1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapSizingPolicy.hpp"
  43 #include "gc/g1/g1HeapTransition.hpp"
  44 #include "gc/g1/g1HeapVerifier.hpp"
  45 #include "gc/g1/g1HotCardCache.hpp"
  46 #include "gc/g1/g1MarkSweep.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1StringDedup.hpp"
  55 #include "gc/g1/g1YCTypes.hpp"
  56 #include "gc/g1/heapRegion.inline.hpp"
  57 #include "gc/g1/heapRegionRemSet.hpp"
  58 #include "gc/g1/heapRegionSet.inline.hpp"
  59 #include "gc/g1/suspendibleThreadSet.hpp"
  60 #include "gc/g1/vm_operations_g1.hpp"
  61 #include "gc/shared/gcHeapSummary.hpp"
  62 #include "gc/shared/gcId.hpp"
  63 #include "gc/shared/gcLocker.inline.hpp"
  64 #include "gc/shared/gcTimer.hpp"
  65 #include "gc/shared/gcTrace.hpp"
  66 #include "gc/shared/gcTraceTime.inline.hpp"
  67 #include "gc/shared/generationSpec.hpp"
  68 #include "gc/shared/isGCActiveMark.hpp"
  69 #include "gc/shared/preservedMarks.inline.hpp"
  70 #include "gc/shared/referenceProcessor.inline.hpp"
  71 #include "gc/shared/taskqueue.inline.hpp"
  72 #include "logging/log.hpp"
  73 #include "memory/allocation.hpp"
  74 #include "memory/iterator.hpp"
  75 #include "memory/resourceArea.hpp"
  76 #include "oops/oop.inline.hpp"
  77 #include "runtime/atomic.hpp"
  78 #include "runtime/init.hpp"
  79 #include "runtime/orderAccess.inline.hpp"
  80 #include "runtime/vmThread.hpp"
  81 #include "utilities/globalDefinitions.hpp"
  82 #include "utilities/stack.inline.hpp"
  83 
  84 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  85 
  86 // INVARIANTS/NOTES
  87 //
  88 // All allocation activity covered by the G1CollectedHeap interface is
  89 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  90 // and allocate_new_tlab, which are the "entry" points to the
  91 // allocation code from the rest of the JVM.  (Note that this does not
  92 // apply to TLAB allocation, which is not part of this interface: it
  93 // is done by clients of this interface.)
  94 
  95 // Local to this file.
  96 
  97 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  98   bool _concurrent;
  99 public:
 100   RefineCardTableEntryClosure() : _concurrent(true) { }
 101 
 102   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 103     G1CollectedHeap::heap()->g1_rem_set()->refine_card_concurrently(card_ptr, worker_i);
 104 
 105     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 106       // Caller will actually yield.
 107       return false;
 108     }
 109     // Otherwise, we finished successfully; return true.
 110     return true;
 111   }
 112 
 113   void set_concurrent(bool b) { _concurrent = b; }
 114 };
 115 
 116 
 117 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 118  private:
 119   size_t _num_dirtied;
 120   G1CollectedHeap* _g1h;
 121   G1SATBCardTableLoggingModRefBS* _g1_bs;
 122 
 123   HeapRegion* region_for_card(jbyte* card_ptr) const {
 124     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 125   }
 126 
 127   bool will_become_free(HeapRegion* hr) const {
 128     // A region will be freed by free_collection_set if the region is in the
 129     // collection set and has not had an evacuation failure.
 130     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 131   }
 132 
 133  public:
 134   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 135     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 136 
 137   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 138     HeapRegion* hr = region_for_card(card_ptr);
 139 
 140     // Should only dirty cards in regions that won't be freed.
 141     if (!will_become_free(hr)) {
 142       *card_ptr = CardTableModRefBS::dirty_card_val();
 143       _num_dirtied++;
 144     }
 145 
 146     return true;
 147   }
 148 
 149   size_t num_dirtied()   const { return _num_dirtied; }
 150 };
 151 
 152 
 153 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 154   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 155 }
 156 
 157 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 158   // The from card cache is not the memory that is actually committed. So we cannot
 159   // take advantage of the zero_filled parameter.
 160   reset_from_card_cache(start_idx, num_regions);
 161 }
 162 
 163 // Returns true if the reference points to an object that
 164 // can move in an incremental collection.
 165 bool G1CollectedHeap::is_scavengable(const void* p) {
 166   HeapRegion* hr = heap_region_containing(p);
 167   return !hr->is_pinned();
 168 }
 169 
 170 // Private methods.
 171 
 172 HeapRegion*
 173 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 174   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 175   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 176     if (!_secondary_free_list.is_empty()) {
 177       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 178                                       "secondary_free_list has %u entries",
 179                                       _secondary_free_list.length());
 180       // It looks as if there are free regions available on the
 181       // secondary_free_list. Let's move them to the free_list and try
 182       // again to allocate from it.
 183       append_secondary_free_list();
 184 
 185       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 186              "empty we should have moved at least one entry to the free_list");
 187       HeapRegion* res = _hrm.allocate_free_region(is_old);
 188       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 189                                       "allocated " HR_FORMAT " from secondary_free_list",
 190                                       HR_FORMAT_PARAMS(res));
 191       return res;
 192     }
 193 
 194     // Wait here until we get notified either when (a) there are no
 195     // more free regions coming or (b) some regions have been moved on
 196     // the secondary_free_list.
 197     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 198   }
 199 
 200   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 201                                   "could not allocate from secondary_free_list");
 202   return NULL;
 203 }
 204 
 205 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 206   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 207          "the only time we use this to allocate a humongous region is "
 208          "when we are allocating a single humongous region");
 209 
 210   HeapRegion* res;
 211   if (G1StressConcRegionFreeing) {
 212     if (!_secondary_free_list.is_empty()) {
 213       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 214                                       "forced to look at the secondary_free_list");
 215       res = new_region_try_secondary_free_list(is_old);
 216       if (res != NULL) {
 217         return res;
 218       }
 219     }
 220   }
 221 
 222   res = _hrm.allocate_free_region(is_old);
 223 
 224   if (res == NULL) {
 225     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 226                                     "res == NULL, trying the secondary_free_list");
 227     res = new_region_try_secondary_free_list(is_old);
 228   }
 229   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 230     // Currently, only attempts to allocate GC alloc regions set
 231     // do_expand to true. So, we should only reach here during a
 232     // safepoint. If this assumption changes we might have to
 233     // reconsider the use of _expand_heap_after_alloc_failure.
 234     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 235 
 236     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 237                               word_size * HeapWordSize);
 238 
 239     if (expand(word_size * HeapWordSize)) {
 240       // Given that expand() succeeded in expanding the heap, and we
 241       // always expand the heap by an amount aligned to the heap
 242       // region size, the free list should in theory not be empty.
 243       // In either case allocate_free_region() will check for NULL.
 244       res = _hrm.allocate_free_region(is_old);
 245     } else {
 246       _expand_heap_after_alloc_failure = false;
 247     }
 248   }
 249   return res;
 250 }
 251 
 252 HeapWord*
 253 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 254                                                            uint num_regions,
 255                                                            size_t word_size,
 256                                                            AllocationContext_t context) {
 257   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 258   assert(is_humongous(word_size), "word_size should be humongous");
 259   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 260 
 261   // Index of last region in the series.
 262   uint last = first + num_regions - 1;
 263 
 264   // We need to initialize the region(s) we just discovered. This is
 265   // a bit tricky given that it can happen concurrently with
 266   // refinement threads refining cards on these regions and
 267   // potentially wanting to refine the BOT as they are scanning
 268   // those cards (this can happen shortly after a cleanup; see CR
 269   // 6991377). So we have to set up the region(s) carefully and in
 270   // a specific order.
 271 
 272   // The word size sum of all the regions we will allocate.
 273   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 274   assert(word_size <= word_size_sum, "sanity");
 275 
 276   // This will be the "starts humongous" region.
 277   HeapRegion* first_hr = region_at(first);
 278   // The header of the new object will be placed at the bottom of
 279   // the first region.
 280   HeapWord* new_obj = first_hr->bottom();
 281   // This will be the new top of the new object.
 282   HeapWord* obj_top = new_obj + word_size;
 283 
 284   // First, we need to zero the header of the space that we will be
 285   // allocating. When we update top further down, some refinement
 286   // threads might try to scan the region. By zeroing the header we
 287   // ensure that any thread that will try to scan the region will
 288   // come across the zero klass word and bail out.
 289   //
 290   // NOTE: It would not have been correct to have used
 291   // CollectedHeap::fill_with_object() and make the space look like
 292   // an int array. The thread that is doing the allocation will
 293   // later update the object header to a potentially different array
 294   // type and, for a very short period of time, the klass and length
 295   // fields will be inconsistent. This could cause a refinement
 296   // thread to calculate the object size incorrectly.
 297   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 298 
 299   // Next, pad out the unused tail of the last region with filler
 300   // objects, for improved usage accounting.
 301   // How many words we use for filler objects.
 302   size_t word_fill_size = word_size_sum - word_size;
 303 
 304   // How many words memory we "waste" which cannot hold a filler object.
 305   size_t words_not_fillable = 0;
 306 
 307   if (word_fill_size >= min_fill_size()) {
 308     fill_with_objects(obj_top, word_fill_size);
 309   } else if (word_fill_size > 0) {
 310     // We have space to fill, but we cannot fit an object there.
 311     words_not_fillable = word_fill_size;
 312     word_fill_size = 0;
 313   }
 314 
 315   // We will set up the first region as "starts humongous". This
 316   // will also update the BOT covering all the regions to reflect
 317   // that there is a single object that starts at the bottom of the
 318   // first region.
 319   first_hr->set_starts_humongous(obj_top, word_fill_size);
 320   first_hr->set_allocation_context(context);
 321   // Then, if there are any, we will set up the "continues
 322   // humongous" regions.
 323   HeapRegion* hr = NULL;
 324   for (uint i = first + 1; i <= last; ++i) {
 325     hr = region_at(i);
 326     hr->set_continues_humongous(first_hr);
 327     hr->set_allocation_context(context);
 328   }
 329 
 330   // Up to this point no concurrent thread would have been able to
 331   // do any scanning on any region in this series. All the top
 332   // fields still point to bottom, so the intersection between
 333   // [bottom,top] and [card_start,card_end] will be empty. Before we
 334   // update the top fields, we'll do a storestore to make sure that
 335   // no thread sees the update to top before the zeroing of the
 336   // object header and the BOT initialization.
 337   OrderAccess::storestore();
 338 
 339   // Now, we will update the top fields of the "continues humongous"
 340   // regions except the last one.
 341   for (uint i = first; i < last; ++i) {
 342     hr = region_at(i);
 343     hr->set_top(hr->end());
 344   }
 345 
 346   hr = region_at(last);
 347   // If we cannot fit a filler object, we must set top to the end
 348   // of the humongous object, otherwise we cannot iterate the heap
 349   // and the BOT will not be complete.
 350   hr->set_top(hr->end() - words_not_fillable);
 351 
 352   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 353          "obj_top should be in last region");
 354 
 355   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 356 
 357   assert(words_not_fillable == 0 ||
 358          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 359          "Miscalculation in humongous allocation");
 360 
 361   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 362 
 363   for (uint i = first; i <= last; ++i) {
 364     hr = region_at(i);
 365     _humongous_set.add(hr);
 366     _hr_printer.alloc(hr);
 367   }
 368 
 369   return new_obj;
 370 }
 371 
 372 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 373   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 374   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 375 }
 376 
 377 // If could fit into free regions w/o expansion, try.
 378 // Otherwise, if can expand, do so.
 379 // Otherwise, if using ex regions might help, try with ex given back.
 380 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 381   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 382 
 383   _verifier->verify_region_sets_optional();
 384 
 385   uint first = G1_NO_HRM_INDEX;
 386   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 387 
 388   if (obj_regions == 1) {
 389     // Only one region to allocate, try to use a fast path by directly allocating
 390     // from the free lists. Do not try to expand here, we will potentially do that
 391     // later.
 392     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 393     if (hr != NULL) {
 394       first = hr->hrm_index();
 395     }
 396   } else {
 397     // We can't allocate humongous regions spanning more than one region while
 398     // cleanupComplete() is running, since some of the regions we find to be
 399     // empty might not yet be added to the free list. It is not straightforward
 400     // to know in which list they are on so that we can remove them. We only
 401     // need to do this if we need to allocate more than one region to satisfy the
 402     // current humongous allocation request. If we are only allocating one region
 403     // we use the one-region region allocation code (see above), that already
 404     // potentially waits for regions from the secondary free list.
 405     wait_while_free_regions_coming();
 406     append_secondary_free_list_if_not_empty_with_lock();
 407 
 408     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 409     // are lucky enough to find some.
 410     first = _hrm.find_contiguous_only_empty(obj_regions);
 411     if (first != G1_NO_HRM_INDEX) {
 412       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 413     }
 414   }
 415 
 416   if (first == G1_NO_HRM_INDEX) {
 417     // Policy: We could not find enough regions for the humongous object in the
 418     // free list. Look through the heap to find a mix of free and uncommitted regions.
 419     // If so, try expansion.
 420     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 421     if (first != G1_NO_HRM_INDEX) {
 422       // We found something. Make sure these regions are committed, i.e. expand
 423       // the heap. Alternatively we could do a defragmentation GC.
 424       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 425                                     word_size * HeapWordSize);
 426 
 427       _hrm.expand_at(first, obj_regions, workers());
 428       g1_policy()->record_new_heap_size(num_regions());
 429 
 430 #ifdef ASSERT
 431       for (uint i = first; i < first + obj_regions; ++i) {
 432         HeapRegion* hr = region_at(i);
 433         assert(hr->is_free(), "sanity");
 434         assert(hr->is_empty(), "sanity");
 435         assert(is_on_master_free_list(hr), "sanity");
 436       }
 437 #endif
 438       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 439     } else {
 440       // Policy: Potentially trigger a defragmentation GC.
 441     }
 442   }
 443 
 444   HeapWord* result = NULL;
 445   if (first != G1_NO_HRM_INDEX) {
 446     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 447                                                        word_size, context);
 448     assert(result != NULL, "it should always return a valid result");
 449 
 450     // A successful humongous object allocation changes the used space
 451     // information of the old generation so we need to recalculate the
 452     // sizes and update the jstat counters here.
 453     g1mm()->update_sizes();
 454   }
 455 
 456   _verifier->verify_region_sets_optional();
 457 
 458   return result;
 459 }
 460 
 461 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 462   assert_heap_not_locked_and_not_at_safepoint();
 463   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 464 
 465   uint dummy_gc_count_before;
 466   uint dummy_gclocker_retry_count = 0;
 467   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 468 }
 469 
 470 HeapWord*
 471 G1CollectedHeap::mem_allocate(size_t word_size,
 472                               bool*  gc_overhead_limit_was_exceeded) {
 473   assert_heap_not_locked_and_not_at_safepoint();
 474 
 475   // Loop until the allocation is satisfied, or unsatisfied after GC.
 476   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 477     uint gc_count_before;
 478 
 479     HeapWord* result = NULL;
 480     if (!is_humongous(word_size)) {
 481       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 482     } else {
 483       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 484     }
 485     if (result != NULL) {
 486       return result;
 487     }
 488 
 489     // Create the garbage collection operation...
 490     VM_G1CollectForAllocation op(gc_count_before, word_size);
 491     op.set_allocation_context(AllocationContext::current());
 492 
 493     // ...and get the VM thread to execute it.
 494     VMThread::execute(&op);
 495 
 496     if (op.prologue_succeeded() && op.pause_succeeded()) {
 497       // If the operation was successful we'll return the result even
 498       // if it is NULL. If the allocation attempt failed immediately
 499       // after a Full GC, it's unlikely we'll be able to allocate now.
 500       HeapWord* result = op.result();
 501       if (result != NULL && !is_humongous(word_size)) {
 502         // Allocations that take place on VM operations do not do any
 503         // card dirtying and we have to do it here. We only have to do
 504         // this for non-humongous allocations, though.
 505         dirty_young_block(result, word_size);
 506       }
 507       return result;
 508     } else {
 509       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 510         return NULL;
 511       }
 512       assert(op.result() == NULL,
 513              "the result should be NULL if the VM op did not succeed");
 514     }
 515 
 516     // Give a warning if we seem to be looping forever.
 517     if ((QueuedAllocationWarningCount > 0) &&
 518         (try_count % QueuedAllocationWarningCount == 0)) {
 519       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 520     }
 521   }
 522 
 523   ShouldNotReachHere();
 524   return NULL;
 525 }
 526 
 527 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 528                                                    AllocationContext_t context,
 529                                                    uint* gc_count_before_ret,
 530                                                    uint* gclocker_retry_count_ret) {
 531   // Make sure you read the note in attempt_allocation_humongous().
 532 
 533   assert_heap_not_locked_and_not_at_safepoint();
 534   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 535          "be called for humongous allocation requests");
 536 
 537   // We should only get here after the first-level allocation attempt
 538   // (attempt_allocation()) failed to allocate.
 539 
 540   // We will loop until a) we manage to successfully perform the
 541   // allocation or b) we successfully schedule a collection which
 542   // fails to perform the allocation. b) is the only case when we'll
 543   // return NULL.
 544   HeapWord* result = NULL;
 545   for (int try_count = 1; /* we'll return */; try_count += 1) {
 546     bool should_try_gc;
 547     uint gc_count_before;
 548 
 549     {
 550       MutexLockerEx x(Heap_lock);
 551       result = _allocator->attempt_allocation_locked(word_size, context);
 552       if (result != NULL) {
 553         return result;
 554       }
 555 
 556       if (GCLocker::is_active_and_needs_gc()) {
 557         if (g1_policy()->can_expand_young_list()) {
 558           // No need for an ergo verbose message here,
 559           // can_expand_young_list() does this when it returns true.
 560           result = _allocator->attempt_allocation_force(word_size, context);
 561           if (result != NULL) {
 562             return result;
 563           }
 564         }
 565         should_try_gc = false;
 566       } else {
 567         // The GCLocker may not be active but the GCLocker initiated
 568         // GC may not yet have been performed (GCLocker::needs_gc()
 569         // returns true). In this case we do not try this GC and
 570         // wait until the GCLocker initiated GC is performed, and
 571         // then retry the allocation.
 572         if (GCLocker::needs_gc()) {
 573           should_try_gc = false;
 574         } else {
 575           // Read the GC count while still holding the Heap_lock.
 576           gc_count_before = total_collections();
 577           should_try_gc = true;
 578         }
 579       }
 580     }
 581 
 582     if (should_try_gc) {
 583       bool succeeded;
 584       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 585                                    GCCause::_g1_inc_collection_pause);
 586       if (result != NULL) {
 587         assert(succeeded, "only way to get back a non-NULL result");
 588         return result;
 589       }
 590 
 591       if (succeeded) {
 592         // If we get here we successfully scheduled a collection which
 593         // failed to allocate. No point in trying to allocate
 594         // further. We'll just return NULL.
 595         MutexLockerEx x(Heap_lock);
 596         *gc_count_before_ret = total_collections();
 597         return NULL;
 598       }
 599     } else {
 600       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 601         MutexLockerEx x(Heap_lock);
 602         *gc_count_before_ret = total_collections();
 603         return NULL;
 604       }
 605       // The GCLocker is either active or the GCLocker initiated
 606       // GC has not yet been performed. Stall until it is and
 607       // then retry the allocation.
 608       GCLocker::stall_until_clear();
 609       (*gclocker_retry_count_ret) += 1;
 610     }
 611 
 612     // We can reach here if we were unsuccessful in scheduling a
 613     // collection (because another thread beat us to it) or if we were
 614     // stalled due to the GC locker. In either can we should retry the
 615     // allocation attempt in case another thread successfully
 616     // performed a collection and reclaimed enough space. We do the
 617     // first attempt (without holding the Heap_lock) here and the
 618     // follow-on attempt will be at the start of the next loop
 619     // iteration (after taking the Heap_lock).
 620     result = _allocator->attempt_allocation(word_size, context);
 621     if (result != NULL) {
 622       return result;
 623     }
 624 
 625     // Give a warning if we seem to be looping forever.
 626     if ((QueuedAllocationWarningCount > 0) &&
 627         (try_count % QueuedAllocationWarningCount == 0)) {
 628       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 629                       "retries %d times", try_count);
 630     }
 631   }
 632 
 633   ShouldNotReachHere();
 634   return NULL;
 635 }
 636 
 637 void G1CollectedHeap::begin_archive_alloc_range() {
 638   assert_at_safepoint(true /* should_be_vm_thread */);
 639   if (_archive_allocator == NULL) {
 640     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 641   }
 642 }
 643 
 644 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 645   // Allocations in archive regions cannot be of a size that would be considered
 646   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 647   // may be different at archive-restore time.
 648   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 649 }
 650 
 651 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 652   assert_at_safepoint(true /* should_be_vm_thread */);
 653   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 654   if (is_archive_alloc_too_large(word_size)) {
 655     return NULL;
 656   }
 657   return _archive_allocator->archive_mem_allocate(word_size);
 658 }
 659 
 660 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 661                                               size_t end_alignment_in_bytes) {
 662   assert_at_safepoint(true /* should_be_vm_thread */);
 663   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 664 
 665   // Call complete_archive to do the real work, filling in the MemRegion
 666   // array with the archive regions.
