1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1FullGCScope.hpp"
  43 #include "gc/g1/g1GCPhaseTimes.hpp"
  44 #include "gc/g1/g1HeapSizingPolicy.hpp"
  45 #include "gc/g1/g1HeapTransition.hpp"
  46 #include "gc/g1/g1HeapVerifier.hpp"
  47 #include "gc/g1/g1HotCardCache.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.inline.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1YCTypes.hpp"
  57 #include "gc/g1/heapRegion.inline.hpp"
  58 #include "gc/g1/heapRegionRemSet.hpp"
  59 #include "gc/g1/heapRegionSet.inline.hpp"
  60 #include "gc/g1/suspendibleThreadSet.hpp"
  61 #include "gc/g1/vm_operations_g1.hpp"
  62 #include "gc/shared/gcHeapSummary.hpp"
  63 #include "gc/shared/gcId.hpp"
  64 #include "gc/shared/gcLocker.inline.hpp"
  65 #include "gc/shared/gcTimer.hpp"
  66 #include "gc/shared/gcTrace.hpp"
  67 #include "gc/shared/gcTraceTime.inline.hpp"
  68 #include "gc/shared/generationSpec.hpp"
  69 #include "gc/shared/isGCActiveMark.hpp"
  70 #include "gc/shared/preservedMarks.inline.hpp"
  71 #include "gc/shared/referenceProcessor.inline.hpp"
  72 #include "gc/shared/taskqueue.inline.hpp"
  73 #include "logging/log.hpp"
  74 #include "memory/allocation.hpp"
  75 #include "memory/iterator.hpp"
  76 #include "memory/resourceArea.hpp"
  77 #include "oops/oop.inline.hpp"
  78 #include "prims/resolvedMethodTable.hpp"
  79 #include "runtime/atomic.hpp"
  80 #include "runtime/init.hpp"
  81 #include "runtime/orderAccess.inline.hpp"
  82 #include "runtime/vmThread.hpp"
  83 #include "utilities/align.hpp"
  84 #include "utilities/globalDefinitions.hpp"
  85 #include "utilities/stack.inline.hpp"
  86 
  87 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  88 
  89 // INVARIANTS/NOTES
  90 //
  91 // All allocation activity covered by the G1CollectedHeap interface is
  92 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  93 // and allocate_new_tlab, which are the "entry" points to the
  94 // allocation code from the rest of the JVM.  (Note that this does not
  95 // apply to TLAB allocation, which is not part of this interface: it
  96 // is done by clients of this interface.)
  97 
  98 // Local to this file.
  99 
 100 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 101   bool _concurrent;
 102 public:
 103   RefineCardTableEntryClosure() : _concurrent(true) { }
 104 
 105   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 106     G1CollectedHeap::heap()->g1_rem_set()->refine_card_concurrently(card_ptr, worker_i);
 107 
 108     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 109       // Caller will actually yield.
 110       return false;
 111     }
 112     // Otherwise, we finished successfully; return true.
 113     return true;
 114   }
 115 
 116   void set_concurrent(bool b) { _concurrent = b; }
 117 };
 118 
 119 
 120 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 121  private:
 122   size_t _num_dirtied;
 123   G1CollectedHeap* _g1h;
 124   G1SATBCardTableLoggingModRefBS* _g1_bs;
 125 
 126   HeapRegion* region_for_card(jbyte* card_ptr) const {
 127     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 128   }
 129 
 130   bool will_become_free(HeapRegion* hr) const {
 131     // A region will be freed by free_collection_set if the region is in the
 132     // collection set and has not had an evacuation failure.
 133     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 134   }
 135 
 136  public:
 137   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 138     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 139 
 140   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 141     HeapRegion* hr = region_for_card(card_ptr);
 142 
 143     // Should only dirty cards in regions that won't be freed.
 144     if (!will_become_free(hr)) {
 145       *card_ptr = CardTableModRefBS::dirty_card_val();
 146       _num_dirtied++;
 147     }
 148 
 149     return true;
 150   }
 151 
 152   size_t num_dirtied()   const { return _num_dirtied; }
 153 };
 154 
 155 
 156 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 157   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 158 }
 159 
 160 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 161   // The from card cache is not the memory that is actually committed. So we cannot
 162   // take advantage of the zero_filled parameter.
 163   reset_from_card_cache(start_idx, num_regions);
 164 }
 165 
 166 // Returns true if the reference points to an object that
 167 // can move in an incremental collection.
 168 bool G1CollectedHeap::is_scavengable(const void* p) {
 169   HeapRegion* hr = heap_region_containing(p);
 170   return !hr->is_pinned();
 171 }
 172 
 173 
 174 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 175                                              MemRegion mr) {
 176   return new HeapRegion(hrs_index, bot(), mr);
 177 }
 178 
 179 // Private methods.
 180 
 181 HeapRegion*
 182 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 183   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 184   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 185     if (!_secondary_free_list.is_empty()) {
 186       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 187                                       "secondary_free_list has %u entries",
 188                                       _secondary_free_list.length());
 189       // It looks as if there are free regions available on the
 190       // secondary_free_list. Let's move them to the free_list and try
 191       // again to allocate from it.
 192       append_secondary_free_list();
 193 
 194       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 195              "empty we should have moved at least one entry to the free_list");
 196       HeapRegion* res = _hrm.allocate_free_region(is_old);
 197       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 198                                       "allocated " HR_FORMAT " from secondary_free_list",
 199                                       HR_FORMAT_PARAMS(res));
 200       return res;
 201     }
 202 
 203     // Wait here until we get notified either when (a) there are no
 204     // more free regions coming or (b) some regions have been moved on
 205     // the secondary_free_list.
 206     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 207   }
 208 
 209   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 210                                   "could not allocate from secondary_free_list");
 211   return NULL;
 212 }
 213 
 214 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 215   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 216          "the only time we use this to allocate a humongous region is "
 217          "when we are allocating a single humongous region");
 218 
 219   HeapRegion* res;
 220   if (G1StressConcRegionFreeing) {
 221     if (!_secondary_free_list.is_empty()) {
 222       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 223                                       "forced to look at the secondary_free_list");
 224       res = new_region_try_secondary_free_list(is_old);
 225       if (res != NULL) {
 226         return res;
 227       }
 228     }
 229   }
 230 
 231   res = _hrm.allocate_free_region(is_old);
 232 
 233   if (res == NULL) {
 234     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 235                                     "res == NULL, trying the secondary_free_list");
 236     res = new_region_try_secondary_free_list(is_old);
 237   }
 238   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 239     // Currently, only attempts to allocate GC alloc regions set
 240     // do_expand to true. So, we should only reach here during a
 241     // safepoint. If this assumption changes we might have to
 242     // reconsider the use of _expand_heap_after_alloc_failure.
 243     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 244 
 245     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 246                               word_size * HeapWordSize);
 247 
 248     if (expand(word_size * HeapWordSize)) {
 249       // Given that expand() succeeded in expanding the heap, and we
 250       // always expand the heap by an amount aligned to the heap
 251       // region size, the free list should in theory not be empty.
 252       // In either case allocate_free_region() will check for NULL.
 253       res = _hrm.allocate_free_region(is_old);
 254     } else {
 255       _expand_heap_after_alloc_failure = false;
 256     }
 257   }
 258   return res;
 259 }
 260 
 261 HeapWord*
 262 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 263                                                            uint num_regions,
 264                                                            size_t word_size,
 265                                                            AllocationContext_t context) {
 266   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 267   assert(is_humongous(word_size), "word_size should be humongous");
 268   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 269 
 270   // Index of last region in the series.
 271   uint last = first + num_regions - 1;
 272 
 273   // We need to initialize the region(s) we just discovered. This is
 274   // a bit tricky given that it can happen concurrently with
 275   // refinement threads refining cards on these regions and
 276   // potentially wanting to refine the BOT as they are scanning
 277   // those cards (this can happen shortly after a cleanup; see CR
 278   // 6991377). So we have to set up the region(s) carefully and in
 279   // a specific order.
 280 
 281   // The word size sum of all the regions we will allocate.
 282   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 283   assert(word_size <= word_size_sum, "sanity");
 284 
 285   // This will be the "starts humongous" region.
 286   HeapRegion* first_hr = region_at(first);
 287   // The header of the new object will be placed at the bottom of
 288   // the first region.
 289   HeapWord* new_obj = first_hr->bottom();
 290   // This will be the new top of the new object.
 291   HeapWord* obj_top = new_obj + word_size;
 292 
 293   // First, we need to zero the header of the space that we will be
 294   // allocating. When we update top further down, some refinement
 295   // threads might try to scan the region. By zeroing the header we
 296   // ensure that any thread that will try to scan the region will
 297   // come across the zero klass word and bail out.
 298   //
 299   // NOTE: It would not have been correct to have used
 300   // CollectedHeap::fill_with_object() and make the space look like
 301   // an int array. The thread that is doing the allocation will
 302   // later update the object header to a potentially different array
 303   // type and, for a very short period of time, the klass and length
 304   // fields will be inconsistent. This could cause a refinement
 305   // thread to calculate the object size incorrectly.
 306   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 307 
 308   // Next, pad out the unused tail of the last region with filler
 309   // objects, for improved usage accounting.
 310   // How many words we use for filler objects.
 311   size_t word_fill_size = word_size_sum - word_size;
 312 
 313   // How many words memory we "waste" which cannot hold a filler object.
 314   size_t words_not_fillable = 0;
 315 
 316   if (word_fill_size >= min_fill_size()) {
 317     fill_with_objects(obj_top, word_fill_size);
 318   } else if (word_fill_size > 0) {
 319     // We have space to fill, but we cannot fit an object there.
 320     words_not_fillable = word_fill_size;
 321     word_fill_size = 0;
 322   }
 323 
 324   // We will set up the first region as "starts humongous". This
 325   // will also update the BOT covering all the regions to reflect
 326   // that there is a single object that starts at the bottom of the
 327   // first region.
 328   first_hr->set_starts_humongous(obj_top, word_fill_size);
 329   first_hr->set_allocation_context(context);
 330   // Then, if there are any, we will set up the "continues
 331   // humongous" regions.
 332   HeapRegion* hr = NULL;
 333   for (uint i = first + 1; i <= last; ++i) {
 334     hr = region_at(i);
 335     hr->set_continues_humongous(first_hr);
 336     hr->set_allocation_context(context);
 337   }
 338 
 339   // Up to this point no concurrent thread would have been able to
 340   // do any scanning on any region in this series. All the top
 341   // fields still point to bottom, so the intersection between
 342   // [bottom,top] and [card_start,card_end] will be empty. Before we
 343   // update the top fields, we'll do a storestore to make sure that
 344   // no thread sees the update to top before the zeroing of the
 345   // object header and the BOT initialization.
 346   OrderAccess::storestore();
 347 
 348   // Now, we will update the top fields of the "continues humongous"
 349   // regions except the last one.
 350   for (uint i = first; i < last; ++i) {
 351     hr = region_at(i);
 352     hr->set_top(hr->end());
 353   }
 354 
 355   hr = region_at(last);
 356   // If we cannot fit a filler object, we must set top to the end
 357   // of the humongous object, otherwise we cannot iterate the heap
 358   // and the BOT will not be complete.
 359   hr->set_top(hr->end() - words_not_fillable);
 360 
 361   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 362          "obj_top should be in last region");
 363 
 364   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 365 
 366   assert(words_not_fillable == 0 ||
 367          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 368          "Miscalculation in humongous allocation");
 369 
 370   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 371 
 372   for (uint i = first; i <= last; ++i) {
 373     hr = region_at(i);
 374     _humongous_set.add(hr);
 375     _hr_printer.alloc(hr);
 376   }
 377 
 378   return new_obj;
 379 }
 380 
 381 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 382   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 383   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 384 }
 385 
 386 // If could fit into free regions w/o expansion, try.
 387 // Otherwise, if can expand, do so.
 388 // Otherwise, if using ex regions might help, try with ex given back.
 389 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 390   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 391 
 392   _verifier->verify_region_sets_optional();
 393 
 394   uint first = G1_NO_HRM_INDEX;
 395   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 396 
 397   if (obj_regions == 1) {
 398     // Only one region to allocate, try to use a fast path by directly allocating
 399     // from the free lists. Do not try to expand here, we will potentially do that
 400     // later.
 401     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 402     if (hr != NULL) {
 403       first = hr->hrm_index();
 404     }
 405   } else {
 406     // We can't allocate humongous regions spanning more than one region while
 407     // cleanupComplete() is running, since some of the regions we find to be
 408     // empty might not yet be added to the free list. It is not straightforward
 409     // to know in which list they are on so that we can remove them. We only
 410     // need to do this if we need to allocate more than one region to satisfy the
 411     // current humongous allocation request. If we are only allocating one region
 412     // we use the one-region region allocation code (see above), that already
 413     // potentially waits for regions from the secondary free list.
 414     wait_while_free_regions_coming();
 415     append_secondary_free_list_if_not_empty_with_lock();
 416 
 417     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 418     // are lucky enough to find some.
 419     first = _hrm.find_contiguous_only_empty(obj_regions);
 420     if (first != G1_NO_HRM_INDEX) {
 421       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 422     }
 423   }
 424 
 425   if (first == G1_NO_HRM_INDEX) {
 426     // Policy: We could not find enough regions for the humongous object in the
 427     // free list. Look through the heap to find a mix of free and uncommitted regions.
