statistics about the region gathered so far.
 550   clear_statistics(r);
 551 }
 552 
 553 void G1ConcurrentMark::reset_marking_for_restart() {
 554   _global_mark_stack.set_empty();
 555 
 556   // Expand the marking stack, if we have to and if we can.
 557   if (has_overflown()) {
 558     _global_mark_stack.expand();
 559 
 560     uint max_regions = _g1h->max_regions();
 561     for (uint i = 0; i < max_regions; i++) {
 562       _region_mark_stats[i].clear_during_overflow();
 563     }
 564   }
 565 
 566   clear_has_overflown();
 567   _finger = _heap.start();
 568 
 569   for (uint i = 0; i < _max_num_tasks; ++i) {
 570     G1CMTaskQueue* queue = _task_queues->queue(i);
 571     queue->set_empty();
 572   }
 573 }
 574 
 575 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 576   assert(active_tasks <= _max_num_tasks, "we should not have more");
 577 
 578   _num_active_tasks = active_tasks;
 579   // Need to update the three data structures below according to the
 580   // number of active threads for this phase.
 581   _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
 582   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 583   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 584 }
 585 
 586 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 587   set_concurrency(active_tasks);
 588 
 589   _concurrent = concurrent;
 590 
 591   if (!concurrent) {
 592     // At this point we should be in a STW phase, and completed marking.
 593     assert_at_safepoint_on_vm_thread();
 594     assert(out_of_regions(),
 595            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 596            p2i(_finger), p2i(_heap.end()));
 597   }
 598 }
 599 
 600 void G1ConcurrentMark::reset_at_marking_complete() {
 601   // We set the global marking state to some default values when we're
 602   // not doing marking.
 603   reset_marking_for_restart();
 604   _num_active_tasks = 0;
 605 }
 606 
 607 G1ConcurrentMark::~G1ConcurrentMark() {
 608   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 609   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 610   // The G1ConcurrentMark instance is never freed.
 611   ShouldNotReachHere();
 612 }
 613 
 614 class G1ClearBitMapTask : public AbstractGangTask {
 615 public:
 616   static size_t chunk_size() { return M; }
 617 
 618 private:
 619   // Heap region closure used for clearing the given mark bitmap.
 620   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 621   private:
 622     G1CMBitMap* _bitmap;
 623     G1ConcurrentMark* _cm;
 624   public:
 625     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 626     }
 627 
 628     virtual bool do_heap_region(HeapRegion* r) {
 629       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 630 
 631       HeapWord* cur = r->bottom();
 632       HeapWord* const end = r->end();
 633 
 634       while (cur < end) {
 635         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 636         _bitmap->clear_range(mr);
 637 
 638         cur += chunk_size_in_words;
 639 
 640         // Abort iteration if after yielding the marking has been aborted.
 641         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 642           return true;
 643         }
 644         // Repeat the asserts from before the start of the closure. We will do them
 645         // as asserts here to minimize their overhead on the product. However, we
 646         // will have them as guarantees at the beginning / end of the bitmap
 647         // clearing to get some checking in the product.
 648         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 649         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 650       }
 651       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 652 
 653       return false;
 654     }
 655   };
 656 
 657   G1ClearBitmapHRClosure _cl;
 658   HeapRegionClaimer _hr_claimer;
 659   bool _suspendible; // If the task is suspendible, workers must join the STS.
 660 
 661 public:
 662   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 663     AbstractGangTask("G1 Clear Bitmap"),
 664     _cl(bitmap, suspendible ? cm : NULL),
 665     _hr_claimer(n_workers),
 666     _suspendible(suspendible)
 667   { }
 668 
 669   void work(uint worker_id) {
 670     SuspendibleThreadSetJoiner sts_join(_suspendible);
 671     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 672   }
 673 
 674   bool is_complete() {
 675     return _cl.is_complete();
 676   }
 677 };
 678 
 679 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 680   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 681 
 682   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 683   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 684 
 685   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 686 
 687   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 688 
 689   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 690   workers->run_task(&cl, num_workers);
 691   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 692 }
 693 
 694 void G1ConcurrentMark::cleanup_for_next_mark() {
 695   // Make sure that the concurrent mark thread looks to still be in
 696   // the current cycle.
 697   guarantee(cm_thread()->during_cycle(), "invariant");
 698 
 699   // We are finishing up the current cycle by clearing the next
 700   // marking bitmap and getting it ready for the next cycle. During
 701   // this time no other cycle can start. So, let's make sure that this
 702   // is the case.
 703   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 704 
 705   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 706 
 707   // Repeat the asserts from above.
 708   guarantee(cm_thread()->during_cycle(), "invariant");
 709   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 710 }
 711 
 712 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 713   assert_at_safepoint_on_vm_thread();
 714   clear_bitmap(_prev_mark_bitmap, workers, false);
 715 }
 716 
 717 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 718   G1CMBitMap* _bitmap;
 719  public:
 720   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 721   }
 722 
 723   virtual bool do_heap_region(HeapRegion* r) {
 724     // This closure can be called concurrently to the mutator, so we must make sure
 725     // that the result of the getNextMarkedWordAddress() call is compared to the
 726     // value passed to it as limit to detect any found bits.
 727     // end never changes in G1.
 728     HeapWord* end = r->end();
 729     return _bitmap->get_next_marked_addr(r->bottom(), end) != end;
 730   }
 731 };
 732 
 733 bool G1ConcurrentMark::next_mark_bitmap_is_clear() {
 734   CheckBitmapClearHRClosure cl(_next_mark_bitmap);
 735   _g1h->heap_region_iterate(&cl);
 736   return cl.is_complete();
 737 }
 738 
 739 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 740 public:
 741   bool do_heap_region(HeapRegion* r) {
 742     r->note_start_of_marking();
 743     return false;
 744   }
 745 };
 746 
 747 void G1ConcurrentMark::pre_initial_mark() {
 748   // Initialize marking structures. This has to be done in a STW phase.
 749   reset();
 750 
 751   // For each region note start of marking.
 752   NoteStartOfMarkHRClosure startcl;
 753   _g1h->heap_region_iterate(&startcl);
 754 }
 755 
 756 
 757 void G1ConcurrentMark::post_initial_mark() {
 758   // Start Concurrent Marking weak-reference discovery.
 759   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 760   // enable ("weak") refs discovery
 761   rp->enable_discovery();
 762   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 763 
 764   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 765   // This is the start of  the marking cycle, we're expected all
 766   // threads to have SATB queues with active set to false.
 767   satb_mq_set.set_active_all_threads(true, /* new active value */
 768                                      false /* expected_active */);
 769 
 770   _root_regions.prepare_for_scan();
 771 
 772   // update_g1_committed() will be called at the end of an evac pause
 773   // when marking is on. So, it's also called at the end of the
 774   // initial-mark pause to update the heap end, if the heap expands
 775   // during it. No need to call it here.
 776 }
 777 
 778 /*
 779  * Notice that in the next two methods, we actually leave the STS
 780  * during the barrier sync and join it immediately afterwards. If we
 781  * do not do this, the following deadlock can occur: one thread could
 782  * be in the barrier sync code, waiting for the other thread to also
 783  * sync up, whereas another one could be trying to yield, while also
 784  * waiting for the other threads to sync up too.
 785  *
 786  * Note, however, that this code is also used during remark and in
 787  * this case we should not attempt to leave / enter the STS, otherwise
 788  * we'll either hit an assert (debug / fastdebug) or deadlock
 789  * (product). So we should only leave / enter the STS if we are
 790  * operating concurrently.
 791  *
 792  * Because the thread that does the sync barrier has left the STS, it
 793  * is possible to be suspended for a Full GC or an evacuation pause
 794  * could occur. This is actually safe, since the entering the sync
 795  * barrier is one of the last things do_marking_step() does, and it
 796  * doesn't manipulate any data structures afterwards.
 797  */
 798 
 799 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 800   bool barrier_aborted;
 801   {
 802     SuspendibleThreadSetLeaver sts_leave(concurrent());
 803     barrier_aborted = !_first_overflow_barrier_sync.enter();
 804   }
 805 
 806   // at this point everyone should have synced up and not be doing any
 807   // more work
 808 
 809   if (barrier_aborted) {
 810     // If the barrier aborted we ignore the overflow condition and
 811     // just abort the whole marking phase as quickly as possible.
 812     return;
 813   }
 814 }
 815 
 816 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 817   SuspendibleThreadSetLeaver sts_leave(concurrent());
 818   _second_overflow_barrier_sync.enter();
 819 
 820   // at this point everything should be re-initialized and ready to go
 821 }
 822 
 823 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 824   G1ConcurrentMark*     _cm;
 825 public:
 826   void work(uint worker_id) {
 827     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 828     ResourceMark rm;
 829 
 830     double start_vtime = os::elapsedVTime();
 831 
 832     {
 833       SuspendibleThreadSetJoiner sts_join;
 834 
 835       assert(worker_id < _cm->active_tasks(), "invariant");
 836 
 837       G1CMTask* task = _cm->task(worker_id);
 838       task->record_start_time();
 839       if (!_cm->has_aborted()) {
 840         do {
 841           task->do_marking_step(G1ConcMarkStepDurationMillis,
 842                                 true  /* do_termination */,
 843                                 false /* is_serial*/);
 844 
 845           _cm->do_yield_check();
 846         } while (!_cm->has_aborted() && task->has_aborted());
 847       }
 848       task->record_end_time();
 849       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 850     }
 851 
 852     double end_vtime = os::elapsedVTime();
 853     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 854   }
 855 
 856   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 857       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 858 
 859   ~G1CMConcurrentMarkingTask() { }
 860 };
 861 
 862 uint G1ConcurrentMark::calc_active_marking_workers() {
 863   uint result = 0;
 864   if (!UseDynamicNumberOfGCThreads ||
 865       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 866        !ForceDynamicNumberOfGCThreads)) {
 867     result = _max_concurrent_workers;
 868   } else {
 869     result =
 870       AdaptiveSizePolicy::calc_default_active_workers(_max_concurrent_workers,
 871                                                       1, /* Minimum workers */
 872                                                       _num_concurrent_workers,
 873                                                       Threads::number_of_non_daemon_threads());
 874     // Don't scale the result down by scale_concurrent_workers() because
 875     // that scaling has already gone into "_max_concurrent_workers".
 876   }
 877   assert(result > 0 && result <= _max_concurrent_workers,
 878          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 879          _max_concurrent_workers, result);
 880   return result;
 881 }
 882 
 883 void G1ConcurrentMark::scan_root_region(HeapRegion* hr, uint worker_id) {
 884   // Currently, only survivors can be root regions.