 667   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 668   delete _archive_allocator;
 669   _archive_allocator = NULL;
 670 }
 671 
 672 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 673   assert(ranges != NULL, "MemRegion array NULL");
 674   assert(count != 0, "No MemRegions provided");
 675   MemRegion reserved = _hrm.reserved();
 676   for (size_t i = 0; i < count; i++) {
 677     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 678       return false;
 679     }
 680   }
 681   return true;
 682 }
 683 
 684 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 685   assert(!is_init_completed(), "Expect to be called at JVM init time");
 686   assert(ranges != NULL, "MemRegion array NULL");
 687   assert(count != 0, "No MemRegions provided");
 688   MutexLockerEx x(Heap_lock);
 689 
 690   MemRegion reserved = _hrm.reserved();
 691   HeapWord* prev_last_addr = NULL;
 692   HeapRegion* prev_last_region = NULL;
 693 
 694   // Temporarily disable pretouching of heap pages. This interface is used
 695   // when mmap'ing archived heap data in, so pre-touching is wasted.
 696   FlagSetting fs(AlwaysPreTouch, false);
 697 
 698   // Enable archive object checking used by G1MarkSweep. We have to let it know
 699   // about each archive range, so that objects in those ranges aren't marked.
 700   G1ArchiveAllocator::enable_archive_object_check();
 701 
 702   // For each specified MemRegion range, allocate the corresponding G1
 703   // regions and mark them as archive regions. We expect the ranges in
 704   // ascending starting address order, without overlap.
 705   for (size_t i = 0; i < count; i++) {
 706     MemRegion curr_range = ranges[i];
 707     HeapWord* start_address = curr_range.start();
 708     size_t word_size = curr_range.word_size();
 709     HeapWord* last_address = curr_range.last();
 710     size_t commits = 0;
 711 
 712     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 713               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 714               p2i(start_address), p2i(last_address));
 715     guarantee(start_address > prev_last_addr,
 716               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 717               p2i(start_address), p2i(prev_last_addr));
 718     prev_last_addr = last_address;
 719 
 720     // Check for ranges that start in the same G1 region in which the previous
 721     // range ended, and adjust the start address so we don't try to allocate
 722     // the same region again. If the current range is entirely within that
 723     // region, skip it, just adjusting the recorded top.
 724     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 725     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 726       start_address = start_region->end();
 727       if (start_address > last_address) {
 728         increase_used(word_size * HeapWordSize);
 729         start_region->set_top(last_address + 1);
 730         continue;
 731       }
 732       start_region->set_top(start_address);
 733       curr_range = MemRegion(start_address, last_address + 1);
 734       start_region = _hrm.addr_to_region(start_address);
 735     }
 736 
 737     // Perform the actual region allocation, exiting if it fails.
 738     // Then note how much new space we have allocated.
 739     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 740       return false;
 741     }
 742     increase_used(word_size * HeapWordSize);
 743     if (commits != 0) {
 744       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 745                                 HeapRegion::GrainWords * HeapWordSize * commits);
 746 
 747     }
 748 
 749     // Mark each G1 region touched by the range as archive, add it to the old set,
 750     // and set the allocation context and top.
 751     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 752     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 753     prev_last_region = last_region;
 754 
 755     while (curr_region != NULL) {
 756       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 757              "Region already in use (index %u)", curr_region->hrm_index());
 758       curr_region->set_allocation_context(AllocationContext::system());
 759       curr_region->set_archive();
 760       _hr_printer.alloc(curr_region);
 761       _old_set.add(curr_region);
 762       if (curr_region != last_region) {
 763         curr_region->set_top(curr_region->end());
 764         curr_region = _hrm.next_region_in_heap(curr_region);
 765       } else {
 766         curr_region->set_top(last_address + 1);
 767         curr_region = NULL;
 768       }
 769     }
 770 
 771     // Notify mark-sweep of the archive range.
 772     G1ArchiveAllocator::set_range_archive(curr_range, true);
 773   }
 774   return true;
 775 }
 776 
 777 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 778   assert(!is_init_completed(), "Expect to be called at JVM init time");
 779   assert(ranges != NULL, "MemRegion array NULL");
 780   assert(count != 0, "No MemRegions provided");
 781   MemRegion reserved = _hrm.reserved();
 782   HeapWord *prev_last_addr = NULL;
 783   HeapRegion* prev_last_region = NULL;
 784 
 785   // For each MemRegion, create filler objects, if needed, in the G1 regions
 786   // that contain the address range. The address range actually within the
 787   // MemRegion will not be modified. That is assumed to have been initialized
 788   // elsewhere, probably via an mmap of archived heap data.
 789   MutexLockerEx x(Heap_lock);
 790   for (size_t i = 0; i < count; i++) {
 791     HeapWord* start_address = ranges[i].start();
 792     HeapWord* last_address = ranges[i].last();
 793 
 794     assert(reserved.contains(start_address) && reserved.contains(last_address),
 795            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 796            p2i(start_address), p2i(last_address));
 797     assert(start_address > prev_last_addr,
 798            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 799            p2i(start_address), p2i(prev_last_addr));
 800 
 801     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 802     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 803     HeapWord* bottom_address = start_region->bottom();
 804 
 805     // Check for a range beginning in the same region in which the
 806     // previous one ended.
 807     if (start_region == prev_last_region) {
 808       bottom_address = prev_last_addr + 1;
 809     }
 810 
 811     // Verify that the regions were all marked as archive regions by
 812     // alloc_archive_regions.
 813     HeapRegion* curr_region = start_region;
 814     while (curr_region != NULL) {
 815       guarantee(curr_region->is_archive(),
 816                 "Expected archive region at index %u", curr_region->hrm_index());
 817       if (curr_region != last_region) {
 818         curr_region = _hrm.next_region_in_heap(curr_region);
 819       } else {
 820         curr_region = NULL;
 821       }
 822     }
 823 
 824     prev_last_addr = last_address;
 825     prev_last_region = last_region;
 826 
 827     // Fill the memory below the allocated range with dummy object(s),
 828     // if the region bottom does not match the range start, or if the previous
 829     // range ended within the same G1 region, and there is a gap.
 830     if (start_address != bottom_address) {
 831       size_t fill_size = pointer_delta(start_address, bottom_address);
 832       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 833       increase_used(fill_size * HeapWordSize);
 834     }
 835   }
 836 }
 837 
 838 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 839                                                      uint* gc_count_before_ret,
 840                                                      uint* gclocker_retry_count_ret) {
 841   assert_heap_not_locked_and_not_at_safepoint();
 842   assert(!is_humongous(word_size), "attempt_allocation() should not "
 843          "be called for humongous allocation requests");
 844 
 845   AllocationContext_t context = AllocationContext::current();
 846   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 847 
 848   if (result == NULL) {
 849     result = attempt_allocation_slow(word_size,
 850                                      context,
 851                                      gc_count_before_ret,
 852                                      gclocker_retry_count_ret);
 853   }
 854   assert_heap_not_locked();
 855   if (result != NULL) {
 856     dirty_young_block(result, word_size);
 857   }
 858   return result;
 859 }
 860 
 861 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 862   assert(!is_init_completed(), "Expect to be called at JVM init time");
 863   assert(ranges != NULL, "MemRegion array NULL");
 864   assert(count != 0, "No MemRegions provided");
 865   MemRegion reserved = _hrm.reserved();
 866   HeapWord* prev_last_addr = NULL;
 867   HeapRegion* prev_last_region = NULL;
 868   size_t size_used = 0;
 869   size_t uncommitted_regions = 0;
 870 
 871   // For each Memregion, free the G1 regions that constitute it, and
 872   // notify mark-sweep that the range is no longer to be considered 'archive.'
 873   MutexLockerEx x(Heap_lock);
 874   for (size_t i = 0; i < count; i++) {
 875     HeapWord* start_address = ranges[i].start();
 876     HeapWord* last_address = ranges[i].last();
 877 
 878     assert(reserved.contains(start_address) && reserved.contains(last_address),
 879            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 880            p2i(start_address), p2i(last_address));
 881     assert(start_address > prev_last_addr,
 882            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 883            p2i(start_address), p2i(prev_last_addr));
 884     size_used += ranges[i].byte_size();
 885     prev_last_addr = last_address;
 886 
 887     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 888     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 889 
 890     // Check for ranges that start in the same G1 region in which the previous
 891     // range ended, and adjust the start address so we don't try to free
 892     // the same region again. If the current range is entirely within that
 893     // region, skip it.
 894     if (start_region == prev_last_region) {
 895       start_address = start_region->end();
 896       if (start_address > last_address) {
 897         continue;
 898       }
 899       start_region = _hrm.addr_to_region(start_address);
 900     }
 901     prev_last_region = last_region;
 902 
 903     // After verifying that each region was marked as an archive region by
 904     // alloc_archive_regions, set it free and empty and uncommit it.
 905     HeapRegion* curr_region = start_region;
 906     while (curr_region != NULL) {
 907       guarantee(curr_region->is_archive(),
 908                 "Expected archive region at index %u", curr_region->hrm_index());
 909       uint curr_index = curr_region->hrm_index();
 910       _old_set.remove(curr_region);
 911       curr_region->set_free();
 912       curr_region->set_top(curr_region->bottom());
 913       if (curr_region != last_region) {
 914         curr_region = _hrm.next_region_in_heap(curr_region);
 915       } else {
 916         curr_region = NULL;
 917       }
 918       _hrm.shrink_at(curr_index, 1);
 919       uncommitted_regions++;
 920     }
 921 
 922     // Notify mark-sweep that this is no longer an archive range.
 923     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 924   }
 925 
 926   if (uncommitted_regions != 0) {
 927     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 928                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 929   }
 930   decrease_used(size_used);
 931 }
 932 
 933 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 934                                                         uint* gc_count_before_ret,
 935                                                         uint* gclocker_retry_count_ret) {
 936   // The structure of this method has a lot of similarities to
 937   // attempt_allocation_slow(). The reason these two were not merged
 938   // into a single one is that such a method would require several "if
 939   // allocation is not humongous do this, otherwise do that"
 940   // conditional paths which would obscure its flow. In fact, an early
 941   // version of this code did use a unified method which was harder to
 942   // follow and, as a result, it had subtle bugs that were hard to
 943   // track down. So keeping these two methods separate allows each to
 944   // be more readable. It will be good to keep these two in sync as
 945   // much as possible.
 946 
 947   assert_heap_not_locked_and_not_at_safepoint();
 948   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 949          "should only be called for humongous allocations");
 950 
 951   // Humongous objects can exhaust the heap quickly, so we should check if we
 952   // need to start a marking cycle at each humongous object allocation. We do
 953   // the check before we do the actual allocation. The reason for doing it
 954   // before the allocation is that we avoid having to keep track of the newly
 955   // allocated memory while we do a GC.
 956   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 957                                            word_size)) {
 958     collect(GCCause::_g1_humongous_allocation);
 959   }
 960 
 961   // We will loop until a) we manage to successfully perform the
 962   // allocation or b) we successfully schedule a collection which
 963   // fails to perform the allocation. b) is the only case when we'll
 964   // return NULL.
 965   HeapWord* result = NULL;
 966   for (int try_count = 1; /* we'll return */; try_count += 1) {
 967     bool should_try_gc;
 968     uint gc_count_before;
 969 
 970     {
 971       MutexLockerEx x(Heap_lock);
 972 
 973       // Given that humongous objects are not allocated in young
 974       // regions, we'll first try to do the allocation without doing a
 975       // collection hoping that there's enough space in the heap.
 976       result = humongous_obj_allocate(word_size, AllocationContext::current());
 977       if (result != NULL) {
 978         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 979         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 980         return result;
 981       }
 982 
 983       if (GCLocker::is_active_and_needs_gc()) {
 984         should_try_gc = false;
 985       } else {
 986          // The GCLocker may not be active but the GCLocker initiated
 987         // GC may not yet have been performed (GCLocker::needs_gc()
 988         // returns true). In this case we do not try this GC and
 989         // wait until the GCLocker initiated GC is performed, and
 990         // then retry the allocation.
 991         if (GCLocker::needs_gc()) {
 992           should_try_gc = false;
 993         } else {
 994           // Read the GC count while still holding the Heap_lock.
 995           gc_count_before = total_collections();
 996           should_try_gc = true;
 997         }
 998       }
 999     }
1000 
1001     if (should_try_gc) {
1002       // If we failed to allocate the humongous object, we should try to
1003       // do a collection pause (if we're allowed) in case it reclaims
1004       // enough space for the allocation to succeed after the pause.
1005 
1006       bool succeeded;
1007       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1008                                    GCCause::_g1_humongous_allocation);
1009       if (result != NULL) {
1010         assert(succeeded, "only way to get back a non-NULL result");
1011         return result;
1012       }
1013 
1014       if (succeeded) {
1015         // If we get here we successfully scheduled a collection which
1016         // failed to allocate. No point in trying to allocate
1017         // further. We'll just return NULL.
1018         MutexLockerEx x(Heap_lock);
1019         *gc_count_before_ret = total_collections();
1020         return NULL;
1021       }
1022     } else {
1023       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1024         MutexLockerEx x(Heap_lock);
1025         *gc_count_before_ret = total_collections();
1026         return NULL;
1027       }
1028       // The GCLocker is either active or the GCLocker initiated
1029       // GC has not yet been performed. Stall until it is and
1030       // then retry the allocation.
1031       GCLocker::stall_until_clear();
1032       (*gclocker_retry_count_ret) += 1;
1033     }
1034 
1035     // We can reach here if we were unsuccessful in scheduling a
1036     // collection (because another thread beat us to it) or if we were
1037     // stalled due to the GC locker. In either can we should retry the
1038     // allocation attempt in case another thread successfully
1039     // performed a collection and reclaimed enough space.  Give a
1040     // warning if we seem to be looping forever.
1041 
1042     if ((QueuedAllocationWarningCount > 0) &&
1043         (try_count % QueuedAllocationWarningCount == 0)) {
1044       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1045                       "retries %d times", try_count);
1046     }
1047   }
1048 
1049   ShouldNotReachHere();
1050   return NULL;
1051 }
1052 
1053 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1054                                                            AllocationContext_t context,
1055                                                            bool expect_null_mutator_alloc_region) {
1056   assert_at_safepoint(true /* should_be_vm_thread */);
1057   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1058          "the current alloc region was unexpectedly found to be non-NULL");
1059 
1060   if (!is_humongous(word_size)) {
1061     return _allocator->attempt_allocation_locked(word_size, context);
1062   } else {
1063     HeapWord* result = humongous_obj_allocate(word_size, context);
1064     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1065       collector_state()->set_initiate_conc_mark_if_possible(true);
1066     }
1067     return result;
1068   }
1069 
1070   ShouldNotReachHere();
1071 }
1072 
1073 class PostMCRemSetClearClosure: public HeapRegionClosure {
1074   G1CollectedHeap* _g1h;
1075   ModRefBarrierSet* _mr_bs;
1076 public:
1077   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1078     _g1h(g1h), _mr_bs(mr_bs) {}
1079 
1080   bool doHeapRegion(HeapRegion* r) {
1081     HeapRegionRemSet* hrrs = r->rem_set();
1082 
1083     _g1h->reset_gc_time_stamps(r);
1084 
1085     if (r->is_continues_humongous()) {
1086       // We'll assert that the strong code root list and RSet is empty
1087       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1088       assert(hrrs->occupied() == 0, "RSet should be empty");
1089     } else {
1090       hrrs->clear();
1091     }
1092     // You might think here that we could clear just the cards
1093     // corresponding to the used region.  But no: if we leave a dirty card
1094     // in a region we might allocate into, then it would prevent that card
1095     // from being enqueued, and cause it to be missed.
1096     // Re: the performance cost: we shouldn't be doing full GC anyway!
1097     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1098 
1099     return false;
1100   }
1101 };
1102 
1103 void G1CollectedHeap::clear_rsets_post_compaction() {
1104   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1105   heap_region_iterate(&rs_clear);
1106 }
1107 
1108 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1109   G1CollectedHeap*   _g1h;
1110   UpdateRSOopClosure _cl;
1111 public:
1112   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1113     _cl(g1->g1_rem_set(), worker_i),
1114     _g1h(g1)
1115   { }
1116 
1117   bool doHeapRegion(HeapRegion* r) {
1118     if (!r->is_continues_humongous()) {
1119       _cl.set_from(r);
1120       r->oop_iterate(&_cl);
1121     }
1122     return false;
1123   }
1124 };
1125 
1126 class ParRebuildRSTask: public AbstractGangTask {
1127   G1CollectedHeap* _g1;
1128   HeapRegionClaimer _hrclaimer;
1129 
1130 public:
1131   ParRebuildRSTask(G1CollectedHeap* g1) :
1132       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1133 
1134   void work(uint worker_id) {
1135     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1136     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1137   }
1138 };
1139 
1140 class PostCompactionPrinterClosure: public HeapRegionClosure {
1141 private:
1142   G1HRPrinter* _hr_printer;
1143 public:
1144   bool doHeapRegion(HeapRegion* hr) {
1145     assert(!hr->is_young(), "not expecting to find young regions");
1146     _hr_printer->post_compaction(hr);
1147     return false;
1148   }
1149 
1150   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1151     : _hr_printer(hr_printer) { }
1152 };
1153 
1154 void G1CollectedHeap::print_hrm_post_compaction() {
1155   if (_hr_printer.is_active()) {
1156     PostCompactionPrinterClosure cl(hr_printer());
1157     heap_region_iterate(&cl);
1158   }
1159 
1160 }
1161 
1162 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1163                                          bool clear_all_soft_refs) {
1164   assert_at_safepoint(true /* should_be_vm_thread */);
1165 
1166   if (GCLocker::check_active_before_gc()) {
1167     return false;
1168   }
1169 
1170   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1171   gc_timer->register_gc_start();
1172 
1173   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1174   GCIdMark gc_id_mark;
1175   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1176 
1177   SvcGCMarker sgcm(SvcGCMarker::FULL);
1178   ResourceMark rm;
1179 
1180   print_heap_before_gc();
1181   print_heap_regions();
1182   trace_heap_before_gc(gc_tracer);
1183 
1184   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1185 
1186   _verifier->verify_region_sets_optional();
1187 
1188   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1189                            collector_policy()->should_clear_all_soft_refs();
1190 
1191   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1192 
1193   {
1194     IsGCActiveMark x;
1195 
1196     // Timing
1197     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1198     GCTraceCPUTime tcpu;
1199 
1200     {
1201       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1202       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1203       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1204 
1205       G1HeapTransition heap_transition(this);
1206       g1_policy()->record_full_collection_start();
1207 
1208       // Note: When we have a more flexible GC logging framework that
1209       // allows us to add optional attributes to a GC log record we
1210       // could consider timing and reporting how long we wait in the
1211       // following two methods.
1212       wait_while_free_regions_coming();
1213       // If we start the compaction before the CM threads finish
1214       // scanning the root regions we might trip them over as we'll
1215       // be moving objects / updating references. So let's wait until
1216       // they are done. By telling them to abort, they should complete
1217       // early.
1218       _cm->root_regions()->abort();
1219       _cm->root_regions()->wait_until_scan_finished();
1220       append_secondary_free_list_if_not_empty_with_lock();
1221 
1222       gc_prologue(true);
1223       increment_total_collections(true /* full gc */);
1224       increment_old_marking_cycles_started();
1225 
1226       assert(used() == recalculate_used(), "Should be equal");
1227 
1228       _verifier->verify_before_gc();
1229 
1230       _verifier->check_bitmaps("Full GC Start");
1231       pre_full_gc_dump(gc_timer);
1232 
1233 #if defined(COMPILER2) || INCLUDE_JVMCI
1234       DerivedPointerTable::clear();
1235 #endif
1236 
1237       // Disable discovery and empty the discovered lists
1238       // for the CM ref processor.
1239       ref_processor_cm()->disable_discovery();
1240       ref_processor_cm()->abandon_partial_discovery();
1241       ref_processor_cm()->verify_no_references_recorded();
1242 
1243       // Abandon current iterations of concurrent marking and concurrent
1244       // refinement, if any are in progress.
1245       concurrent_mark()->abort();
1246 
1247       // Make sure we'll choose a new allocation region afterwards.
1248       _allocator->release_mutator_alloc_region();
1249       _allocator->abandon_gc_alloc_regions();
1250       g1_rem_set()->cleanupHRRS();
1251 
1252       // We may have added regions to the current incremental collection
1253       // set between the last GC or pause and now. We need to clear the
1254       // incremental collection set and then start rebuilding it afresh
1255       // after this full GC.
1256       abandon_collection_set(collection_set());
1257 
1258       tear_down_region_sets(false /* free_list_only */);
1259       collector_state()->set_gcs_are_young(true);
1260 
1261       // See the comments in g1CollectedHeap.hpp and
1262       // G1CollectedHeap::ref_processing_init() about
1263       // how reference processing currently works in G1.
1264 
1265       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1266       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1267 
1268       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1269       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1270 
1271       ref_processor_stw()->enable_discovery();
1272       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1273 
1274       // Do collection work
1275       {
1276         HandleMark hm;  // Discard invalid handles created during gc
1277         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1278       }
1279 
1280       assert(num_free_regions() == 0, "we should not have added any free regions");
1281       rebuild_region_sets(false /* free_list_only */);
1282 
1283       // Enqueue any discovered reference objects that have
1284       // not been removed from the discovered lists.
1285       ref_processor_stw()->enqueue_discovered_references();
1286 
1287 #if defined(COMPILER2) || INCLUDE_JVMCI
1288       DerivedPointerTable::update_pointers();
1289 #endif
1290 
1291       MemoryService::track_memory_usage();
1292 
1293       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1294       ref_processor_stw()->verify_no_references_recorded();
1295 
1296       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1297       ClassLoaderDataGraph::purge();
1298       MetaspaceAux::verify_metrics();
1299 
1300       // Note: since we've just done a full GC, concurrent
1301       // marking is no longer active. Therefore we need not
1302       // re-enable reference discovery for the CM ref processor.