 428     // If so, try expansion.
 429     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 430     if (first != G1_NO_HRM_INDEX) {
 431       // We found something. Make sure these regions are committed, i.e. expand
 432       // the heap. Alternatively we could do a defragmentation GC.
 433       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 434                                     word_size * HeapWordSize);
 435 
 436       _hrm.expand_at(first, obj_regions, workers());
 437       g1_policy()->record_new_heap_size(num_regions());
 438 
 439 #ifdef ASSERT
 440       for (uint i = first; i < first + obj_regions; ++i) {
 441         HeapRegion* hr = region_at(i);
 442         assert(hr->is_free(), "sanity");
 443         assert(hr->is_empty(), "sanity");
 444         assert(is_on_master_free_list(hr), "sanity");
 445       }
 446 #endif
 447       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 448     } else {
 449       // Policy: Potentially trigger a defragmentation GC.
 450     }
 451   }
 452 
 453   HeapWord* result = NULL;
 454   if (first != G1_NO_HRM_INDEX) {
 455     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 456                                                        word_size, context);
 457     assert(result != NULL, "it should always return a valid result");
 458 
 459     // A successful humongous object allocation changes the used space
 460     // information of the old generation so we need to recalculate the
 461     // sizes and update the jstat counters here.
 462     g1mm()->update_sizes();
 463   }
 464 
 465   _verifier->verify_region_sets_optional();
 466 
 467   return result;
 468 }
 469 
 470 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 471   assert_heap_not_locked_and_not_at_safepoint();
 472   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 473 
 474   uint dummy_gc_count_before;
 475   uint dummy_gclocker_retry_count = 0;
 476   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 477 }
 478 
 479 HeapWord*
 480 G1CollectedHeap::mem_allocate(size_t word_size,
 481                               bool*  gc_overhead_limit_was_exceeded) {
 482   assert_heap_not_locked_and_not_at_safepoint();
 483 
 484   // Loop until the allocation is satisfied, or unsatisfied after GC.
 485   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 486     uint gc_count_before;
 487 
 488     HeapWord* result = NULL;
 489     if (!is_humongous(word_size)) {
 490       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 491     } else {
 492       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 493     }
 494     if (result != NULL) {
 495       return result;
 496     }
 497 
 498     // Create the garbage collection operation...
 499     VM_G1CollectForAllocation op(gc_count_before, word_size);
 500     op.set_allocation_context(AllocationContext::current());
 501 
 502     // ...and get the VM thread to execute it.
 503     VMThread::execute(&op);
 504 
 505     if (op.prologue_succeeded() && op.pause_succeeded()) {
 506       // If the operation was successful we'll return the result even
 507       // if it is NULL. If the allocation attempt failed immediately
 508       // after a Full GC, it's unlikely we'll be able to allocate now.
 509       HeapWord* result = op.result();
 510       if (result != NULL && !is_humongous(word_size)) {
 511         // Allocations that take place on VM operations do not do any
 512         // card dirtying and we have to do it here. We only have to do
 513         // this for non-humongous allocations, though.
 514         dirty_young_block(result, word_size);
 515       }
 516       return result;
 517     } else {
 518       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 519         return NULL;
 520       }
 521       assert(op.result() == NULL,
 522              "the result should be NULL if the VM op did not succeed");
 523     }
 524 
 525     // Give a warning if we seem to be looping forever.
 526     if ((QueuedAllocationWarningCount > 0) &&
 527         (try_count % QueuedAllocationWarningCount == 0)) {
 528       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 529     }
 530   }
 531 
 532   ShouldNotReachHere();
 533   return NULL;
 534 }
 535 
 536 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 537                                                    AllocationContext_t context,
 538                                                    uint* gc_count_before_ret,
 539                                                    uint* gclocker_retry_count_ret) {
 540   // Make sure you read the note in attempt_allocation_humongous().
 541 
 542   assert_heap_not_locked_and_not_at_safepoint();
 543   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 544          "be called for humongous allocation requests");
 545 
 546   // We should only get here after the first-level allocation attempt
 547   // (attempt_allocation()) failed to allocate.
 548 
 549   // We will loop until a) we manage to successfully perform the
 550   // allocation or b) we successfully schedule a collection which
 551   // fails to perform the allocation. b) is the only case when we'll
 552   // return NULL.
 553   HeapWord* result = NULL;
 554   for (int try_count = 1; /* we'll return */; try_count += 1) {
 555     bool should_try_gc;
 556     uint gc_count_before;
 557 
 558     {
 559       MutexLockerEx x(Heap_lock);
 560       result = _allocator->attempt_allocation_locked(word_size, context);
 561       if (result != NULL) {
 562         return result;
 563       }
 564 
 565       if (GCLocker::is_active_and_needs_gc()) {
 566         if (g1_policy()->can_expand_young_list()) {
 567           // No need for an ergo verbose message here,
 568           // can_expand_young_list() does this when it returns true.
 569           result = _allocator->attempt_allocation_force(word_size, context);
 570           if (result != NULL) {
 571             return result;
 572           }
 573         }
 574         should_try_gc = false;
 575       } else {
 576         // The GCLocker may not be active but the GCLocker initiated
 577         // GC may not yet have been performed (GCLocker::needs_gc()
 578         // returns true). In this case we do not try this GC and
 579         // wait until the GCLocker initiated GC is performed, and
 580         // then retry the allocation.
 581         if (GCLocker::needs_gc()) {
 582           should_try_gc = false;
 583         } else {
 584           // Read the GC count while still holding the Heap_lock.
 585           gc_count_before = total_collections();
 586           should_try_gc = true;
 587         }
 588       }
 589     }
 590 
 591     if (should_try_gc) {
 592       bool succeeded;
 593       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 594                                    GCCause::_g1_inc_collection_pause);
 595       if (result != NULL) {
 596         assert(succeeded, "only way to get back a non-NULL result");
 597         return result;
 598       }
 599 
 600       if (succeeded) {
 601         // If we get here we successfully scheduled a collection which
 602         // failed to allocate. No point in trying to allocate
 603         // further. We'll just return NULL.
 604         MutexLockerEx x(Heap_lock);
 605         *gc_count_before_ret = total_collections();
 606         return NULL;
 607       }
 608     } else {
 609       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 610         MutexLockerEx x(Heap_lock);
 611         *gc_count_before_ret = total_collections();
 612         return NULL;
 613       }
 614       // The GCLocker is either active or the GCLocker initiated
 615       // GC has not yet been performed. Stall until it is and
 616       // then retry the allocation.
 617       GCLocker::stall_until_clear();
 618       (*gclocker_retry_count_ret) += 1;
 619     }
 620 
 621     // We can reach here if we were unsuccessful in scheduling a
 622     // collection (because another thread beat us to it) or if we were
 623     // stalled due to the GC locker. In either can we should retry the
 624     // allocation attempt in case another thread successfully
 625     // performed a collection and reclaimed enough space. We do the
 626     // first attempt (without holding the Heap_lock) here and the
 627     // follow-on attempt will be at the start of the next loop
 628     // iteration (after taking the Heap_lock).
 629     result = _allocator->attempt_allocation(word_size, context);
 630     if (result != NULL) {
 631       return result;
 632     }
 633 
 634     // Give a warning if we seem to be looping forever.
 635     if ((QueuedAllocationWarningCount > 0) &&
 636         (try_count % QueuedAllocationWarningCount == 0)) {
 637       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 638                       "retries %d times", try_count);
 639     }
 640   }
 641 
 642   ShouldNotReachHere();
 643   return NULL;
 644 }
 645 
 646 void G1CollectedHeap::begin_archive_alloc_range() {
 647   assert_at_safepoint(true /* should_be_vm_thread */);
 648   if (_archive_allocator == NULL) {
 649     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 650   }
 651 }
 652 
 653 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 654   // Allocations in archive regions cannot be of a size that would be considered
 655   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 656   // may be different at archive-restore time.
 657   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 658 }
 659 
 660 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 661   assert_at_safepoint(true /* should_be_vm_thread */);
 662   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 663   if (is_archive_alloc_too_large(word_size)) {
 664     return NULL;
 665   }
 666   return _archive_allocator->archive_mem_allocate(word_size);
 667 }
 668 
 669 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 670                                               size_t end_alignment_in_bytes) {
 671   assert_at_safepoint(true /* should_be_vm_thread */);
 672   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 673 
 674   // Call complete_archive to do the real work, filling in the MemRegion
 675   // array with the archive regions.
 676   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 677   delete _archive_allocator;
 678   _archive_allocator = NULL;
 679 }
 680 
 681 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 682   assert(ranges != NULL, "MemRegion array NULL");
 683   assert(count != 0, "No MemRegions provided");
 684   MemRegion reserved = _hrm.reserved();
 685   for (size_t i = 0; i < count; i++) {
 686     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 687       return false;
 688     }
 689   }
 690   return true;
 691 }
 692 
 693 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 694   assert(!is_init_completed(), "Expect to be called at JVM init time");
 695   assert(ranges != NULL, "MemRegion array NULL");
 696   assert(count != 0, "No MemRegions provided");
 697   MutexLockerEx x(Heap_lock);
 698 
 699   MemRegion reserved = _hrm.reserved();
 700   HeapWord* prev_last_addr = NULL;
 701   HeapRegion* prev_last_region = NULL;
 702 
 703   // Temporarily disable pretouching of heap pages. This interface is used
 704   // when mmap'ing archived heap data in, so pre-touching is wasted.
 705   FlagSetting fs(AlwaysPreTouch, false);
 706 
 707   // Enable archive object checking used by G1MarkSweep. We have to let it know
 708   // about each archive range, so that objects in those ranges aren't marked.
 709   G1ArchiveAllocator::enable_archive_object_check();
 710 
 711   // For each specified MemRegion range, allocate the corresponding G1
 712   // regions and mark them as archive regions. We expect the ranges in
 713   // ascending starting address order, without overlap.
 714   for (size_t i = 0; i < count; i++) {
 715     MemRegion curr_range = ranges[i];
 716     HeapWord* start_address = curr_range.start();
 717     size_t word_size = curr_range.word_size();
 718     HeapWord* last_address = curr_range.last();
 719     size_t commits = 0;
 720 
 721     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 722               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 723               p2i(start_address), p2i(last_address));
 724     guarantee(start_address > prev_last_addr,
 725               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 726               p2i(start_address), p2i(prev_last_addr));
 727     prev_last_addr = last_address;
 728 
 729     // Check for ranges that start in the same G1 region in which the previous
 730     // range ended, and adjust the start address so we don't try to allocate
 731     // the same region again. If the current range is entirely within that
 732     // region, skip it, just adjusting the recorded top.
 733     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 734     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 735       start_address = start_region->end();
 736       if (start_address > last_address) {
 737         increase_used(word_size * HeapWordSize);
 738         start_region->set_top(last_address + 1);
 739         continue;
 740       }
 741       start_region->set_top(start_address);
 742       curr_range = MemRegion(start_address, last_address + 1);
 743       start_region = _hrm.addr_to_region(start_address);
 744     }
 745 
 746     // Perform the actual region allocation, exiting if it fails.
 747     // Then note how much new space we have allocated.
 748     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 749       return false;
 750     }
 751     increase_used(word_size * HeapWordSize);
 752     if (commits != 0) {
 753       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 754                                 HeapRegion::GrainWords * HeapWordSize * commits);
 755 
 756     }
 757 
 758     // Mark each G1 region touched by the range as archive, add it to the old set,
 759     // and set the allocation context and top.
 760     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 761     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 762     prev_last_region = last_region;
 763 
 764     while (curr_region != NULL) {
 765       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 766              "Region already in use (index %u)", curr_region->hrm_index());
 767       curr_region->set_allocation_context(AllocationContext::system());
 768       curr_region->set_archive();
 769       _hr_printer.alloc(curr_region);
 770       _old_set.add(curr_region);
 771       if (curr_region != last_region) {
 772         curr_region->set_top(curr_region->end());
 773         curr_region = _hrm.next_region_in_heap(curr_region);
 774       } else {
 775         curr_region->set_top(last_address + 1);
 776         curr_region = NULL;
 777       }
 778     }
 779 
 780     // Notify mark-sweep of the archive range.
 781     G1ArchiveAllocator::set_range_archive(curr_range, true);
 782   }
 783   return true;
 784 }
 785 
 786 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 787   assert(!is_init_completed(), "Expect to be called at JVM init time");
 788   assert(ranges != NULL, "MemRegion array NULL");
 789   assert(count != 0, "No MemRegions provided");
 790   MemRegion reserved = _hrm.reserved();
 791   HeapWord *prev_last_addr = NULL;
 792   HeapRegion* prev_last_region = NULL;
 793 
 794   // For each MemRegion, create filler objects, if needed, in the G1 regions
 795   // that contain the address range. The address range actually within the
 796   // MemRegion will not be modified. That is assumed to have been initialized
 797   // elsewhere, probably via an mmap of archived heap data.