 885   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 886   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 887 
 888   const uintx interval = PrefetchScanIntervalInBytes;
 889   HeapWord* curr = hr->bottom();
 890   const HeapWord* end = hr->top();
 891   while (curr < end) {
 892     Prefetch::read(curr, interval);
 893     oop obj = oop(curr);
 894     int size = obj->oop_iterate_size(&cl);
 895     assert(size == obj->size(), "sanity");
 896     curr += size;
 897   }
 898 }
 899 
 900 class G1CMRootRegionScanTask : public AbstractGangTask {
 901   G1ConcurrentMark* _cm;
 902 public:
 903   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 904     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 905 
 906   void work(uint worker_id) {
 907     assert(Thread::current()->is_ConcurrentGC_thread(),
 908            "this should only be done by a conc GC thread");
 909 
 910     G1CMRootRegions* root_regions = _cm->root_regions();
 911     HeapRegion* hr = root_regions->claim_next();
 912     while (hr != NULL) {
 913       _cm->scan_root_region(hr, worker_id);
 914       hr = root_regions->claim_next();
 915     }
 916   }
 917 };
 918 
 919 void G1ConcurrentMark::scan_root_regions() {
 920   // scan_in_progress() will have been set to true only if there was
 921   // at least one root region to scan. So, if it's false, we
 922   // should not attempt to do any further work.
 923   if (root_regions()->scan_in_progress()) {
 924     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 925 
 926     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 927                                    // We distribute work on a per-region basis, so starting
 928                                    // more threads than that is useless.
 929                                    root_regions()->num_root_regions());
 930     assert(_num_concurrent_workers <= _max_concurrent_workers,
 931            "Maximum number of marking threads exceeded");
 932 
 933     G1CMRootRegionScanTask task(this);
 934     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 935                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 936     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 937 
 938     // It's possible that has_aborted() is true here without actually
 939     // aborting the survivor scan earlier. This is OK as it's
 940     // mainly used for sanity checking.
 941     root_regions()->scan_finished();
 942   }
 943 }
 944 
 945 void G1ConcurrentMark::concurrent_cycle_start() {
 946   _gc_timer_cm->register_gc_start();
 947 
 948   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 949 
 950   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 951 }
 952 
 953 void G1ConcurrentMark::concurrent_cycle_end() {
 954   _g1h->collector_state()->set_clearing_next_bitmap(false);
 955 
 956   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 957 
 958   if (has_aborted()) {
 959     log_info(gc, marking)("Concurrent Mark Abort");
 960     _gc_tracer_cm->report_concurrent_mode_failure();
 961   }
 962 
 963   _gc_timer_cm->register_gc_end();
 964 
 965   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 966 }
 967 
 968 void G1ConcurrentMark::mark_from_roots() {
 969   _restart_for_overflow = false;
 970 
 971   _num_concurrent_workers = calc_active_marking_workers();
 972 
 973   uint active_workers = MAX2(1U, _num_concurrent_workers);
 974 
 975   // Setting active workers is not guaranteed since fewer
 976   // worker threads may currently exist and more may not be
 977   // available.
 978   active_workers = _concurrent_workers->update_active_workers(active_workers);
 979   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 980 
 981   // Parallel task terminator is set in "set_concurrency_and_phase()"
 982   set_concurrency_and_phase(active_workers, true /* concurrent */);
 983 
 984   G1CMConcurrentMarkingTask marking_task(this);
 985   _concurrent_workers->run_task(&marking_task);
 986   print_stats();
 987 }
 988 
 989 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 990   G1HeapVerifier* verifier = _g1h->verifier();
 991 
 992   verifier->verify_region_sets_optional();
 993 
 994   if (VerifyDuringGC) {
 995     GCTraceTime(Debug, gc, phases) trace(caller, _gc_timer_cm);
 996 
 997     size_t const BufLen = 512;
 998     char buffer[BufLen];
 999 
1000     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
1001     verifier->verify(type, vo, buffer);
1002   }
1003 
1004   verifier->check_bitmaps(caller);
1005 }
1006 
1007 class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
1008   G1CollectedHeap* _g1h;
1009   G1ConcurrentMark* _cm;
1010 
1011   G1PrintRegionLivenessInfoClosure _cl;
1012 
1013   uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
1014 
1015   void update_remset_before_rebuild(HeapRegion * hr) {
1016     G1RemSetTrackingPolicy* tracking_policy = _g1h->g1_policy()->remset_tracker();
1017 
1018     size_t live_bytes = _cm->liveness(hr->hrm_index()) * HeapWordSize;
1019     bool selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
1020     if (selected_for_rebuild) {
1021       _num_regions_selected_for_rebuild++;
1022     }
1023     _cm->update_top_at_rebuild_start(hr);
1024   }
1025 
1026   void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) {
1027     uint const region_idx = hr->hrm_index();
1028     assert(hr->is_starts_humongous(),
1029            "Should not have marked bytes " SIZE_FORMAT " in non-starts humongous region %u (%s)",
1030            marked_words, region_idx, hr->get_type_str());
1031     uint num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(marked_words);
1032 
1033     for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) {
1034       HeapRegion* const r = _g1h->region_at(i);
1035       size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words);
1036       assert(words_to_add > 0, "Out of space to distribute before end of humongous object in region %u (starts %u)", i, region_idx);
1037 
1038       r->add_to_marked_bytes(words_to_add * HeapWordSize);
1039       marked_words -= words_to_add;
1040     }
1041     assert(marked_words == 0,
1042            SIZE_FORMAT " words left after distributing space across %u regions",
1043            marked_words, num_regions_in_humongous);
1044   }
1045 
1046   void update_marked_bytes(HeapRegion* hr) {
1047     uint const region_idx = hr->hrm_index();
1048     size_t marked_words = _cm->liveness(region_idx);
1049     // The marking attributes the object's size completely to the humongous starts
1050     // region. We need to distribute this value across the entire set of regions a
1051     // humongous object spans.
1052     if (hr->is_humongous()) {
1053       if (marked_words > 0) {
1054         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to humongous start region %u (%s), word size %d (%f)", 
1055                                marked_words, region_idx, hr->get_type_str(),
1056                                oop(hr->bottom())->size(), (double)oop(hr->bottom())->size() / HeapRegion::GrainWords);
1057         distribute_marked_bytes(hr, marked_words);
1058       } else {
1059         assert(marked_words == 0,
1060                "Asked to add " SIZE_FORMAT " words to add to continues humongous region %u (%s)",
1061                marked_words, region_idx, hr->get_type_str());
1062       }
1063     } else {
1064       log_trace(gc, marking)("Adding " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1065       hr->add_to_marked_bytes(marked_words * HeapWordSize);
1066     }
1067   }
1068 
1069 public:
1070   G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm) :
1071     _g1h(g1h), _cm(cm), _cl("Post-Marking"), _num_regions_selected_for_rebuild(0) { }
1072 
1073   virtual bool do_heap_region(HeapRegion* r) {
1074     update_remset_before_rebuild(r);
1075     update_marked_bytes(r);
1076     if (log_is_enabled(Trace, gc, liveness)) {
1077       _cl.do_heap_region(r);
1078     }
1079     r->note_end_of_marking();
1080     return false;
1081   }
1082 
1083   uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1084 };
1085 
1086 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1087   G1CollectedHeap* _g1h;
1088 public:
1089   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1090 
1091   virtual bool do_heap_region(HeapRegion* r) {
1092     _g1h->g1_policy()->remset_tracker()->update_after_rebuild(r);
1093     return false;
1094   }
1095 };
1096 
1097 void G1ConcurrentMark::remark() {
1098   assert_at_safepoint_on_vm_thread();
1099 
1100   // If a full collection has happened, we should not continue. However we might
1101   // have ended up here as the Remark VM operation has been scheduled already.
1102   if (has_aborted()) {
1103     return;
1104   }
1105 
1106   G1Policy* g1p = _g1h->g1_policy();
1107   g1p->record_concurrent_mark_remark_start();
1108 
1109   double start = os::elapsedTime();
1110 
1111   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1112 
1113   {
1114     GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1115     finalize_marking();
1116   }
1117 
1118   double mark_work_end = os::elapsedTime();
1119 
1120   bool const mark_finished = !has_overflown();
1121   if (mark_finished) {
1122     weak_refs_work(false /* clear_all_soft_refs */);
1123 
1124     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1125     // We're done with marking.
1126     // This is the end of the marking cycle, we're expected all
1127     // threads to have SATB queues with active set to true.
1128     satb_mq_set.set_active_all_threads(false, /* new active value */
1129                                        true /* expected_active */);
1130 
1131     {
1132       GCTraceTime(Debug, gc, phases)("Flush Task Caches");
1133       flush_all_task_caches();
1134     }
1135 
1136     // Install newly created mark bitmap as "prev".
1137     swap_mark_bitmaps();
1138     {
1139       GCTraceTime(Debug, gc, phases)("Update Remembered Set Tracking Before Rebuild");
1140       G1UpdateRemSetTrackingBeforeRebuild cl(_g1h, this);
1141       _g1h->heap_region_iterate(&cl);
1142       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1143                                       _g1h->num_regions(), cl.num_selected_for_rebuild());
1144     }
1145 
1146     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after");
1147 
1148     assert(!restart_for_overflow(), "sanity");
1149     // Completely reset the marking state since marking completed
1150     reset_at_marking_complete();
1151   } else {
1152     // We overflowed.  Restart concurrent marking.
1153     _restart_for_overflow = true;
1154 
1155     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1156 
1157     // Clear the marking state because we will be restarting
1158     // marking due to overflowing the global mark stack.
1159     reset_marking_for_restart();
1160   }
1161 
1162   {
1163     GCTraceTime(Debug, gc, phases)("Report Object Count");
1164     report_object_count(mark_finished);
1165   }
1166 
1167   // Statistics
1168   double now = os::elapsedTime();
1169   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1170   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1171   _remark_times.add((now - start) * 1000.0);
1172 
1173   g1p->record_concurrent_mark_remark_end();
1174 }
1175 
1176 class G1CleanupTask : public AbstractGangTask {
1177   // Per-region work during the Cleanup pause.