1303       // That will be done at the start of the next marking cycle.
1304       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1305       ref_processor_cm()->verify_no_references_recorded();
1306 
1307       reset_gc_time_stamp();
1308       // Since everything potentially moved, we will clear all remembered
1309       // sets, and clear all cards.  Later we will rebuild remembered
1310       // sets. We will also reset the GC time stamps of the regions.
1311       clear_rsets_post_compaction();
1312       check_gc_time_stamps();
1313 
1314       resize_if_necessary_after_full_collection();
1315 
1316       // We should do this after we potentially resize the heap so
1317       // that all the COMMIT / UNCOMMIT events are generated before
1318       // the compaction events.
1319       print_hrm_post_compaction();
1320 
1321       if (_hot_card_cache->use_cache()) {
1322         _hot_card_cache->reset_card_counts();
1323         _hot_card_cache->reset_hot_cache();
1324       }
1325 
1326       // Rebuild remembered sets of all regions.
1327       uint n_workers =
1328         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1329                                                 workers()->active_workers(),
1330                                                 Threads::number_of_non_daemon_threads());
1331       workers()->update_active_workers(n_workers);
1332       log_info(gc,task)("Using %u workers of %u to rebuild remembered set", n_workers, workers()->total_workers());
1333 
1334       ParRebuildRSTask rebuild_rs_task(this);
1335       workers()->run_task(&rebuild_rs_task);
1336 
1337       // Rebuild the strong code root lists for each region
1338       rebuild_strong_code_roots();
1339 
1340       if (true) { // FIXME
1341         MetaspaceGC::compute_new_size();
1342       }
1343 
1344 #ifdef TRACESPINNING
1345       ParallelTaskTerminator::print_termination_counts();
1346 #endif
1347 
1348       // Discard all rset updates
1349       JavaThread::dirty_card_queue_set().abandon_logs();
1350       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1351 
1352       // At this point there should be no regions in the
1353       // entire heap tagged as young.
1354       assert(check_young_list_empty(), "young list should be empty at this point");
1355 
1356       // Update the number of full collections that have been completed.
1357       increment_old_marking_cycles_completed(false /* concurrent */);
1358 
1359       _hrm.verify_optional();
1360       _verifier->verify_region_sets_optional();
1361 
1362       _verifier->verify_after_gc();
1363 
1364       // Clear the previous marking bitmap, if needed for bitmap verification.
1365       // Note we cannot do this when we clear the next marking bitmap in
1366       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1367       // objects marked during a full GC against the previous bitmap.
1368       // But we need to clear it before calling check_bitmaps below since
1369       // the full GC has compacted objects and updated TAMS but not updated
1370       // the prev bitmap.
1371       if (G1VerifyBitmaps) {
1372         GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1373         _cm->clear_prev_bitmap(workers());
1374       }
1375       _verifier->check_bitmaps("Full GC End");
1376 
1377       start_new_collection_set();
1378 
1379       _allocator->init_mutator_alloc_region();
1380 
1381       g1_policy()->record_full_collection_end();
1382 
1383       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1384       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1385       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1386       // before any GC notifications are raised.
1387       g1mm()->update_sizes();
1388 
1389       gc_epilogue(true);
1390 
1391       heap_transition.print();
1392 
1393       print_heap_after_gc();
1394       print_heap_regions();
1395       trace_heap_after_gc(gc_tracer);
1396 
1397       post_full_gc_dump(gc_timer);
1398     }
1399 
1400     gc_timer->register_gc_end();
1401     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1402   }
1403 
1404   return true;
1405 }
1406 
1407 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1408   // Currently, there is no facility in the do_full_collection(bool) API to notify
1409   // the caller that the collection did not succeed (e.g., because it was locked
1410   // out by the GC locker). So, right now, we'll ignore the return value.
1411   bool dummy = do_full_collection(true,                /* explicit_gc */
1412                                   clear_all_soft_refs);
1413 }
1414 
1415 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1416   // Include bytes that will be pre-allocated to support collections, as "used".
1417   const size_t used_after_gc = used();
1418   const size_t capacity_after_gc = capacity();
1419   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1420 
1421   // This is enforced in arguments.cpp.
1422   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1423          "otherwise the code below doesn't make sense");
1424 
1425   // We don't have floating point command-line arguments
1426   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1427   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1428   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1429   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1430 
1431   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1432   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1433 
1434   // We have to be careful here as these two calculations can overflow
1435   // 32-bit size_t's.
1436   double used_after_gc_d = (double) used_after_gc;
1437   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1438   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1439 
1440   // Let's make sure that they are both under the max heap size, which
1441   // by default will make them fit into a size_t.
1442   double desired_capacity_upper_bound = (double) max_heap_size;
1443   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1444                                     desired_capacity_upper_bound);
1445   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1446                                     desired_capacity_upper_bound);
1447 
1448   // We can now safely turn them into size_t's.
1449   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1450   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1451 
1452   // This assert only makes sense here, before we adjust them
1453   // with respect to the min and max heap size.
1454   assert(minimum_desired_capacity <= maximum_desired_capacity,
1455          "minimum_desired_capacity = " SIZE_FORMAT ", "
1456          "maximum_desired_capacity = " SIZE_FORMAT,
1457          minimum_desired_capacity, maximum_desired_capacity);
1458 
1459   // Should not be greater than the heap max size. No need to adjust
1460   // it with respect to the heap min size as it's a lower bound (i.e.,
1461   // we'll try to make the capacity larger than it, not smaller).
1462   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1463   // Should not be less than the heap min size. No need to adjust it
1464   // with respect to the heap max size as it's an upper bound (i.e.,
1465   // we'll try to make the capacity smaller than it, not greater).
1466   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1467 
1468   if (capacity_after_gc < minimum_desired_capacity) {
1469     // Don't expand unless it's significant
1470     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1471 
1472     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1473                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1474                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1475 
1476     expand(expand_bytes, _workers);
1477 
1478     // No expansion, now see if we want to shrink
1479   } else if (capacity_after_gc > maximum_desired_capacity) {
1480     // Capacity too large, compute shrinking size
1481     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1482 
1483     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1484                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1485                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1486 
1487     shrink(shrink_bytes);
1488   }
1489 }
1490 
1491 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1492                                                             AllocationContext_t context,
1493                                                             bool do_gc,
1494                                                             bool clear_all_soft_refs,
1495                                                             bool expect_null_mutator_alloc_region,
1496                                                             bool* gc_succeeded) {
1497   *gc_succeeded = true;
1498   // Let's attempt the allocation first.
1499   HeapWord* result =
1500     attempt_allocation_at_safepoint(word_size,
1501                                     context,
1502                                     expect_null_mutator_alloc_region);
1503   if (result != NULL) {
1504     assert(*gc_succeeded, "sanity");
1505     return result;
1506   }
1507 
1508   // In a G1 heap, we're supposed to keep allocation from failing by
1509   // incremental pauses.  Therefore, at least for now, we'll favor
1510   // expansion over collection.  (This might change in the future if we can
1511   // do something smarter than full collection to satisfy a failed alloc.)
1512   result = expand_and_allocate(word_size, context);
1513   if (result != NULL) {
1514     assert(*gc_succeeded, "sanity");
1515     return result;
1516   }
1517 
1518   if (do_gc) {
1519     // Expansion didn't work, we'll try to do a Full GC.
1520     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1521                                        clear_all_soft_refs);
1522   }
1523 
1524   return NULL;
1525 }
1526 
1527 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1528                                                      AllocationContext_t context,
1529                                                      bool* succeeded) {
1530   assert_at_safepoint(true /* should_be_vm_thread */);
1531 
1532   // Attempts to allocate followed by Full GC.
1533   HeapWord* result =
1534     satisfy_failed_allocation_helper(word_size,
1535                                      context,
1536                                      true,  /* do_gc */
1537                                      false, /* clear_all_soft_refs */
1538                                      false, /* expect_null_mutator_alloc_region */
1539                                      succeeded);
1540 
1541   if (result != NULL || !*succeeded) {
1542     return result;
1543   }
1544 
1545   // Attempts to allocate followed by Full GC that will collect all soft references.
1546   result = satisfy_failed_allocation_helper(word_size,
1547                                             context,
1548                                             true, /* do_gc */
1549                                             true, /* clear_all_soft_refs */
1550                                             true, /* expect_null_mutator_alloc_region */
1551                                             succeeded);
1552 
1553   if (result != NULL || !*succeeded) {
1554     return result;
1555   }
1556 
1557   // Attempts to allocate, no GC
1558   result = satisfy_failed_allocation_helper(word_size,
1559                                             context,
1560                                             false, /* do_gc */
1561                                             false, /* clear_all_soft_refs */
1562                                             true,  /* expect_null_mutator_alloc_region */
1563                                             succeeded);
1564 
1565   if (result != NULL) {
1566     assert(*succeeded, "sanity");
1567     return result;
1568   }
1569 
1570   assert(!collector_policy()->should_clear_all_soft_refs(),
1571          "Flag should have been handled and cleared prior to this point");
1572 
1573   // What else?  We might try synchronous finalization later.  If the total
1574   // space available is large enough for the allocation, then a more
1575   // complete compaction phase than we've tried so far might be
1576   // appropriate.
1577   assert(*succeeded, "sanity");
1578   return NULL;
1579 }
1580 
1581 // Attempting to expand the heap sufficiently
1582 // to support an allocation of the given "word_size".  If
1583 // successful, perform the allocation and return the address of the
1584 // allocated block, or else "NULL".
1585 
1586 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1587   assert_at_safepoint(true /* should_be_vm_thread */);
1588 
1589   _verifier->verify_region_sets_optional();
1590 
1591   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1592   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1593                             word_size * HeapWordSize);
1594 
1595 
1596   if (expand(expand_bytes, _workers)) {
1597     _hrm.verify_optional();
1598     _verifier->verify_region_sets_optional();
1599     return attempt_allocation_at_safepoint(word_size,
1600                                            context,
1601                                            false /* expect_null_mutator_alloc_region */);
1602   }
1603   return NULL;
1604 }
1605 
1606 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1607   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1608   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1609                                        HeapRegion::GrainBytes);
1610 
1611   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B",
1612                             expand_bytes, aligned_expand_bytes);
1613 
1614   if (is_maximal_no_gc()) {
1615     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1616     return false;
1617   }
1618 
1619   double expand_heap_start_time_sec = os::elapsedTime();
1620   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1621   assert(regions_to_expand > 0, "Must expand by at least one region");
1622 
1623   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1624   if (expand_time_ms != NULL) {
1625     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1626   }
1627 
1628   if (expanded_by > 0) {
1629     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1630     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1631     g1_policy()->record_new_heap_size(num_regions());
1632   } else {
1633     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1634 
1635     // The expansion of the virtual storage space was unsuccessful.
1636     // Let's see if it was because we ran out of swap.
1637     if (G1ExitOnExpansionFailure &&
1638         _hrm.available() >= regions_to_expand) {
1639       // We had head room...
1640       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1641     }
1642   }
1643   return regions_to_expand > 0;
1644 }
1645 
1646 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1647   size_t aligned_shrink_bytes =
1648     ReservedSpace::page_align_size_down(shrink_bytes);
1649   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1650                                          HeapRegion::GrainBytes);
1651   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1652 
1653   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1654   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1655 
1656 
1657   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1658                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1659   if (num_regions_removed > 0) {
1660     g1_policy()->record_new_heap_size(num_regions());
1661   } else {
1662     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1663   }
1664 }
1665 
1666 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1667   _verifier->verify_region_sets_optional();
1668 
1669   // We should only reach here at the end of a Full GC which means we
1670   // should not not be holding to any GC alloc regions. The method
1671   // below will make sure of that and do any remaining clean up.
1672   _allocator->abandon_gc_alloc_regions();
1673 
1674   // Instead of tearing down / rebuilding the free lists here, we
1675   // could instead use the remove_all_pending() method on free_list to
1676   // remove only the ones that we need to remove.
1677   tear_down_region_sets(true /* free_list_only */);
1678   shrink_helper(shrink_bytes);
1679   rebuild_region_sets(true /* free_list_only */);
1680 
1681   _hrm.verify_optional();
1682   _verifier->verify_region_sets_optional();
1683 }
1684 
1685 // Public methods.
1686 
1687 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1688   CollectedHeap(),
1689   _collector_policy(collector_policy),
1690   _g1_policy(create_g1_policy()),
1691   _collection_set(this, _g1_policy),
1692   _dirty_card_queue_set(false),
1693   _is_alive_closure_cm(this),
1694   _is_alive_closure_stw(this),
1695   _ref_processor_cm(NULL),
1696   _ref_processor_stw(NULL),
1697   _bot(NULL),
1698   _hot_card_cache(NULL),
1699   _g1_rem_set(NULL),
1700   _cg1r(NULL),
1701   _g1mm(NULL),
1702   _refine_cte_cl(NULL),
1703   _preserved_marks_set(true /* in_c_heap */),
1704   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1705   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1706   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1707   _humongous_reclaim_candidates(),
1708   _has_humongous_reclaim_candidates(false),
1709   _archive_allocator(NULL),
1710   _free_regions_coming(false),
1711   _gc_time_stamp(0),
1712   _summary_bytes_used(0),
1713   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1714   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1715   _expand_heap_after_alloc_failure(true),
1716   _old_marking_cycles_started(0),
1717   _old_marking_cycles_completed(0),
1718   _in_cset_fast_test(),
1719   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1720   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1721 
1722   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1723                           /* are_GC_task_threads */true,
1724                           /* are_ConcurrentGC_threads */false);
1725   _workers->initialize_workers();
1726   _verifier = new G1HeapVerifier(this);
1727 
1728   _allocator = G1Allocator::create_allocator(this);
1729 
1730   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1731 
1732   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1733 
1734   // Override the default _filler_array_max_size so that no humongous filler
1735   // objects are created.
1736   _filler_array_max_size = _humongous_object_threshold_in_words;
1737 
1738   uint n_queues = ParallelGCThreads;
1739   _task_queues = new RefToScanQueueSet(n_queues);
1740 
1741   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1742 
1743   for (uint i = 0; i < n_queues; i++) {
1744     RefToScanQueue* q = new RefToScanQueue();
1745     q->initialize();
1746     _task_queues->register_queue(i, q);
1747     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1748   }
1749 
1750   // Initialize the G1EvacuationFailureALot counters and flags.
1751   NOT_PRODUCT(reset_evacuation_should_fail();)
1752 
1753   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1754 }
1755 
1756 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1757                                                                  size_t size,
1758                                                                  size_t translation_factor) {
1759   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1760   // Allocate a new reserved space, preferring to use large pages.
1761   ReservedSpace rs(size, preferred_page_size);
1762   G1RegionToSpaceMapper* result  =
1763     G1RegionToSpaceMapper::create_mapper(rs,
1764                                          size,
1765                                          rs.alignment(),
1766                                          HeapRegion::GrainBytes,
1767                                          translation_factor,
1768                                          mtGC);
1769 
1770   os::trace_page_sizes_for_requested_size(description,
1771                                           size,
1772                                           preferred_page_size,
1773                                           rs.alignment(),
1774                                           rs.base(),
1775                                           rs.size());
1776 
1777   return result;
1778 }
1779 
1780 jint G1CollectedHeap::initialize() {
1781   CollectedHeap::pre_initialize();
1782   os::enable_vtime();
1783 
1784   // Necessary to satisfy locking discipline assertions.
1785 
1786   MutexLocker x(Heap_lock);
1787 
1788   // While there are no constraints in the GC code that HeapWordSize
1789   // be any particular value, there are multiple other areas in the
1790   // system which believe this to be true (e.g. oop->object_size in some
1791   // cases incorrectly returns the size in wordSize units rather than
1792   // HeapWordSize).
1793   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1794 
1795   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1796   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1797   size_t heap_alignment = collector_policy()->heap_alignment();
1798 
1799   // Ensure that the sizes are properly aligned.
1800   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1801   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1802   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1803 
1804   _refine_cte_cl = new RefineCardTableEntryClosure();
1805 
1806   jint ecode = JNI_OK;
1807   _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode);
1808   if (_cg1r == NULL) {
1809     return ecode;
1810   }
1811 
1812   // Reserve the maximum.
1813 
1814   // When compressed oops are enabled, the preferred heap base
1815   // is calculated by subtracting the requested size from the
1816   // 32Gb boundary and using the result as the base address for
1817   // heap reservation. If the requested size is not aligned to
1818   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1819   // into the ReservedHeapSpace constructor) then the actual
1820   // base of the reserved heap may end up differing from the
1821   // address that was requested (i.e. the preferred heap base).
1822   // If this happens then we could end up using a non-optimal
1823   // compressed oops mode.
1824 
1825   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1826                                                  heap_alignment);
1827 
1828   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1829 
1830   // Create the barrier set for the entire reserved region.
1831   G1SATBCardTableLoggingModRefBS* bs
1832     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1833   bs->initialize();
1834   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1835   set_barrier_set(bs);
1836 
1837   // Create the hot card cache.
1838   _hot_card_cache = new G1HotCardCache(this);
1839 
1840   // Also create a G1 rem set.
1841   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1842 
1843   // Carve out the G1 part of the heap.
1844   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1845   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1846   G1RegionToSpaceMapper* heap_storage =
1847     G1RegionToSpaceMapper::create_mapper(g1_rs,
1848                                          g1_rs.size(),
1849                                          page_size,
1850                                          HeapRegion::GrainBytes,
1851                                          1,
1852                                          mtJavaHeap);
1853   os::trace_page_sizes("Heap",
1854                        collector_policy()->min_heap_byte_size(),
1855                        max_byte_size,
1856                        page_size,
1857                        heap_rs.base(),
1858                        heap_rs.size());
1859   heap_storage->set_mapping_changed_listener(&_listener);
1860 
1861   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1862   G1RegionToSpaceMapper* bot_storage =
1863     create_aux_memory_mapper("Block Offset Table",
1864                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1865                              G1BlockOffsetTable::heap_map_factor());
1866 
1867   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1868   G1RegionToSpaceMapper* cardtable_storage =
1869     create_aux_memory_mapper("Card Table",
1870                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1871                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1872 
1873   G1RegionToSpaceMapper* card_counts_storage =
1874     create_aux_memory_mapper("Card Counts Table",
1875                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1876                              G1CardCounts::heap_map_factor());
1877 
1878   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1879   G1RegionToSpaceMapper* prev_bitmap_storage =
1880     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1881   G1RegionToSpaceMapper* next_bitmap_storage =
1882     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1883 
1884   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1885   g1_barrier_set()->initialize(cardtable_storage);
1886   // Do later initialization work for concurrent refinement.
1887   _hot_card_cache->initialize(card_counts_storage);
1888 
1889   // 6843694 - ensure that the maximum region index can fit
1890   // in the remembered set structures.
1891   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1892   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1893 
1894   g1_rem_set()->initialize(max_capacity(), max_regions());
1895 
1896   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1897   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1898   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1899             "too many cards per region");
1900 
1901   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1902 
1903   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1904 
1905   {
1906     HeapWord* start = _hrm.reserved().start();
1907     HeapWord* end = _hrm.reserved().end();
1908     size_t granularity = HeapRegion::GrainBytes;
1909 
1910     _in_cset_fast_test.initialize(start, end, granularity);
1911     _humongous_reclaim_candidates.initialize(start, end, granularity);
1912   }
1913 
1914   // Create the G1ConcurrentMark data structure and thread.
1915   // (Must do this late, so that "max_regions" is defined.)
1916   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1917   if (_cm == NULL || !_cm->completed_initialization()) {
1918     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1919     return JNI_ENOMEM;
1920   }
1921   _cmThread = _cm->cmThread();
1922 
1923   // Now expand into the initial heap size.
1924   if (!expand(init_byte_size, _workers)) {
1925     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1926     return JNI_ENOMEM;
1927   }
1928 
1929   // Perform any initialization actions delegated to the policy.
1930   g1_policy()->init(this, &_collection_set);
1931 
1932   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1933                                                SATB_Q_FL_lock,
1934                                                G1SATBProcessCompletedThreshold,
1935                                                Shared_SATB_Q_lock);
1936 
1937   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1938                                                 DirtyCardQ_CBL_mon,
1939                                                 DirtyCardQ_FL_lock,
1940                                                 (int)concurrent_g1_refine()->yellow_zone(),
1941                                                 (int)concurrent_g1_refine()->red_zone(),
1942                                                 Shared_DirtyCardQ_lock,
1943                                                 NULL,  // fl_owner
1944                                                 true); // init_free_ids
1945 
1946   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1947                                     DirtyCardQ_CBL_mon,
1948                                     DirtyCardQ_FL_lock,
1949                                     -1, // never trigger processing
1950                                     -1, // no limit on length
1951                                     Shared_DirtyCardQ_lock,
1952                                     &JavaThread::dirty_card_queue_set());
1953 
1954   // Here we allocate the dummy HeapRegion that is required by the
1955   // G1AllocRegion class.
1956   HeapRegion* dummy_region = _hrm.get_dummy_region();
1957 
1958   // We'll re-use the same region whether the alloc region will
1959   // require BOT updates or not and, if it doesn't, then a non-young
1960   // region will complain that it cannot support allocations without
1961   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1962   dummy_region->set_eden();
1963   // Make sure it's full.
1964   dummy_region->set_top(dummy_region->end());
1965   G1AllocRegion::setup(this, dummy_region);
1966 
1967   _allocator->init_mutator_alloc_region();
1968 
1969   // Do create of the monitoring and management support so that
1970   // values in the heap have been properly initialized.