 798   MutexLockerEx x(Heap_lock);
 799   for (size_t i = 0; i < count; i++) {
 800     HeapWord* start_address = ranges[i].start();
 801     HeapWord* last_address = ranges[i].last();
 802 
 803     assert(reserved.contains(start_address) && reserved.contains(last_address),
 804            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 805            p2i(start_address), p2i(last_address));
 806     assert(start_address > prev_last_addr,
 807            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 808            p2i(start_address), p2i(prev_last_addr));
 809 
 810     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 811     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 812     HeapWord* bottom_address = start_region->bottom();
 813 
 814     // Check for a range beginning in the same region in which the
 815     // previous one ended.
 816     if (start_region == prev_last_region) {
 817       bottom_address = prev_last_addr + 1;
 818     }
 819 
 820     // Verify that the regions were all marked as archive regions by
 821     // alloc_archive_regions.
 822     HeapRegion* curr_region = start_region;
 823     while (curr_region != NULL) {
 824       guarantee(curr_region->is_archive(),
 825                 "Expected archive region at index %u", curr_region->hrm_index());
 826       if (curr_region != last_region) {
 827         curr_region = _hrm.next_region_in_heap(curr_region);
 828       } else {
 829         curr_region = NULL;
 830       }
 831     }
 832 
 833     prev_last_addr = last_address;
 834     prev_last_region = last_region;
 835 
 836     // Fill the memory below the allocated range with dummy object(s),
 837     // if the region bottom does not match the range start, or if the previous
 838     // range ended within the same G1 region, and there is a gap.
 839     if (start_address != bottom_address) {
 840       size_t fill_size = pointer_delta(start_address, bottom_address);
 841       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 842       increase_used(fill_size * HeapWordSize);
 843     }
 844   }
 845 }
 846 
 847 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 848                                                      uint* gc_count_before_ret,
 849                                                      uint* gclocker_retry_count_ret) {
 850   assert_heap_not_locked_and_not_at_safepoint();
 851   assert(!is_humongous(word_size), "attempt_allocation() should not "
 852          "be called for humongous allocation requests");
 853 
 854   AllocationContext_t context = AllocationContext::current();
 855   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 856 
 857   if (result == NULL) {
 858     result = attempt_allocation_slow(word_size,
 859                                      context,
 860                                      gc_count_before_ret,
 861                                      gclocker_retry_count_ret);
 862   }
 863   assert_heap_not_locked();
 864   if (result != NULL) {
 865     dirty_young_block(result, word_size);
 866   }
 867   return result;
 868 }
 869 
 870 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 871   assert(!is_init_completed(), "Expect to be called at JVM init time");
 872   assert(ranges != NULL, "MemRegion array NULL");
 873   assert(count != 0, "No MemRegions provided");
 874   MemRegion reserved = _hrm.reserved();
 875   HeapWord* prev_last_addr = NULL;
 876   HeapRegion* prev_last_region = NULL;
 877   size_t size_used = 0;
 878   size_t uncommitted_regions = 0;
 879 
 880   // For each Memregion, free the G1 regions that constitute it, and
 881   // notify mark-sweep that the range is no longer to be considered 'archive.'
 882   MutexLockerEx x(Heap_lock);
 883   for (size_t i = 0; i < count; i++) {
 884     HeapWord* start_address = ranges[i].start();
 885     HeapWord* last_address = ranges[i].last();
 886 
 887     assert(reserved.contains(start_address) && reserved.contains(last_address),
 888            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 889            p2i(start_address), p2i(last_address));
 890     assert(start_address > prev_last_addr,
 891            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 892            p2i(start_address), p2i(prev_last_addr));
 893     size_used += ranges[i].byte_size();
 894     prev_last_addr = last_address;
 895 
 896     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 897     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 898 
 899     // Check for ranges that start in the same G1 region in which the previous
 900     // range ended, and adjust the start address so we don't try to free
 901     // the same region again. If the current range is entirely within that
 902     // region, skip it.
 903     if (start_region == prev_last_region) {
 904       start_address = start_region->end();
 905       if (start_address > last_address) {
 906         continue;
 907       }
 908       start_region = _hrm.addr_to_region(start_address);
 909     }
 910     prev_last_region = last_region;
 911 
 912     // After verifying that each region was marked as an archive region by
 913     // alloc_archive_regions, set it free and empty and uncommit it.
 914     HeapRegion* curr_region = start_region;
 915     while (curr_region != NULL) {
 916       guarantee(curr_region->is_archive(),
 917                 "Expected archive region at index %u", curr_region->hrm_index());
 918       uint curr_index = curr_region->hrm_index();
 919       _old_set.remove(curr_region);
 920       curr_region->set_free();
 921       curr_region->set_top(curr_region->bottom());
 922       if (curr_region != last_region) {
 923         curr_region = _hrm.next_region_in_heap(curr_region);
 924       } else {
 925         curr_region = NULL;
 926       }
 927       _hrm.shrink_at(curr_index, 1);
 928       uncommitted_regions++;
 929     }
 930 
 931     // Notify mark-sweep that this is no longer an archive range.
 932     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 933   }
 934 
 935   if (uncommitted_regions != 0) {
 936     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 937                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 938   }
 939   decrease_used(size_used);
 940 }
 941 
 942 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 943                                                         uint* gc_count_before_ret,
 944                                                         uint* gclocker_retry_count_ret) {
 945   // The structure of this method has a lot of similarities to
 946   // attempt_allocation_slow(). The reason these two were not merged
 947   // into a single one is that such a method would require several "if
 948   // allocation is not humongous do this, otherwise do that"
 949   // conditional paths which would obscure its flow. In fact, an early
 950   // version of this code did use a unified method which was harder to
 951   // follow and, as a result, it had subtle bugs that were hard to
 952   // track down. So keeping these two methods separate allows each to
 953   // be more readable. It will be good to keep these two in sync as
 954   // much as possible.
 955 
 956   assert_heap_not_locked_and_not_at_safepoint();
 957   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 958          "should only be called for humongous allocations");
 959 
 960   // Humongous objects can exhaust the heap quickly, so we should check if we
 961   // need to start a marking cycle at each humongous object allocation. We do
 962   // the check before we do the actual allocation. The reason for doing it
 963   // before the allocation is that we avoid having to keep track of the newly
 964   // allocated memory while we do a GC.
 965   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 966                                            word_size)) {
 967     collect(GCCause::_g1_humongous_allocation);
 968   }
 969 
 970   // We will loop until a) we manage to successfully perform the
 971   // allocation or b) we successfully schedule a collection which
 972   // fails to perform the allocation. b) is the only case when we'll
 973   // return NULL.
 974   HeapWord* result = NULL;
 975   for (int try_count = 1; /* we'll return */; try_count += 1) {
 976     bool should_try_gc;
 977     uint gc_count_before;
 978 
 979     {
 980       MutexLockerEx x(Heap_lock);
 981 
 982       // Given that humongous objects are not allocated in young
 983       // regions, we'll first try to do the allocation without doing a
 984       // collection hoping that there's enough space in the heap.
 985       result = humongous_obj_allocate(word_size, AllocationContext::current());
 986       if (result != NULL) {
 987         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 988         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 989         return result;
 990       }
 991 
 992       if (GCLocker::is_active_and_needs_gc()) {
 993         should_try_gc = false;
 994       } else {
 995          // The GCLocker may not be active but the GCLocker initiated
 996         // GC may not yet have been performed (GCLocker::needs_gc()
 997         // returns true). In this case we do not try this GC and
 998         // wait until the GCLocker initiated GC is performed, and
 999         // then retry the allocation.
1000         if (GCLocker::needs_gc()) {
1001           should_try_gc = false;
1002         } else {
1003           // Read the GC count while still holding the Heap_lock.
1004           gc_count_before = total_collections();
1005           should_try_gc = true;
1006         }
1007       }
1008     }
1009 
1010     if (should_try_gc) {
1011       // If we failed to allocate the humongous object, we should try to
1012       // do a collection pause (if we're allowed) in case it reclaims
1013       // enough space for the allocation to succeed after the pause.
1014 
1015       bool succeeded;
1016       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1017                                    GCCause::_g1_humongous_allocation);
1018       if (result != NULL) {
1019         assert(succeeded, "only way to get back a non-NULL result");
1020         return result;
1021       }
1022 
1023       if (succeeded) {
1024         // If we get here we successfully scheduled a collection which
1025         // failed to allocate. No point in trying to allocate
1026         // further. We'll just return NULL.
1027         MutexLockerEx x(Heap_lock);
1028         *gc_count_before_ret = total_collections();
1029         return NULL;
1030       }
1031     } else {
1032       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1033         MutexLockerEx x(Heap_lock);
1034         *gc_count_before_ret = total_collections();
1035         return NULL;
1036       }
1037       // The GCLocker is either active or the GCLocker initiated
1038       // GC has not yet been performed. Stall until it is and
1039       // then retry the allocation.
1040       GCLocker::stall_until_clear();
1041       (*gclocker_retry_count_ret) += 1;
1042     }
1043 
1044     // We can reach here if we were unsuccessful in scheduling a
1045     // collection (because another thread beat us to it) or if we were
1046     // stalled due to the GC locker. In either can we should retry the
1047     // allocation attempt in case another thread successfully
1048     // performed a collection and reclaimed enough space.  Give a
1049     // warning if we seem to be looping forever.
1050 
1051     if ((QueuedAllocationWarningCount > 0) &&
1052         (try_count % QueuedAllocationWarningCount == 0)) {
1053       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1054                       "retries %d times", try_count);
1055     }
1056   }
1057 
1058   ShouldNotReachHere();
1059   return NULL;
1060 }
1061 
1062 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1063                                                            AllocationContext_t context,
1064                                                            bool expect_null_mutator_alloc_region) {
1065   assert_at_safepoint(true /* should_be_vm_thread */);
1066   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1067          "the current alloc region was unexpectedly found to be non-NULL");
1068 
1069   if (!is_humongous(word_size)) {
1070     return _allocator->attempt_allocation_locked(word_size, context);
1071   } else {
1072     HeapWord* result = humongous_obj_allocate(word_size, context);
1073     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1074       collector_state()->set_initiate_conc_mark_if_possible(true);
1075     }
1076     return result;
1077   }
1078 
1079   ShouldNotReachHere();
1080 }
1081 
1082 class PostCompactionPrinterClosure: public HeapRegionClosure {
1083 private:
1084   G1HRPrinter* _hr_printer;
1085 public:
1086   bool doHeapRegion(HeapRegion* hr) {
1087     assert(!hr->is_young(), "not expecting to find young regions");
1088     _hr_printer->post_compaction(hr);
1089     return false;
1090   }
1091 
1092   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1093     : _hr_printer(hr_printer) { }
1094 };
1095 
1096 void G1CollectedHeap::print_hrm_post_compaction() {
1097   if (_hr_printer.is_active()) {
1098     PostCompactionPrinterClosure cl(hr_printer());
1099     heap_region_iterate(&cl);
1100   }
1101 
1102 }
1103 
1104 void G1CollectedHeap::abort_concurrent_cycle() {
1105   // Note: When we have a more flexible GC logging framework that
1106   // allows us to add optional attributes to a GC log record we
1107   // could consider timing and reporting how long we wait in the
1108   // following two methods.
1109   wait_while_free_regions_coming();
1110   // If we start the compaction before the CM threads finish
1111   // scanning the root regions we might trip them over as we'll
1112   // be moving objects / updating references. So let's wait until
1113   // they are done. By telling them to abort, they should complete
1114   // early.
1115   _cm->root_regions()->abort();
1116   _cm->root_regions()->wait_until_scan_finished();
1117   append_secondary_free_list_if_not_empty_with_lock();
1118 
1119   // Disable discovery and empty the discovered lists
1120   // for the CM ref processor.
1121   ref_processor_cm()->disable_discovery();
1122   ref_processor_cm()->abandon_partial_discovery();
1123   ref_processor_cm()->verify_no_references_recorded();
1124 
1125   // Abandon current iterations of concurrent marking and concurrent
1126   // refinement, if any are in progress.
1127   concurrent_mark()->abort();
1128 }
1129 
1130 void G1CollectedHeap::prepare_heap_for_full_collection() {
1131   // Make sure we'll choose a new allocation region afterwards.
1132   _allocator->release_mutator_alloc_region();
1133   _allocator->abandon_gc_alloc_regions();
1134   g1_rem_set()->cleanupHRRS();
1135 
1136   // We may have added regions to the current incremental collection
1137   // set between the last GC or pause and now. We need to clear the
1138   // incremental collection set and then start rebuilding it afresh
1139   // after this full GC.
1140   abandon_collection_set(collection_set());
1141 
1142   tear_down_region_sets(false /* free_list_only */);
1143   collector_state()->set_gcs_are_young(true);
1144 }
1145 
1146 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1147   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1148   assert(used() == recalculate_used(), "Should be equal");
1149   _verifier->verify_region_sets_optional();
1150   _verifier->verify_before_gc();
1151   _verifier->check_bitmaps("Full GC Start");
1152 }
1153 
1154 void G1CollectedHeap::prepare_heap_for_mutators() {
1155   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1156   ClassLoaderDataGraph::purge();
1157   MetaspaceAux::verify_metrics();
1158 
1159   // Prepare heap for normal collections.
1160   assert(num_free_regions() == 0, "we should not have added any free regions");
1161   rebuild_region_sets(false /* free_list_only */);
1162   abort_refinement();
1163   resize_if_necessary_after_full_collection();
1164 
1165   // Rebuild the strong code root lists for each region
1166   rebuild_strong_code_roots();
1167 
1168   // Start a new incremental collection set for the next pause
1169   start_new_collection_set();
1170 
1171   _allocator->init_mutator_alloc_region();
1172 
1173   // Post collection state updates.