1178   class G1CleanupRegionsClosure : public HeapRegionClosure {
1179     G1CollectedHeap* _g1h;
1180     size_t _freed_bytes;
1181     FreeRegionList* _local_cleanup_list;
1182     uint _old_regions_removed;
1183     uint _humongous_regions_removed;
1184     HRRSCleanupTask* _hrrs_cleanup_task;
1185 
1186   public:
1187     G1CleanupRegionsClosure(G1CollectedHeap* g1,
1188                             FreeRegionList* local_cleanup_list,
1189                             HRRSCleanupTask* hrrs_cleanup_task) :
1190       _g1h(g1),
1191       _freed_bytes(0),
1192       _local_cleanup_list(local_cleanup_list),
1193       _old_regions_removed(0),
1194       _humongous_regions_removed(0),
1195       _hrrs_cleanup_task(hrrs_cleanup_task) { }
1196 
1197     size_t freed_bytes() { return _freed_bytes; }
1198     const uint old_regions_removed() { return _old_regions_removed; }
1199     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1200 
1201     bool do_heap_region(HeapRegion *hr) {
1202       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1203         _freed_bytes += hr->used();
1204         hr->set_containing_set(NULL);
1205         if (hr->is_humongous()) {
1206           _humongous_regions_removed++;
1207           _g1h->free_humongous_region(hr, _local_cleanup_list);
1208         } else {
1209           _old_regions_removed++;
1210           _g1h->free_region(hr, _local_cleanup_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
1211         }
1212         hr->clear_cardtable();
1213         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1214         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1215       } else {
1216         hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1217       }
1218 
1219       return false;
1220     }
1221   };
1222 
1223   G1CollectedHeap* _g1h;
1224   FreeRegionList* _cleanup_list;
1225   HeapRegionClaimer _hrclaimer;
1226 
1227 public:
1228   G1CleanupTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1229     AbstractGangTask("G1 Cleanup"),
1230     _g1h(g1h),
1231     _cleanup_list(cleanup_list),
1232     _hrclaimer(n_workers) {
1233 
1234     HeapRegionRemSet::reset_for_cleanup_tasks();
1235   }
1236 
1237   void work(uint worker_id) {
1238     FreeRegionList local_cleanup_list("Local Cleanup List");
1239     HRRSCleanupTask hrrs_cleanup_task;
1240     G1CleanupRegionsClosure cl(_g1h,
1241                                &local_cleanup_list,
1242                                &hrrs_cleanup_task);
1243     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1244     assert(cl.is_complete(), "Shouldn't have aborted!");
1245 
1246     // Now update the old/humongous region sets
1247     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1248     {
1249       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1250       _g1h->decrement_summary_bytes(cl.freed_bytes());
1251 
1252       _cleanup_list->add_ordered(&local_cleanup_list);
1253       assert(local_cleanup_list.is_empty(), "post-condition");
1254 
1255       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1256     }
1257   }
1258 };
1259 
1260 void G1ConcurrentMark::reclaim_empty_regions() {
1261   WorkGang* workers = _g1h->workers();
1262   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1263 
1264   G1CleanupTask cl(_g1h, &empty_regions_list, workers->active_workers());
1265   workers->run_task(&cl);
1266 
1267   if (!empty_regions_list.is_empty()) {
1268     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1269     // Now print the empty regions list.
1270     G1HRPrinter* hrp = _g1h->hr_printer();
1271     if (hrp->is_active()) {
1272       FreeRegionListIterator iter(&empty_regions_list);
1273       while (iter.more_available()) {
1274         HeapRegion* hr = iter.get_next();
1275         hrp->cleanup(hr);
1276       }
1277     }
1278     // And actually make them available.
1279     _g1h->prepend_to_freelist(&empty_regions_list);
1280   }
1281 }
1282 
1283 void G1ConcurrentMark::cleanup() {
1284   assert_at_safepoint_on_vm_thread();
1285 
1286   // If a full collection has happened, we shouldn't do this.
1287   if (has_aborted()) {
1288     return;
1289   }
1290 
1291   G1Policy* g1p = _g1h->g1_policy();
1292   g1p->record_concurrent_mark_cleanup_start();
1293 
1294   double start = os::elapsedTime();
1295 
1296   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before");
1297 
1298   {
1299     GCTraceTime(Debug, gc, phases)("Update Remembered Set Tracking After Rebuild");
1300     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1301     _g1h->heap_region_iterate(&cl);
1302   }
1303 
1304   if (log_is_enabled(Trace, gc, liveness)) {
1305     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1306     _g1h->heap_region_iterate(&cl);
1307   }
1308 
1309   {
1310     GCTraceTime(Debug, gc, phases)("Reclaim Empty Regions");
1311     reclaim_empty_regions();
1312   }
1313 
1314   // Cleanup will have freed any regions completely full of garbage.
1315   // Update the soft reference policy with the new heap occupancy.
1316   Universe::update_heap_info_at_gc();
1317 
1318   // Clean out dead classes and update Metaspace sizes.
1319   if (ClassUnloadingWithConcurrentMark) {
1320     GCTraceTime(Debug, gc, phases)("Purge Metaspace");
1321     ClassLoaderDataGraph::purge();
1322   }
1323   MetaspaceGC::compute_new_size();
1324 
1325   // We reclaimed old regions so we should calculate the sizes to make
1326   // sure we update the old gen/space data.
1327   _g1h->g1mm()->update_sizes();
1328 
1329   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1330 
1331   // We need to make this be a "collection" so any collection pause that
1332   // races with it goes around and waits for Cleanup to finish.
1333   _g1h->increment_total_collections();
1334 
1335   // Local statistics
1336   double recent_cleanup_time = (os::elapsedTime() - start);
1337   _total_cleanup_time += recent_cleanup_time;
1338   _cleanup_times.add(recent_cleanup_time);
1339 
1340   {
1341     GCTraceTime(Debug, gc, phases)("Finalize Concurrent Mark Cleanup");
1342     _g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1343   }
1344 }
1345 
1346 // Supporting Object and Oop closures for reference discovery
1347 // and processing in during marking
1348 
1349 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1350   HeapWord* addr = (HeapWord*)obj;
1351   return addr != NULL &&
1352          (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_ill(obj));
1353 }
1354 
1355 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1356 // Uses the G1CMTask associated with a worker thread (for serial reference
1357 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1358 // trace referent objects.
1359 //
1360 // Using the G1CMTask and embedded local queues avoids having the worker
1361 // threads operating on the global mark stack. This reduces the risk
1362 // of overflowing the stack - which we would rather avoid at this late
1363 // state. Also using the tasks' local queues removes the potential
1364 // of the workers interfering with each other that could occur if
1365 // operating on the global stack.
1366 
1367 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1368   G1ConcurrentMark* _cm;
1369   G1CMTask*         _task;
1370   int               _ref_counter_limit;
1371   int               _ref_counter;
1372   bool              _is_serial;
1373 public:
1374   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1375     _cm(cm), _task(task), _is_serial(is_serial),
1376     _ref_counter_limit(G1RefProcDrainInterval) {
1377     assert(_ref_counter_limit > 0, "sanity");
1378     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1379     _ref_counter = _ref_counter_limit;
1380   }
1381 
1382   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1383   virtual void do_oop(      oop* p) { do_oop_work(p); }
1384 
1385   template <class T> void do_oop_work(T* p) {
1386     if (!_cm->has_overflown()) {
1387       _task->deal_with_reference(p);
1388       _ref_counter--;
1389 
1390       if (_ref_counter == 0) {
1391         // We have dealt with _ref_counter_limit references, pushing them
1392         // and objects reachable from them on to the local stack (and
1393         // possibly the global stack). Call G1CMTask::do_marking_step() to
1394         // process these entries.
1395         //
1396         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1397         // there's nothing more to do (i.e. we're done with the entries that
1398         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1399         // above) or we overflow.
1400         //
1401         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1402         // flag while there may still be some work to do. (See the comment at
1403         // the beginning of G1CMTask::do_marking_step() for those conditions -
1404         // one of which is reaching the specified time target.) It is only
1405         // when G1CMTask::do_marking_step() returns without setting the
1406         // has_aborted() flag that the marking step has completed.
1407         do {
1408           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1409           _task->do_marking_step(mark_step_duration_ms,
1410                                  false      /* do_termination */,
1411                                  _is_serial);
1412         } while (_task->has_aborted() && !_cm->has_overflown());
1413         _ref_counter = _ref_counter_limit;
1414       }
1415     }
1416   }
1417 };
1418 
1419 // 'Drain' oop closure used by both serial and parallel reference processing.
1420 // Uses the G1CMTask associated with a given worker thread (for serial
1421 // reference processing the G1CMtask for worker 0 is used). Calls the
1422 // do_marking_step routine, with an unbelievably large timeout value,
1423 // to drain the marking data structures of the remaining entries
1424 // added by the 'keep alive' oop closure above.
1425 
1426 class G1CMDrainMarkingStackClosure : public VoidClosure {
1427   G1ConcurrentMark* _cm;
1428   G1CMTask*         _task;
1429   bool              _is_serial;
1430  public:
1431   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1432     _cm(cm), _task(task), _is_serial(is_serial) {
1433     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1434   }
1435 
1436   void do_void() {
1437     do {
1438       // We call G1CMTask::do_marking_step() to completely drain the local
1439       // and global marking stacks of entries pushed by the 'keep alive'
1440       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1441       //
1442       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1443       // if there's nothing more to do (i.e. we've completely drained the
1444       // entries that were pushed as a a result of applying the 'keep alive'
1445       // closure to the entries on the discovered ref lists) or we overflow
1446       // the global marking stack.
1447       //
1448       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1449       // flag while there may still be some work to do. (See the comment at
1450       // the beginning of G1CMTask::do_marking_step() for those conditions -
1451       // one of which is reaching the specified time target.) It is only
1452       // when G1CMTask::do_marking_step() returns without setting the
1453       // has_aborted() flag that the marking step has completed.
1454 
1455       _task->do_marking_step(1000000000.0 /* something very large */,
1456                              true         /* do_termination */,
1457                              _is_serial);
1458     } while (_task->has_aborted() && !_cm->has_overflown());
1459   }
1460 };
1461 
1462 // Implementation of AbstractRefProcTaskExecutor for parallel
1463 // reference processing at the end of G1 concurrent marking
1464 
1465 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1466 private:
1467   G1CollectedHeap*  _g1h;
1468   G1ConcurrentMark* _cm;
1469   WorkGang*         _workers;
1470   uint              _active_workers;
1471 
1472 public:
1473   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1474                           G1ConcurrentMark* cm,
1475                           WorkGang* workers,
1476                           uint n_workers) :
1477     _g1h(g1h), _cm(cm),
1478     _workers(workers), _active_workers(n_workers) { }
1479 
1480   // Executes the given task using concurrent marking worker threads.