1971   _g1mm = new G1MonitoringSupport(this);
1972 
1973   G1StringDedup::initialize();
1974 
1975   _preserved_marks_set.init(ParallelGCThreads);
1976 
1977   _collection_set.initialize(max_regions());
1978 
1979   return JNI_OK;
1980 }
1981 
1982 void G1CollectedHeap::stop() {
1983   // Stop all concurrent threads. We do this to make sure these threads
1984   // do not continue to execute and access resources (e.g. logging)
1985   // that are destroyed during shutdown.
1986   _cg1r->stop();
1987   _cmThread->stop();
1988   if (G1StringDedup::is_enabled()) {
1989     G1StringDedup::stop();
1990   }
1991 }
1992 
1993 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1994   return HeapRegion::max_region_size();
1995 }
1996 
1997 void G1CollectedHeap::post_initialize() {
1998   ref_processing_init();
1999 }
2000 
2001 void G1CollectedHeap::ref_processing_init() {
2002   // Reference processing in G1 currently works as follows:
2003   //
2004   // * There are two reference processor instances. One is
2005   //   used to record and process discovered references
2006   //   during concurrent marking; the other is used to
2007   //   record and process references during STW pauses
2008   //   (both full and incremental).
2009   // * Both ref processors need to 'span' the entire heap as
2010   //   the regions in the collection set may be dotted around.
2011   //
2012   // * For the concurrent marking ref processor:
2013   //   * Reference discovery is enabled at initial marking.
2014   //   * Reference discovery is disabled and the discovered
2015   //     references processed etc during remarking.
2016   //   * Reference discovery is MT (see below).
2017   //   * Reference discovery requires a barrier (see below).
2018   //   * Reference processing may or may not be MT
2019   //     (depending on the value of ParallelRefProcEnabled
2020   //     and ParallelGCThreads).
2021   //   * A full GC disables reference discovery by the CM
2022   //     ref processor and abandons any entries on it's
2023   //     discovered lists.
2024   //
2025   // * For the STW processor:
2026   //   * Non MT discovery is enabled at the start of a full GC.
2027   //   * Processing and enqueueing during a full GC is non-MT.
2028   //   * During a full GC, references are processed after marking.
2029   //
2030   //   * Discovery (may or may not be MT) is enabled at the start
2031   //     of an incremental evacuation pause.
2032   //   * References are processed near the end of a STW evacuation pause.
2033   //   * For both types of GC:
2034   //     * Discovery is atomic - i.e. not concurrent.
2035   //     * Reference discovery will not need a barrier.
2036 
2037   MemRegion mr = reserved_region();
2038 
2039   // Concurrent Mark ref processor
2040   _ref_processor_cm =
2041     new ReferenceProcessor(mr,    // span
2042                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2043                                 // mt processing
2044                            ParallelGCThreads,
2045                                 // degree of mt processing
2046                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2047                                 // mt discovery
2048                            MAX2(ParallelGCThreads, ConcGCThreads),
2049                                 // degree of mt discovery
2050                            false,
2051                                 // Reference discovery is not atomic
2052                            &_is_alive_closure_cm);
2053                                 // is alive closure
2054                                 // (for efficiency/performance)
2055 
2056   // STW ref processor
2057   _ref_processor_stw =
2058     new ReferenceProcessor(mr,    // span
2059                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2060                                 // mt processing
2061                            ParallelGCThreads,
2062                                 // degree of mt processing
2063                            (ParallelGCThreads > 1),
2064                                 // mt discovery
2065                            ParallelGCThreads,
2066                                 // degree of mt discovery
2067                            true,
2068                                 // Reference discovery is atomic
2069                            &_is_alive_closure_stw);
2070                                 // is alive closure
2071                                 // (for efficiency/performance)
2072 }
2073 
2074 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2075   return _collector_policy;
2076 }
2077 
2078 size_t G1CollectedHeap::capacity() const {
2079   return _hrm.length() * HeapRegion::GrainBytes;
2080 }
2081 
2082 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2083   hr->reset_gc_time_stamp();
2084 }
2085 
2086 #ifndef PRODUCT
2087 
2088 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2089 private:
2090   unsigned _gc_time_stamp;
2091   bool _failures;
2092 
2093 public:
2094   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2095     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2096 
2097   virtual bool doHeapRegion(HeapRegion* hr) {
2098     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2099     if (_gc_time_stamp != region_gc_time_stamp) {
2100       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2101                             region_gc_time_stamp, _gc_time_stamp);
2102       _failures = true;
2103     }
2104     return false;
2105   }
2106 
2107   bool failures() { return _failures; }
2108 };
2109 
2110 void G1CollectedHeap::check_gc_time_stamps() {
2111   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2112   heap_region_iterate(&cl);
2113   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2114 }
2115 #endif // PRODUCT
2116 
2117 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2118   _hot_card_cache->drain(cl, worker_i);
2119 }
2120 
2121 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2122   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2123   size_t n_completed_buffers = 0;
2124   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2125     n_completed_buffers++;
2126   }
2127   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2128   dcqs.clear_n_completed_buffers();
2129   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2130 }
2131 
2132 // Computes the sum of the storage used by the various regions.
2133 size_t G1CollectedHeap::used() const {
2134   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2135   if (_archive_allocator != NULL) {
2136     result += _archive_allocator->used();
2137   }
2138   return result;
2139 }
2140 
2141 size_t G1CollectedHeap::used_unlocked() const {
2142   return _summary_bytes_used;
2143 }
2144 
2145 class SumUsedClosure: public HeapRegionClosure {
2146   size_t _used;
2147 public:
2148   SumUsedClosure() : _used(0) {}
2149   bool doHeapRegion(HeapRegion* r) {
2150     _used += r->used();
2151     return false;
2152   }
2153   size_t result() { return _used; }
2154 };
2155 
2156 size_t G1CollectedHeap::recalculate_used() const {
2157   double recalculate_used_start = os::elapsedTime();
2158 
2159   SumUsedClosure blk;
2160   heap_region_iterate(&blk);
2161 
2162   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2163   return blk.result();
2164 }
2165 
2166 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2167   switch (cause) {
2168     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2169     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2170     case GCCause::_update_allocation_context_stats_inc: return true;
2171     case GCCause::_wb_conc_mark:                        return true;
2172     default :                                           return false;
2173   }
2174 }
2175 
2176 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2177   switch (cause) {
2178     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2179     case GCCause::_g1_humongous_allocation: return true;
2180     default:                                return is_user_requested_concurrent_full_gc(cause);
2181   }
2182 }
2183 
2184 #ifndef PRODUCT
2185 void G1CollectedHeap::allocate_dummy_regions() {
2186   // Let's fill up most of the region
2187   size_t word_size = HeapRegion::GrainWords - 1024;
2188   // And as a result the region we'll allocate will be humongous.
2189   guarantee(is_humongous(word_size), "sanity");
2190 
2191   // _filler_array_max_size is set to humongous object threshold
2192   // but temporarily change it to use CollectedHeap::fill_with_object().
2193   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2194 
2195   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2196     // Let's use the existing mechanism for the allocation
2197     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2198                                                  AllocationContext::system());
2199     if (dummy_obj != NULL) {
2200       MemRegion mr(dummy_obj, word_size);
2201       CollectedHeap::fill_with_object(mr);
2202     } else {
2203       // If we can't allocate once, we probably cannot allocate
2204       // again. Let's get out of the loop.
2205       break;
2206     }
2207   }
2208 }
2209 #endif // !PRODUCT
2210 
2211 void G1CollectedHeap::increment_old_marking_cycles_started() {
2212   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2213          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2214          "Wrong marking cycle count (started: %d, completed: %d)",
2215          _old_marking_cycles_started, _old_marking_cycles_completed);
2216 
2217   _old_marking_cycles_started++;
2218 }
2219 
2220 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2221   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2222 
2223   // We assume that if concurrent == true, then the caller is a
2224   // concurrent thread that was joined the Suspendible Thread
2225   // Set. If there's ever a cheap way to check this, we should add an
2226   // assert here.
2227 
2228   // Given that this method is called at the end of a Full GC or of a
2229   // concurrent cycle, and those can be nested (i.e., a Full GC can
2230   // interrupt a concurrent cycle), the number of full collections
2231   // completed should be either one (in the case where there was no
2232   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2233   // behind the number of full collections started.
2234 
2235   // This is the case for the inner caller, i.e. a Full GC.
2236   assert(concurrent ||
2237          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2238          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2239          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2240          "is inconsistent with _old_marking_cycles_completed = %u",
2241          _old_marking_cycles_started, _old_marking_cycles_completed);
2242 
2243   // This is the case for the outer caller, i.e. the concurrent cycle.
2244   assert(!concurrent ||
2245          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2246          "for outer caller (concurrent cycle): "
2247          "_old_marking_cycles_started = %u "
2248          "is inconsistent with _old_marking_cycles_completed = %u",
2249          _old_marking_cycles_started, _old_marking_cycles_completed);
2250 
2251   _old_marking_cycles_completed += 1;
2252 
2253   // We need to clear the "in_progress" flag in the CM thread before
2254   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2255   // is set) so that if a waiter requests another System.gc() it doesn't
2256   // incorrectly see that a marking cycle is still in progress.
2257   if (concurrent) {
2258     _cmThread->set_idle();
2259   }
2260 
2261   // This notify_all() will ensure that a thread that called
2262   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2263   // and it's waiting for a full GC to finish will be woken up. It is
2264   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2265   FullGCCount_lock->notify_all();
2266 }
2267 
2268 void G1CollectedHeap::collect(GCCause::Cause cause) {
2269   assert_heap_not_locked();
2270 
2271   uint gc_count_before;
2272   uint old_marking_count_before;
2273   uint full_gc_count_before;
2274   bool retry_gc;
2275 
2276   do {
2277     retry_gc = false;
2278 
2279     {
2280       MutexLocker ml(Heap_lock);
2281 
2282       // Read the GC count while holding the Heap_lock
2283       gc_count_before = total_collections();
2284       full_gc_count_before = total_full_collections();
2285       old_marking_count_before = _old_marking_cycles_started;
2286     }
2287 
2288     if (should_do_concurrent_full_gc(cause)) {
2289       // Schedule an initial-mark evacuation pause that will start a
2290       // concurrent cycle. We're setting word_size to 0 which means that
2291       // we are not requesting a post-GC allocation.
2292       VM_G1IncCollectionPause op(gc_count_before,
2293                                  0,     /* word_size */
2294                                  true,  /* should_initiate_conc_mark */
2295                                  g1_policy()->max_pause_time_ms(),
2296                                  cause);
2297       op.set_allocation_context(AllocationContext::current());
2298 
2299       VMThread::execute(&op);
2300       if (!op.pause_succeeded()) {
2301         if (old_marking_count_before == _old_marking_cycles_started) {
2302           retry_gc = op.should_retry_gc();
2303         } else {
2304           // A Full GC happened while we were trying to schedule the
2305           // initial-mark GC. No point in starting a new cycle given
2306           // that the whole heap was collected anyway.
2307         }
2308 
2309         if (retry_gc) {
2310           if (GCLocker::is_active_and_needs_gc()) {
2311             GCLocker::stall_until_clear();
2312           }
2313         }
2314       }
2315     } else {
2316       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2317           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2318 
2319         // Schedule a standard evacuation pause. We're setting word_size
2320         // to 0 which means that we are not requesting a post-GC allocation.
2321         VM_G1IncCollectionPause op(gc_count_before,
2322                                    0,     /* word_size */
2323                                    false, /* should_initiate_conc_mark */
2324                                    g1_policy()->max_pause_time_ms(),
2325                                    cause);
2326         VMThread::execute(&op);
2327       } else {
2328         // Schedule a Full GC.
2329         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2330         VMThread::execute(&op);
2331       }
2332     }
2333   } while (retry_gc);
2334 }
2335 
2336 bool G1CollectedHeap::is_in(const void* p) const {
2337   if (_hrm.reserved().contains(p)) {
2338     // Given that we know that p is in the reserved space,
2339     // heap_region_containing() should successfully
2340     // return the containing region.
2341     HeapRegion* hr = heap_region_containing(p);
2342     return hr->is_in(p);
2343   } else {
2344     return false;
2345   }
2346 }
2347 
2348 #ifdef ASSERT
2349 bool G1CollectedHeap::is_in_exact(const void* p) const {
2350   bool contains = reserved_region().contains(p);
2351   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2352   if (contains && available) {
2353     return true;
2354   } else {
2355     return false;
2356   }
2357 }
2358 #endif
2359 
2360 // Iteration functions.
2361 
2362 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2363 
2364 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2365   ExtendedOopClosure* _cl;
2366 public:
2367   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2368   bool doHeapRegion(HeapRegion* r) {
2369     if (!r->is_continues_humongous()) {
2370       r->oop_iterate(_cl);
2371     }
2372     return false;
2373   }
2374 };
2375 
2376 // Iterates an ObjectClosure over all objects within a HeapRegion.
2377 
2378 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2379   ObjectClosure* _cl;
2380 public:
2381   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2382   bool doHeapRegion(HeapRegion* r) {
2383     if (!r->is_continues_humongous()) {
2384       r->object_iterate(_cl);
2385     }
2386     return false;
2387   }
2388 };
2389 
2390 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2391   IterateObjectClosureRegionClosure blk(cl);
2392   heap_region_iterate(&blk);
2393 }
2394 
2395 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2396   _hrm.iterate(cl);
2397 }
2398 
2399 void
2400 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2401                                          uint worker_id,
2402                                          HeapRegionClaimer *hrclaimer,
2403                                          bool concurrent) const {
2404   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2405 }
2406 
2407 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2408   _collection_set.iterate(cl);
2409 }
2410 
2411 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2412   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2413 }
2414 
2415 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2416   HeapRegion* result = _hrm.next_region_in_heap(from);
2417   while (result != NULL && result->is_pinned()) {
2418     result = _hrm.next_region_in_heap(result);
2419   }
2420   return result;
2421 }
2422 
2423 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2424   HeapRegion* hr = heap_region_containing(addr);
2425   return hr->block_start(addr);
2426 }
2427 
2428 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2429   HeapRegion* hr = heap_region_containing(addr);
2430   return hr->block_size(addr);
2431 }
2432 
2433 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2434   HeapRegion* hr = heap_region_containing(addr);
2435   return hr->block_is_obj(addr);
2436 }
2437 
2438 bool G1CollectedHeap::supports_tlab_allocation() const {
2439   return true;
2440 }
2441 
2442 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2443   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2444 }
2445 
2446 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2447   return _eden.length() * HeapRegion::GrainBytes;
2448 }
2449 
2450 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2451 // must be equal to the humongous object limit.
2452 size_t G1CollectedHeap::max_tlab_size() const {
2453   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2454 }
2455 
2456 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2457   AllocationContext_t context = AllocationContext::current();
2458   return _allocator->unsafe_max_tlab_alloc(context);
2459 }
2460 
2461 size_t G1CollectedHeap::max_capacity() const {
2462   return _hrm.reserved().byte_size();
2463 }
2464 
2465 jlong G1CollectedHeap::millis_since_last_gc() {
2466   // See the notes in GenCollectedHeap::millis_since_last_gc()
2467   // for more information about the implementation.
2468   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2469     _g1_policy->collection_pause_end_millis();
2470   if (ret_val < 0) {
2471     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2472       ". returning zero instead.", ret_val);
2473     return 0;
2474   }
2475   return ret_val;
2476 }
2477 
2478 void G1CollectedHeap::prepare_for_verify() {
2479   _verifier->prepare_for_verify();
2480 }
2481 
2482 void G1CollectedHeap::verify(VerifyOption vo) {
2483   _verifier->verify(vo);
2484 }
2485 
2486 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2487   return true;
2488 }
2489 
2490 const char* const* G1CollectedHeap::concurrent_phases() const {
2491   return _cmThread->concurrent_phases();
2492 }
2493 
2494 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2495   return _cmThread->request_concurrent_phase(phase);
2496 }
2497 
2498 class PrintRegionClosure: public HeapRegionClosure {
2499   outputStream* _st;
2500 public:
2501   PrintRegionClosure(outputStream* st) : _st(st) {}
2502   bool doHeapRegion(HeapRegion* r) {
2503     r->print_on(_st);
2504     return false;
2505   }
2506 };
2507 
2508 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2509                                        const HeapRegion* hr,
2510                                        const VerifyOption vo) const {
2511   switch (vo) {
2512   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2513   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2514   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2515   default:                            ShouldNotReachHere();
2516   }
2517   return false; // keep some compilers happy
2518 }
2519 
2520 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2521                                        const VerifyOption vo) const {
2522   switch (vo) {
2523   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2524   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2525   case VerifyOption_G1UseMarkWord: {
2526     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2527     return !obj->is_gc_marked() && !hr->is_archive();
2528   }
2529   default:                            ShouldNotReachHere();
2530   }
2531   return false; // keep some compilers happy
2532 }
2533 
2534 void G1CollectedHeap::print_heap_regions() const {
2535   Log(gc, heap, region) log;
2536   if (log.is_trace()) {
2537     ResourceMark rm;
2538     print_regions_on(log.trace_stream());
2539   }
2540 }
2541 
2542 void G1CollectedHeap::print_on(outputStream* st) const {
2543   st->print(" %-20s", "garbage-first heap");
2544   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2545             capacity()/K, used_unlocked()/K);
2546   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2547             p2i(_hrm.reserved().start()),
2548             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2549             p2i(_hrm.reserved().end()));
2550   st->cr();
2551   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2552   uint young_regions = young_regions_count();
2553   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2554             (size_t) young_regions * HeapRegion::GrainBytes / K);
2555   uint survivor_regions = survivor_regions_count();
2556   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2557             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2558   st->cr();
2559   MetaspaceAux::print_on(st);
2560 }
2561 
2562 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2563   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2564                "HS=humongous(starts), HC=humongous(continues), "
2565                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2566                "AC=allocation context, "
2567                "TAMS=top-at-mark-start (previous, next)");
2568   PrintRegionClosure blk(st);
2569   heap_region_iterate(&blk);
2570 }
2571 
2572 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2573   print_on(st);
2574 
2575   // Print the per-region information.
2576   print_regions_on(st);
2577 }
2578 
2579 void G1CollectedHeap::print_on_error(outputStream* st) const {
2580   this->CollectedHeap::print_on_error(st);
2581 
2582   if (_cm != NULL) {
2583     st->cr();
2584     _cm->print_on_error(st);
2585   }
2586 }
2587 
2588 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2589   workers()->print_worker_threads_on(st);
2590   _cmThread->print_on(st);
2591   st->cr();
2592   _cm->print_worker_threads_on(st);
2593   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2594   if (G1StringDedup::is_enabled()) {
2595     G1StringDedup::print_worker_threads_on(st);
2596   }
2597 }
2598 
2599 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2600   workers()->threads_do(tc);
2601   tc->do_thread(_cmThread);
2602   _cm->threads_do(tc);
2603   _cg1r->threads_do(tc); // also iterates over the sample thread
2604   if (G1StringDedup::is_enabled()) {
2605     G1StringDedup::threads_do(tc);
2606   }
2607 }
2608 
2609 void G1CollectedHeap::print_tracing_info() const {
2610   g1_rem_set()->print_summary_info();
2611   concurrent_mark()->print_summary_info();
2612 }
2613 
2614 #ifndef PRODUCT
2615 // Helpful for debugging RSet issues.
2616 
2617 class PrintRSetsClosure : public HeapRegionClosure {
2618 private:
2619   const char* _msg;
2620   size_t _occupied_sum;
2621 
2622 public:
2623   bool doHeapRegion(HeapRegion* r) {
2624     HeapRegionRemSet* hrrs = r->rem_set();
2625     size_t occupied = hrrs->occupied();
2626     _occupied_sum += occupied;
2627 
2628     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2629     if (occupied == 0) {
2630       tty->print_cr("  RSet is empty");
2631     } else {
2632       hrrs->print();
2633     }
2634     tty->print_cr("----------");
2635     return false;
2636   }
2637 
2638   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2639     tty->cr();
2640     tty->print_cr("========================================");
2641     tty->print_cr("%s", msg);
2642     tty->cr();
2643   }
2644 
2645   ~PrintRSetsClosure() {
2646     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2647     tty->print_cr("========================================");
2648     tty->cr();
2649   }
2650 };
2651 
2652 void G1CollectedHeap::print_cset_rsets() {
2653   PrintRSetsClosure cl("Printing CSet RSets");
2654   collection_set_iterate(&cl);
2655 }
2656 
2657 void G1CollectedHeap::print_all_rsets() {
2658   PrintRSetsClosure cl("Printing All RSets");;
2659   heap_region_iterate(&cl);
2660 }
2661 #endif // PRODUCT
2662 
2663 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2664 
2665   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2666   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2667   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2668 
2669   size_t eden_capacity_bytes =
2670     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2671 
2672   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2673   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2674                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2675 }
2676 
2677 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2678   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2679                        stats->unused(), stats->used(), stats->region_end_waste(),
2680                        stats->regions_filled(), stats->direct_allocated(),
2681                        stats->failure_used(), stats->failure_waste());
2682 }
2683 
2684 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2685   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2686   gc_tracer->report_gc_heap_summary(when, heap_summary);
2687 
2688   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2689   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2690 }
2691 
2692 G1CollectedHeap* G1CollectedHeap::heap() {
2693   CollectedHeap* heap = Universe::heap();
2694   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2695   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2696   return (G1CollectedHeap*)heap;
2697 }
2698 
2699 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2700   // always_do_update_barrier = false;
2701   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2702 
2703   double start = os::elapsedTime();
2704   // Fill TLAB's and such
2705   accumulate_statistics_all_tlabs();
2706   ensure_parsability(true);
2707   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2708 
2709   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2710 }
2711 
2712 void G1CollectedHeap::gc_epilogue(bool full) {
2713   // we are at the end of the GC. Total collections has already been increased.