1174   MetaspaceGC::compute_new_size();
1175 }
1176 
1177 void G1CollectedHeap::abort_refinement() {
1178   if (_hot_card_cache->use_cache()) {
1179     _hot_card_cache->reset_card_counts();
1180     _hot_card_cache->reset_hot_cache();
1181   }
1182 
1183   // Discard all remembered set updates.
1184   JavaThread::dirty_card_queue_set().abandon_logs();
1185   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1186 }
1187 
1188 void G1CollectedHeap::verify_after_full_collection() {
1189   check_gc_time_stamps();
1190   _hrm.verify_optional();
1191   _verifier->verify_region_sets_optional();
1192   _verifier->verify_after_gc();
1193   // Clear the previous marking bitmap, if needed for bitmap verification.
1194   // Note we cannot do this when we clear the next marking bitmap in
1195   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1196   // objects marked during a full GC against the previous bitmap.
1197   // But we need to clear it before calling check_bitmaps below since
1198   // the full GC has compacted objects and updated TAMS but not updated
1199   // the prev bitmap.
1200   if (G1VerifyBitmaps) {
1201     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1202     _cm->clear_prev_bitmap(workers());
1203   }
1204   _verifier->check_bitmaps("Full GC End");
1205 
1206   // At this point there should be no regions in the
1207   // entire heap tagged as young.
1208   assert(check_young_list_empty(), "young list should be empty at this point");
1209 
1210   // Note: since we've just done a full GC, concurrent
1211   // marking is no longer active. Therefore we need not
1212   // re-enable reference discovery for the CM ref processor.
1213   // That will be done at the start of the next marking cycle.
1214   // We also know that the STW processor should no longer
1215   // discover any new references.
1216   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1217   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1218   ref_processor_stw()->verify_no_references_recorded();
1219   ref_processor_cm()->verify_no_references_recorded();
1220 }
1221 
1222 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1223   print_hrm_post_compaction();
1224   heap_transition->print();
1225   print_heap_after_gc();
1226   print_heap_regions();
1227 #ifdef TRACESPINNING
1228   ParallelTaskTerminator::print_termination_counts();
1229 #endif
1230 }
1231 
1232 void G1CollectedHeap::do_full_collection_inner(G1FullGCScope* scope) {
1233   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1234   g1_policy()->record_full_collection_start();
1235 
1236   print_heap_before_gc();
1237   print_heap_regions();
1238 
1239   abort_concurrent_cycle();
1240   verify_before_full_collection(scope->is_explicit_gc());
1241 
1242   gc_prologue(true);
1243   prepare_heap_for_full_collection();
1244 
1245   {
1246     G1FullCollector collector(scope, ref_processor_stw(), concurrent_mark()->nextMarkBitMap(), workers()->active_workers());
1247     // Prepare collection by putting reference processor
1248     // in a correct state.
1249     collector.prepare_collection();
1250 
1251     // Do the actual collection.
1252     collector.collect();
1253 
1254     collector.complete_collection();
1255   }
1256 
1257   prepare_heap_for_mutators();
1258 
1259   g1_policy()->record_full_collection_end();
1260   gc_epilogue(true);
1261 
1262   // Post collection verification.
1263   verify_after_full_collection();
1264 
1265   // Post collection logging.
1266   // We should do this after we potentially resize the heap so
1267   // that all the COMMIT / UNCOMMIT events are generated before
1268   // the compaction events.
1269   print_heap_after_full_collection(scope->heap_transition());
1270 }
1271 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1272                                          bool clear_all_soft_refs) {
1273   assert_at_safepoint(true /* should_be_vm_thread */);
1274 
1275   if (GCLocker::check_active_before_gc()) {
1276     // Full GC was not completed.
1277     return false;
1278   }
1279 
1280   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1281       collector_policy()->should_clear_all_soft_refs();
1282 
1283   G1FullGCScope scope(explicit_gc, do_clear_all_soft_refs);
1284   do_full_collection_inner(&scope);
1285 
1286   // Full collection was successfully completed.
1287   return true;
1288 }
1289 
1290 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1291   // Currently, there is no facility in the do_full_collection(bool) API to notify
1292   // the caller that the collection did not succeed (e.g., because it was locked
1293   // out by the GC locker). So, right now, we'll ignore the return value.
1294   bool dummy = do_full_collection(true,                /* explicit_gc */
1295                                   clear_all_soft_refs);
1296 }
1297 
1298 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1299   // Include bytes that will be pre-allocated to support collections, as "used".
1300   const size_t used_after_gc = used();
1301   const size_t capacity_after_gc = capacity();
1302   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1303 
1304   // This is enforced in arguments.cpp.
1305   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1306          "otherwise the code below doesn't make sense");
1307 
1308   // We don't have floating point command-line arguments
1309   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1310   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1311   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1312   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1313 
1314   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1315   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1316 
1317   // We have to be careful here as these two calculations can overflow
1318   // 32-bit size_t's.
1319   double used_after_gc_d = (double) used_after_gc;
1320   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1321   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1322 
1323   // Let's make sure that they are both under the max heap size, which
1324   // by default will make them fit into a size_t.
1325   double desired_capacity_upper_bound = (double) max_heap_size;
1326   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1327                                     desired_capacity_upper_bound);
1328   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1329                                     desired_capacity_upper_bound);
1330 
1331   // We can now safely turn them into size_t's.
1332   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1333   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1334 
1335   // This assert only makes sense here, before we adjust them
1336   // with respect to the min and max heap size.
1337   assert(minimum_desired_capacity <= maximum_desired_capacity,
1338          "minimum_desired_capacity = " SIZE_FORMAT ", "
1339          "maximum_desired_capacity = " SIZE_FORMAT,
1340          minimum_desired_capacity, maximum_desired_capacity);
1341 
1342   // Should not be greater than the heap max size. No need to adjust
1343   // it with respect to the heap min size as it's a lower bound (i.e.,
1344   // we'll try to make the capacity larger than it, not smaller).
1345   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1346   // Should not be less than the heap min size. No need to adjust it
1347   // with respect to the heap max size as it's an upper bound (i.e.,
1348   // we'll try to make the capacity smaller than it, not greater).
1349   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1350 
1351   if (capacity_after_gc < minimum_desired_capacity) {
1352     // Don't expand unless it's significant
1353     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1354 
1355     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1356                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1357                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1358 
1359     expand(expand_bytes, _workers);
1360 
1361     // No expansion, now see if we want to shrink
1362   } else if (capacity_after_gc > maximum_desired_capacity) {
1363     // Capacity too large, compute shrinking size
1364     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1365 
1366     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1367                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1368                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1369 
1370     shrink(shrink_bytes);
1371   }
1372 }
1373 
1374 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1375                                                             AllocationContext_t context,
1376                                                             bool do_gc,
1377                                                             bool clear_all_soft_refs,
1378                                                             bool expect_null_mutator_alloc_region,
1379                                                             bool* gc_succeeded) {
1380   *gc_succeeded = true;
1381   // Let's attempt the allocation first.
1382   HeapWord* result =
1383     attempt_allocation_at_safepoint(word_size,
1384                                     context,
1385                                     expect_null_mutator_alloc_region);
1386   if (result != NULL) {
1387     assert(*gc_succeeded, "sanity");
1388     return result;
1389   }
1390 
1391   // In a G1 heap, we're supposed to keep allocation from failing by
1392   // incremental pauses.  Therefore, at least for now, we'll favor
1393   // expansion over collection.  (This might change in the future if we can
1394   // do something smarter than full collection to satisfy a failed alloc.)
1395   result = expand_and_allocate(word_size, context);
1396   if (result != NULL) {
1397     assert(*gc_succeeded, "sanity");
1398     return result;
1399   }
1400 
1401   if (do_gc) {
1402     // Expansion didn't work, we'll try to do a Full GC.
1403     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1404                                        clear_all_soft_refs);
1405   }
1406 
1407   return NULL;
1408 }
1409 
1410 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1411                                                      AllocationContext_t context,
1412                                                      bool* succeeded) {
1413   assert_at_safepoint(true /* should_be_vm_thread */);
1414 
1415   // Attempts to allocate followed by Full GC.
1416   HeapWord* result =
1417     satisfy_failed_allocation_helper(word_size,
1418                                      context,
1419                                      true,  /* do_gc */
1420                                      false, /* clear_all_soft_refs */
1421                                      false, /* expect_null_mutator_alloc_region */
1422                                      succeeded);
1423 
1424   if (result != NULL || !*succeeded) {
1425     return result;
1426   }
1427 
1428   // Attempts to allocate followed by Full GC that will collect all soft references.
1429   result = satisfy_failed_allocation_helper(word_size,
1430                                             context,
1431                                             true, /* do_gc */
1432                                             true, /* clear_all_soft_refs */
1433                                             true, /* expect_null_mutator_alloc_region */
1434                                             succeeded);
1435 
1436   if (result != NULL || !*succeeded) {
1437     return result;
1438   }
1439 
1440   // Attempts to allocate, no GC
1441   result = satisfy_failed_allocation_helper(word_size,
1442                                             context,
1443                                             false, /* do_gc */
1444                                             false, /* clear_all_soft_refs */
1445                                             true,  /* expect_null_mutator_alloc_region */
1446                                             succeeded);
1447 
1448   if (result != NULL) {
1449     assert(*succeeded, "sanity");
1450     return result;
1451   }
1452 
1453   assert(!collector_policy()->should_clear_all_soft_refs(),
1454          "Flag should have been handled and cleared prior to this point");
1455 
1456   // What else?  We might try synchronous finalization later.  If the total
1457   // space available is large enough for the allocation, then a more
1458   // complete compaction phase than we've tried so far might be
1459   // appropriate.
1460   assert(*succeeded, "sanity");
1461   return NULL;
1462 }
1463 
1464 // Attempting to expand the heap sufficiently
1465 // to support an allocation of the given "word_size".  If
1466 // successful, perform the allocation and return the address of the
1467 // allocated block, or else "NULL".
1468 
1469 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1470   assert_at_safepoint(true /* should_be_vm_thread */);
1471 
1472   _verifier->verify_region_sets_optional();
1473 
1474   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1475   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1476                             word_size * HeapWordSize);
1477 
1478 
1479   if (expand(expand_bytes, _workers)) {
1480     _hrm.verify_optional();
1481     _verifier->verify_region_sets_optional();
1482     return attempt_allocation_at_safepoint(word_size,
1483                                            context,
1484                                            false /* expect_null_mutator_alloc_region */);
1485   }
1486   return NULL;
1487 }
1488 
1489 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1490   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1491   aligned_expand_bytes = align_up(aligned_expand_bytes,
1492                                        HeapRegion::GrainBytes);
1493 
1494   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1495                             expand_bytes, aligned_expand_bytes);
1496 
1497   if (is_maximal_no_gc()) {
1498     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1499     return false;
1500   }
1501 
1502   double expand_heap_start_time_sec = os::elapsedTime();
1503   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1504   assert(regions_to_expand > 0, "Must expand by at least one region");
1505 
1506   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1507   if (expand_time_ms != NULL) {
1508     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1509   }
1510 
1511   if (expanded_by > 0) {
1512     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1513     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1514     g1_policy()->record_new_heap_size(num_regions());
1515   } else {
1516     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1517 
1518     // The expansion of the virtual storage space was unsuccessful.
1519     // Let's see if it was because we ran out of swap.
1520     if (G1ExitOnExpansionFailure &&
1521         _hrm.available() >= regions_to_expand) {
1522       // We had head room...
1523       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1524     }
1525   }
1526   return regions_to_expand > 0;
1527 }
1528 
1529 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1530   size_t aligned_shrink_bytes =
1531     ReservedSpace::page_align_size_down(shrink_bytes);
1532   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1533                                          HeapRegion::GrainBytes);
1534   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1535 
1536   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1537   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1538 
1539 
1540   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1541                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1542   if (num_regions_removed > 0) {
1543     g1_policy()->record_new_heap_size(num_regions());
1544   } else {
1545     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1546   }
1547 }
1548 
1549 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1550   _verifier->verify_region_sets_optional();
1551 
1552   // We should only reach here at the end of a Full GC which means we
1553   // should not not be holding to any GC alloc regions. The method
1554   // below will make sure of that and do any remaining clean up.
1555   _allocator->abandon_gc_alloc_regions();
1556 
1557   // Instead of tearing down / rebuilding the free lists here, we
1558   // could instead use the remove_all_pending() method on free_list to
1559   // remove only the ones that we need to remove.
1560   tear_down_region_sets(true /* free_list_only */);
1561   shrink_helper(shrink_bytes);
1562   rebuild_region_sets(true /* free_list_only */);
1563 
1564   _hrm.verify_optional();
1565   _verifier->verify_region_sets_optional();
1566 }
1567 
1568 // Public methods.