1481   virtual void execute(ProcessTask& task);
1482   virtual void execute(EnqueueTask& task);
1483 };
1484 
1485 class G1CMRefProcTaskProxy : public AbstractGangTask {
1486   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1487   ProcessTask&      _proc_task;
1488   G1CollectedHeap*  _g1h;
1489   G1ConcurrentMark* _cm;
1490 
1491 public:
1492   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1493                        G1CollectedHeap* g1h,
1494                        G1ConcurrentMark* cm) :
1495     AbstractGangTask("Process reference objects in parallel"),
1496     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1497     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1498     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1499   }
1500 
1501   virtual void work(uint worker_id) {
1502     ResourceMark rm;
1503     HandleMark hm;
1504     G1CMTask* task = _cm->task(worker_id);
1505     G1CMIsAliveClosure g1_is_alive(_g1h);
1506     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1507     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1508 
1509     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1510   }
1511 };
1512 
1513 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1514   assert(_workers != NULL, "Need parallel worker threads.");
1515   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1516 
1517   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1518 
1519   // We need to reset the concurrency level before each
1520   // proxy task execution, so that the termination protocol
1521   // and overflow handling in G1CMTask::do_marking_step() knows
1522   // how many workers to wait for.
1523   _cm->set_concurrency(_active_workers);
1524   _workers->run_task(&proc_task_proxy);
1525 }
1526 
1527 class G1CMRefEnqueueTaskProxy : public AbstractGangTask {
1528   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1529   EnqueueTask& _enq_task;
1530 
1531 public:
1532   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1533     AbstractGangTask("Enqueue reference objects in parallel"),
1534     _enq_task(enq_task) { }
1535 
1536   virtual void work(uint worker_id) {
1537     _enq_task.work(worker_id);
1538   }
1539 };
1540 
1541 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1542   assert(_workers != NULL, "Need parallel worker threads.");
1543   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1544 
1545   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1546 
1547   // Not strictly necessary but...
1548   //
1549   // We need to reset the concurrency level before each
1550   // proxy task execution, so that the termination protocol
1551   // and overflow handling in G1CMTask::do_marking_step() knows
1552   // how many workers to wait for.
1553   _cm->set_concurrency(_active_workers);
1554   _workers->run_task(&enq_task_proxy);
1555 }
1556 
1557 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1558   ResourceMark rm;
1559   HandleMark   hm;
1560 
1561   // Is alive closure.
1562   G1CMIsAliveClosure g1_is_alive(_g1h);
1563 
1564   // Inner scope to exclude the cleaning of the string and symbol
1565   // tables from the displayed time.
1566   {
1567     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1568 
1569     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1570 
1571     // See the comment in G1CollectedHeap::ref_processing_init()
1572     // about how reference processing currently works in G1.
1573 
1574     // Set the soft reference policy
1575     rp->setup_policy(clear_all_soft_refs);
1576     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1577 
1578     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1579     // in serial reference processing. Note these closures are also
1580     // used for serially processing (by the the current thread) the
1581     // JNI references during parallel reference processing.
1582     //
1583     // These closures do not need to synchronize with the worker
1584     // threads involved in parallel reference processing as these
1585     // instances are executed serially by the current thread (e.g.
1586     // reference processing is not multi-threaded and is thus
1587     // performed by the current thread instead of a gang worker).
1588     //
1589     // The gang tasks involved in parallel reference processing create
1590     // their own instances of these closures, which do their own
1591     // synchronization among themselves.
1592     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1593     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1594 
1595     // We need at least one active thread. If reference processing
1596     // is not multi-threaded we use the current (VMThread) thread,
1597     // otherwise we use the work gang from the G1CollectedHeap and
1598     // we utilize all the worker threads we can.
1599     bool processing_is_mt = rp->processing_is_mt();
1600     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1601     active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U);
1602 
1603     // Parallel processing task executor.
1604     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1605                                               _g1h->workers(), active_workers);
1606     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1607 
1608     // Set the concurrency level. The phase was already set prior to
1609     // executing the remark task.
1610     set_concurrency(active_workers);
1611 
1612     // Set the degree of MT processing here.  If the discovery was done MT,
1613     // the number of threads involved during discovery could differ from
1614     // the number of active workers.  This is OK as long as the discovered
1615     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1616     rp->set_active_mt_degree(active_workers);
1617 
1618     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q());
1619 
1620     // Process the weak references.
1621     const ReferenceProcessorStats& stats =
1622         rp->process_discovered_references(&g1_is_alive,
1623                                           &g1_keep_alive,
1624                                           &g1_drain_mark_stack,
1625                                           executor,
1626                                           &pt);
1627     _gc_tracer_cm->report_gc_reference_stats(stats);
1628     pt.print_all_references();
1629 
1630     // The do_oop work routines of the keep_alive and drain_marking_stack
1631     // oop closures will set the has_overflown flag if we overflow the
1632     // global marking stack.
1633 
1634     assert(has_overflown() || _global_mark_stack.is_empty(),
1635            "Mark stack should be empty (unless it has overflown)");
1636 
1637     assert(rp->num_q() == active_workers, "why not");
1638 
1639     rp->enqueue_discovered_references(executor, &pt);
1640 
1641     rp->verify_no_references_recorded();
1642 
1643     pt.print_enqueue_phase();
1644 
1645     assert(!rp->discovery_enabled(), "Post condition");
1646   }
1647 
1648   assert(has_overflown() || _global_mark_stack.is_empty(),
1649          "Mark stack should be empty (unless it has overflown)");
1650 
1651   {
1652     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1653     WeakProcessor::weak_oops_do(&g1_is_alive, &do_nothing_cl);
1654   }
1655 
1656   if (has_overflown()) {
1657     // We can not trust g1_is_alive if the marking stack overflowed
1658     return;
1659   }
1660 
1661   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1662 
1663   // Unload Klasses, String, Symbols, Code Cache, etc.
1664   if (ClassUnloadingWithConcurrentMark) {
1665     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1666     bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, _gc_timer_cm, false /* Defer cleaning */);
1667     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1668   } else {
1669     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1670     // No need to clean string table and symbol table as they are treated as strong roots when
1671     // class unloading is disabled.
1672     _g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled());
1673   }
1674 }
1675 
1676 // When sampling object counts, we already swapped the mark bitmaps, so we need to use
1677 // the prev bitmap determining liveness.
1678 class G1ObjectCountIsAliveClosure: public BoolObjectClosure {
1679   G1CollectedHeap* _g1;
1680  public:
1681   G1ObjectCountIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
1682 
1683   bool do_object_b(oop obj) {
1684     HeapWord* addr = (HeapWord*)obj;
1685     return addr != NULL &&
1686            (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_dead(obj));
1687   }
1688 };
1689 
1690 void G1ConcurrentMark::report_object_count(bool mark_completed) {
1691   // Depending on the completion of the marking liveness needs to be determined
1692   // using either the next or prev bitmap.
1693   if (mark_completed) {
1694     G1ObjectCountIsAliveClosure is_alive(_g1h);
1695     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1696   } else {
1697     G1CMIsAliveClosure is_alive(_g1h);
1698     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1699   }
1700 }
1701 
1702 
1703 void G1ConcurrentMark::swap_mark_bitmaps() {
1704   G1CMBitMap* temp = _prev_mark_bitmap;
1705   _prev_mark_bitmap = _next_mark_bitmap;
1706   _next_mark_bitmap = temp;
1707   _g1h->collector_state()->set_clearing_next_bitmap(true);
1708 }
1709 
1710 // Closure for marking entries in SATB buffers.
1711 class G1CMSATBBufferClosure : public SATBBufferClosure {
1712 private:
1713   G1CMTask* _task;
1714   G1CollectedHeap* _g1h;
1715 
1716   // This is very similar to G1CMTask::deal_with_reference, but with
1717   // more relaxed requirements for the argument, so this must be more
1718   // circumspect about treating the argument as an object.
1719   void do_entry(void* entry) const {
1720     _task->increment_refs_reached();
1721     oop const obj = static_cast<oop>(entry);
1722     _task->make_reference_grey(obj);
1723   }
1724 
1725 public:
1726   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1727     : _task(task), _g1h(g1h) { }
1728 
1729   virtual void do_buffer(void** buffer, size_t size) {
1730     for (size_t i = 0; i < size; ++i) {
1731       do_entry(buffer[i]);
1732     }
1733   }
1734 };
1735 
1736 class G1RemarkThreadsClosure : public ThreadClosure {
1737   G1CMSATBBufferClosure _cm_satb_cl;
1738   G1CMOopClosure _cm_cl;
1739   MarkingCodeBlobClosure _code_cl;
1740   int _thread_parity;
1741 
1742  public:
1743   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1744     _cm_satb_cl(task, g1h),
1745     _cm_cl(g1h, task),
1746     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1747     _thread_parity(Threads::thread_claim_parity()) {}
1748 
1749   void do_thread(Thread* thread) {
1750     if (thread->is_Java_thread()) {
1751       if (thread->claim_oops_do(true, _thread_parity)) {
1752         JavaThread* jt = (JavaThread*)thread;
1753 
1754         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1755         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1756         // * Alive if on the stack of an executing method
1757         // * Weakly reachable otherwise
1758         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1759         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1760         jt->nmethods_do(&_code_cl);
1761 
1762         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1763       }
1764     } else if (thread->is_VM_thread()) {
1765       if (thread->claim_oops_do(true, _thread_parity)) {
1766         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1767       }
1768     }
1769   }
1770 };
1771 
1772 class G1CMRemarkTask : public AbstractGangTask {
1773   G1ConcurrentMark* _cm;
1774 public:
1775   void work(uint worker_id) {
1776     G1CMTask* task = _cm->task(worker_id);
1777     task->record_start_time();
1778     {
1779       ResourceMark rm;
1780       HandleMark hm;
1781 
1782       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1783       Threads::threads_do(&threads_f);
1784     }
1785 
1786     do {
1787       task->do_marking_step(1000000000.0 /* something very large */,
1788                             true         /* do_termination       */,
1789                             false        /* is_serial            */);
1790     } while (task->has_aborted() && !_cm->has_overflown());
1791     // If we overflow, then we do not want to restart. We instead
1792     // want to abort remark and do concurrent marking again.
1793     task->record_end_time();
1794   }
1795 
1796   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1797     AbstractGangTask("Par Remark"), _cm(cm) {
1798     _cm->terminator()->reset_for_reuse(active_workers);
1799   }
1800 };
1801 
1802 void G1ConcurrentMark::finalize_marking() {
1803   ResourceMark rm;
1804   HandleMark   hm;
1805 
1806   _g1h->ensure_parsability(false);
1807 
1808   // this is remark, so we'll use up all active threads
1809   uint active_workers = _g1h->workers()->active_workers();
1810   set_concurrency_and_phase(active_workers, false /* concurrent */);
1811   // Leave _parallel_marking_threads at it's
1812   // value originally calculated in the G1ConcurrentMark
1813   // constructor and pass values of the active workers
1814   // through the gang in the task.
1815 
1816   {
1817     StrongRootsScope srs(active_workers);
1818 
1819     G1CMRemarkTask remarkTask(this, active_workers);
1820     // We will start all available threads, even if we decide that the
1821     // active_workers will be fewer. The extra ones will just bail out
1822     // immediately.