2714   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2715 
2716   // FIXME: what is this about?
2717   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2718   // is set.
2719 #if defined(COMPILER2) || INCLUDE_JVMCI
2720   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2721 #endif
2722   // always_do_update_barrier = true;
2723 
2724   double start = os::elapsedTime();
2725   resize_all_tlabs();
2726   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2727 
2728   allocation_context_stats().update(full);
2729 
2730   // We have just completed a GC. Update the soft reference
2731   // policy with the new heap occupancy
2732   Universe::update_heap_info_at_gc();
2733 }
2734 
2735 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2736                                                uint gc_count_before,
2737                                                bool* succeeded,
2738                                                GCCause::Cause gc_cause) {
2739   assert_heap_not_locked_and_not_at_safepoint();
2740   VM_G1IncCollectionPause op(gc_count_before,
2741                              word_size,
2742                              false, /* should_initiate_conc_mark */
2743                              g1_policy()->max_pause_time_ms(),
2744                              gc_cause);
2745 
2746   op.set_allocation_context(AllocationContext::current());
2747   VMThread::execute(&op);
2748 
2749   HeapWord* result = op.result();
2750   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2751   assert(result == NULL || ret_succeeded,
2752          "the result should be NULL if the VM did not succeed");
2753   *succeeded = ret_succeeded;
2754 
2755   assert_heap_not_locked();
2756   return result;
2757 }
2758 
2759 void
2760 G1CollectedHeap::doConcurrentMark() {
2761   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2762   if (!_cmThread->in_progress()) {
2763     _cmThread->set_started();
2764     CGC_lock->notify();
2765   }
2766 }
2767 
2768 size_t G1CollectedHeap::pending_card_num() {
2769   size_t extra_cards = 0;
2770   JavaThread *curr = Threads::first();
2771   while (curr != NULL) {
2772     DirtyCardQueue& dcq = curr->dirty_card_queue();
2773     extra_cards += dcq.size();
2774     curr = curr->next();
2775   }
2776   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2777   size_t buffer_size = dcqs.buffer_size();
2778   size_t buffer_num = dcqs.completed_buffers_num();
2779 
2780   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
2781   // in bytes - not the number of 'entries'. We need to convert
2782   // into a number of cards.
2783   return (buffer_size * buffer_num + extra_cards) / oopSize;
2784 }
2785 
2786 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2787  private:
2788   size_t _total_humongous;
2789   size_t _candidate_humongous;
2790 
2791   DirtyCardQueue _dcq;
2792 
2793   // We don't nominate objects with many remembered set entries, on
2794   // the assumption that such objects are likely still live.
2795   bool is_remset_small(HeapRegion* region) const {
2796     HeapRegionRemSet* const rset = region->rem_set();
2797     return G1EagerReclaimHumongousObjectsWithStaleRefs
2798       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2799       : rset->is_empty();
2800   }
2801 
2802   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2803     assert(region->is_starts_humongous(), "Must start a humongous object");
2804 
2805     oop obj = oop(region->bottom());
2806 
2807     // Dead objects cannot be eager reclaim candidates. Due to class
2808     // unloading it is unsafe to query their classes so we return early.
2809     if (heap->is_obj_dead(obj, region)) {
2810       return false;
2811     }
2812 
2813     // Candidate selection must satisfy the following constraints
2814     // while concurrent marking is in progress:
2815     //
2816     // * In order to maintain SATB invariants, an object must not be
2817     // reclaimed if it was allocated before the start of marking and
2818     // has not had its references scanned.  Such an object must have
2819     // its references (including type metadata) scanned to ensure no
2820     // live objects are missed by the marking process.  Objects
2821     // allocated after the start of concurrent marking don't need to
2822     // be scanned.
2823     //
2824     // * An object must not be reclaimed if it is on the concurrent
2825     // mark stack.  Objects allocated after the start of concurrent
2826     // marking are never pushed on the mark stack.
2827     //
2828     // Nominating only objects allocated after the start of concurrent
2829     // marking is sufficient to meet both constraints.  This may miss
2830     // some objects that satisfy the constraints, but the marking data
2831     // structures don't support efficiently performing the needed
2832     // additional tests or scrubbing of the mark stack.
2833     //
2834     // However, we presently only nominate is_typeArray() objects.
2835     // A humongous object containing references induces remembered
2836     // set entries on other regions.  In order to reclaim such an
2837     // object, those remembered sets would need to be cleaned up.
2838     //
2839     // We also treat is_typeArray() objects specially, allowing them
2840     // to be reclaimed even if allocated before the start of
2841     // concurrent mark.  For this we rely on mark stack insertion to
2842     // exclude is_typeArray() objects, preventing reclaiming an object
2843     // that is in the mark stack.  We also rely on the metadata for
2844     // such objects to be built-in and so ensured to be kept live.
2845     // Frequent allocation and drop of large binary blobs is an
2846     // important use case for eager reclaim, and this special handling
2847     // may reduce needed headroom.
2848 
2849     return obj->is_typeArray() && is_remset_small(region);
2850   }
2851 
2852  public:
2853   RegisterHumongousWithInCSetFastTestClosure()
2854   : _total_humongous(0),
2855     _candidate_humongous(0),
2856     _dcq(&JavaThread::dirty_card_queue_set()) {
2857   }
2858 
2859   virtual bool doHeapRegion(HeapRegion* r) {
2860     if (!r->is_starts_humongous()) {
2861       return false;
2862     }
2863     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2864 
2865     bool is_candidate = humongous_region_is_candidate(g1h, r);
2866     uint rindex = r->hrm_index();
2867     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2868     if (is_candidate) {
2869       _candidate_humongous++;
2870       g1h->register_humongous_region_with_cset(rindex);
2871       // Is_candidate already filters out humongous object with large remembered sets.
2872       // If we have a humongous object with a few remembered sets, we simply flush these
2873       // remembered set entries into the DCQS. That will result in automatic
2874       // re-evaluation of their remembered set entries during the following evacuation
2875       // phase.
2876       if (!r->rem_set()->is_empty()) {
2877         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2878                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2879         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2880         HeapRegionRemSetIterator hrrs(r->rem_set());
2881         size_t card_index;
2882         while (hrrs.has_next(card_index)) {
2883           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2884           // The remembered set might contain references to already freed
2885           // regions. Filter out such entries to avoid failing card table
2886           // verification.
2887           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2888             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2889               *card_ptr = CardTableModRefBS::dirty_card_val();
2890               _dcq.enqueue(card_ptr);
2891             }
2892           }
2893         }
2894         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2895                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2896                hrrs.n_yielded(), r->rem_set()->occupied());
2897         r->rem_set()->clear_locked();
2898       }
2899       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2900     }
2901     _total_humongous++;
2902 
2903     return false;
2904   }
2905 
2906   size_t total_humongous() const { return _total_humongous; }
2907   size_t candidate_humongous() const { return _candidate_humongous; }
2908 
2909   void flush_rem_set_entries() { _dcq.flush(); }
2910 };
2911 
2912 void G1CollectedHeap::register_humongous_regions_with_cset() {
2913   if (!G1EagerReclaimHumongousObjects) {
2914     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2915     return;
2916   }
2917   double time = os::elapsed_counter();
2918 
2919   // Collect reclaim candidate information and register candidates with cset.
2920   RegisterHumongousWithInCSetFastTestClosure cl;
2921   heap_region_iterate(&cl);
2922 
2923   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2924   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2925                                                                   cl.total_humongous(),
2926                                                                   cl.candidate_humongous());
2927   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2928 
2929   // Finally flush all remembered set entries to re-check into the global DCQS.
2930   cl.flush_rem_set_entries();
2931 }
2932 
2933 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2934   public:
2935     bool doHeapRegion(HeapRegion* hr) {
2936       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2937         hr->verify_rem_set();
2938       }
2939       return false;
2940     }
2941 };
2942 
2943 uint G1CollectedHeap::num_task_queues() const {
2944   return _task_queues->size();
2945 }
2946 
2947 #if TASKQUEUE_STATS
2948 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2949   st->print_raw_cr("GC Task Stats");
2950   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2951   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2952 }
2953 
2954 void G1CollectedHeap::print_taskqueue_stats() const {
2955   if (!log_is_enabled(Trace, gc, task, stats)) {
2956     return;
2957   }
2958   Log(gc, task, stats) log;
2959   ResourceMark rm;
2960   outputStream* st = log.trace_stream();
2961 
2962   print_taskqueue_stats_hdr(st);
2963 
2964   TaskQueueStats totals;
2965   const uint n = num_task_queues();
2966   for (uint i = 0; i < n; ++i) {
2967     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2968     totals += task_queue(i)->stats;
2969   }
2970   st->print_raw("tot "); totals.print(st); st->cr();
2971 
2972   DEBUG_ONLY(totals.verify());
2973 }
2974 
2975 void G1CollectedHeap::reset_taskqueue_stats() {
2976   const uint n = num_task_queues();
2977   for (uint i = 0; i < n; ++i) {
2978     task_queue(i)->stats.reset();
2979   }
2980 }
2981 #endif // TASKQUEUE_STATS
2982 
2983 void G1CollectedHeap::wait_for_root_region_scanning() {
2984   double scan_wait_start = os::elapsedTime();
2985   // We have to wait until the CM threads finish scanning the
2986   // root regions as it's the only way to ensure that all the
2987   // objects on them have been correctly scanned before we start
2988   // moving them during the GC.
2989   bool waited = _cm->root_regions()->wait_until_scan_finished();
2990   double wait_time_ms = 0.0;
2991   if (waited) {
2992     double scan_wait_end = os::elapsedTime();
2993     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2994   }
2995   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2996 }
2997 
2998 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2999 private:
3000   G1HRPrinter* _hr_printer;
3001 public:
3002   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
3003 
3004   virtual bool doHeapRegion(HeapRegion* r) {
3005     _hr_printer->cset(r);
3006     return false;
3007   }
3008 };
3009 
3010 void G1CollectedHeap::start_new_collection_set() {
3011   collection_set()->start_incremental_building();
3012 
3013   clear_cset_fast_test();
3014 
3015   guarantee(_eden.length() == 0, "eden should have been cleared");
3016   g1_policy()->transfer_survivors_to_cset(survivor());
3017 }
3018 
3019 bool
3020 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3021   assert_at_safepoint(true /* should_be_vm_thread */);
3022   guarantee(!is_gc_active(), "collection is not reentrant");
3023 
3024   if (GCLocker::check_active_before_gc()) {
3025     return false;
3026   }
3027 
3028   _gc_timer_stw->register_gc_start();
3029 
3030   GCIdMark gc_id_mark;
3031   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3032 
3033   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3034   ResourceMark rm;
3035 
3036   g1_policy()->note_gc_start();
3037 
3038   wait_for_root_region_scanning();
3039 
3040   print_heap_before_gc();
3041   print_heap_regions();
3042   trace_heap_before_gc(_gc_tracer_stw);
3043 
3044   _verifier->verify_region_sets_optional();
3045   _verifier->verify_dirty_young_regions();
3046 
3047   // We should not be doing initial mark unless the conc mark thread is running
3048   if (!_cmThread->should_terminate()) {
3049     // This call will decide whether this pause is an initial-mark
3050     // pause. If it is, during_initial_mark_pause() will return true
3051     // for the duration of this pause.
3052     g1_policy()->decide_on_conc_mark_initiation();
3053   }
3054 
3055   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3056   assert(!collector_state()->during_initial_mark_pause() ||
3057           collector_state()->gcs_are_young(), "sanity");
3058 
3059   // We also do not allow mixed GCs during marking.
3060   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3061 
3062   // Record whether this pause is an initial mark. When the current
3063   // thread has completed its logging output and it's safe to signal
3064   // the CM thread, the flag's value in the policy has been reset.
3065   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3066 
3067   // Inner scope for scope based logging, timers, and stats collection
3068   {
3069     EvacuationInfo evacuation_info;
3070 
3071     if (collector_state()->during_initial_mark_pause()) {
3072       // We are about to start a marking cycle, so we increment the
3073       // full collection counter.
3074       increment_old_marking_cycles_started();
3075       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3076     }
3077 
3078     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3079 
3080     GCTraceCPUTime tcpu;
3081 
3082     FormatBuffer<> gc_string("Pause ");
3083     if (collector_state()->during_initial_mark_pause()) {
3084       gc_string.append("Initial Mark");
3085     } else if (collector_state()->gcs_are_young()) {
3086       gc_string.append("Young");
3087     } else {
3088       gc_string.append("Mixed");
3089     }
3090     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3091 
3092     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3093                                                                   workers()->active_workers(),
3094                                                                   Threads::number_of_non_daemon_threads());
3095     workers()->update_active_workers(active_workers);
3096     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3097 
3098     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3099     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3100 
3101     // If the secondary_free_list is not empty, append it to the
3102     // free_list. No need to wait for the cleanup operation to finish;
3103     // the region allocation code will check the secondary_free_list
3104     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3105     // set, skip this step so that the region allocation code has to
3106     // get entries from the secondary_free_list.
3107     if (!G1StressConcRegionFreeing) {
3108       append_secondary_free_list_if_not_empty_with_lock();
3109     }
3110 
3111     G1HeapTransition heap_transition(this);
3112     size_t heap_used_bytes_before_gc = used();
3113 
3114     // Don't dynamically change the number of GC threads this early.  A value of
3115     // 0 is used to indicate serial work.  When parallel work is done,
3116     // it will be set.
3117 
3118     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3119       IsGCActiveMark x;
3120 
3121       gc_prologue(false);
3122       increment_total_collections(false /* full gc */);
3123       increment_gc_time_stamp();
3124 
3125       if (VerifyRememberedSets) {
3126         log_info(gc, verify)("[Verifying RemSets before GC]");
3127         VerifyRegionRemSetClosure v_cl;
3128         heap_region_iterate(&v_cl);
3129       }
3130 
3131       _verifier->verify_before_gc();
3132 
3133       _verifier->check_bitmaps("GC Start");
3134 
3135 #if defined(COMPILER2) || INCLUDE_JVMCI
3136       DerivedPointerTable::clear();
3137 #endif
3138 
3139       // Please see comment in g1CollectedHeap.hpp and
3140       // G1CollectedHeap::ref_processing_init() to see how
3141       // reference processing currently works in G1.
3142 
3143       // Enable discovery in the STW reference processor
3144       if (g1_policy()->should_process_references()) {
3145         ref_processor_stw()->enable_discovery();
3146       } else {
3147         ref_processor_stw()->disable_discovery();
3148       }
3149 
3150       {
3151         // We want to temporarily turn off discovery by the
3152         // CM ref processor, if necessary, and turn it back on
3153         // on again later if we do. Using a scoped
3154         // NoRefDiscovery object will do this.
3155         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3156 
3157         // Forget the current alloc region (we might even choose it to be part
3158         // of the collection set!).
3159         _allocator->release_mutator_alloc_region();
3160 
3161         // This timing is only used by the ergonomics to handle our pause target.
3162         // It is unclear why this should not include the full pause. We will
3163         // investigate this in CR 7178365.
3164         //
3165         // Preserving the old comment here if that helps the investigation:
3166         //
3167         // The elapsed time induced by the start time below deliberately elides
3168         // the possible verification above.
3169         double sample_start_time_sec = os::elapsedTime();
3170 
3171         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3172 
3173         if (collector_state()->during_initial_mark_pause()) {
3174           concurrent_mark()->checkpointRootsInitialPre();
3175         }
3176 
3177         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3178 
3179         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3180 
3181         // Make sure the remembered sets are up to date. This needs to be
3182         // done before register_humongous_regions_with_cset(), because the
3183         // remembered sets are used there to choose eager reclaim candidates.
3184         // If the remembered sets are not up to date we might miss some
3185         // entries that need to be handled.
3186         g1_rem_set()->cleanupHRRS();
3187 
3188         register_humongous_regions_with_cset();
3189 
3190         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3191 
3192         // We call this after finalize_cset() to
3193         // ensure that the CSet has been finalized.
3194         _cm->verify_no_cset_oops();
3195 
3196         if (_hr_printer.is_active()) {
3197           G1PrintCollectionSetClosure cl(&_hr_printer);
3198           _collection_set.iterate(&cl);
3199         }
3200 
3201         // Initialize the GC alloc regions.
3202         _allocator->init_gc_alloc_regions(evacuation_info);
3203 
3204         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3205         pre_evacuate_collection_set();
3206 
3207         // Actually do the work...
3208         evacuate_collection_set(evacuation_info, &per_thread_states);
3209 
3210         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3211 
3212         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3213         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3214 
3215         eagerly_reclaim_humongous_regions();
3216 
3217         record_obj_copy_mem_stats();
3218         _survivor_evac_stats.adjust_desired_plab_sz();
3219         _old_evac_stats.adjust_desired_plab_sz();
3220 
3221         double start = os::elapsedTime();
3222         start_new_collection_set();
3223         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3224 
3225         if (evacuation_failed()) {
3226           set_used(recalculate_used());
3227           if (_archive_allocator != NULL) {
3228             _archive_allocator->clear_used();
3229           }
3230           for (uint i = 0; i < ParallelGCThreads; i++) {
3231             if (_evacuation_failed_info_array[i].has_failed()) {
3232               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3233             }
3234           }
3235         } else {
3236           // The "used" of the the collection set have already been subtracted
3237           // when they were freed.  Add in the bytes evacuated.
3238           increase_used(g1_policy()->bytes_copied_during_gc());
3239         }
3240 
3241         if (collector_state()->during_initial_mark_pause()) {
3242           // We have to do this before we notify the CM threads that
3243           // they can start working to make sure that all the
3244           // appropriate initialization is done on the CM object.
3245           concurrent_mark()->checkpointRootsInitialPost();
3246           collector_state()->set_mark_in_progress(true);
3247           // Note that we don't actually trigger the CM thread at
3248           // this point. We do that later when we're sure that
3249           // the current thread has completed its logging output.
3250         }
3251 
3252         allocate_dummy_regions();
3253 
3254         _allocator->init_mutator_alloc_region();
3255 
3256         {
3257           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3258           if (expand_bytes > 0) {
3259             size_t bytes_before = capacity();
3260             // No need for an ergo logging here,
3261             // expansion_amount() does this when it returns a value > 0.
3262             double expand_ms;
3263             if (!expand(expand_bytes, _workers, &expand_ms)) {
3264               // We failed to expand the heap. Cannot do anything about it.
3265             }
3266             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3267           }
3268         }
3269 
3270         // We redo the verification but now wrt to the new CSet which
3271         // has just got initialized after the previous CSet was freed.
3272         _cm->verify_no_cset_oops();
3273 
3274         // This timing is only used by the ergonomics to handle our pause target.
3275         // It is unclear why this should not include the full pause. We will
3276         // investigate this in CR 7178365.
3277         double sample_end_time_sec = os::elapsedTime();
3278         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3279         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3280         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3281 
3282         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3283         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3284 
3285         MemoryService::track_memory_usage();
3286 
3287         // In prepare_for_verify() below we'll need to scan the deferred
3288         // update buffers to bring the RSets up-to-date if
3289         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3290         // the update buffers we'll probably need to scan cards on the
3291         // regions we just allocated to (i.e., the GC alloc
3292         // regions). However, during the last GC we called
3293         // set_saved_mark() on all the GC alloc regions, so card
3294         // scanning might skip the [saved_mark_word()...top()] area of
3295         // those regions (i.e., the area we allocated objects into
3296         // during the last GC). But it shouldn't. Given that
3297         // saved_mark_word() is conditional on whether the GC time stamp
3298         // on the region is current or not, by incrementing the GC time
3299         // stamp here we invalidate all the GC time stamps on all the
3300         // regions and saved_mark_word() will simply return top() for
3301         // all the regions. This is a nicer way of ensuring this rather
3302         // than iterating over the regions and fixing them. In fact, the
3303         // GC time stamp increment here also ensures that
3304         // saved_mark_word() will return top() between pauses, i.e.,
3305         // during concurrent refinement. So we don't need the
3306         // is_gc_active() check to decided which top to use when
3307         // scanning cards (see CR 7039627).
3308         increment_gc_time_stamp();
3309 
3310         if (VerifyRememberedSets) {
3311           log_info(gc, verify)("[Verifying RemSets after GC]");
3312           VerifyRegionRemSetClosure v_cl;
3313           heap_region_iterate(&v_cl);
3314         }
3315 
3316         _verifier->verify_after_gc();
3317         _verifier->check_bitmaps("GC End");
3318 
3319         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3320         ref_processor_stw()->verify_no_references_recorded();
3321 
3322         // CM reference discovery will be re-enabled if necessary.
3323       }
3324 
3325 #ifdef TRACESPINNING
3326       ParallelTaskTerminator::print_termination_counts();
3327 #endif
3328 
3329       gc_epilogue(false);
3330     }
3331 
3332     // Print the remainder of the GC log output.
3333     if (evacuation_failed()) {
3334       log_info(gc)("To-space exhausted");
3335     }
3336 
3337     g1_policy()->print_phases();
3338     heap_transition.print();
3339 
3340     // It is not yet to safe to tell the concurrent mark to
3341     // start as we have some optional output below. We don't want the
3342     // output from the concurrent mark thread interfering with this
3343     // logging output either.
3344 
3345     _hrm.verify_optional();
3346     _verifier->verify_region_sets_optional();
3347 
3348     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3349     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3350 
3351     print_heap_after_gc();
3352     print_heap_regions();
3353     trace_heap_after_gc(_gc_tracer_stw);
3354 
3355     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3356     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3357     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3358     // before any GC notifications are raised.