1569 
1570 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1571   CollectedHeap(),
1572   _collector_policy(collector_policy),
1573   _g1_policy(create_g1_policy()),
1574   _collection_set(this, _g1_policy),
1575   _dirty_card_queue_set(false),
1576   _is_alive_closure_cm(this),
1577   _is_alive_closure_stw(this),
1578   _ref_processor_cm(NULL),
1579   _ref_processor_stw(NULL),
1580   _bot(NULL),
1581   _hot_card_cache(NULL),
1582   _g1_rem_set(NULL),
1583   _cg1r(NULL),
1584   _g1mm(NULL),
1585   _refine_cte_cl(NULL),
1586   _preserved_marks_set(true /* in_c_heap */),
1587   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1588   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1589   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1590   _humongous_reclaim_candidates(),
1591   _has_humongous_reclaim_candidates(false),
1592   _archive_allocator(NULL),
1593   _free_regions_coming(false),
1594   _gc_time_stamp(0),
1595   _summary_bytes_used(0),
1596   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1597   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1598   _expand_heap_after_alloc_failure(true),
1599   _old_marking_cycles_started(0),
1600   _old_marking_cycles_completed(0),
1601   _in_cset_fast_test(),
1602   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1603   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1604 
1605   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1606                           /* are_GC_task_threads */true,
1607                           /* are_ConcurrentGC_threads */false);
1608   _workers->initialize_workers();
1609   _verifier = new G1HeapVerifier(this);
1610 
1611   _allocator = G1Allocator::create_allocator(this);
1612 
1613   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1614 
1615   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1616 
1617   // Override the default _filler_array_max_size so that no humongous filler
1618   // objects are created.
1619   _filler_array_max_size = _humongous_object_threshold_in_words;
1620 
1621   uint n_queues = ParallelGCThreads;
1622   _task_queues = new RefToScanQueueSet(n_queues);
1623 
1624   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1625 
1626   for (uint i = 0; i < n_queues; i++) {
1627     RefToScanQueue* q = new RefToScanQueue();
1628     q->initialize();
1629     _task_queues->register_queue(i, q);
1630     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1631   }
1632 
1633   // Initialize the G1EvacuationFailureALot counters and flags.
1634   NOT_PRODUCT(reset_evacuation_should_fail();)
1635 
1636   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1637 }
1638 
1639 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1640                                                                  size_t size,
1641                                                                  size_t translation_factor) {
1642   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1643   // Allocate a new reserved space, preferring to use large pages.
1644   ReservedSpace rs(size, preferred_page_size);
1645   G1RegionToSpaceMapper* result  =
1646     G1RegionToSpaceMapper::create_mapper(rs,
1647                                          size,
1648                                          rs.alignment(),
1649                                          HeapRegion::GrainBytes,
1650                                          translation_factor,
1651                                          mtGC);
1652 
1653   os::trace_page_sizes_for_requested_size(description,
1654                                           size,
1655                                           preferred_page_size,
1656                                           rs.alignment(),
1657                                           rs.base(),
1658                                           rs.size());
1659 
1660   return result;
1661 }
1662 
1663 jint G1CollectedHeap::initialize() {
1664   CollectedHeap::pre_initialize();
1665   os::enable_vtime();
1666 
1667   // Necessary to satisfy locking discipline assertions.
1668 
1669   MutexLocker x(Heap_lock);
1670 
1671   // While there are no constraints in the GC code that HeapWordSize
1672   // be any particular value, there are multiple other areas in the
1673   // system which believe this to be true (e.g. oop->object_size in some
1674   // cases incorrectly returns the size in wordSize units rather than
1675   // HeapWordSize).
1676   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1677 
1678   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1679   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1680   size_t heap_alignment = collector_policy()->heap_alignment();
1681 
1682   // Ensure that the sizes are properly aligned.
1683   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1684   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1685   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1686 
1687   // Reserve the maximum.
1688 
1689   // When compressed oops are enabled, the preferred heap base
1690   // is calculated by subtracting the requested size from the
1691   // 32Gb boundary and using the result as the base address for
1692   // heap reservation. If the requested size is not aligned to
1693   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1694   // into the ReservedHeapSpace constructor) then the actual
1695   // base of the reserved heap may end up differing from the
1696   // address that was requested (i.e. the preferred heap base).
1697   // If this happens then we could end up using a non-optimal
1698   // compressed oops mode.
1699 
1700   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1701                                                  heap_alignment);
1702 
1703   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1704 
1705   // Create the barrier set for the entire reserved region.
1706   G1SATBCardTableLoggingModRefBS* bs
1707     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1708   bs->initialize();
1709   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1710   set_barrier_set(bs);
1711 
1712   // Create the hot card cache.
1713   _hot_card_cache = new G1HotCardCache(this);
1714 
1715   // Carve out the G1 part of the heap.
1716   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1717   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1718   G1RegionToSpaceMapper* heap_storage =
1719     G1RegionToSpaceMapper::create_mapper(g1_rs,
1720                                          g1_rs.size(),
1721                                          page_size,
1722                                          HeapRegion::GrainBytes,
1723                                          1,
1724                                          mtJavaHeap);
1725   os::trace_page_sizes("Heap",
1726                        collector_policy()->min_heap_byte_size(),
1727                        max_byte_size,
1728                        page_size,
1729                        heap_rs.base(),
1730                        heap_rs.size());
1731   heap_storage->set_mapping_changed_listener(&_listener);
1732 
1733   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1734   G1RegionToSpaceMapper* bot_storage =
1735     create_aux_memory_mapper("Block Offset Table",
1736                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1737                              G1BlockOffsetTable::heap_map_factor());
1738 
1739   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1740   G1RegionToSpaceMapper* cardtable_storage =
1741     create_aux_memory_mapper("Card Table",
1742                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1743                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1744 
1745   G1RegionToSpaceMapper* card_counts_storage =
1746     create_aux_memory_mapper("Card Counts Table",
1747                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1748                              G1CardCounts::heap_map_factor());
1749 
1750   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1751   G1RegionToSpaceMapper* prev_bitmap_storage =
1752     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1753   G1RegionToSpaceMapper* next_bitmap_storage =
1754     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1755 
1756   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1757   g1_barrier_set()->initialize(cardtable_storage);
1758   // Do later initialization work for concurrent refinement.
1759   _hot_card_cache->initialize(card_counts_storage);
1760 
1761   // 6843694 - ensure that the maximum region index can fit
1762   // in the remembered set structures.
1763   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1764   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1765 
1766   // Also create a G1 rem set.
1767   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1768   _g1_rem_set->initialize(max_capacity(), max_regions());
1769 
1770   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1771   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1772   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1773             "too many cards per region");
1774 
1775   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1776 
1777   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1778 
1779   {
1780     HeapWord* start = _hrm.reserved().start();
1781     HeapWord* end = _hrm.reserved().end();
1782     size_t granularity = HeapRegion::GrainBytes;
1783 
1784     _in_cset_fast_test.initialize(start, end, granularity);
1785     _humongous_reclaim_candidates.initialize(start, end, granularity);
1786   }
1787 
1788   // Create the G1ConcurrentMark data structure and thread.
1789   // (Must do this late, so that "max_regions" is defined.)
1790   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1791   if (_cm == NULL || !_cm->completed_initialization()) {
1792     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1793     return JNI_ENOMEM;
1794   }
1795   _cmThread = _cm->cmThread();
1796 
1797   // Now expand into the initial heap size.
1798   if (!expand(init_byte_size, _workers)) {
1799     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1800     return JNI_ENOMEM;
1801   }
1802 
1803   // Perform any initialization actions delegated to the policy.
1804   g1_policy()->init(this, &_collection_set);
1805 
1806   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1807                                                SATB_Q_FL_lock,
1808                                                G1SATBProcessCompletedThreshold,
1809                                                Shared_SATB_Q_lock);
1810 
1811   _refine_cte_cl = new RefineCardTableEntryClosure();
1812 
1813   jint ecode = JNI_OK;
1814   _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode);
1815   if (_cg1r == NULL) {
1816     return ecode;
1817   }
1818   
1819   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1820                                                 DirtyCardQ_CBL_mon,
1821                                                 DirtyCardQ_FL_lock,
1822                                                 (int)concurrent_g1_refine()->yellow_zone(),
1823                                                 (int)concurrent_g1_refine()->red_zone(),
1824                                                 Shared_DirtyCardQ_lock,
1825                                                 NULL,  // fl_owner
1826                                                 true); // init_free_ids
1827 
1828   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1829                                     DirtyCardQ_CBL_mon,
1830                                     DirtyCardQ_FL_lock,
1831                                     -1, // never trigger processing
1832                                     -1, // no limit on length
1833                                     Shared_DirtyCardQ_lock,
1834                                     &JavaThread::dirty_card_queue_set());
1835 
1836   // Here we allocate the dummy HeapRegion that is required by the
1837   // G1AllocRegion class.
1838   HeapRegion* dummy_region = _hrm.get_dummy_region();
1839 
1840   // We'll re-use the same region whether the alloc region will
1841   // require BOT updates or not and, if it doesn't, then a non-young
1842   // region will complain that it cannot support allocations without
1843   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1844   dummy_region->set_eden();
1845   // Make sure it's full.
1846   dummy_region->set_top(dummy_region->end());
1847   G1AllocRegion::setup(this, dummy_region);
1848 
1849   _allocator->init_mutator_alloc_region();
1850 
1851   // Do create of the monitoring and management support so that
1852   // values in the heap have been properly initialized.
1853   _g1mm = new G1MonitoringSupport(this);
1854 
1855   G1StringDedup::initialize();
1856 
1857   _preserved_marks_set.init(ParallelGCThreads);
1858 
1859   _collection_set.initialize(max_regions());
1860 
1861   _g1_rem_set->initialize_periodic_summary_info();
1862 
1863   return JNI_OK;
1864 }
1865 
1866 void G1CollectedHeap::stop() {
1867   // Stop all concurrent threads. We do this to make sure these threads
1868   // do not continue to execute and access resources (e.g. logging)
1869   // that are destroyed during shutdown.
1870   _cg1r->stop();
1871   _cmThread->stop();
1872   if (G1StringDedup::is_enabled()) {
1873     G1StringDedup::stop();
1874   }
1875 }
1876 
1877 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1878   return HeapRegion::max_region_size();
1879 }
1880 
1881 void G1CollectedHeap::post_initialize() {
1882   ref_processing_init();
1883 }
1884 
1885 void G1CollectedHeap::ref_processing_init() {
1886   // Reference processing in G1 currently works as follows:
1887   //
1888   // * There are two reference processor instances. One is
1889   //   used to record and process discovered references
1890   //   during concurrent marking; the other is used to
1891   //   record and process references during STW pauses
1892   //   (both full and incremental).
1893   // * Both ref processors need to 'span' the entire heap as
1894   //   the regions in the collection set may be dotted around.
1895   //
1896   // * For the concurrent marking ref processor:
1897   //   * Reference discovery is enabled at initial marking.
1898   //   * Reference discovery is disabled and the discovered
1899   //     references processed etc during remarking.
1900   //   * Reference discovery is MT (see below).
1901   //   * Reference discovery requires a barrier (see below).
1902   //   * Reference processing may or may not be MT
1903   //     (depending on the value of ParallelRefProcEnabled
1904   //     and ParallelGCThreads).
1905   //   * A full GC disables reference discovery by the CM
1906   //     ref processor and abandons any entries on it's
1907   //     discovered lists.
1908   //
1909   // * For the STW processor:
1910   //   * Non MT discovery is enabled at the start of a full GC.
1911   //   * Processing and enqueueing during a full GC is non-MT.
1912   //   * During a full GC, references are processed after marking.
1913   //
1914   //   * Discovery (may or may not be MT) is enabled at the start
1915   //     of an incremental evacuation pause.
1916   //   * References are processed near the end of a STW evacuation pause.
1917   //   * For both types of GC:
1918   //     * Discovery is atomic - i.e. not concurrent.
1919   //     * Reference discovery will not need a barrier.
1920 
1921   MemRegion mr = reserved_region();
1922 
1923   // Concurrent Mark ref processor
1924   _ref_processor_cm =
1925     new ReferenceProcessor(mr,    // span
1926                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
1927                                 // mt processing
1928                            ParallelGCThreads,
1929                                 // degree of mt processing
1930                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1931                                 // mt discovery
1932                            MAX2(ParallelGCThreads, ConcGCThreads),
1933                                 // degree of mt discovery
1934                            false,
1935                                 // Reference discovery is not atomic
1936                            &_is_alive_closure_cm);
1937                                 // is alive closure
1938                                 // (for efficiency/performance)
1939 
1940   // STW ref processor
1941   _ref_processor_stw =
1942     new ReferenceProcessor(mr,    // span
1943                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
1944                                 // mt processing
1945                            ParallelGCThreads,
1946                                 // degree of mt processing
1947                            (ParallelGCThreads > 1),
1948                                 // mt discovery
1949                            ParallelGCThreads,
1950                                 // degree of mt discovery
1951                            true,
1952                                 // Reference discovery is atomic
1953                            &_is_alive_closure_stw);
1954                                 // is alive closure
1955                                 // (for efficiency/performance)
1956 }
1957 
1958 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1959   return _collector_policy;
1960 }
1961 
1962 size_t G1CollectedHeap::capacity() const {
1963   return _hrm.length() * HeapRegion::GrainBytes;
1964 }
1965 
1966 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
1967   hr->reset_gc_time_stamp();
1968 }
1969 
1970 #ifndef PRODUCT
1971 
1972 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
1973 private:
1974   unsigned _gc_time_stamp;
1975   bool _failures;
1976 
1977 public:
1978   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
1979     _gc_time_stamp(gc_time_stamp), _failures(false) { }
1980 
1981   virtual bool doHeapRegion(HeapRegion* hr) {
1982     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
1983     if (_gc_time_stamp != region_gc_time_stamp) {
1984       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
1985                             region_gc_time_stamp, _gc_time_stamp);
1986       _failures = true;
1987     }
1988     return false;
1989   }
1990 
1991   bool failures() { return _failures; }
1992 };
1993 
1994 void G1CollectedHeap::check_gc_time_stamps() {
1995   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
1996   heap_region_iterate(&cl);
1997   guarantee(!cl.failures(), "all GC time stamps should have been reset");
1998 }
1999 #endif // PRODUCT
2000 
2001 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2002   _hot_card_cache->drain(cl, worker_i);
2003 }
2004 
2005 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2006   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2007   size_t n_completed_buffers = 0;
2008   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2009     n_completed_buffers++;
2010   }
2011   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2012   dcqs.clear_n_completed_buffers();
2013   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2014 }
2015 
2016 // Computes the sum of the storage used by the various regions.