1823     _g1h->workers()->run_task(&remarkTask);
1824   }
1825 
1826   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1827   guarantee(has_overflown() ||
1828             satb_mq_set.completed_buffers_num() == 0,
1829             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1830             BOOL_TO_STR(has_overflown()),
1831             satb_mq_set.completed_buffers_num());
1832 
1833   print_stats();
1834 }
1835 
1836 void G1ConcurrentMark::flush_all_task_caches() {
1837   size_t hits = 0;
1838   size_t misses = 0;
1839   for (uint i = 0; i < _max_num_tasks; i++) {
1840     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1841     hits += stats.first;
1842     misses += stats.second;
1843   }
1844   size_t sum = hits + misses;
1845   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1846                        hits, misses, percent_of(hits, sum));
1847 }
1848 
1849 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1850   _prev_mark_bitmap->clear_range(mr);
1851 }
1852 
1853 HeapRegion*
1854 G1ConcurrentMark::claim_region(uint worker_id) {
1855   // "checkpoint" the finger
1856   HeapWord* finger = _finger;
1857 
1858   while (finger < _heap.end()) {
1859     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1860 
1861     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1862     // Make sure that the reads below do not float before loading curr_region.
1863     OrderAccess::loadload();
1864     // Above heap_region_containing may return NULL as we always scan claim
1865     // until the end of the heap. In this case, just jump to the next region.
1866     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1867 
1868     // Is the gap between reading the finger and doing the CAS too long?
1869     HeapWord* res = Atomic::cmpxchg(end, &_finger, finger);
1870     if (res == finger && curr_region != NULL) {
1871       // we succeeded
1872       HeapWord*   bottom        = curr_region->bottom();
1873       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1874 
1875       // notice that _finger == end cannot be guaranteed here since,
1876       // someone else might have moved the finger even further
1877       assert(_finger >= end, "the finger should have moved forward");
1878 
1879       if (limit > bottom) {
1880         return curr_region;
1881       } else {
1882         assert(limit == bottom,
1883                "the region limit should be at bottom");
1884         // we return NULL and the caller should try calling
1885         // claim_region() again.
1886         return NULL;
1887       }
1888     } else {
1889       assert(_finger > finger, "the finger should have moved forward");
1890       // read it again
1891       finger = _finger;
1892     }
1893   }
1894 
1895   return NULL;
1896 }
1897 
1898 #ifndef PRODUCT
1899 class VerifyNoCSetOops {
1900   G1CollectedHeap* _g1h;
1901   const char* _phase;
1902   int _info;
1903 
1904 public:
1905   VerifyNoCSetOops(const char* phase, int info = -1) :
1906     _g1h(G1CollectedHeap::heap()),
1907     _phase(phase),
1908     _info(info)
1909   { }
1910 
1911   void operator()(G1TaskQueueEntry task_entry) const {
1912     if (task_entry.is_array_slice()) {
1913       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1914       return;
1915     }
1916     guarantee(oopDesc::is_oop(task_entry.obj()),
1917               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1918               p2i(task_entry.obj()), _phase, _info);
1919     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1920               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1921               p2i(task_entry.obj()), _phase, _info);
1922   }
1923 };
1924 
1925 void G1ConcurrentMark::verify_no_cset_oops() {
1926   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1927   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1928     return;
1929   }
1930 
1931   // Verify entries on the global mark stack
1932   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1933 
1934   // Verify entries on the task queues
1935   for (uint i = 0; i < _max_num_tasks; ++i) {
1936     G1CMTaskQueue* queue = _task_queues->queue(i);
1937     queue->iterate(VerifyNoCSetOops("Queue", i));
1938   }
1939 
1940   // Verify the global finger
1941   HeapWord* global_finger = finger();
1942   if (global_finger != NULL && global_finger < _heap.end()) {
1943     // Since we always iterate over all regions, we might get a NULL HeapRegion
1944     // here.
1945     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1946     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1947               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1948               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1949   }
1950 
1951   // Verify the task fingers
1952   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1953   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1954     G1CMTask* task = _tasks[i];
1955     HeapWord* task_finger = task->finger();
1956     if (task_finger != NULL && task_finger < _heap.end()) {
1957       // See above note on the global finger verification.
1958       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1959       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1960                 !task_hr->in_collection_set(),
1961                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1962                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1963     }
1964   }
1965 }
1966 #endif // PRODUCT
1967 
1968 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
1969   _g1h->g1_rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
1970 }
1971 
1972 void G1ConcurrentMark::print_stats() {
1973   if (!log_is_enabled(Debug, gc, stats)) {
1974     return;
1975   }
1976   log_debug(gc, stats)("---------------------------------------------------------------------");
1977   for (size_t i = 0; i < _num_active_tasks; ++i) {
1978     _tasks[i]->print_stats();
1979     log_debug(gc, stats)("---------------------------------------------------------------------");
1980   }
1981 }
1982 
1983 void G1ConcurrentMark::concurrent_cycle_abort() {
1984   if (!cm_thread()->during_cycle() || _has_aborted) {
1985     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
1986     return;
1987   }
1988 
1989   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
1990   // concurrent bitmap clearing.
1991   {
1992     GCTraceTime(Debug, gc)("Clear Next Bitmap");
1993     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
1994   }
1995   // Note we cannot clear the previous marking bitmap here
1996   // since VerifyDuringGC verifies the objects marked during
1997   // a full GC against the previous bitmap.
1998 
1999   // Empty mark stack
2000   reset_marking_for_restart();
2001   for (uint i = 0; i < _max_num_tasks; ++i) {
2002     _tasks[i]->clear_region_fields();
2003   }
2004   _first_overflow_barrier_sync.abort();
2005   _second_overflow_barrier_sync.abort();
2006   _has_aborted = true;
2007 
2008   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2009   satb_mq_set.abandon_partial_marking();
2010   // This can be called either during or outside marking, we'll read
2011   // the expected_active value from the SATB queue set.
2012   satb_mq_set.set_active_all_threads(
2013                                  false, /* new active value */
2014                                  satb_mq_set.is_active() /* expected_active */);
2015 }
2016 
2017 static void print_ms_time_info(const char* prefix, const char* name,
2018                                NumberSeq& ns) {
2019   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2020                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2021   if (ns.num() > 0) {
2022     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2023                            prefix, ns.sd(), ns.maximum());
2024   }
2025 }
2026 
2027 void G1ConcurrentMark::print_summary_info() {
2028   Log(gc, marking) log;
2029   if (!log.is_trace()) {
2030     return;
2031   }
2032 
2033   log.trace(" Concurrent marking:");
2034   print_ms_time_info("  ", "init marks", _init_times);
2035   print_ms_time_info("  ", "remarks", _remark_times);
2036   {
2037     print_ms_time_info("     ", "final marks", _remark_mark_times);
2038     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2039 
2040   }
2041   print_ms_time_info("  ", "cleanups", _cleanup_times);
2042   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2043             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2044   log.trace("  Total stop_world time = %8.2f s.",
2045             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2046   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2047             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2048 }
2049 
2050 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2051   _concurrent_workers->print_worker_threads_on(st);
2052 }
2053 
2054 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2055   _concurrent_workers->threads_do(tc);
2056 }
2057 
2058 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2059   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2060                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2061   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2062   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2063 }
2064 
2065 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2066   ReferenceProcessor* result = g1h->ref_processor_cm();
2067   assert(result != NULL, "CM reference processor should not be NULL");
2068   return result;
2069 }
2070 
2071 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2072                                G1CMTask* task)
2073   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2074     _g1h(g1h), _task(task)
2075 { }
2076 
2077 void G1CMTask::setup_for_region(HeapRegion* hr) {
2078   assert(hr != NULL,
2079         "claim_region() should have filtered out NULL regions");
2080   _curr_region  = hr;
2081   _finger       = hr->bottom();
2082   update_region_limit();
2083 }
2084 
2085 void G1CMTask::update_region_limit() {
2086   HeapRegion* hr            = _curr_region;
2087   HeapWord* bottom          = hr->bottom();
2088   HeapWord* limit           = hr->next_top_at_mark_start();
2089 
2090   if (limit == bottom) {
2091     // The region was collected underneath our feet.
2092     // We set the finger to bottom to ensure that the bitmap
2093     // iteration that will follow this will not do anything.
2094     // (this is not a condition that holds when we set the region up,
2095     // as the region is not supposed to be empty in the first place)
2096     _finger = bottom;
2097   } else if (limit >= _region_limit) {
2098     assert(limit >= _finger, "peace of mind");
2099   } else {
2100     assert(limit < _region_limit, "only way to get here");
2101     // This can happen under some pretty unusual circumstances.  An
2102     // evacuation pause empties the region underneath our feet (NTAMS
2103     // at bottom). We then do some allocation in the region (NTAMS
2104     // stays at bottom), followed by the region being used as a GC
2105     // alloc region (NTAMS will move to top() and the objects
2106     // originally below it will be grayed). All objects now marked in
2107     // the region are explicitly grayed, if below the global finger,
2108     // and we do not need in fact to scan anything else. So, we simply
2109     // set _finger to be limit to ensure that the bitmap iteration
2110     // doesn't do anything.
2111     _finger = limit;
2112   }
2113 
2114   _region_limit = limit;
2115 }
2116 
2117 void G1CMTask::giveup_current_region() {
2118   assert(_curr_region != NULL, "invariant");
2119   clear_region_fields();
2120 }
2121 
2122 void G1CMTask::clear_region_fields() {
2123   // Values for these three fields that indicate that we're not
2124   // holding on to a region.
2125   _curr_region   = NULL;
2126   _finger        = NULL;
2127   _region_limit  = NULL;
2128 }
2129 
2130 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2131   if (cm_oop_closure == NULL) {
2132     assert(_cm_oop_closure != NULL, "invariant");
2133   } else {
2134     assert(_cm_oop_closure == NULL, "invariant");
2135   }
2136   _cm_oop_closure = cm_oop_closure;
2137 }
2138 
2139 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2140   guarantee(next_mark_bitmap != NULL, "invariant");
2141   _next_mark_bitmap              = next_mark_bitmap;
2142   clear_region_fields();
2143 
2144   _calls                         = 0;
2145   _elapsed_time_ms               = 0.0;
2146   _termination_time_ms           = 0.0;
2147   _termination_start_time_ms     = 0.0;
2148 
2149   _mark_stats_cache.reset();
2150 }
2151 
2152 bool G1CMTask::should_exit_termination() {
2153   regular_clock_call();
2154   // This is called when we are in the termination protocol. We should
2155   // quit if, for some reason, this task wants to abort or the global
2156   // stack is not empty (this means that we can get work from it).