3359     g1mm()->update_sizes();
3360 
3361     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3362     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3363     _gc_timer_stw->register_gc_end();
3364     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3365   }
3366   // It should now be safe to tell the concurrent mark thread to start
3367   // without its logging output interfering with the logging output
3368   // that came from the pause.
3369 
3370   if (should_start_conc_mark) {
3371     // CAUTION: after the doConcurrentMark() call below,
3372     // the concurrent marking thread(s) could be running
3373     // concurrently with us. Make sure that anything after
3374     // this point does not assume that we are the only GC thread
3375     // running. Note: of course, the actual marking work will
3376     // not start until the safepoint itself is released in
3377     // SuspendibleThreadSet::desynchronize().
3378     doConcurrentMark();
3379   }
3380 
3381   return true;
3382 }
3383 
3384 void G1CollectedHeap::remove_self_forwarding_pointers() {
3385   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3386   workers()->run_task(&rsfp_task);
3387 }
3388 
3389 void G1CollectedHeap::restore_after_evac_failure() {
3390   double remove_self_forwards_start = os::elapsedTime();
3391 
3392   remove_self_forwarding_pointers();
3393   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3394   _preserved_marks_set.restore(&task_executor);
3395 
3396   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3397 }
3398 
3399 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3400   if (!_evacuation_failed) {
3401     _evacuation_failed = true;
3402   }
3403 
3404   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3405   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3406 }
3407 
3408 bool G1ParEvacuateFollowersClosure::offer_termination() {
3409   G1ParScanThreadState* const pss = par_scan_state();
3410   start_term_time();
3411   const bool res = terminator()->offer_termination();
3412   end_term_time();
3413   return res;
3414 }
3415 
3416 void G1ParEvacuateFollowersClosure::do_void() {
3417   G1ParScanThreadState* const pss = par_scan_state();
3418   pss->trim_queue();
3419   do {
3420     pss->steal_and_trim_queue(queues());
3421   } while (!offer_termination());
3422 }
3423 
3424 class G1ParTask : public AbstractGangTask {
3425 protected:
3426   G1CollectedHeap*         _g1h;
3427   G1ParScanThreadStateSet* _pss;
3428   RefToScanQueueSet*       _queues;
3429   G1RootProcessor*         _root_processor;
3430   ParallelTaskTerminator   _terminator;
3431   uint                     _n_workers;
3432 
3433 public:
3434   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3435     : AbstractGangTask("G1 collection"),
3436       _g1h(g1h),
3437       _pss(per_thread_states),
3438       _queues(task_queues),
3439       _root_processor(root_processor),
3440       _terminator(n_workers, _queues),
3441       _n_workers(n_workers)
3442   {}
3443 
3444   void work(uint worker_id) {
3445     if (worker_id >= _n_workers) return;  // no work needed this round
3446 
3447     double start_sec = os::elapsedTime();
3448     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3449 
3450     {
3451       ResourceMark rm;
3452       HandleMark   hm;
3453 
3454       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3455 
3456       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3457       pss->set_ref_processor(rp);
3458 
3459       double start_strong_roots_sec = os::elapsedTime();
3460 
3461       _root_processor->evacuate_roots(pss->closures(), worker_id);
3462 
3463       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
3464 
3465       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3466       // treating the nmethods visited to act as roots for concurrent marking.
3467       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3468       // objects copied by the current evacuation.
3469       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
3470                                                                              pss->closures()->weak_codeblobs(),
3471                                                                              worker_id);
3472 
3473       _pss->add_cards_scanned(worker_id, cards_scanned);
3474 
3475       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3476 
3477       double term_sec = 0.0;
3478       size_t evac_term_attempts = 0;
3479       {
3480         double start = os::elapsedTime();
3481         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3482         evac.do_void();
3483 
3484         evac_term_attempts = evac.term_attempts();
3485         term_sec = evac.term_time();
3486         double elapsed_sec = os::elapsedTime() - start;
3487         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3488         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3489         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3490       }
3491 
3492       assert(pss->queue_is_empty(), "should be empty");
3493 
3494       if (log_is_enabled(Debug, gc, task, stats)) {
3495         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3496         size_t lab_waste;
3497         size_t lab_undo_waste;
3498         pss->waste(lab_waste, lab_undo_waste);
3499         _g1h->print_termination_stats(worker_id,
3500                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3501                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3502                                       term_sec * 1000.0,                          /* evac term time */
3503                                       evac_term_attempts,                         /* evac term attempts */
3504                                       lab_waste,                                  /* alloc buffer waste */
3505                                       lab_undo_waste                              /* undo waste */
3506                                       );
3507       }
3508 
3509       // Close the inner scope so that the ResourceMark and HandleMark
3510       // destructors are executed here and are included as part of the
3511       // "GC Worker Time".
3512     }
3513     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3514   }
3515 };
3516 
3517 void G1CollectedHeap::print_termination_stats_hdr() {
3518   log_debug(gc, task, stats)("GC Termination Stats");
3519   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3520   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3521   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3522 }
3523 
3524 void G1CollectedHeap::print_termination_stats(uint worker_id,
3525                                               double elapsed_ms,
3526                                               double strong_roots_ms,
3527                                               double term_ms,
3528                                               size_t term_attempts,
3529                                               size_t alloc_buffer_waste,
3530                                               size_t undo_waste) const {
3531   log_debug(gc, task, stats)
3532               ("%3d %9.2f %9.2f %6.2f "
3533                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3534                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3535                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3536                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3537                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3538                alloc_buffer_waste * HeapWordSize / K,
3539                undo_waste * HeapWordSize / K);
3540 }
3541 
3542 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3543 private:
3544   BoolObjectClosure* _is_alive;
3545   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3546 
3547   int _initial_string_table_size;
3548   int _initial_symbol_table_size;
3549 
3550   bool  _process_strings;
3551   int _strings_processed;
3552   int _strings_removed;
3553 
3554   bool  _process_symbols;
3555   int _symbols_processed;
3556   int _symbols_removed;
3557 
3558   bool _process_string_dedup;
3559 
3560 public:
3561   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3562     AbstractGangTask("String/Symbol Unlinking"),
3563     _is_alive(is_alive),
3564     _dedup_closure(is_alive, NULL, false),
3565     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3566     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3567     _process_string_dedup(process_string_dedup) {
3568 
3569     _initial_string_table_size = StringTable::the_table()->table_size();
3570     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3571     if (process_strings) {
3572       StringTable::clear_parallel_claimed_index();
3573     }
3574     if (process_symbols) {
3575       SymbolTable::clear_parallel_claimed_index();
3576     }
3577   }
3578 
3579   ~G1StringAndSymbolCleaningTask() {
3580     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3581               "claim value %d after unlink less than initial string table size %d",
3582               StringTable::parallel_claimed_index(), _initial_string_table_size);
3583     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3584               "claim value %d after unlink less than initial symbol table size %d",
3585               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3586 
3587     log_info(gc, stringtable)(
3588         "Cleaned string and symbol table, "
3589         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3590         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3591         strings_processed(), strings_removed(),
3592         symbols_processed(), symbols_removed());
3593   }
3594 
3595   void work(uint worker_id) {
3596     int strings_processed = 0;
3597     int strings_removed = 0;
3598     int symbols_processed = 0;
3599     int symbols_removed = 0;
3600     if (_process_strings) {
3601       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3602       Atomic::add(strings_processed, &_strings_processed);
3603       Atomic::add(strings_removed, &_strings_removed);
3604     }
3605     if (_process_symbols) {
3606       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3607       Atomic::add(symbols_processed, &_symbols_processed);
3608       Atomic::add(symbols_removed, &_symbols_removed);
3609     }
3610     if (_process_string_dedup) {
3611       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3612     }
3613   }
3614 
3615   size_t strings_processed() const { return (size_t)_strings_processed; }
3616   size_t strings_removed()   const { return (size_t)_strings_removed; }
3617 
3618   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3619   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3620 };
3621 
3622 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3623 private:
3624   static Monitor* _lock;
3625 
3626   BoolObjectClosure* const _is_alive;
3627   const bool               _unloading_occurred;
3628   const uint               _num_workers;
3629 
3630   // Variables used to claim nmethods.
3631   CompiledMethod* _first_nmethod;
3632   volatile CompiledMethod* _claimed_nmethod;
3633 
3634   // The list of nmethods that need to be processed by the second pass.
3635   volatile CompiledMethod* _postponed_list;
3636   volatile uint            _num_entered_barrier;
3637 
3638  public:
3639   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3640       _is_alive(is_alive),
3641       _unloading_occurred(unloading_occurred),
3642       _num_workers(num_workers),
3643       _first_nmethod(NULL),
3644       _claimed_nmethod(NULL),
3645       _postponed_list(NULL),
3646       _num_entered_barrier(0)
3647   {
3648     CompiledMethod::increase_unloading_clock();
3649     // Get first alive nmethod
3650     CompiledMethodIterator iter = CompiledMethodIterator();
3651     if(iter.next_alive()) {
3652       _first_nmethod = iter.method();
3653     }
3654     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3655   }
3656 
3657   ~G1CodeCacheUnloadingTask() {
3658     CodeCache::verify_clean_inline_caches();
3659 
3660     CodeCache::set_needs_cache_clean(false);
3661     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3662 
3663     CodeCache::verify_icholder_relocations();
3664   }
3665 
3666  private:
3667   void add_to_postponed_list(CompiledMethod* nm) {
3668       CompiledMethod* old;
3669       do {
3670         old = (CompiledMethod*)_postponed_list;
3671         nm->set_unloading_next(old);
3672       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3673   }
3674 
3675   void clean_nmethod(CompiledMethod* nm) {
3676     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3677 
3678     if (postponed) {
3679       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3680       add_to_postponed_list(nm);
3681     }
3682 
3683     // Mark that this thread has been cleaned/unloaded.
3684     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3685     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3686   }
3687 
3688   void clean_nmethod_postponed(CompiledMethod* nm) {
3689     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3690   }
3691 
3692   static const int MaxClaimNmethods = 16;
3693 
3694   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3695     CompiledMethod* first;
3696     CompiledMethodIterator last;
3697 
3698     do {
3699       *num_claimed_nmethods = 0;
3700 
3701       first = (CompiledMethod*)_claimed_nmethod;
3702       last = CompiledMethodIterator(first);
3703 
3704       if (first != NULL) {
3705 
3706         for (int i = 0; i < MaxClaimNmethods; i++) {
3707           if (!last.next_alive()) {
3708             break;
3709           }
3710           claimed_nmethods[i] = last.method();
3711           (*num_claimed_nmethods)++;
3712         }
3713       }
3714 
3715     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3716   }
3717 
3718   CompiledMethod* claim_postponed_nmethod() {
3719     CompiledMethod* claim;
3720     CompiledMethod* next;
3721 
3722     do {
3723       claim = (CompiledMethod*)_postponed_list;
3724       if (claim == NULL) {
3725         return NULL;
3726       }
3727 
3728       next = claim->unloading_next();
3729 
3730     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3731 
3732     return claim;
3733   }
3734 
3735  public:
3736   // Mark that we're done with the first pass of nmethod cleaning.
3737   void barrier_mark(uint worker_id) {
3738     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3739     _num_entered_barrier++;
3740     if (_num_entered_barrier == _num_workers) {
3741       ml.notify_all();
3742     }
3743   }
3744 
3745   // See if we have to wait for the other workers to
3746   // finish their first-pass nmethod cleaning work.
3747   void barrier_wait(uint worker_id) {
3748     if (_num_entered_barrier < _num_workers) {
3749       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3750       while (_num_entered_barrier < _num_workers) {
3751           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3752       }
3753     }
3754   }
3755 
3756   // Cleaning and unloading of nmethods. Some work has to be postponed
3757   // to the second pass, when we know which nmethods survive.
3758   void work_first_pass(uint worker_id) {
3759     // The first nmethods is claimed by the first worker.
3760     if (worker_id == 0 && _first_nmethod != NULL) {
3761       clean_nmethod(_first_nmethod);
3762       _first_nmethod = NULL;
3763     }
3764 
3765     int num_claimed_nmethods;
3766     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3767 
3768     while (true) {
3769       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3770 
3771       if (num_claimed_nmethods == 0) {
3772         break;
3773       }
3774 
3775       for (int i = 0; i < num_claimed_nmethods; i++) {
3776         clean_nmethod(claimed_nmethods[i]);
3777       }
3778     }
3779   }
3780 
3781   void work_second_pass(uint worker_id) {
3782     CompiledMethod* nm;
3783     // Take care of postponed nmethods.
3784     while ((nm = claim_postponed_nmethod()) != NULL) {
3785       clean_nmethod_postponed(nm);
3786     }
3787   }
3788 };
3789 
3790 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3791 
3792 class G1KlassCleaningTask : public StackObj {
3793   BoolObjectClosure*                      _is_alive;
3794   volatile jint                           _clean_klass_tree_claimed;
3795   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3796 
3797  public:
3798   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3799       _is_alive(is_alive),
3800       _clean_klass_tree_claimed(0),
3801       _klass_iterator() {
3802   }
3803 
3804  private:
3805   bool claim_clean_klass_tree_task() {
3806     if (_clean_klass_tree_claimed) {
3807       return false;
3808     }
3809 
3810     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3811   }
3812 
3813   InstanceKlass* claim_next_klass() {
3814     Klass* klass;
3815     do {
3816       klass =_klass_iterator.next_klass();
3817     } while (klass != NULL && !klass->is_instance_klass());
3818 
3819     // this can be null so don't call InstanceKlass::cast
3820     return static_cast<InstanceKlass*>(klass);
3821   }
3822 
3823 public:
3824 
3825   void clean_klass(InstanceKlass* ik) {
3826     ik->clean_weak_instanceklass_links(_is_alive);
3827   }
3828 
3829   void work() {
3830     ResourceMark rm;
3831 
3832     // One worker will clean the subklass/sibling klass tree.
3833     if (claim_clean_klass_tree_task()) {
3834       Klass::clean_subklass_tree(_is_alive);
3835     }
3836 
3837     // All workers will help cleaning the classes,
3838     InstanceKlass* klass;
3839     while ((klass = claim_next_klass()) != NULL) {
3840       clean_klass(klass);
3841     }
3842   }
3843 };
3844 
3845 // To minimize the remark pause times, the tasks below are done in parallel.
3846 class G1ParallelCleaningTask : public AbstractGangTask {
3847 private:
3848   G1StringAndSymbolCleaningTask _string_symbol_task;
3849   G1CodeCacheUnloadingTask      _code_cache_task;
3850   G1KlassCleaningTask           _klass_cleaning_task;
3851 
3852 public:
3853   // The constructor is run in the VMThread.
3854   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3855       AbstractGangTask("Parallel Cleaning"),
3856       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3857       _code_cache_task(num_workers, is_alive, unloading_occurred),
3858       _klass_cleaning_task(is_alive) {
3859   }
3860 
3861   // The parallel work done by all worker threads.
3862   void work(uint worker_id) {
3863     // Do first pass of code cache cleaning.
3864     _code_cache_task.work_first_pass(worker_id);
3865 
3866     // Let the threads mark that the first pass is done.
3867     _code_cache_task.barrier_mark(worker_id);
3868 
3869     // Clean the Strings and Symbols.
3870     _string_symbol_task.work(worker_id);
3871 
3872     // Wait for all workers to finish the first code cache cleaning pass.
3873     _code_cache_task.barrier_wait(worker_id);
3874 
3875     // Do the second code cache cleaning work, which realize on
3876     // the liveness information gathered during the first pass.
3877     _code_cache_task.work_second_pass(worker_id);
3878 
3879     // Clean all klasses that were not unloaded.
3880     _klass_cleaning_task.work();
3881   }
3882 };
3883 
3884 
3885 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3886                                         bool class_unloading_occurred) {
3887   uint n_workers = workers()->active_workers();
3888 
3889   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3890   workers()->run_task(&g1_unlink_task);
3891 }
3892 
3893 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3894                                        bool process_strings,
3895                                        bool process_symbols,
3896                                        bool process_string_dedup) {
3897   if (!process_strings && !process_symbols && !process_string_dedup) {
3898     // Nothing to clean.
3899     return;
3900   }
3901 
3902   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3903   workers()->run_task(&g1_unlink_task);
3904 
3905 }
3906 
3907 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3908  private:
3909   DirtyCardQueueSet* _queue;
3910   G1CollectedHeap* _g1h;
3911  public:
3912   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3913     _queue(queue), _g1h(g1h) { }
3914 
3915   virtual void work(uint worker_id) {
3916     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3917     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3918 
3919     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3920     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3921 
3922     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3923   }
3924 };
3925 
3926 void G1CollectedHeap::redirty_logged_cards() {
3927   double redirty_logged_cards_start = os::elapsedTime();
3928 
3929   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3930   dirty_card_queue_set().reset_for_par_iteration();
3931   workers()->run_task(&redirty_task);
3932 
3933   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3934   dcq.merge_bufferlists(&dirty_card_queue_set());
3935   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3936 
3937   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3938 }
3939 
3940 // Weak Reference Processing support
3941 
3942 // An always "is_alive" closure that is used to preserve referents.
3943 // If the object is non-null then it's alive.  Used in the preservation
3944 // of referent objects that are pointed to by reference objects
3945 // discovered by the CM ref processor.
3946 class G1AlwaysAliveClosure: public BoolObjectClosure {
3947   G1CollectedHeap* _g1;
3948 public:
3949   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3950   bool do_object_b(oop p) {
3951     if (p != NULL) {
3952       return true;
3953     }
3954     return false;
3955   }
3956 };
3957 
3958 bool G1STWIsAliveClosure::do_object_b(oop p) {
3959   // An object is reachable if it is outside the collection set,
3960   // or is inside and copied.
3961   return !_g1->is_in_cset(p) || p->is_forwarded();
3962 }
3963 
3964 // Non Copying Keep Alive closure
3965 class G1KeepAliveClosure: public OopClosure {
3966   G1CollectedHeap* _g1;
3967 public:
3968   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3969   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3970   void do_oop(oop* p) {
3971     oop obj = *p;
3972     assert(obj != NULL, "the caller should have filtered out NULL values");
3973 
3974     const InCSetState cset_state = _g1->in_cset_state(obj);
3975     if (!cset_state.is_in_cset_or_humongous()) {
3976       return;
3977     }
3978     if (cset_state.is_in_cset()) {
3979       assert( obj->is_forwarded(), "invariant" );
3980       *p = obj->forwardee();
3981     } else {
3982       assert(!obj->is_forwarded(), "invariant" );
3983       assert(cset_state.is_humongous(),
3984              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3985       _g1->set_humongous_is_live(obj);
3986     }
3987   }
3988 };
3989 
3990 // Copying Keep Alive closure - can be called from both
3991 // serial and parallel code as long as different worker
3992 // threads utilize different G1ParScanThreadState instances
3993 // and different queues.
3994 
3995 class G1CopyingKeepAliveClosure: public OopClosure {
3996   G1CollectedHeap*         _g1h;
3997   OopClosure*              _copy_non_heap_obj_cl;
3998   G1ParScanThreadState*    _par_scan_state;
3999 
4000 public:
4001   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4002                             OopClosure* non_heap_obj_cl,
4003                             G1ParScanThreadState* pss):
4004     _g1h(g1h),
4005     _copy_non_heap_obj_cl(non_heap_obj_cl),
4006     _par_scan_state(pss)
4007   {}
4008 
4009   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4010   virtual void do_oop(      oop* p) { do_oop_work(p); }
4011 
4012   template <class T> void do_oop_work(T* p) {
4013     oop obj = oopDesc::load_decode_heap_oop(p);
4014 
4015     if (_g1h->is_in_cset_or_humongous(obj)) {
4016       // If the referent object has been forwarded (either copied
4017       // to a new location or to itself in the event of an
4018       // evacuation failure) then we need to update the reference
4019       // field and, if both reference and referent are in the G1
4020       // heap, update the RSet for the referent.
4021       //
4022       // If the referent has not been forwarded then we have to keep
4023       // it alive by policy. Therefore we have copy the referent.
4024       //
4025       // If the reference field is in the G1 heap then we can push
4026       // on the PSS queue. When the queue is drained (after each
4027       // phase of reference processing) the object and it's followers
4028       // will be copied, the reference field set to point to the
4029       // new location, and the RSet updated. Otherwise we need to
4030       // use the the non-heap or metadata closures directly to copy
4031       // the referent object and update the pointer, while avoiding
4032       // updating the RSet.
4033 
4034       if (_g1h->is_in_g1_reserved(p)) {
4035         _par_scan_state->push_on_queue(p);
4036       } else {
4037         assert(!Metaspace::contains((const void*)p),
4038                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4039         _copy_non_heap_obj_cl->do_oop(p);
4040       }
4041     }
4042   }
4043 };
4044 
4045 // Serial drain queue closure. Called as the 'complete_gc'
4046 // closure for each discovered list in some of the
4047 // reference processing phases.
4048 
4049 class G1STWDrainQueueClosure: public VoidClosure {
4050 protected:
4051   G1CollectedHeap* _g1h;
4052   G1ParScanThreadState* _par_scan_state;
4053 
4054   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4055 
4056 public:
4057   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4058     _g1h(g1h),
4059     _par_scan_state(pss)
4060   { }
4061 
4062   void do_void() {
4063     G1ParScanThreadState* const pss = par_scan_state();
4064     pss->trim_queue();
4065   }
4066 };
4067 
4068 // Parallel Reference Processing closures
4069 
4070 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4071 // processing during G1 evacuation pauses.