2017 size_t G1CollectedHeap::used() const {
2018   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2019   if (_archive_allocator != NULL) {
2020     result += _archive_allocator->used();
2021   }
2022   return result;
2023 }
2024 
2025 size_t G1CollectedHeap::used_unlocked() const {
2026   return _summary_bytes_used;
2027 }
2028 
2029 class SumUsedClosure: public HeapRegionClosure {
2030   size_t _used;
2031 public:
2032   SumUsedClosure() : _used(0) {}
2033   bool doHeapRegion(HeapRegion* r) {
2034     _used += r->used();
2035     return false;
2036   }
2037   size_t result() { return _used; }
2038 };
2039 
2040 size_t G1CollectedHeap::recalculate_used() const {
2041   double recalculate_used_start = os::elapsedTime();
2042 
2043   SumUsedClosure blk;
2044   heap_region_iterate(&blk);
2045 
2046   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2047   return blk.result();
2048 }
2049 
2050 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2051   switch (cause) {
2052     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2053     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2054     case GCCause::_update_allocation_context_stats_inc: return true;
2055     case GCCause::_wb_conc_mark:                        return true;
2056     default :                                           return false;
2057   }
2058 }
2059 
2060 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2061   switch (cause) {
2062     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2063     case GCCause::_g1_humongous_allocation: return true;
2064     default:                                return is_user_requested_concurrent_full_gc(cause);
2065   }
2066 }
2067 
2068 #ifndef PRODUCT
2069 void G1CollectedHeap::allocate_dummy_regions() {
2070   // Let's fill up most of the region
2071   size_t word_size = HeapRegion::GrainWords - 1024;
2072   // And as a result the region we'll allocate will be humongous.
2073   guarantee(is_humongous(word_size), "sanity");
2074 
2075   // _filler_array_max_size is set to humongous object threshold
2076   // but temporarily change it to use CollectedHeap::fill_with_object().
2077   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2078 
2079   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2080     // Let's use the existing mechanism for the allocation
2081     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2082                                                  AllocationContext::system());
2083     if (dummy_obj != NULL) {
2084       MemRegion mr(dummy_obj, word_size);
2085       CollectedHeap::fill_with_object(mr);
2086     } else {
2087       // If we can't allocate once, we probably cannot allocate
2088       // again. Let's get out of the loop.
2089       break;
2090     }
2091   }
2092 }
2093 #endif // !PRODUCT
2094 
2095 void G1CollectedHeap::increment_old_marking_cycles_started() {
2096   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2097          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2098          "Wrong marking cycle count (started: %d, completed: %d)",
2099          _old_marking_cycles_started, _old_marking_cycles_completed);
2100 
2101   _old_marking_cycles_started++;
2102 }
2103 
2104 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2105   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2106 
2107   // We assume that if concurrent == true, then the caller is a
2108   // concurrent thread that was joined the Suspendible Thread
2109   // Set. If there's ever a cheap way to check this, we should add an
2110   // assert here.
2111 
2112   // Given that this method is called at the end of a Full GC or of a
2113   // concurrent cycle, and those can be nested (i.e., a Full GC can
2114   // interrupt a concurrent cycle), the number of full collections
2115   // completed should be either one (in the case where there was no
2116   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2117   // behind the number of full collections started.
2118 
2119   // This is the case for the inner caller, i.e. a Full GC.
2120   assert(concurrent ||
2121          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2122          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2123          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2124          "is inconsistent with _old_marking_cycles_completed = %u",
2125          _old_marking_cycles_started, _old_marking_cycles_completed);
2126 
2127   // This is the case for the outer caller, i.e. the concurrent cycle.
2128   assert(!concurrent ||
2129          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2130          "for outer caller (concurrent cycle): "
2131          "_old_marking_cycles_started = %u "
2132          "is inconsistent with _old_marking_cycles_completed = %u",
2133          _old_marking_cycles_started, _old_marking_cycles_completed);
2134 
2135   _old_marking_cycles_completed += 1;
2136 
2137   // We need to clear the "in_progress" flag in the CM thread before
2138   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2139   // is set) so that if a waiter requests another System.gc() it doesn't
2140   // incorrectly see that a marking cycle is still in progress.
2141   if (concurrent) {
2142     _cmThread->set_idle();
2143   }
2144 
2145   // This notify_all() will ensure that a thread that called
2146   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2147   // and it's waiting for a full GC to finish will be woken up. It is
2148   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2149   FullGCCount_lock->notify_all();
2150 }
2151 
2152 void G1CollectedHeap::collect(GCCause::Cause cause) {
2153   assert_heap_not_locked();
2154 
2155   uint gc_count_before;
2156   uint old_marking_count_before;
2157   uint full_gc_count_before;
2158   bool retry_gc;
2159 
2160   do {
2161     retry_gc = false;
2162 
2163     {
2164       MutexLocker ml(Heap_lock);
2165 
2166       // Read the GC count while holding the Heap_lock
2167       gc_count_before = total_collections();
2168       full_gc_count_before = total_full_collections();
2169       old_marking_count_before = _old_marking_cycles_started;
2170     }
2171 
2172     if (should_do_concurrent_full_gc(cause)) {
2173       // Schedule an initial-mark evacuation pause that will start a
2174       // concurrent cycle. We're setting word_size to 0 which means that
2175       // we are not requesting a post-GC allocation.
2176       VM_G1IncCollectionPause op(gc_count_before,
2177                                  0,     /* word_size */
2178                                  true,  /* should_initiate_conc_mark */
2179                                  g1_policy()->max_pause_time_ms(),
2180                                  cause);
2181       op.set_allocation_context(AllocationContext::current());
2182 
2183       VMThread::execute(&op);
2184       if (!op.pause_succeeded()) {
2185         if (old_marking_count_before == _old_marking_cycles_started) {
2186           retry_gc = op.should_retry_gc();
2187         } else {
2188           // A Full GC happened while we were trying to schedule the
2189           // initial-mark GC. No point in starting a new cycle given
2190           // that the whole heap was collected anyway.
2191         }
2192 
2193         if (retry_gc) {
2194           if (GCLocker::is_active_and_needs_gc()) {
2195             GCLocker::stall_until_clear();
2196           }
2197         }
2198       }
2199     } else {
2200       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2201           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2202 
2203         // Schedule a standard evacuation pause. We're setting word_size
2204         // to 0 which means that we are not requesting a post-GC allocation.
2205         VM_G1IncCollectionPause op(gc_count_before,
2206                                    0,     /* word_size */
2207                                    false, /* should_initiate_conc_mark */
2208                                    g1_policy()->max_pause_time_ms(),
2209                                    cause);
2210         VMThread::execute(&op);
2211       } else {
2212         // Schedule a Full GC.
2213         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2214         VMThread::execute(&op);
2215       }
2216     }
2217   } while (retry_gc);
2218 }
2219 
2220 bool G1CollectedHeap::is_in(const void* p) const {
2221   if (_hrm.reserved().contains(p)) {
2222     // Given that we know that p is in the reserved space,
2223     // heap_region_containing() should successfully
2224     // return the containing region.
2225     HeapRegion* hr = heap_region_containing(p);
2226     return hr->is_in(p);
2227   } else {
2228     return false;
2229   }
2230 }
2231 
2232 #ifdef ASSERT
2233 bool G1CollectedHeap::is_in_exact(const void* p) const {
2234   bool contains = reserved_region().contains(p);
2235   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2236   if (contains && available) {
2237     return true;
2238   } else {
2239     return false;
2240   }
2241 }
2242 #endif
2243 
2244 // Iteration functions.
2245 
2246 // Iterates an ObjectClosure over all objects within a HeapRegion.
2247 
2248 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2249   ObjectClosure* _cl;
2250 public:
2251   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2252   bool doHeapRegion(HeapRegion* r) {
2253     if (!r->is_continues_humongous()) {
2254       r->object_iterate(_cl);
2255     }
2256     return false;
2257   }
2258 };
2259 
2260 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2261   IterateObjectClosureRegionClosure blk(cl);
2262   heap_region_iterate(&blk);
2263 }
2264 
2265 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2266   _hrm.iterate(cl);
2267 }
2268 
2269 void G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2270                                               uint worker_id,
2271                                               HeapRegionClaimerBase *hrclaimer) const {
2272   _hrm.par_iterate(cl, worker_id, hrclaimer);
2273 }
2274 
2275 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2276   _collection_set.iterate(cl);
2277 }
2278 
2279 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2280   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2281 }
2282 
2283 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2284   HeapRegion* hr = heap_region_containing(addr);
2285   return hr->block_start(addr);
2286 }
2287 
2288 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2289   HeapRegion* hr = heap_region_containing(addr);
2290   return hr->block_size(addr);
2291 }
2292 
2293 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2294   HeapRegion* hr = heap_region_containing(addr);
2295   return hr->block_is_obj(addr);
2296 }
2297 
2298 bool G1CollectedHeap::supports_tlab_allocation() const {
2299   return true;
2300 }
2301 
2302 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2303   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2304 }
2305 
2306 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2307   return _eden.length() * HeapRegion::GrainBytes;
2308 }
2309 
2310 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2311 // must be equal to the humongous object limit.
2312 size_t G1CollectedHeap::max_tlab_size() const {
2313   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2314 }
2315 
2316 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2317   AllocationContext_t context = AllocationContext::current();
2318   return _allocator->unsafe_max_tlab_alloc(context);
2319 }
2320 
2321 size_t G1CollectedHeap::max_capacity() const {
2322   return _hrm.reserved().byte_size();
2323 }
2324 
2325 jlong G1CollectedHeap::millis_since_last_gc() {
2326   // See the notes in GenCollectedHeap::millis_since_last_gc()
2327   // for more information about the implementation.
2328   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2329     _g1_policy->collection_pause_end_millis();
2330   if (ret_val < 0) {
2331     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2332       ". returning zero instead.", ret_val);
2333     return 0;
2334   }
2335   return ret_val;
2336 }
2337 
2338 void G1CollectedHeap::prepare_for_verify() {
2339   _verifier->prepare_for_verify();
2340 }
2341 
2342 void G1CollectedHeap::verify(VerifyOption vo) {
2343   _verifier->verify(vo);
2344 }
2345 
2346 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2347   return true;
2348 }
2349 
2350 const char* const* G1CollectedHeap::concurrent_phases() const {
2351   return _cmThread->concurrent_phases();
2352 }
2353 
2354 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2355   return _cmThread->request_concurrent_phase(phase);
2356 }
2357 
2358 class PrintRegionClosure: public HeapRegionClosure {
2359   outputStream* _st;
2360 public:
2361   PrintRegionClosure(outputStream* st) : _st(st) {}
2362   bool doHeapRegion(HeapRegion* r) {
2363     r->print_on(_st);
2364     return false;
2365   }
2366 };
2367 
2368 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2369                                        const HeapRegion* hr,
2370                                        const VerifyOption vo) const {
2371   switch (vo) {
2372   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2373   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2374   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2375   default:                            ShouldNotReachHere();
2376   }
2377   return false; // keep some compilers happy
2378 }
2379 
2380 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2381                                        const VerifyOption vo) const {
2382   switch (vo) {
2383   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2384   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2385   case VerifyOption_G1UseMarkWord: {
2386     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2387     return !obj->is_gc_marked() && !hr->is_archive();
2388   }
2389   default:                            ShouldNotReachHere();
2390   }
2391   return false; // keep some compilers happy
2392 }
2393 
2394 void G1CollectedHeap::print_heap_regions() const {
2395   Log(gc, heap, region) log;
2396   if (log.is_trace()) {
2397     ResourceMark rm;
2398     print_regions_on(log.trace_stream());
2399   }
2400 }
2401 
2402 void G1CollectedHeap::print_on(outputStream* st) const {
2403   st->print(" %-20s", "garbage-first heap");
2404   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2405             capacity()/K, used_unlocked()/K);
2406   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2407             p2i(_hrm.reserved().start()),
2408             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2409             p2i(_hrm.reserved().end()));
2410   st->cr();
2411   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2412   uint young_regions = young_regions_count();
2413   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2414             (size_t) young_regions * HeapRegion::GrainBytes / K);
2415   uint survivor_regions = survivor_regions_count();
2416   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2417             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2418   st->cr();
2419   MetaspaceAux::print_on(st);
2420 }
2421 
2422 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2423   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2424                "HS=humongous(starts), HC=humongous(continues), "
2425                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2426                "AC=allocation context, "
2427                "TAMS=top-at-mark-start (previous, next)");
2428   PrintRegionClosure blk(st);
2429   heap_region_iterate(&blk);
2430 }
2431 
2432 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2433   print_on(st);
2434 
2435   // Print the per-region information.