2157   return !_cm->mark_stack_empty() || has_aborted();
2158 }
2159 
2160 void G1CMTask::reached_limit() {
2161   assert(_words_scanned >= _words_scanned_limit ||
2162          _refs_reached >= _refs_reached_limit ,
2163          "shouldn't have been called otherwise");
2164   regular_clock_call();
2165 }
2166 
2167 void G1CMTask::regular_clock_call() {
2168   if (has_aborted()) {
2169     return;
2170   }
2171 
2172   // First, we need to recalculate the words scanned and refs reached
2173   // limits for the next clock call.
2174   recalculate_limits();
2175 
2176   // During the regular clock call we do the following
2177 
2178   // (1) If an overflow has been flagged, then we abort.
2179   if (_cm->has_overflown()) {
2180     set_has_aborted();
2181     return;
2182   }
2183 
2184   // If we are not concurrent (i.e. we're doing remark) we don't need
2185   // to check anything else. The other steps are only needed during
2186   // the concurrent marking phase.
2187   if (!_cm->concurrent()) {
2188     return;
2189   }
2190 
2191   // (2) If marking has been aborted for Full GC, then we also abort.
2192   if (_cm->has_aborted()) {
2193     set_has_aborted();
2194     return;
2195   }
2196 
2197   double curr_time_ms = os::elapsedVTime() * 1000.0;
2198 
2199   // (4) We check whether we should yield. If we have to, then we abort.
2200   if (SuspendibleThreadSet::should_yield()) {
2201     // We should yield. To do this we abort the task. The caller is
2202     // responsible for yielding.
2203     set_has_aborted();
2204     return;
2205   }
2206 
2207   // (5) We check whether we've reached our time quota. If we have,
2208   // then we abort.
2209   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2210   if (elapsed_time_ms > _time_target_ms) {
2211     set_has_aborted();
2212     _has_timed_out = true;
2213     return;
2214   }
2215 
2216   // (6) Finally, we check whether there are enough completed STAB
2217   // buffers available for processing. If there are, we abort.
2218   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2219   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2220     // we do need to process SATB buffers, we'll abort and restart
2221     // the marking task to do so
2222     set_has_aborted();
2223     return;
2224   }
2225 }
2226 
2227 void G1CMTask::recalculate_limits() {
2228   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2229   _words_scanned_limit      = _real_words_scanned_limit;
2230 
2231   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2232   _refs_reached_limit       = _real_refs_reached_limit;
2233 }
2234 
2235 void G1CMTask::decrease_limits() {
2236   // This is called when we believe that we're going to do an infrequent
2237   // operation which will increase the per byte scanned cost (i.e. move
2238   // entries to/from the global stack). It basically tries to decrease the
2239   // scanning limit so that the clock is called earlier.
2240 
2241   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2242   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2243 }
2244 
2245 void G1CMTask::move_entries_to_global_stack() {
2246   // Local array where we'll store the entries that will be popped
2247   // from the local queue.
2248   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2249 
2250   size_t n = 0;
2251   G1TaskQueueEntry task_entry;
2252   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2253     buffer[n] = task_entry;
2254     ++n;
2255   }
2256   if (n < G1CMMarkStack::EntriesPerChunk) {
2257     buffer[n] = G1TaskQueueEntry();
2258   }
2259 
2260   if (n > 0) {
2261     if (!_cm->mark_stack_push(buffer)) {
2262       set_has_aborted();
2263     }
2264   }
2265 
2266   // This operation was quite expensive, so decrease the limits.
2267   decrease_limits();
2268 }
2269 
2270 bool G1CMTask::get_entries_from_global_stack() {
2271   // Local array where we'll store the entries that will be popped
2272   // from the global stack.
2273   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2274 
2275   if (!_cm->mark_stack_pop(buffer)) {
2276     return false;
2277   }
2278 
2279   // We did actually pop at least one entry.
2280   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2281     G1TaskQueueEntry task_entry = buffer[i];
2282     if (task_entry.is_null()) {
2283       break;
2284     }
2285     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2286     bool success = _task_queue->push(task_entry);
2287     // We only call this when the local queue is empty or under a
2288     // given target limit. So, we do not expect this push to fail.
2289     assert(success, "invariant");
2290   }
2291 
2292   // This operation was quite expensive, so decrease the limits
2293   decrease_limits();
2294   return true;
2295 }
2296 
2297 void G1CMTask::drain_local_queue(bool partially) {
2298   if (has_aborted()) {
2299     return;
2300   }
2301 
2302   // Decide what the target size is, depending whether we're going to
2303   // drain it partially (so that other tasks can steal if they run out
2304   // of things to do) or totally (at the very end).
2305   size_t target_size;
2306   if (partially) {
2307     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2308   } else {
2309     target_size = 0;
2310   }
2311 
2312   if (_task_queue->size() > target_size) {
2313     G1TaskQueueEntry entry;
2314     bool ret = _task_queue->pop_local(entry);
2315     while (ret) {
2316       scan_task_entry(entry);
2317       if (_task_queue->size() <= target_size || has_aborted()) {
2318         ret = false;
2319       } else {
2320         ret = _task_queue->pop_local(entry);
2321       }
2322     }
2323   }
2324 }
2325 
2326 void G1CMTask::drain_global_stack(bool partially) {
2327   if (has_aborted()) {
2328     return;
2329   }
2330 
2331   // We have a policy to drain the local queue before we attempt to
2332   // drain the global stack.
2333   assert(partially || _task_queue->size() == 0, "invariant");
2334 
2335   // Decide what the target size is, depending whether we're going to
2336   // drain it partially (so that other tasks can steal if they run out
2337   // of things to do) or totally (at the very end).
2338   // Notice that when draining the global mark stack partially, due to the racyness
2339   // of the mark stack size update we might in fact drop below the target. But,
2340   // this is not a problem.
2341   // In case of total draining, we simply process until the global mark stack is
2342   // totally empty, disregarding the size counter.
2343   if (partially) {
2344     size_t const target_size = _cm->partial_mark_stack_size_target();
2345     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2346       if (get_entries_from_global_stack()) {
2347         drain_local_queue(partially);
2348       }
2349     }
2350   } else {
2351     while (!has_aborted() && get_entries_from_global_stack()) {
2352       drain_local_queue(partially);
2353     }
2354   }
2355 }
2356 
2357 // SATB Queue has several assumptions on whether to call the par or
2358 // non-par versions of the methods. this is why some of the code is
2359 // replicated. We should really get rid of the single-threaded version
2360 // of the code to simplify things.
2361 void G1CMTask::drain_satb_buffers() {
2362   if (has_aborted()) {
2363     return;
2364   }
2365 
2366   // We set this so that the regular clock knows that we're in the
2367   // middle of draining buffers and doesn't set the abort flag when it
2368   // notices that SATB buffers are available for draining. It'd be
2369   // very counter productive if it did that. :-)
2370   _draining_satb_buffers = true;
2371 
2372   G1CMSATBBufferClosure satb_cl(this, _g1h);
2373   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2374 
2375   // This keeps claiming and applying the closure to completed buffers
2376   // until we run out of buffers or we need to abort.
2377   while (!has_aborted() &&
2378          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2379     regular_clock_call();
2380   }
2381 
2382   _draining_satb_buffers = false;
2383 
2384   assert(has_aborted() ||
2385          _cm->concurrent() ||
2386          satb_mq_set.completed_buffers_num() == 0, "invariant");
2387 
2388   // again, this was a potentially expensive operation, decrease the
2389   // limits to get the regular clock call early
2390   decrease_limits();
2391 }
2392 
2393 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2394   _mark_stats_cache.reset(region_idx);
2395 }
2396 
2397 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2398   return _mark_stats_cache.evict_all();
2399 }
2400 
2401 void G1CMTask::print_stats() {
2402   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2403   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2404                        _elapsed_time_ms, _termination_time_ms);
2405   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2406                        _step_times_ms.num(),
2407                        _step_times_ms.avg(),
2408                        _step_times_ms.sd(),
2409                        _step_times_ms.maximum(),
2410                        _step_times_ms.sum());
2411   size_t const hits = _mark_stats_cache.hits();
2412   size_t const misses = _mark_stats_cache.misses();
2413   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2414                        hits, misses, percent_of(hits, hits + misses));
2415 }
2416 
2417 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
2418   return _task_queues->steal(worker_id, hash_seed, task_entry);
2419 }
2420 
2421 /*****************************************************************************
2422 
2423     The do_marking_step(time_target_ms, ...) method is the building
2424     block of the parallel marking framework. It can be called in parallel
2425     with other invocations of do_marking_step() on different tasks
2426     (but only one per task, obviously) and concurrently with the
2427     mutator threads, or during remark, hence it eliminates the need
2428     for two versions of the code. When called during remark, it will
2429     pick up from where the task left off during the concurrent marking
2430     phase. Interestingly, tasks are also claimable during evacuation
2431     pauses too, since do_marking_step() ensures that it aborts before
2432     it needs to yield.
2433 
2434     The data structures that it uses to do marking work are the
2435     following:
2436 
2437       (1) Marking Bitmap. If there are gray objects that appear only
2438       on the bitmap (this happens either when dealing with an overflow
2439       or when the initial marking phase has simply marked the roots
2440       and didn't push them on the stack), then tasks claim heap
2441       regions whose bitmap they then scan to find gray objects. A
2442       global finger indicates where the end of the last claimed region
2443       is. A local finger indicates how far into the region a task has
2444       scanned. The two fingers are used to determine how to gray an
2445       object (i.e. whether simply marking it is OK, as it will be
2446       visited by a task in the future, or whether it needs to be also
2447       pushed on a stack).
2448 
2449       (2) Local Queue. The local queue of the task which is accessed
2450       reasonably efficiently by the task. Other tasks can steal from
2451       it when they run out of work. Throughout the marking phase, a
2452       task attempts to keep its local queue short but not totally
2453       empty, so that entries are available for stealing by other
2454       tasks. Only when there is no more work, a task will totally
2455       drain its local queue.
2456 
2457       (3) Global Mark Stack. This handles local queue overflow. During
2458       marking only sets of entries are moved between it and the local
2459       queues, as access to it requires a mutex and more fine-grain
2460       interaction with it which might cause contention. If it
2461       overflows, then the marking phase should restart and iterate
2462       over the bitmap to identify gray objects. Throughout the marking
2463       phase, tasks attempt to keep the global mark stack at a small
2464       length but not totally empty, so that entries are available for
2465       popping by other tasks. Only when there is no more work, tasks
2466       will totally drain the global mark stack.