4072 
4073 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4074 private:
4075   G1CollectedHeap*          _g1h;
4076   G1ParScanThreadStateSet*  _pss;
4077   RefToScanQueueSet*        _queues;
4078   WorkGang*                 _workers;
4079   uint                      _active_workers;
4080 
4081 public:
4082   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4083                            G1ParScanThreadStateSet* per_thread_states,
4084                            WorkGang* workers,
4085                            RefToScanQueueSet *task_queues,
4086                            uint n_workers) :
4087     _g1h(g1h),
4088     _pss(per_thread_states),
4089     _queues(task_queues),
4090     _workers(workers),
4091     _active_workers(n_workers)
4092   {
4093     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4094   }
4095 
4096   // Executes the given task using concurrent marking worker threads.
4097   virtual void execute(ProcessTask& task);
4098   virtual void execute(EnqueueTask& task);
4099 };
4100 
4101 // Gang task for possibly parallel reference processing
4102 
4103 class G1STWRefProcTaskProxy: public AbstractGangTask {
4104   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4105   ProcessTask&     _proc_task;
4106   G1CollectedHeap* _g1h;
4107   G1ParScanThreadStateSet* _pss;
4108   RefToScanQueueSet* _task_queues;
4109   ParallelTaskTerminator* _terminator;
4110 
4111 public:
4112   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4113                         G1CollectedHeap* g1h,
4114                         G1ParScanThreadStateSet* per_thread_states,
4115                         RefToScanQueueSet *task_queues,
4116                         ParallelTaskTerminator* terminator) :
4117     AbstractGangTask("Process reference objects in parallel"),
4118     _proc_task(proc_task),
4119     _g1h(g1h),
4120     _pss(per_thread_states),
4121     _task_queues(task_queues),
4122     _terminator(terminator)
4123   {}
4124 
4125   virtual void work(uint worker_id) {
4126     // The reference processing task executed by a single worker.
4127     ResourceMark rm;
4128     HandleMark   hm;
4129 
4130     G1STWIsAliveClosure is_alive(_g1h);
4131 
4132     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4133     pss->set_ref_processor(NULL);
4134 
4135     // Keep alive closure.
4136     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4137 
4138     // Complete GC closure
4139     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4140 
4141     // Call the reference processing task's work routine.
4142     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4143 
4144     // Note we cannot assert that the refs array is empty here as not all
4145     // of the processing tasks (specifically phase2 - pp2_work) execute
4146     // the complete_gc closure (which ordinarily would drain the queue) so
4147     // the queue may not be empty.
4148   }
4149 };
4150 
4151 // Driver routine for parallel reference processing.
4152 // Creates an instance of the ref processing gang
4153 // task and has the worker threads execute it.
4154 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4155   assert(_workers != NULL, "Need parallel worker threads.");
4156 
4157   ParallelTaskTerminator terminator(_active_workers, _queues);
4158   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4159 
4160   _workers->run_task(&proc_task_proxy);
4161 }
4162 
4163 // Gang task for parallel reference enqueueing.
4164 
4165 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4166   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4167   EnqueueTask& _enq_task;
4168 
4169 public:
4170   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4171     AbstractGangTask("Enqueue reference objects in parallel"),
4172     _enq_task(enq_task)
4173   { }
4174 
4175   virtual void work(uint worker_id) {
4176     _enq_task.work(worker_id);
4177   }
4178 };
4179 
4180 // Driver routine for parallel reference enqueueing.
4181 // Creates an instance of the ref enqueueing gang
4182 // task and has the worker threads execute it.
4183 
4184 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4185   assert(_workers != NULL, "Need parallel worker threads.");
4186 
4187   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4188 
4189   _workers->run_task(&enq_task_proxy);
4190 }
4191 
4192 // End of weak reference support closures
4193 
4194 // Abstract task used to preserve (i.e. copy) any referent objects
4195 // that are in the collection set and are pointed to by reference
4196 // objects discovered by the CM ref processor.
4197 
4198 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4199 protected:
4200   G1CollectedHeap*         _g1h;
4201   G1ParScanThreadStateSet* _pss;
4202   RefToScanQueueSet*       _queues;
4203   ParallelTaskTerminator   _terminator;
4204   uint                     _n_workers;
4205 
4206 public:
4207   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4208     AbstractGangTask("ParPreserveCMReferents"),
4209     _g1h(g1h),
4210     _pss(per_thread_states),
4211     _queues(task_queues),
4212     _terminator(workers, _queues),
4213     _n_workers(workers)
4214   {
4215     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4216   }
4217 
4218   void work(uint worker_id) {
4219     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4220 
4221     ResourceMark rm;
4222     HandleMark   hm;
4223 
4224     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4225     pss->set_ref_processor(NULL);
4226     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4227 
4228     // Is alive closure
4229     G1AlwaysAliveClosure always_alive(_g1h);
4230 
4231     // Copying keep alive closure. Applied to referent objects that need
4232     // to be copied.
4233     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4234 
4235     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4236 
4237     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4238     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4239 
4240     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4241     // So this must be true - but assert just in case someone decides to
4242     // change the worker ids.
4243     assert(worker_id < limit, "sanity");
4244     assert(!rp->discovery_is_atomic(), "check this code");
4245 
4246     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4247     for (uint idx = worker_id; idx < limit; idx += stride) {
4248       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4249 
4250       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4251       while (iter.has_next()) {
4252         // Since discovery is not atomic for the CM ref processor, we
4253         // can see some null referent objects.
4254         iter.load_ptrs(DEBUG_ONLY(true));
4255         oop ref = iter.obj();
4256 
4257         // This will filter nulls.
4258         if (iter.is_referent_alive()) {
4259           iter.make_referent_alive();
4260         }
4261         iter.move_to_next();
4262       }
4263     }
4264 
4265     // Drain the queue - which may cause stealing
4266     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4267     drain_queue.do_void();
4268     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4269     assert(pss->queue_is_empty(), "should be");
4270   }
4271 };
4272 
4273 void G1CollectedHeap::process_weak_jni_handles() {
4274   double ref_proc_start = os::elapsedTime();
4275 
4276   G1STWIsAliveClosure is_alive(this);
4277   G1KeepAliveClosure keep_alive(this);
4278   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4279 
4280   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4281   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4282 }
4283 
4284 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4285   // Any reference objects, in the collection set, that were 'discovered'
4286   // by the CM ref processor should have already been copied (either by
4287   // applying the external root copy closure to the discovered lists, or
4288   // by following an RSet entry).
4289   //
4290   // But some of the referents, that are in the collection set, that these
4291   // reference objects point to may not have been copied: the STW ref
4292   // processor would have seen that the reference object had already
4293   // been 'discovered' and would have skipped discovering the reference,
4294   // but would not have treated the reference object as a regular oop.
4295   // As a result the copy closure would not have been applied to the
4296   // referent object.
4297   //
4298   // We need to explicitly copy these referent objects - the references
4299   // will be processed at the end of remarking.
4300   //
4301   // We also need to do this copying before we process the reference
4302   // objects discovered by the STW ref processor in case one of these
4303   // referents points to another object which is also referenced by an
4304   // object discovered by the STW ref processor.
4305   double preserve_cm_referents_time = 0.0;
4306 
4307   // To avoid spawning task when there is no work to do, check that
4308   // a concurrent cycle is active and that some references have been
4309   // discovered.
4310   if (concurrent_mark()->cmThread()->during_cycle() &&
4311       ref_processor_cm()->has_discovered_references()) {
4312     double preserve_cm_referents_start = os::elapsedTime();
4313     uint no_of_gc_workers = workers()->active_workers();
4314     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4315                                                    per_thread_states,
4316                                                    no_of_gc_workers,
4317                                                    _task_queues);
4318     workers()->run_task(&keep_cm_referents);
4319     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4320   }
4321 
4322   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4323 }
4324 
4325 // Weak Reference processing during an evacuation pause (part 1).
4326 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4327   double ref_proc_start = os::elapsedTime();
4328 
4329   ReferenceProcessor* rp = _ref_processor_stw;
4330   assert(rp->discovery_enabled(), "should have been enabled");
4331 
4332   // Closure to test whether a referent is alive.
4333   G1STWIsAliveClosure is_alive(this);
4334 
4335   // Even when parallel reference processing is enabled, the processing
4336   // of JNI refs is serial and performed serially by the current thread
4337   // rather than by a worker. The following PSS will be used for processing
4338   // JNI refs.
4339 
4340   // Use only a single queue for this PSS.
4341   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4342   pss->set_ref_processor(NULL);
4343   assert(pss->queue_is_empty(), "pre-condition");
4344 
4345   // Keep alive closure.
4346   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4347 
4348   // Serial Complete GC closure
4349   G1STWDrainQueueClosure drain_queue(this, pss);
4350 
4351   // Setup the soft refs policy...
4352   rp->setup_policy(false);
4353 
4354   ReferenceProcessorStats stats;
4355   if (!rp->processing_is_mt()) {
4356     // Serial reference processing...
4357     stats = rp->process_discovered_references(&is_alive,
4358                                               &keep_alive,
4359                                               &drain_queue,
4360                                               NULL,
4361                                               _gc_timer_stw);
4362   } else {
4363     uint no_of_gc_workers = workers()->active_workers();
4364 
4365     // Parallel reference processing
4366     assert(no_of_gc_workers <= rp->max_num_q(),
4367            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4368            no_of_gc_workers,  rp->max_num_q());
4369 
4370     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4371     stats = rp->process_discovered_references(&is_alive,
4372                                               &keep_alive,
4373                                               &drain_queue,
4374                                               &par_task_executor,
4375                                               _gc_timer_stw);
4376   }
4377 
4378   _gc_tracer_stw->report_gc_reference_stats(stats);
4379 
4380   // We have completed copying any necessary live referent objects.
4381   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4382 
4383   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4384   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4385 }
4386 
4387 // Weak Reference processing during an evacuation pause (part 2).
4388 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4389   double ref_enq_start = os::elapsedTime();
4390 
4391   ReferenceProcessor* rp = _ref_processor_stw;
4392   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4393 
4394   // Now enqueue any remaining on the discovered lists on to
4395   // the pending list.
4396   if (!rp->processing_is_mt()) {
4397     // Serial reference processing...
4398     rp->enqueue_discovered_references();
4399   } else {
4400     // Parallel reference enqueueing
4401 
4402     uint n_workers = workers()->active_workers();
4403 
4404     assert(n_workers <= rp->max_num_q(),
4405            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4406            n_workers,  rp->max_num_q());
4407 
4408     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4409     rp->enqueue_discovered_references(&par_task_executor);
4410   }
4411 
4412   rp->verify_no_references_recorded();
4413   assert(!rp->discovery_enabled(), "should have been disabled");
4414 
4415   // FIXME
4416   // CM's reference processing also cleans up the string and symbol tables.
4417   // Should we do that here also? We could, but it is a serial operation
4418   // and could significantly increase the pause time.
4419 
4420   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4421   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4422 }
4423 
4424 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4425   double merge_pss_time_start = os::elapsedTime();
4426   per_thread_states->flush();
4427   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4428 }
4429 
4430 void G1CollectedHeap::pre_evacuate_collection_set() {
4431   _expand_heap_after_alloc_failure = true;
4432   _evacuation_failed = false;
4433 
4434   // Disable the hot card cache.
4435   _hot_card_cache->reset_hot_cache_claimed_index();
4436   _hot_card_cache->set_use_cache(false);
4437 
4438   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4439   _preserved_marks_set.assert_empty();
4440 
4441   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4442 
4443   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4444   if (collector_state()->during_initial_mark_pause()) {
4445     double start_clear_claimed_marks = os::elapsedTime();
4446 
4447     ClassLoaderDataGraph::clear_claimed_marks();
4448 
4449     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4450     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4451   }
4452 }
4453 
4454 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4455   // Should G1EvacuationFailureALot be in effect for this GC?
4456   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4457 
4458   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4459 
4460   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4461 
4462   double start_par_time_sec = os::elapsedTime();
4463   double end_par_time_sec;
4464 
4465   {
4466     const uint n_workers = workers()->active_workers();
4467     G1RootProcessor root_processor(this, n_workers);
4468     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4469 
4470     print_termination_stats_hdr();
4471 
4472     workers()->run_task(&g1_par_task);
4473     end_par_time_sec = os::elapsedTime();
4474 
4475     // Closing the inner scope will execute the destructor
4476     // for the G1RootProcessor object. We record the current
4477     // elapsed time before closing the scope so that time
4478     // taken for the destructor is NOT included in the
4479     // reported parallel time.
4480   }
4481 
4482   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4483   phase_times->record_par_time(par_time_ms);
4484 
4485   double code_root_fixup_time_ms =
4486         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4487   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4488 }
4489 
4490 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4491   // Process any discovered reference objects - we have
4492   // to do this _before_ we retire the GC alloc regions
4493   // as we may have to copy some 'reachable' referent
4494   // objects (and their reachable sub-graphs) that were
4495   // not copied during the pause.
4496   if (g1_policy()->should_process_references()) {
4497     preserve_cm_referents(per_thread_states);
4498     process_discovered_references(per_thread_states);
4499   } else {
4500     ref_processor_stw()->verify_no_references_recorded();
4501     process_weak_jni_handles();
4502   }
4503 
4504   if (G1StringDedup::is_enabled()) {
4505     double fixup_start = os::elapsedTime();
4506 
4507     G1STWIsAliveClosure is_alive(this);
4508     G1KeepAliveClosure keep_alive(this);
4509     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4510 
4511     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4512     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4513   }
4514 
4515   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4516 
4517   if (evacuation_failed()) {
4518     restore_after_evac_failure();
4519 
4520     // Reset the G1EvacuationFailureALot counters and flags
4521     // Note: the values are reset only when an actual
4522     // evacuation failure occurs.
4523     NOT_PRODUCT(reset_evacuation_should_fail();)
4524   }
4525 
4526   _preserved_marks_set.assert_empty();
4527 
4528   // Enqueue any remaining references remaining on the STW
4529   // reference processor's discovered lists. We need to do
4530   // this after the card table is cleaned (and verified) as
4531   // the act of enqueueing entries on to the pending list
4532   // will log these updates (and dirty their associated
4533   // cards). We need these updates logged to update any
4534   // RSets.
4535   if (g1_policy()->should_process_references()) {
4536     enqueue_discovered_references(per_thread_states);
4537   } else {
4538     g1_policy()->phase_times()->record_ref_enq_time(0);
4539   }
4540 
4541   _allocator->release_gc_alloc_regions(evacuation_info);
4542 
4543   merge_per_thread_state_info(per_thread_states);
4544 
4545   // Reset and re-enable the hot card cache.
4546   // Note the counts for the cards in the regions in the
4547   // collection set are reset when the collection set is freed.
4548   _hot_card_cache->reset_hot_cache();
4549   _hot_card_cache->set_use_cache(true);
4550 
4551   purge_code_root_memory();
4552 
4553   redirty_logged_cards();
4554 #if defined(COMPILER2) || INCLUDE_JVMCI
4555   double start = os::elapsedTime();
4556   DerivedPointerTable::update_pointers();
4557   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4558 #endif
4559   g1_policy()->print_age_table();
4560 }
4561 
4562 void G1CollectedHeap::record_obj_copy_mem_stats() {
4563   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4564 
4565   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4566                                                create_g1_evac_summary(&_old_evac_stats));
4567 }
4568 
4569 void G1CollectedHeap::free_region(HeapRegion* hr,
4570                                   FreeRegionList* free_list,
4571                                   bool skip_remset,
4572                                   bool skip_hot_card_cache,
4573                                   bool locked) {
4574   assert(!hr->is_free(), "the region should not be free");
4575   assert(!hr->is_empty(), "the region should not be empty");
4576   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4577   assert(free_list != NULL, "pre-condition");
4578 
4579   if (G1VerifyBitmaps) {
4580     MemRegion mr(hr->bottom(), hr->end());
4581     concurrent_mark()->clearRangePrevBitmap(mr);
4582   }
4583 
4584   // Clear the card counts for this region.
4585   // Note: we only need to do this if the region is not young
4586   // (since we don't refine cards in young regions).
4587   if (!skip_hot_card_cache && !hr->is_young()) {
4588     _hot_card_cache->reset_card_counts(hr);
4589   }
4590   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4591   free_list->add_ordered(hr);
4592 }
4593 
4594 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4595                                             FreeRegionList* free_list,
4596                                             bool skip_remset) {
4597   assert(hr->is_humongous(), "this is only for humongous regions");
4598   assert(free_list != NULL, "pre-condition");
4599   hr->clear_humongous();
4600   free_region(hr, free_list, skip_remset);
4601 }
4602 
4603 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4604                                            const uint humongous_regions_removed) {
4605   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4606     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4607     _old_set.bulk_remove(old_regions_removed);
4608     _humongous_set.bulk_remove(humongous_regions_removed);
4609   }
4610 
4611 }
4612 
4613 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4614   assert(list != NULL, "list can't be null");
4615   if (!list->is_empty()) {
4616     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4617     _hrm.insert_list_into_free_list(list);
4618   }
4619 }
4620 
4621 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4622   decrease_used(bytes);
4623 }
4624 
4625 class G1ParScrubRemSetTask: public AbstractGangTask {
4626 protected:
4627   G1RemSet* _g1rs;
4628   HeapRegionClaimer _hrclaimer;
4629 
4630 public:
4631   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4632     AbstractGangTask("G1 ScrubRS"),
4633     _g1rs(g1_rs),
4634     _hrclaimer(num_workers) {
4635   }
4636 
4637   void work(uint worker_id) {
4638     _g1rs->scrub(worker_id, &_hrclaimer);
4639   }
4640 };
4641 
4642 void G1CollectedHeap::scrub_rem_set() {
4643   uint num_workers = workers()->active_workers();
4644   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4645   workers()->run_task(&g1_par_scrub_rs_task);
4646 }
4647 
4648 class G1FreeCollectionSetTask : public AbstractGangTask {
4649 private:
4650 
4651   // Closure applied to all regions in the collection set to do work that needs to
4652   // be done serially in a single thread.
4653   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4654   private:
4655     EvacuationInfo* _evacuation_info;
4656     const size_t* _surviving_young_words;
4657 
4658     // Bytes used in successfully evacuated regions before the evacuation.
4659     size_t _before_used_bytes;
4660     // Bytes used in unsucessfully evacuated regions before the evacuation
4661     size_t _after_used_bytes;
4662 
4663     size_t _bytes_allocated_in_old_since_last_gc;
4664 
4665     size_t _failure_used_words;
4666     size_t _failure_waste_words;
4667 
4668     FreeRegionList _local_free_list;
4669   public:
4670     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4671       HeapRegionClosure(),
4672       _evacuation_info(evacuation_info),
4673       _surviving_young_words(surviving_young_words),
4674       _before_used_bytes(0),
4675       _after_used_bytes(0),
4676       _bytes_allocated_in_old_since_last_gc(0),
4677       _failure_used_words(0),
4678       _failure_waste_words(0),
4679       _local_free_list("Local Region List for CSet Freeing") {
4680     }
4681 
4682     virtual bool doHeapRegion(HeapRegion* r) {
4683       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4684 
4685       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4686       g1h->clear_in_cset(r);
4687 
4688       if (r->is_young()) {
4689         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4690                "Young index %d is wrong for region %u of type %s with %u young regions",
4691                r->young_index_in_cset(),
4692                r->hrm_index(),
4693                r->get_type_str(),
4694                g1h->collection_set()->young_region_length());
4695         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4696         r->record_surv_words_in_group(words_survived);
4697       }
4698 
4699       if (!r->evacuation_failed()) {
4700         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4701         _before_used_bytes += r->used();
4702         g1h->free_region(r,
4703                          &_local_free_list,
4704                          true, /* skip_remset */
4705                          true, /* skip_hot_card_cache */
4706                          true  /* locked */);
4707       } else {
4708         r->uninstall_surv_rate_group();
4709         r->set_young_index_in_cset(-1);
4710         r->set_evacuation_failed(false);
4711         // When moving a young gen region to old gen, we "allocate" that whole region
4712         // there. This is in addition to any already evacuated objects. Notify the
4713         // policy about that.
4714         // Old gen regions do not cause an additional allocation: both the objects
4715         // still in the region and the ones already moved are accounted for elsewhere.
4716         if (r->is_young()) {
4717           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4718         }
4719         // The region is now considered to be old.
4720         r->set_old();
4721         // Do some allocation statistics accounting. Regions that failed evacuation
4722         // are always made old, so there is no need to update anything in the young
4723         // gen statistics, but we need to update old gen statistics.
4724         size_t used_words = r->marked_bytes() / HeapWordSize;
4725 
4726         _failure_used_words += used_words;
4727         _failure_waste_words += HeapRegion::GrainWords - used_words;
4728 
4729         g1h->old_set_add(r);
4730         _after_used_bytes += r->used();
4731       }
4732       return false;
4733     }
4734 
4735     void complete_work() {
4736       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4737 
4738       _evacuation_info->set_regions_freed(_local_free_list.length());
4739       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4740 
4741       g1h->prepend_to_freelist(&_local_free_list);
4742       g1h->decrement_summary_bytes(_before_used_bytes);
4743 
4744       G1Policy* policy = g1h->g1_policy();
4745       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4746 
4747       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4748     }
4749   };
4750 
4751   G1CollectionSet* _collection_set;
4752   G1SerialFreeCollectionSetClosure _cl;
4753   const size_t* _surviving_young_words;
4754 
4755   size_t _rs_lengths;
4756 
4757   volatile jint _serial_work_claim;
4758 
4759   struct WorkItem {
4760     uint region_idx;
4761     bool is_young;
4762     bool evacuation_failed;
4763 
4764     WorkItem(HeapRegion* r) {
4765       region_idx = r->hrm_index();
4766       is_young = r->is_young();
4767       evacuation_failed = r->evacuation_failed();
4768     }
4769   };
4770 
4771   volatile size_t _parallel_work_claim;
4772   size_t _num_work_items;
4773   WorkItem* _work_items;
4774 
4775   void do_serial_work() {
4776     // Need to grab the lock to be allowed to modify the old region list.