2436   print_regions_on(st);
2437 }
2438 
2439 void G1CollectedHeap::print_on_error(outputStream* st) const {
2440   this->CollectedHeap::print_on_error(st);
2441 
2442   if (_cm != NULL) {
2443     st->cr();
2444     _cm->print_on_error(st);
2445   }
2446 }
2447 
2448 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2449   workers()->print_worker_threads_on(st);
2450   _cmThread->print_on(st);
2451   st->cr();
2452   _cm->print_worker_threads_on(st);
2453   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2454   if (G1StringDedup::is_enabled()) {
2455     G1StringDedup::print_worker_threads_on(st);
2456   }
2457 }
2458 
2459 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2460   workers()->threads_do(tc);
2461   tc->do_thread(_cmThread);
2462   _cm->threads_do(tc);
2463   _cg1r->threads_do(tc); // also iterates over the sample thread
2464   if (G1StringDedup::is_enabled()) {
2465     G1StringDedup::threads_do(tc);
2466   }
2467 }
2468 
2469 void G1CollectedHeap::print_tracing_info() const {
2470   g1_rem_set()->print_summary_info();
2471   concurrent_mark()->print_summary_info();
2472 }
2473 
2474 #ifndef PRODUCT
2475 // Helpful for debugging RSet issues.
2476 
2477 class PrintRSetsClosure : public HeapRegionClosure {
2478 private:
2479   const char* _msg;
2480   size_t _occupied_sum;
2481 
2482 public:
2483   bool doHeapRegion(HeapRegion* r) {
2484     HeapRegionRemSet* hrrs = r->rem_set();
2485     size_t occupied = hrrs->occupied();
2486     _occupied_sum += occupied;
2487 
2488     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2489     if (occupied == 0) {
2490       tty->print_cr("  RSet is empty");
2491     } else {
2492       hrrs->print();
2493     }
2494     tty->print_cr("----------");
2495     return false;
2496   }
2497 
2498   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2499     tty->cr();
2500     tty->print_cr("========================================");
2501     tty->print_cr("%s", msg);
2502     tty->cr();
2503   }
2504 
2505   ~PrintRSetsClosure() {
2506     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2507     tty->print_cr("========================================");
2508     tty->cr();
2509   }
2510 };
2511 
2512 void G1CollectedHeap::print_cset_rsets() {
2513   PrintRSetsClosure cl("Printing CSet RSets");
2514   collection_set_iterate(&cl);
2515 }
2516 
2517 void G1CollectedHeap::print_all_rsets() {
2518   PrintRSetsClosure cl("Printing All RSets");;
2519   heap_region_iterate(&cl);
2520 }
2521 #endif // PRODUCT
2522 
2523 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2524 
2525   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2526   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2527   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2528 
2529   size_t eden_capacity_bytes =
2530     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2531 
2532   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2533   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2534                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2535 }
2536 
2537 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2538   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2539                        stats->unused(), stats->used(), stats->region_end_waste(),
2540                        stats->regions_filled(), stats->direct_allocated(),
2541                        stats->failure_used(), stats->failure_waste());
2542 }
2543 
2544 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2545   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2546   gc_tracer->report_gc_heap_summary(when, heap_summary);
2547 
2548   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2549   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2550 }
2551 
2552 G1CollectedHeap* G1CollectedHeap::heap() {
2553   CollectedHeap* heap = Universe::heap();
2554   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2555   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2556   return (G1CollectedHeap*)heap;
2557 }
2558 
2559 void G1CollectedHeap::gc_prologue(bool full) {
2560   // always_do_update_barrier = false;
2561   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2562 
2563   // This summary needs to be printed before incrementing total collections.
2564   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2565 
2566   // Update common counters.
2567   increment_total_collections(full /* full gc */);
2568   if (full) {
2569     increment_old_marking_cycles_started();
2570     reset_gc_time_stamp();
2571   } else {
2572     increment_gc_time_stamp();
2573   }
2574 
2575   // Fill TLAB's and such
2576   double start = os::elapsedTime();
2577   accumulate_statistics_all_tlabs();
2578   ensure_parsability(true);
2579   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2580 }
2581 
2582 void G1CollectedHeap::gc_epilogue(bool full) {
2583   // Update common counters.
2584   if (full) {
2585     // Update the number of full collections that have been completed.
2586     increment_old_marking_cycles_completed(false /* concurrent */);
2587   }
2588 
2589   // We are at the end of the GC. Total collections has already been increased.
2590   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2591 
2592   // FIXME: what is this about?
2593   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2594   // is set.
2595 #if defined(COMPILER2) || INCLUDE_JVMCI
2596   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2597 #endif
2598   // always_do_update_barrier = true;
2599 
2600   double start = os::elapsedTime();
2601   resize_all_tlabs();
2602   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2603 
2604   allocation_context_stats().update(full);
2605 
2606   MemoryService::track_memory_usage();
2607   // We have just completed a GC. Update the soft reference
2608   // policy with the new heap occupancy
2609   Universe::update_heap_info_at_gc();
2610 }
2611 
2612 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2613                                                uint gc_count_before,
2614                                                bool* succeeded,
2615                                                GCCause::Cause gc_cause) {
2616   assert_heap_not_locked_and_not_at_safepoint();
2617   VM_G1IncCollectionPause op(gc_count_before,
2618                              word_size,
2619                              false, /* should_initiate_conc_mark */
2620                              g1_policy()->max_pause_time_ms(),
2621                              gc_cause);
2622 
2623   op.set_allocation_context(AllocationContext::current());
2624   VMThread::execute(&op);
2625 
2626   HeapWord* result = op.result();
2627   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2628   assert(result == NULL || ret_succeeded,
2629          "the result should be NULL if the VM did not succeed");
2630   *succeeded = ret_succeeded;
2631 
2632   assert_heap_not_locked();
2633   return result;
2634 }
2635 
2636 void
2637 G1CollectedHeap::doConcurrentMark() {
2638   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2639   if (!_cmThread->in_progress()) {
2640     _cmThread->set_started();
2641     CGC_lock->notify();
2642   }
2643 }
2644 
2645 size_t G1CollectedHeap::pending_card_num() {
2646   size_t extra_cards = 0;
2647   JavaThread *curr = Threads::first();
2648   while (curr != NULL) {
2649     DirtyCardQueue& dcq = curr->dirty_card_queue();
2650     extra_cards += dcq.size();
2651     curr = curr->next();
2652   }
2653   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2654   size_t buffer_size = dcqs.buffer_size();
2655   size_t buffer_num = dcqs.completed_buffers_num();
2656 
2657   return buffer_size * buffer_num + extra_cards;
2658 }
2659 
2660 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2661  private:
2662   size_t _total_humongous;
2663   size_t _candidate_humongous;
2664 
2665   DirtyCardQueue _dcq;
2666 
2667   // We don't nominate objects with many remembered set entries, on
2668   // the assumption that such objects are likely still live.
2669   bool is_remset_small(HeapRegion* region) const {
2670     HeapRegionRemSet* const rset = region->rem_set();
2671     return G1EagerReclaimHumongousObjectsWithStaleRefs
2672       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2673       : rset->is_empty();
2674   }
2675 
2676   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2677     assert(region->is_starts_humongous(), "Must start a humongous object");
2678 
2679     oop obj = oop(region->bottom());
2680 
2681     // Dead objects cannot be eager reclaim candidates. Due to class
2682     // unloading it is unsafe to query their classes so we return early.
2683     if (heap->is_obj_dead(obj, region)) {
2684       return false;
2685     }
2686 
2687     // Candidate selection must satisfy the following constraints
2688     // while concurrent marking is in progress:
2689     //
2690     // * In order to maintain SATB invariants, an object must not be
2691     // reclaimed if it was allocated before the start of marking and
2692     // has not had its references scanned.  Such an object must have
2693     // its references (including type metadata) scanned to ensure no
2694     // live objects are missed by the marking process.  Objects
2695     // allocated after the start of concurrent marking don't need to
2696     // be scanned.
2697     //
2698     // * An object must not be reclaimed if it is on the concurrent
2699     // mark stack.  Objects allocated after the start of concurrent
2700     // marking are never pushed on the mark stack.
2701     //
2702     // Nominating only objects allocated after the start of concurrent
2703     // marking is sufficient to meet both constraints.  This may miss
2704     // some objects that satisfy the constraints, but the marking data
2705     // structures don't support efficiently performing the needed
2706     // additional tests or scrubbing of the mark stack.
2707     //
2708     // However, we presently only nominate is_typeArray() objects.
2709     // A humongous object containing references induces remembered
2710     // set entries on other regions.  In order to reclaim such an
2711     // object, those remembered sets would need to be cleaned up.
2712     //
2713     // We also treat is_typeArray() objects specially, allowing them
2714     // to be reclaimed even if allocated before the start of
2715     // concurrent mark.  For this we rely on mark stack insertion to
2716     // exclude is_typeArray() objects, preventing reclaiming an object
2717     // that is in the mark stack.  We also rely on the metadata for
2718     // such objects to be built-in and so ensured to be kept live.
2719     // Frequent allocation and drop of large binary blobs is an
2720     // important use case for eager reclaim, and this special handling
2721     // may reduce needed headroom.
2722 
2723     return obj->is_typeArray() && is_remset_small(region);
2724   }
2725 
2726  public:
2727   RegisterHumongousWithInCSetFastTestClosure()
2728   : _total_humongous(0),
2729     _candidate_humongous(0),
2730     _dcq(&JavaThread::dirty_card_queue_set()) {
2731   }
2732 
2733   virtual bool doHeapRegion(HeapRegion* r) {
2734     if (!r->is_starts_humongous()) {
2735       return false;
2736     }
2737     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2738 
2739     bool is_candidate = humongous_region_is_candidate(g1h, r);
2740     uint rindex = r->hrm_index();
2741     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2742     if (is_candidate) {
2743       _candidate_humongous++;
2744       g1h->register_humongous_region_with_cset(rindex);
2745       // Is_candidate already filters out humongous object with large remembered sets.
2746       // If we have a humongous object with a few remembered sets, we simply flush these
2747       // remembered set entries into the DCQS. That will result in automatic
2748       // re-evaluation of their remembered set entries during the following evacuation
2749       // phase.
2750       if (!r->rem_set()->is_empty()) {
2751         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2752                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2753         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2754         HeapRegionRemSetIterator hrrs(r->rem_set());
2755         size_t card_index;
2756         while (hrrs.has_next(card_index)) {
2757           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2758           // The remembered set might contain references to already freed
2759           // regions. Filter out such entries to avoid failing card table
2760           // verification.
2761           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2762             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2763               *card_ptr = CardTableModRefBS::dirty_card_val();
2764               _dcq.enqueue(card_ptr);
2765             }
2766           }
2767         }
2768         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2769                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2770                hrrs.n_yielded(), r->rem_set()->occupied());
2771         r->rem_set()->clear_locked();
2772       }
2773       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2774     }
2775     _total_humongous++;
2776 
2777     return false;
2778   }
2779 
2780   size_t total_humongous() const { return _total_humongous; }
2781   size_t candidate_humongous() const { return _candidate_humongous; }
2782 
2783   void flush_rem_set_entries() { _dcq.flush(); }
2784 };
2785 
2786 void G1CollectedHeap::register_humongous_regions_with_cset() {
2787   if (!G1EagerReclaimHumongousObjects) {
2788     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2789     return;
2790   }
2791   double time = os::elapsed_counter();
2792 
2793   // Collect reclaim candidate information and register candidates with cset.
2794   RegisterHumongousWithInCSetFastTestClosure cl;
2795   heap_region_iterate(&cl);
2796 
2797   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2798   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2799                                                                   cl.total_humongous(),
2800                                                                   cl.candidate_humongous());
2801   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2802 
2803   // Finally flush all remembered set entries to re-check into the global DCQS.
2804   cl.flush_rem_set_entries();
2805 }
2806 
2807 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2808   public:
2809     bool doHeapRegion(HeapRegion* hr) {
2810       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2811         hr->verify_rem_set();
2812       }
2813       return false;
2814     }
2815 };
2816 
2817 uint G1CollectedHeap::num_task_queues() const {
2818   return _task_queues->size();
2819 }
2820 
2821 #if TASKQUEUE_STATS
2822 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2823   st->print_raw_cr("GC Task Stats");
2824   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2825   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2826 }
2827 
2828 void G1CollectedHeap::print_taskqueue_stats() const {
2829   if (!log_is_enabled(Trace, gc, task, stats)) {
2830     return;
2831   }
2832   Log(gc, task, stats) log;
2833   ResourceMark rm;
2834   outputStream* st = log.trace_stream();
2835 
2836   print_taskqueue_stats_hdr(st);
2837 
2838   TaskQueueStats totals;
2839   const uint n = num_task_queues();
2840   for (uint i = 0; i < n; ++i) {
2841     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2842     totals += task_queue(i)->stats;
2843   }
2844   st->print_raw("tot "); totals.print(st); st->cr();
2845 
2846   DEBUG_ONLY(totals.verify());
2847 }
2848 
2849 void G1CollectedHeap::reset_taskqueue_stats() {
2850   const uint n = num_task_queues();
2851   for (uint i = 0; i < n; ++i) {
2852     task_queue(i)->stats.reset();
2853   }
2854 }
2855 #endif // TASKQUEUE_STATS
2856 
2857 void G1CollectedHeap::wait_for_root_region_scanning() {
2858   double scan_wait_start = os::elapsedTime();
2859   // We have to wait until the CM threads finish scanning the
2860   // root regions as it's the only way to ensure that all the
2861   // objects on them have been correctly scanned before we start
2862   // moving them during the GC.