2467 
2468       (4) SATB Buffer Queue. This is where completed SATB buffers are
2469       made available. Buffers are regularly removed from this queue
2470       and scanned for roots, so that the queue doesn't get too
2471       long. During remark, all completed buffers are processed, as
2472       well as the filled in parts of any uncompleted buffers.
2473 
2474     The do_marking_step() method tries to abort when the time target
2475     has been reached. There are a few other cases when the
2476     do_marking_step() method also aborts:
2477 
2478       (1) When the marking phase has been aborted (after a Full GC).
2479 
2480       (2) When a global overflow (on the global stack) has been
2481       triggered. Before the task aborts, it will actually sync up with
2482       the other tasks to ensure that all the marking data structures
2483       (local queues, stacks, fingers etc.)  are re-initialized so that
2484       when do_marking_step() completes, the marking phase can
2485       immediately restart.
2486 
2487       (3) When enough completed SATB buffers are available. The
2488       do_marking_step() method only tries to drain SATB buffers right
2489       at the beginning. So, if enough buffers are available, the
2490       marking step aborts and the SATB buffers are processed at
2491       the beginning of the next invocation.
2492 
2493       (4) To yield. when we have to yield then we abort and yield
2494       right at the end of do_marking_step(). This saves us from a lot
2495       of hassle as, by yielding we might allow a Full GC. If this
2496       happens then objects will be compacted underneath our feet, the
2497       heap might shrink, etc. We save checking for this by just
2498       aborting and doing the yield right at the end.
2499 
2500     From the above it follows that the do_marking_step() method should
2501     be called in a loop (or, otherwise, regularly) until it completes.
2502 
2503     If a marking step completes without its has_aborted() flag being
2504     true, it means it has completed the current marking phase (and
2505     also all other marking tasks have done so and have all synced up).
2506 
2507     A method called regular_clock_call() is invoked "regularly" (in
2508     sub ms intervals) throughout marking. It is this clock method that
2509     checks all the abort conditions which were mentioned above and
2510     decides when the task should abort. A work-based scheme is used to
2511     trigger this clock method: when the number of object words the
2512     marking phase has scanned or the number of references the marking
2513     phase has visited reach a given limit. Additional invocations to
2514     the method clock have been planted in a few other strategic places
2515     too. The initial reason for the clock method was to avoid calling
2516     vtime too regularly, as it is quite expensive. So, once it was in
2517     place, it was natural to piggy-back all the other conditions on it
2518     too and not constantly check them throughout the code.
2519 
2520     If do_termination is true then do_marking_step will enter its
2521     termination protocol.
2522 
2523     The value of is_serial must be true when do_marking_step is being
2524     called serially (i.e. by the VMThread) and do_marking_step should
2525     skip any synchronization in the termination and overflow code.
2526     Examples include the serial remark code and the serial reference
2527     processing closures.
2528 
2529     The value of is_serial must be false when do_marking_step is
2530     being called by any of the worker threads in a work gang.
2531     Examples include the concurrent marking code (CMMarkingTask),
2532     the MT remark code, and the MT reference processing closures.
2533 
2534  *****************************************************************************/
2535 
2536 void G1CMTask::do_marking_step(double time_target_ms,
2537                                bool do_termination,
2538                                bool is_serial) {
2539   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2540 
2541   _start_time_ms = os::elapsedVTime() * 1000.0;
2542 
2543   // If do_stealing is true then do_marking_step will attempt to
2544   // steal work from the other G1CMTasks. It only makes sense to
2545   // enable stealing when the termination protocol is enabled
2546   // and do_marking_step() is not being called serially.
2547   bool do_stealing = do_termination && !is_serial;
2548 
2549   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2550   _time_target_ms = time_target_ms - diff_prediction_ms;
2551 
2552   // set up the variables that are used in the work-based scheme to
2553   // call the regular clock method
2554   _words_scanned = 0;
2555   _refs_reached  = 0;
2556   recalculate_limits();
2557 
2558   // clear all flags
2559   clear_has_aborted();
2560   _has_timed_out = false;
2561   _draining_satb_buffers = false;
2562 
2563   ++_calls;
2564 
2565   // Set up the bitmap and oop closures. Anything that uses them is
2566   // eventually called from this method, so it is OK to allocate these
2567   // statically.
2568   G1CMBitMapClosure bitmap_closure(this, _cm);
2569   G1CMOopClosure cm_oop_closure(_g1h, this);
2570   set_cm_oop_closure(&cm_oop_closure);
2571 
2572   if (_cm->has_overflown()) {
2573     // This can happen if the mark stack overflows during a GC pause
2574     // and this task, after a yield point, restarts. We have to abort
2575     // as we need to get into the overflow protocol which happens
2576     // right at the end of this task.
2577     set_has_aborted();
2578   }
2579 
2580   // First drain any available SATB buffers. After this, we will not
2581   // look at SATB buffers before the next invocation of this method.
2582   // If enough completed SATB buffers are queued up, the regular clock
2583   // will abort this task so that it restarts.
2584   drain_satb_buffers();
2585   // ...then partially drain the local queue and the global stack
2586   drain_local_queue(true);
2587   drain_global_stack(true);
2588 
2589   do {
2590     if (!has_aborted() && _curr_region != NULL) {
2591       // This means that we're already holding on to a region.
2592       assert(_finger != NULL, "if region is not NULL, then the finger "
2593              "should not be NULL either");
2594 
2595       // We might have restarted this task after an evacuation pause
2596       // which might have evacuated the region we're holding on to
2597       // underneath our feet. Let's read its limit again to make sure
2598       // that we do not iterate over a region of the heap that
2599       // contains garbage (update_region_limit() will also move
2600       // _finger to the start of the region if it is found empty).
2601       update_region_limit();
2602       // We will start from _finger not from the start of the region,
2603       // as we might be restarting this task after aborting half-way
2604       // through scanning this region. In this case, _finger points to
2605       // the address where we last found a marked object. If this is a
2606       // fresh region, _finger points to start().
2607       MemRegion mr = MemRegion(_finger, _region_limit);
2608 
2609       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2610              "humongous regions should go around loop once only");
2611 
2612       // Some special cases:
2613       // If the memory region is empty, we can just give up the region.
2614       // If the current region is humongous then we only need to check
2615       // the bitmap for the bit associated with the start of the object,
2616       // scan the object if it's live, and give up the region.
2617       // Otherwise, let's iterate over the bitmap of the part of the region
2618       // that is left.
2619       // If the iteration is successful, give up the region.
2620       if (mr.is_empty()) {
2621         giveup_current_region();
2622         regular_clock_call();
2623       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2624         if (_next_mark_bitmap->is_marked(mr.start())) {
2625           // The object is marked - apply the closure
2626           bitmap_closure.do_addr(mr.start());
2627         }
2628         // Even if this task aborted while scanning the humongous object
2629         // we can (and should) give up the current region.
2630         giveup_current_region();
2631         regular_clock_call();
2632       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2633         giveup_current_region();
2634         regular_clock_call();
2635       } else {
2636         assert(has_aborted(), "currently the only way to do so");
2637         // The only way to abort the bitmap iteration is to return
2638         // false from the do_bit() method. However, inside the
2639         // do_bit() method we move the _finger to point to the
2640         // object currently being looked at. So, if we bail out, we
2641         // have definitely set _finger to something non-null.
2642         assert(_finger != NULL, "invariant");
2643 
2644         // Region iteration was actually aborted. So now _finger
2645         // points to the address of the object we last scanned. If we
2646         // leave it there, when we restart this task, we will rescan
2647         // the object. It is easy to avoid this. We move the finger by
2648         // enough to point to the next possible object header.
2649         assert(_finger < _region_limit, "invariant");
2650         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2651         // Check if bitmap iteration was aborted while scanning the last object
2652         if (new_finger >= _region_limit) {
2653           giveup_current_region();
2654         } else {
2655           move_finger_to(new_finger);
2656         }
2657       }
2658     }
2659     // At this point we have either completed iterating over the
2660     // region we were holding on to, or we have aborted.
2661 
2662     // We then partially drain the local queue and the global stack.
2663     // (Do we really need this?)
2664     drain_local_queue(true);
2665     drain_global_stack(true);
2666 
2667     // Read the note on the claim_region() method on why it might
2668     // return NULL with potentially more regions available for
2669     // claiming and why we have to check out_of_regions() to determine
2670     // whether we're done or not.
2671     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2672       // We are going to try to claim a new region. We should have
2673       // given up on the previous one.
2674       // Separated the asserts so that we know which one fires.
2675       assert(_curr_region  == NULL, "invariant");
2676       assert(_finger       == NULL, "invariant");
2677       assert(_region_limit == NULL, "invariant");
2678       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2679       if (claimed_region != NULL) {
2680         // Yes, we managed to claim one
2681         setup_for_region(claimed_region);
2682         assert(_curr_region == claimed_region, "invariant");
2683       }
2684       // It is important to call the regular clock here. It might take
2685       // a while to claim a region if, for example, we hit a large
2686       // block of empty regions. So we need to call the regular clock
2687       // method once round the loop to make sure it's called
2688       // frequently enough.
2689       regular_clock_call();
2690     }
2691 
2692     if (!has_aborted() && _curr_region == NULL) {
2693       assert(_cm->out_of_regions(),
2694              "at this point we should be out of regions");
2695     }
2696   } while ( _curr_region != NULL && !has_aborted());
2697 
2698   if (!has_aborted()) {
2699     // We cannot check whether the global stack is empty, since other
2700     // tasks might be pushing objects to it concurrently.
2701     assert(_cm->out_of_regions(),
2702            "at this point we should be out of regions");
2703     // Try to reduce the number of available SATB buffers so that
2704     // remark has less work to do.
2705     drain_satb_buffers();
2706   }
2707 
2708   // Since we've done everything else, we can now totally drain the
2709   // local queue and global stack.
2710   drain_local_queue(false);
2711   drain_global_stack(false);
2712 
2713   // Attempt at work stealing from other task's queues.
2714   if (do_stealing && !has_aborted()) {
2715     // We have not aborted. This means that we have finished all that
2716     // we could. Let's try to do some stealing...
2717 
2718     // We cannot check whether the global stack is empty, since other
2719     // tasks might be pushing objects to it concurrently.
2720     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2721            "only way to reach here");
2722     while (!has_aborted()) {
2723       G1TaskQueueEntry entry;
2724       if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
2725         scan_task_entry(entry);
2726 
2727         // And since we're towards the end, let's totally drain the
2728         // local queue and global stack.
2729         drain_local_queue(false);
2730         drain_global_stack(false);
2731       } else {
2732         break;
2733       }
2734     }
2735   }
2736 
2737   // We still haven't aborted. Now, let's try to get into the
2738   // termination protocol.