4777     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4778     _collection_set->iterate(&_cl);
4779   }
4780 
4781   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4782     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4783 
4784     HeapRegion* r = g1h->region_at(region_idx);
4785     assert(!g1h->is_on_master_free_list(r), "sanity");
4786 
4787     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4788 
4789     if (!is_young) {
4790       g1h->_hot_card_cache->reset_card_counts(r);
4791     }
4792 
4793     if (!evacuation_failed) {
4794       r->rem_set()->clear_locked();
4795     }
4796   }
4797 
4798   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4799   private:
4800     size_t _cur_idx;
4801     WorkItem* _work_items;
4802   public:
4803     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4804 
4805     virtual bool doHeapRegion(HeapRegion* r) {
4806       _work_items[_cur_idx++] = WorkItem(r);
4807       return false;
4808     }
4809   };
4810 
4811   void prepare_work() {
4812     G1PrepareFreeCollectionSetClosure cl(_work_items);
4813     _collection_set->iterate(&cl);
4814   }
4815 
4816   void complete_work() {
4817     _cl.complete_work();
4818 
4819     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4820     policy->record_max_rs_lengths(_rs_lengths);
4821     policy->cset_regions_freed();
4822   }
4823 public:
4824   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4825     AbstractGangTask("G1 Free Collection Set"),
4826     _cl(evacuation_info, surviving_young_words),
4827     _collection_set(collection_set),
4828     _surviving_young_words(surviving_young_words),
4829     _serial_work_claim(0),
4830     _rs_lengths(0),
4831     _parallel_work_claim(0),
4832     _num_work_items(collection_set->region_length()),
4833     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4834     prepare_work();
4835   }
4836 
4837   ~G1FreeCollectionSetTask() {
4838     complete_work();
4839     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4840   }
4841 
4842   // Chunk size for work distribution. The chosen value has been determined experimentally
4843   // to be a good tradeoff between overhead and achievable parallelism.
4844   static uint chunk_size() { return 32; }
4845 
4846   virtual void work(uint worker_id) {
4847     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4848 
4849     // Claim serial work.
4850     if (_serial_work_claim == 0) {
4851       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4852       if (value == 0) {
4853         double serial_time = os::elapsedTime();
4854         do_serial_work();
4855         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4856       }
4857     }
4858 
4859     // Start parallel work.
4860     double young_time = 0.0;
4861     bool has_young_time = false;
4862     double non_young_time = 0.0;
4863     bool has_non_young_time = false;
4864 
4865     while (true) {
4866       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4867       size_t cur = end - chunk_size();
4868 
4869       if (cur >= _num_work_items) {
4870         break;
4871       }
4872 
4873       double start_time = os::elapsedTime();
4874 
4875       end = MIN2(end, _num_work_items);
4876 
4877       for (; cur < end; cur++) {
4878         bool is_young = _work_items[cur].is_young;
4879 
4880         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4881 
4882         double end_time = os::elapsedTime();
4883         double time_taken = end_time - start_time;
4884         if (is_young) {
4885           young_time += time_taken;
4886           has_young_time = true;
4887         } else {
4888           non_young_time += time_taken;
4889           has_non_young_time = true;
4890         }
4891         start_time = end_time;
4892       }
4893     }
4894 
4895     if (has_young_time) {
4896       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4897     }
4898     if (has_non_young_time) {
4899       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4900     }
4901   }
4902 };
4903 
4904 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4905   _eden.clear();
4906 
4907   double free_cset_start_time = os::elapsedTime();
4908 
4909   {
4910     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4911     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4912 
4913     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4914 
4915     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4916                         cl.name(),
4917                         num_workers,
4918                         _collection_set.region_length());
4919     workers()->run_task(&cl, num_workers);
4920   }
4921   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4922 
4923   collection_set->clear();
4924 }
4925 
4926 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4927  private:
4928   FreeRegionList* _free_region_list;
4929   HeapRegionSet* _proxy_set;
4930   uint _humongous_objects_reclaimed;
4931   uint _humongous_regions_reclaimed;
4932   size_t _freed_bytes;
4933  public:
4934 
4935   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4936     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4937   }
4938 
4939   virtual bool doHeapRegion(HeapRegion* r) {
4940     if (!r->is_starts_humongous()) {
4941       return false;
4942     }
4943 
4944     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4945 
4946     oop obj = (oop)r->bottom();
4947     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4948 
4949     // The following checks whether the humongous object is live are sufficient.
4950     // The main additional check (in addition to having a reference from the roots
4951     // or the young gen) is whether the humongous object has a remembered set entry.
4952     //
4953     // A humongous object cannot be live if there is no remembered set for it
4954     // because:
4955     // - there can be no references from within humongous starts regions referencing
4956     // the object because we never allocate other objects into them.
4957     // (I.e. there are no intra-region references that may be missed by the
4958     // remembered set)
4959     // - as soon there is a remembered set entry to the humongous starts region
4960     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4961     // until the end of a concurrent mark.
4962     //
4963     // It is not required to check whether the object has been found dead by marking
4964     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4965     // all objects allocated during that time are considered live.
4966     // SATB marking is even more conservative than the remembered set.
4967     // So if at this point in the collection there is no remembered set entry,
4968     // nobody has a reference to it.
4969     // At the start of collection we flush all refinement logs, and remembered sets
4970     // are completely up-to-date wrt to references to the humongous object.
4971     //
4972     // Other implementation considerations:
4973     // - never consider object arrays at this time because they would pose
4974     // considerable effort for cleaning up the the remembered sets. This is
4975     // required because stale remembered sets might reference locations that
4976     // are currently allocated into.
4977     uint region_idx = r->hrm_index();
4978     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4979         !r->rem_set()->is_empty()) {
4980       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4981                                region_idx,
4982                                (size_t)obj->size() * HeapWordSize,
4983                                p2i(r->bottom()),
4984                                r->rem_set()->occupied(),
4985                                r->rem_set()->strong_code_roots_list_length(),
4986                                next_bitmap->isMarked(r->bottom()),
4987                                g1h->is_humongous_reclaim_candidate(region_idx),
4988                                obj->is_typeArray()
4989                               );
4990       return false;
4991     }
4992 
4993     guarantee(obj->is_typeArray(),
4994               "Only eagerly reclaiming type arrays is supported, but the object "
4995               PTR_FORMAT " is not.", p2i(r->bottom()));
4996 
4997     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4998                              region_idx,
4999                              (size_t)obj->size() * HeapWordSize,
5000                              p2i(r->bottom()),
5001                              r->rem_set()->occupied(),
5002                              r->rem_set()->strong_code_roots_list_length(),
5003                              next_bitmap->isMarked(r->bottom()),
5004                              g1h->is_humongous_reclaim_candidate(region_idx),
5005                              obj->is_typeArray()
5006                             );
5007 
5008     // Need to clear mark bit of the humongous object if already set.
5009     if (next_bitmap->isMarked(r->bottom())) {
5010       next_bitmap->clear(r->bottom());
5011     }
5012     _humongous_objects_reclaimed++;
5013     do {
5014       HeapRegion* next = g1h->next_region_in_humongous(r);
5015       _freed_bytes += r->used();
5016       r->set_containing_set(NULL);
5017       _humongous_regions_reclaimed++;
5018       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
5019       r = next;
5020     } while (r != NULL);
5021 
5022     return false;
5023   }
5024 
5025   uint humongous_objects_reclaimed() {
5026     return _humongous_objects_reclaimed;
5027   }
5028 
5029   uint humongous_regions_reclaimed() {
5030     return _humongous_regions_reclaimed;
5031   }
5032 
5033   size_t bytes_freed() const {
5034     return _freed_bytes;
5035   }
5036 };
5037 
5038 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5039   assert_at_safepoint(true);
5040 
5041   if (!G1EagerReclaimHumongousObjects ||
5042       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5043     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5044     return;
5045   }
5046 
5047   double start_time = os::elapsedTime();
5048 
5049   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5050 
5051   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5052   heap_region_iterate(&cl);
5053 
5054   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
5055 
5056   G1HRPrinter* hrp = hr_printer();
5057   if (hrp->is_active()) {
5058     FreeRegionListIterator iter(&local_cleanup_list);
5059     while (iter.more_available()) {
5060       HeapRegion* hr = iter.get_next();
5061       hrp->cleanup(hr);
5062     }
5063   }
5064 
5065   prepend_to_freelist(&local_cleanup_list);
5066   decrement_summary_bytes(cl.bytes_freed());
5067 
5068   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5069                                                                     cl.humongous_objects_reclaimed());
5070 }
5071 
5072 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
5073 public:
5074   virtual bool doHeapRegion(HeapRegion* r) {
5075     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
5076     G1CollectedHeap::heap()->clear_in_cset(r);
5077     r->set_young_index_in_cset(-1);
5078     return false;
5079   }
5080 };
5081 
5082 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
5083   G1AbandonCollectionSetClosure cl;
5084   collection_set->iterate(&cl);
5085 
5086   collection_set->clear();
5087   collection_set->stop_incremental_building();
5088 }
5089 
5090 void G1CollectedHeap::set_free_regions_coming() {
5091   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5092 
5093   assert(!free_regions_coming(), "pre-condition");
5094   _free_regions_coming = true;
5095 }
5096 
5097 void G1CollectedHeap::reset_free_regions_coming() {
5098   assert(free_regions_coming(), "pre-condition");
5099 
5100   {
5101     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5102     _free_regions_coming = false;
5103     SecondaryFreeList_lock->notify_all();
5104   }
5105 
5106   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5107 }
5108 
5109 void G1CollectedHeap::wait_while_free_regions_coming() {
5110   // Most of the time we won't have to wait, so let's do a quick test
5111   // first before we take the lock.
5112   if (!free_regions_coming()) {
5113     return;
5114   }
5115 
5116   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5117 
5118   {
5119     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5120     while (free_regions_coming()) {
5121       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5122     }
5123   }
5124 
5125   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5126 }
5127 
5128 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5129   return _allocator->is_retained_old_region(hr);
5130 }
5131 
5132 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5133   _eden.add(hr);
5134   _g1_policy->set_region_eden(hr);
5135 }
5136 
5137 #ifdef ASSERT
5138 
5139 class NoYoungRegionsClosure: public HeapRegionClosure {
5140 private:
5141   bool _success;
5142 public:
5143   NoYoungRegionsClosure() : _success(true) { }
5144   bool doHeapRegion(HeapRegion* r) {
5145     if (r->is_young()) {
5146       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5147                             p2i(r->bottom()), p2i(r->end()));
5148       _success = false;
5149     }
5150     return false;
5151   }
5152   bool success() { return _success; }
5153 };
5154 
5155 bool G1CollectedHeap::check_young_list_empty() {
5156   bool ret = (young_regions_count() == 0);
5157 
5158   NoYoungRegionsClosure closure;
5159   heap_region_iterate(&closure);
5160   ret = ret && closure.success();
5161 
5162   return ret;
5163 }
5164 
5165 #endif // ASSERT
5166 
5167 class TearDownRegionSetsClosure : public HeapRegionClosure {
5168 private:
5169   HeapRegionSet *_old_set;
5170 
5171 public:
5172   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5173 
5174   bool doHeapRegion(HeapRegion* r) {
5175     if (r->is_old()) {
5176       _old_set->remove(r);
5177     } else if(r->is_young()) {
5178       r->uninstall_surv_rate_group();
5179     } else {
5180       // We ignore free regions, we'll empty the free list afterwards.
5181       // We ignore humongous regions, we're not tearing down the
5182       // humongous regions set.
5183       assert(r->is_free() || r->is_humongous(),
5184              "it cannot be another type");
5185     }
5186     return false;
5187   }
5188 
5189   ~TearDownRegionSetsClosure() {
5190     assert(_old_set->is_empty(), "post-condition");
5191   }
5192 };
5193 
5194 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5195   assert_at_safepoint(true /* should_be_vm_thread */);
5196 
5197   if (!free_list_only) {
5198     TearDownRegionSetsClosure cl(&_old_set);
5199     heap_region_iterate(&cl);
5200 
5201     // Note that emptying the _young_list is postponed and instead done as
5202     // the first step when rebuilding the regions sets again. The reason for
5203     // this is that during a full GC string deduplication needs to know if
5204     // a collected region was young or old when the full GC was initiated.
5205   }
5206   _hrm.remove_all_free_regions();
5207 }
5208 
5209 void G1CollectedHeap::increase_used(size_t bytes) {
5210   _summary_bytes_used += bytes;
5211 }
5212 
5213 void G1CollectedHeap::decrease_used(size_t bytes) {
5214   assert(_summary_bytes_used >= bytes,
5215          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5216          _summary_bytes_used, bytes);
5217   _summary_bytes_used -= bytes;
5218 }
5219 
5220 void G1CollectedHeap::set_used(size_t bytes) {
5221   _summary_bytes_used = bytes;
5222 }
5223 
5224 class RebuildRegionSetsClosure : public HeapRegionClosure {
5225 private:
5226   bool            _free_list_only;
5227   HeapRegionSet*   _old_set;
5228   HeapRegionManager*   _hrm;
5229   size_t          _total_used;
5230 
5231 public:
5232   RebuildRegionSetsClosure(bool free_list_only,
5233                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5234     _free_list_only(free_list_only),
5235     _old_set(old_set), _hrm(hrm), _total_used(0) {
5236     assert(_hrm->num_free_regions() == 0, "pre-condition");
5237     if (!free_list_only) {
5238       assert(_old_set->is_empty(), "pre-condition");
5239     }
5240   }
5241 
5242   bool doHeapRegion(HeapRegion* r) {
5243     if (r->is_empty()) {
5244       // Add free regions to the free list
5245       r->set_free();
5246       r->set_allocation_context(AllocationContext::system());
5247       _hrm->insert_into_free_list(r);
5248     } else if (!_free_list_only) {
5249 
5250       if (r->is_humongous()) {
5251         // We ignore humongous regions. We left the humongous set unchanged.
5252       } else {
5253         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5254         // We now consider all regions old, so register as such. Leave
5255         // archive regions set that way, however, while still adding
5256         // them to the old set.
5257         if (!r->is_archive()) {
5258           r->set_old();
5259         }
5260         _old_set->add(r);
5261       }
5262       _total_used += r->used();
5263     }
5264 
5265     return false;
5266   }
5267 
5268   size_t total_used() {
5269     return _total_used;
5270   }
5271 };
5272 
5273 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5274   assert_at_safepoint(true /* should_be_vm_thread */);
5275 
5276   if (!free_list_only) {
5277     _eden.clear();
5278     _survivor.clear();
5279   }
5280 
5281   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5282   heap_region_iterate(&cl);
5283 
5284   if (!free_list_only) {
5285     set_used(cl.total_used());
5286     if (_archive_allocator != NULL) {
5287       _archive_allocator->clear_used();
5288     }
5289   }
5290   assert(used_unlocked() == recalculate_used(),
5291          "inconsistent used_unlocked(), "
5292          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5293          used_unlocked(), recalculate_used());
5294 }
5295 
5296 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5297   _refine_cte_cl->set_concurrent(concurrent);
5298 }
5299 
5300 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5301   HeapRegion* hr = heap_region_containing(p);
5302   return hr->is_in(p);
5303 }
5304 
5305 // Methods for the mutator alloc region
5306 
5307 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5308                                                       bool force) {
5309   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5310   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5311   if (force || should_allocate) {
5312     HeapRegion* new_alloc_region = new_region(word_size,
5313                                               false /* is_old */,
5314                                               false /* do_expand */);
5315     if (new_alloc_region != NULL) {
5316       set_region_short_lived_locked(new_alloc_region);
5317       _hr_printer.alloc(new_alloc_region, !should_allocate);
5318       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5319       return new_alloc_region;
5320     }
5321   }
5322   return NULL;
5323 }
5324 
5325 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5326                                                   size_t allocated_bytes) {
5327   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5328   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5329 
5330   collection_set()->add_eden_region(alloc_region);
5331   increase_used(allocated_bytes);
5332   _hr_printer.retire(alloc_region);
5333   // We update the eden sizes here, when the region is retired,
5334   // instead of when it's allocated, since this is the point that its
5335   // used space has been recored in _summary_bytes_used.
5336   g1mm()->update_eden_size();
5337 }
5338 
5339 // Methods for the GC alloc regions
5340 
5341 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5342   if (dest.is_old()) {
5343     return true;
5344   } else {
5345     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5346   }
5347 }
5348 
5349 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5350   assert(FreeList_lock->owned_by_self(), "pre-condition");
5351 
5352   if (!has_more_regions(dest)) {
5353     return NULL;
5354   }
5355 
5356   const bool is_survivor = dest.is_young();
5357 
5358   HeapRegion* new_alloc_region = new_region(word_size,
5359                                             !is_survivor,
5360                                             true /* do_expand */);
5361   if (new_alloc_region != NULL) {
5362     // We really only need to do this for old regions given that we
5363     // should never scan survivors. But it doesn't hurt to do it
5364     // for survivors too.
5365     new_alloc_region->record_timestamp();
5366     if (is_survivor) {
5367       new_alloc_region->set_survivor();
5368       _survivor.add(new_alloc_region);
5369       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5370     } else {
5371       new_alloc_region->set_old();
5372       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5373     }
5374     _hr_printer.alloc(new_alloc_region);
5375     bool during_im = collector_state()->during_initial_mark_pause();
5376     new_alloc_region->note_start_of_copying(during_im);
5377     return new_alloc_region;
5378   }
5379   return NULL;
5380 }
5381 
5382 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5383                                              size_t allocated_bytes,
5384                                              InCSetState dest) {
5385   bool during_im = collector_state()->during_initial_mark_pause();
5386   alloc_region->note_end_of_copying(during_im);
5387   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5388   if (dest.is_old()) {
5389     _old_set.add(alloc_region);
5390   }
5391   _hr_printer.retire(alloc_region);
5392 }
5393 
5394 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5395   bool expanded = false;
5396   uint index = _hrm.find_highest_free(&expanded);
5397 
5398   if (index != G1_NO_HRM_INDEX) {
5399     if (expanded) {
5400       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5401                                 HeapRegion::GrainWords * HeapWordSize);
5402     }
5403     _hrm.allocate_free_regions_starting_at(index, 1);
5404     return region_at(index);
5405   }
5406   return NULL;
5407 }
5408 
5409 // Optimized nmethod scanning
5410 
5411 class RegisterNMethodOopClosure: public OopClosure {
5412   G1CollectedHeap* _g1h;
5413   nmethod* _nm;
5414 
5415   template <class T> void do_oop_work(T* p) {
5416     T heap_oop = oopDesc::load_heap_oop(p);
5417     if (!oopDesc::is_null(heap_oop)) {
5418       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5419       HeapRegion* hr = _g1h->heap_region_containing(obj);
5420       assert(!hr->is_continues_humongous(),
5421              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5422              " starting at " HR_FORMAT,
5423              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5424 
5425       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5426       hr->add_strong_code_root_locked(_nm);
5427     }
5428   }
5429 
5430 public:
5431   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5432     _g1h(g1h), _nm(nm) {}
5433 
5434   void do_oop(oop* p)       { do_oop_work(p); }
5435   void do_oop(narrowOop* p) { do_oop_work(p); }
5436 };
5437 
5438 class UnregisterNMethodOopClosure: public OopClosure {
5439   G1CollectedHeap* _g1h;
5440   nmethod* _nm;
5441 
5442   template <class T> void do_oop_work(T* p) {
5443     T heap_oop = oopDesc::load_heap_oop(p);
5444     if (!oopDesc::is_null(heap_oop)) {
5445       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5446       HeapRegion* hr = _g1h->heap_region_containing(obj);
5447       assert(!hr->is_continues_humongous(),
5448              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5449              " starting at " HR_FORMAT,
5450              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5451 
5452       hr->remove_strong_code_root(_nm);
5453     }
5454   }
5455 
5456 public:
5457   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5458     _g1h(g1h), _nm(nm) {}
5459 
5460   void do_oop(oop* p)       { do_oop_work(p); }
5461   void do_oop(narrowOop* p) { do_oop_work(p); }
5462 };
5463 
5464 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5465   CollectedHeap::register_nmethod(nm);
5466 
5467   guarantee(nm != NULL, "sanity");
5468   RegisterNMethodOopClosure reg_cl(this, nm);
5469   nm->oops_do(&reg_cl);
5470 }
5471 
5472 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5473   CollectedHeap::unregister_nmethod(nm);
5474 
5475   guarantee(nm != NULL, "sanity");
5476   UnregisterNMethodOopClosure reg_cl(this, nm);
5477   nm->oops_do(&reg_cl, true);
5478 }
5479 
5480 void G1CollectedHeap::purge_code_root_memory() {
5481   double purge_start = os::elapsedTime();
5482   G1CodeRootSet::purge();
5483   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5484   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5485 }
5486 
5487 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5488   G1CollectedHeap* _g1h;
5489 
5490 public:
5491   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5492     _g1h(g1h) {}
5493 
5494   void do_code_blob(CodeBlob* cb) {
5495     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5496     if (nm == NULL) {
5497       return;
5498     }
5499 
5500     if (ScavengeRootsInCode) {
5501       _g1h->register_nmethod(nm);
5502     }
5503   }
5504 };
5505 
5506 void G1CollectedHeap::rebuild_strong_code_roots() {
5507   RebuildStrongCodeRootClosure blob_cl(this);
5508   CodeCache::blobs_do(&blob_cl);
5509 }