2739   if (do_termination && !has_aborted()) {
2740     // We cannot check whether the global stack is empty, since other
2741     // tasks might be concurrently pushing objects on it.
2742     // Separated the asserts so that we know which one fires.
2743     assert(_cm->out_of_regions(), "only way to reach here");
2744     assert(_task_queue->size() == 0, "only way to reach here");
2745     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2746 
2747     // The G1CMTask class also extends the TerminatorTerminator class,
2748     // hence its should_exit_termination() method will also decide
2749     // whether to exit the termination protocol or not.
2750     bool finished = (is_serial ||
2751                      _cm->terminator()->offer_termination(this));
2752     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2753     _termination_time_ms +=
2754       termination_end_time_ms - _termination_start_time_ms;
2755 
2756     if (finished) {
2757       // We're all done.
2758 
2759       // We can now guarantee that the global stack is empty, since
2760       // all other tasks have finished. We separated the guarantees so
2761       // that, if a condition is false, we can immediately find out
2762       // which one.
2763       guarantee(_cm->out_of_regions(), "only way to reach here");
2764       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2765       guarantee(_task_queue->size() == 0, "only way to reach here");
2766       guarantee(!_cm->has_overflown(), "only way to reach here");
2767     } else {
2768       // Apparently there's more work to do. Let's abort this task. It
2769       // will restart it and we can hopefully find more things to do.
2770       set_has_aborted();
2771     }
2772   }
2773 
2774   // Mainly for debugging purposes to make sure that a pointer to the
2775   // closure which was statically allocated in this frame doesn't
2776   // escape it by accident.
2777   set_cm_oop_closure(NULL);
2778   double end_time_ms = os::elapsedVTime() * 1000.0;
2779   double elapsed_time_ms = end_time_ms - _start_time_ms;
2780   // Update the step history.
2781   _step_times_ms.add(elapsed_time_ms);
2782 
2783   if (has_aborted()) {
2784     // The task was aborted for some reason.
2785     if (_has_timed_out) {
2786       double diff_ms = elapsed_time_ms - _time_target_ms;
2787       // Keep statistics of how well we did with respect to hitting
2788       // our target only if we actually timed out (if we aborted for
2789       // other reasons, then the results might get skewed).
2790       _marking_step_diffs_ms.add(diff_ms);
2791     }
2792 
2793     if (_cm->has_overflown()) {
2794       // This is the interesting one. We aborted because a global
2795       // overflow was raised. This means we have to restart the
2796       // marking phase and start iterating over regions. However, in
2797       // order to do this we have to make sure that all tasks stop
2798       // what they are doing and re-initialize in a safe manner. We
2799       // will achieve this with the use of two barrier sync points.
2800 
2801       if (!is_serial) {
2802         // We only need to enter the sync barrier if being called
2803         // from a parallel context
2804         _cm->enter_first_sync_barrier(_worker_id);
2805 
2806         // When we exit this sync barrier we know that all tasks have
2807         // stopped doing marking work. So, it's now safe to
2808         // re-initialize our data structures.
2809       }
2810 
2811       clear_region_fields();
2812       flush_mark_stats_cache();
2813 
2814       if (!is_serial) {
2815         // If we're executing the concurrent phase of marking, reset the marking
2816         // state; otherwise the marking state is reset after reference processing,
2817         // during the remark pause.
2818         // If we reset here as a result of an overflow during the remark we will
2819         // see assertion failures from any subsequent set_concurrency_and_phase()
2820         // calls.
2821         if (_cm->concurrent() && _worker_id == 0) {
2822           // Worker 0 is responsible for clearing the global data structures because
2823           // of an overflow. During STW we should not clear the overflow flag (in
2824           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2825           // method to abort the pause and restart concurrent marking.
2826           _cm->reset_marking_for_restart();
2827 
2828           log_info(gc, marking)("Concurrent Mark reset for overflow");
2829         }
2830 
2831         // ...and enter the second barrier.
2832         _cm->enter_second_sync_barrier(_worker_id);
2833       }
2834       // At this point, if we're during the concurrent phase of
2835       // marking, everything has been re-initialized and we're
2836       // ready to restart.
2837     }
2838   }
2839 }
2840 
2841 G1CMTask::G1CMTask(uint worker_id,
2842                    G1ConcurrentMark* cm,
2843                    G1CMTaskQueue* task_queue,
2844                    G1RegionMarkStats* mark_stats,
2845                    uint max_regions) :
2846   _objArray_processor(this),
2847   _worker_id(worker_id),
2848   _g1h(G1CollectedHeap::heap()),
2849   _cm(cm),
2850   _next_mark_bitmap(NULL),
2851   _task_queue(task_queue),
2852   _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize),
2853   _calls(0),
2854   _time_target_ms(0.0),
2855   _start_time_ms(0.0),
2856   _cm_oop_closure(NULL),
2857   _curr_region(NULL),
2858   _finger(NULL),
2859   _region_limit(NULL),
2860   _words_scanned(0),
2861   _words_scanned_limit(0),
2862   _real_words_scanned_limit(0),
2863   _refs_reached(0),
2864   _refs_reached_limit(0),
2865   _real_refs_reached_limit(0),
2866   _hash_seed(17),
2867   _has_aborted(false),
2868   _has_timed_out(false),
2869   _draining_satb_buffers(false),
2870   _step_times_ms(),
2871   _elapsed_time_ms(0.0),
2872   _termination_time_ms(0.0),
2873   _termination_start_time_ms(0.0),
2874   _marking_step_diffs_ms()
2875 {
2876   guarantee(task_queue != NULL, "invariant");
2877 
2878   _marking_step_diffs_ms.add(0.5);
2879 }
2880 
2881 // These are formatting macros that are used below to ensure
2882 // consistent formatting. The *_H_* versions are used to format the
2883 // header for a particular value and they should be kept consistent
2884 // with the corresponding macro. Also note that most of the macros add
2885 // the necessary white space (as a prefix) which makes them a bit
2886 // easier to compose.
2887 
2888 // All the output lines are prefixed with this string to be able to
2889 // identify them easily in a large log file.
2890 #define G1PPRL_LINE_PREFIX            "###"
2891 
2892 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2893 #ifdef _LP64
2894 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2895 #else // _LP64
2896 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2897 #endif // _LP64
2898 
2899 // For per-region info
2900 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2901 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2902 #define G1PPRL_STATE_FORMAT           "   %-5s"
2903 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2904 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2905 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2906 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2907 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2908 
2909 // For summary info
2910 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2911 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2912 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2913 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2914 
2915 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2916   _total_used_bytes(0), _total_capacity_bytes(0),
2917   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2918   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2919 {
2920   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2921   MemRegion g1_reserved = g1h->g1_reserved();
2922   double now = os::elapsedTime();
2923 
2924   // Print the header of the output.
2925   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2926   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2927                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2928                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2929                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2930                           HeapRegion::GrainBytes);
2931   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2932   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2933                           G1PPRL_TYPE_H_FORMAT
2934                           G1PPRL_ADDR_BASE_H_FORMAT
2935                           G1PPRL_BYTE_H_FORMAT
2936                           G1PPRL_BYTE_H_FORMAT
2937                           G1PPRL_BYTE_H_FORMAT
2938                           G1PPRL_DOUBLE_H_FORMAT
2939                           G1PPRL_BYTE_H_FORMAT
2940                           G1PPRL_STATE_H_FORMAT
2941                           G1PPRL_BYTE_H_FORMAT,
2942                           "type", "address-range",
2943                           "used", "prev-live", "next-live", "gc-eff",
2944                           "remset", "state", "code-roots");
2945   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2946                           G1PPRL_TYPE_H_FORMAT
2947                           G1PPRL_ADDR_BASE_H_FORMAT
2948                           G1PPRL_BYTE_H_FORMAT
2949                           G1PPRL_BYTE_H_FORMAT
2950                           G1PPRL_BYTE_H_FORMAT
2951                           G1PPRL_DOUBLE_H_FORMAT
2952                           G1PPRL_BYTE_H_FORMAT
2953                           G1PPRL_STATE_H_FORMAT
2954                           G1PPRL_BYTE_H_FORMAT,
2955                           "", "",
2956                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2957                           "(bytes)", "", "(bytes)");
2958 }
2959 
2960 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2961   const char* type       = r->get_type_str();
2962   HeapWord* bottom       = r->bottom();
2963   HeapWord* end          = r->end();
2964   size_t capacity_bytes  = r->capacity();
2965   size_t used_bytes      = r->used();
2966   size_t prev_live_bytes = r->live_bytes();
2967   size_t next_live_bytes = r->next_live_bytes();
2968   double gc_eff          = r->gc_efficiency();
2969   size_t remset_bytes    = r->rem_set()->mem_size();
2970   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
2971   const char* remset_type = r->rem_set()->get_short_state_str();
2972 
2973   _total_used_bytes      += used_bytes;
2974   _total_capacity_bytes  += capacity_bytes;
2975   _total_prev_live_bytes += prev_live_bytes;
2976   _total_next_live_bytes += next_live_bytes;
2977   _total_remset_bytes    += remset_bytes;
2978   _total_strong_code_roots_bytes += strong_code_roots_bytes;
2979 
2980   // Print a line for this particular region.
2981   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2982                           G1PPRL_TYPE_FORMAT
2983                           G1PPRL_ADDR_BASE_FORMAT
2984                           G1PPRL_BYTE_FORMAT
2985                           G1PPRL_BYTE_FORMAT
2986                           G1PPRL_BYTE_FORMAT
2987                           G1PPRL_DOUBLE_FORMAT
2988                           G1PPRL_BYTE_FORMAT
2989                           G1PPRL_STATE_FORMAT
2990                           G1PPRL_BYTE_FORMAT,
2991                           type, p2i(bottom), p2i(end),
2992                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
2993                           remset_bytes, remset_type, strong_code_roots_bytes);
2994 
2995   return false;
2996 }
2997 
2998 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
2999   // add static memory usages to remembered set sizes
3000   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3001   // Print the footer of the output.
3002   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3003   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3004                          " SUMMARY"
3005                          G1PPRL_SUM_MB_FORMAT("capacity")
3006                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3007                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3008                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3009                          G1PPRL_SUM_MB_FORMAT("remset")
3010                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3011                          bytes_to_mb(_total_capacity_bytes),
3012                          bytes_to_mb(_total_used_bytes),
3013                          percent_of(_total_used_bytes, _total_capacity_bytes),
3014                          bytes_to_mb(_total_prev_live_bytes),
3015                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
3016                          bytes_to_mb(_total_next_live_bytes),
3017                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
3018                          bytes_to_mb(_total_remset_bytes),
3019                          bytes_to_mb(_total_strong_code_roots_bytes));
3020 }