2863   bool waited = _cm->root_regions()->wait_until_scan_finished();
2864   double wait_time_ms = 0.0;
2865   if (waited) {
2866     double scan_wait_end = os::elapsedTime();
2867     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2868   }
2869   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2870 }
2871 
2872 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2873 private:
2874   G1HRPrinter* _hr_printer;
2875 public:
2876   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2877 
2878   virtual bool doHeapRegion(HeapRegion* r) {
2879     _hr_printer->cset(r);
2880     return false;
2881   }
2882 };
2883 
2884 void G1CollectedHeap::start_new_collection_set() {
2885   collection_set()->start_incremental_building();
2886 
2887   clear_cset_fast_test();
2888 
2889   guarantee(_eden.length() == 0, "eden should have been cleared");
2890   g1_policy()->transfer_survivors_to_cset(survivor());
2891 }
2892 
2893 bool
2894 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2895   assert_at_safepoint(true /* should_be_vm_thread */);
2896   guarantee(!is_gc_active(), "collection is not reentrant");
2897 
2898   if (GCLocker::check_active_before_gc()) {
2899     return false;
2900   }
2901 
2902   _gc_timer_stw->register_gc_start();
2903 
2904   GCIdMark gc_id_mark;
2905   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2906 
2907   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2908   ResourceMark rm;
2909 
2910   g1_policy()->note_gc_start();
2911 
2912   wait_for_root_region_scanning();
2913 
2914   print_heap_before_gc();
2915   print_heap_regions();
2916   trace_heap_before_gc(_gc_tracer_stw);
2917 
2918   _verifier->verify_region_sets_optional();
2919   _verifier->verify_dirty_young_regions();
2920 
2921   // We should not be doing initial mark unless the conc mark thread is running
2922   if (!_cmThread->should_terminate()) {
2923     // This call will decide whether this pause is an initial-mark
2924     // pause. If it is, during_initial_mark_pause() will return true
2925     // for the duration of this pause.
2926     g1_policy()->decide_on_conc_mark_initiation();
2927   }
2928 
2929   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2930   assert(!collector_state()->during_initial_mark_pause() ||
2931           collector_state()->gcs_are_young(), "sanity");
2932 
2933   // We also do not allow mixed GCs during marking.
2934   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
2935 
2936   // Record whether this pause is an initial mark. When the current
2937   // thread has completed its logging output and it's safe to signal
2938   // the CM thread, the flag's value in the policy has been reset.
2939   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
2940 
2941   // Inner scope for scope based logging, timers, and stats collection
2942   {
2943     EvacuationInfo evacuation_info;
2944 
2945     if (collector_state()->during_initial_mark_pause()) {
2946       // We are about to start a marking cycle, so we increment the
2947       // full collection counter.
2948       increment_old_marking_cycles_started();
2949       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2950     }
2951 
2952     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2953 
2954     GCTraceCPUTime tcpu;
2955 
2956     FormatBuffer<> gc_string("Pause ");
2957     if (collector_state()->during_initial_mark_pause()) {
2958       gc_string.append("Initial Mark");
2959     } else if (collector_state()->gcs_are_young()) {
2960       gc_string.append("Young");
2961     } else {
2962       gc_string.append("Mixed");
2963     }
2964     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2965 
2966     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2967                                                                   workers()->active_workers(),
2968                                                                   Threads::number_of_non_daemon_threads());
2969     workers()->update_active_workers(active_workers);
2970     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2971 
2972     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2973     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
2974 
2975     // If the secondary_free_list is not empty, append it to the
2976     // free_list. No need to wait for the cleanup operation to finish;
2977     // the region allocation code will check the secondary_free_list
2978     // and wait if necessary. If the G1StressConcRegionFreeing flag is
2979     // set, skip this step so that the region allocation code has to
2980     // get entries from the secondary_free_list.
2981     if (!G1StressConcRegionFreeing) {
2982       append_secondary_free_list_if_not_empty_with_lock();
2983     }
2984 
2985     G1HeapTransition heap_transition(this);
2986     size_t heap_used_bytes_before_gc = used();
2987 
2988     // Don't dynamically change the number of GC threads this early.  A value of
2989     // 0 is used to indicate serial work.  When parallel work is done,
2990     // it will be set.
2991 
2992     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2993       IsGCActiveMark x;
2994 
2995       gc_prologue(false);
2996 
2997       if (VerifyRememberedSets) {
2998         log_info(gc, verify)("[Verifying RemSets before GC]");
2999         VerifyRegionRemSetClosure v_cl;
3000         heap_region_iterate(&v_cl);
3001       }
3002 
3003       _verifier->verify_before_gc();
3004 
3005       _verifier->check_bitmaps("GC Start");
3006 
3007 #if defined(COMPILER2) || INCLUDE_JVMCI
3008       DerivedPointerTable::clear();
3009 #endif
3010 
3011       // Please see comment in g1CollectedHeap.hpp and
3012       // G1CollectedHeap::ref_processing_init() to see how
3013       // reference processing currently works in G1.
3014 
3015       // Enable discovery in the STW reference processor
3016       if (g1_policy()->should_process_references()) {
3017         ref_processor_stw()->enable_discovery();
3018       } else {
3019         ref_processor_stw()->disable_discovery();
3020       }
3021 
3022       {
3023         // We want to temporarily turn off discovery by the
3024         // CM ref processor, if necessary, and turn it back on
3025         // on again later if we do. Using a scoped
3026         // NoRefDiscovery object will do this.
3027         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3028 
3029         // Forget the current alloc region (we might even choose it to be part
3030         // of the collection set!).
3031         _allocator->release_mutator_alloc_region();
3032 
3033         // This timing is only used by the ergonomics to handle our pause target.
3034         // It is unclear why this should not include the full pause. We will
3035         // investigate this in CR 7178365.
3036         //
3037         // Preserving the old comment here if that helps the investigation:
3038         //
3039         // The elapsed time induced by the start time below deliberately elides
3040         // the possible verification above.
3041         double sample_start_time_sec = os::elapsedTime();
3042 
3043         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3044 
3045         if (collector_state()->during_initial_mark_pause()) {
3046           concurrent_mark()->checkpointRootsInitialPre();
3047         }
3048 
3049         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3050 
3051         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3052 
3053         // Make sure the remembered sets are up to date. This needs to be
3054         // done before register_humongous_regions_with_cset(), because the
3055         // remembered sets are used there to choose eager reclaim candidates.
3056         // If the remembered sets are not up to date we might miss some
3057         // entries that need to be handled.
3058         g1_rem_set()->cleanupHRRS();
3059 
3060         register_humongous_regions_with_cset();
3061 
3062         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3063 
3064         // We call this after finalize_cset() to
3065         // ensure that the CSet has been finalized.
3066         _cm->verify_no_cset_oops();
3067 
3068         if (_hr_printer.is_active()) {
3069           G1PrintCollectionSetClosure cl(&_hr_printer);
3070           _collection_set.iterate(&cl);
3071         }
3072 
3073         // Initialize the GC alloc regions.
3074         _allocator->init_gc_alloc_regions(evacuation_info);
3075 
3076         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3077         pre_evacuate_collection_set();
3078 
3079         // Actually do the work...
3080         evacuate_collection_set(evacuation_info, &per_thread_states);
3081 
3082         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3083 
3084         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3085         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3086 
3087         eagerly_reclaim_humongous_regions();
3088 
3089         record_obj_copy_mem_stats();
3090         _survivor_evac_stats.adjust_desired_plab_sz();
3091         _old_evac_stats.adjust_desired_plab_sz();
3092 
3093         double start = os::elapsedTime();
3094         start_new_collection_set();
3095         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3096 
3097         if (evacuation_failed()) {
3098           set_used(recalculate_used());
3099           if (_archive_allocator != NULL) {
3100             _archive_allocator->clear_used();
3101           }
3102           for (uint i = 0; i < ParallelGCThreads; i++) {
3103             if (_evacuation_failed_info_array[i].has_failed()) {
3104               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3105             }
3106           }
3107         } else {
3108           // The "used" of the the collection set have already been subtracted
3109           // when they were freed.  Add in the bytes evacuated.
3110           increase_used(g1_policy()->bytes_copied_during_gc());
3111         }
3112 
3113         if (collector_state()->during_initial_mark_pause()) {
3114           // We have to do this before we notify the CM threads that
3115           // they can start working to make sure that all the
3116           // appropriate initialization is done on the CM object.
3117           concurrent_mark()->checkpointRootsInitialPost();
3118           collector_state()->set_mark_in_progress(true);
3119           // Note that we don't actually trigger the CM thread at
3120           // this point. We do that later when we're sure that
3121           // the current thread has completed its logging output.
3122         }
3123 
3124         allocate_dummy_regions();
3125 
3126         _allocator->init_mutator_alloc_region();
3127 
3128         {
3129           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3130           if (expand_bytes > 0) {
3131             size_t bytes_before = capacity();
3132             // No need for an ergo logging here,
3133             // expansion_amount() does this when it returns a value > 0.
3134             double expand_ms;
3135             if (!expand(expand_bytes, _workers, &expand_ms)) {
3136               // We failed to expand the heap. Cannot do anything about it.
3137             }
3138             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3139           }
3140         }
3141 
3142         // We redo the verification but now wrt to the new CSet which
3143         // has just got initialized after the previous CSet was freed.
3144         _cm->verify_no_cset_oops();
3145 
3146         // This timing is only used by the ergonomics to handle our pause target.
3147         // It is unclear why this should not include the full pause. We will
3148         // investigate this in CR 7178365.
3149         double sample_end_time_sec = os::elapsedTime();
3150         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3151         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScannedCards);
3152         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3153 
3154         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3155         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3156 
3157         if (VerifyRememberedSets) {
3158           log_info(gc, verify)("[Verifying RemSets after GC]");
3159           VerifyRegionRemSetClosure v_cl;
3160           heap_region_iterate(&v_cl);
3161         }
3162 
3163         _verifier->verify_after_gc();
3164         _verifier->check_bitmaps("GC End");
3165 
3166         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3167         ref_processor_stw()->verify_no_references_recorded();
3168 
3169         // CM reference discovery will be re-enabled if necessary.
3170       }
3171 
3172 #ifdef TRACESPINNING
3173       ParallelTaskTerminator::print_termination_counts();
3174 #endif
3175 
3176       gc_epilogue(false);
3177     }
3178 
3179     // Print the remainder of the GC log output.
3180     if (evacuation_failed()) {
3181       log_info(gc)("To-space exhausted");
3182     }
3183 
3184     g1_policy()->print_phases();
3185     heap_transition.print();
3186 
3187     // It is not yet to safe to tell the concurrent mark to
3188     // start as we have some optional output below. We don't want the
3189     // output from the concurrent mark thread interfering with this
3190     // logging output either.
3191 
3192     _hrm.verify_optional();
3193     _verifier->verify_region_sets_optional();
3194 
3195     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3196     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3197 
3198     print_heap_after_gc();
3199     print_heap_regions();
3200     trace_heap_after_gc(_gc_tracer_stw);
3201 
3202     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3203     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3204     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3205     // before any GC notifications are raised.
3206     g1mm()->update_sizes();
3207 
3208     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3209     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3210     _gc_timer_stw->register_gc_end();
3211     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3212   }
3213   // It should now be safe to tell the concurrent mark thread to start
3214   // without its logging output interfering with the logging output
3215   // that came from the pause.
3216 
3217   if (should_start_conc_mark) {
3218     // CAUTION: after the doConcurrentMark() call below,
3219     // the concurrent marking thread(s) could be running
3220     // concurrently with us. Make sure that anything after
3221     // this point does not assume that we are the only GC thread
3222     // running. Note: of course, the actual marking work will
3223     // not start until the safepoint itself is released in
3224     // SuspendibleThreadSet::desynchronize().
3225     doConcurrentMark();
3226   }
3227 
3228   return true;
3229 }
3230 
3231 void G1CollectedHeap::remove_self_forwarding_pointers() {
3232   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3233   workers()->run_task(&rsfp_task);
3234 }
3235 
3236 void G1CollectedHeap::restore_after_evac_failure() {
3237   double remove_self_forwards_start = os::elapsedTime();
3238 
3239   remove_self_forwarding_pointers();
3240   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3241   _preserved_marks_set.restore(&task_executor);
3242 
3243   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3244 }
3245 
3246 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3247   if (!_evacuation_failed) {
3248     _evacuation_failed = true;
3249   }
3250 
3251   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3252   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3253 }
3254 
3255 bool G1ParEvacuateFollowersClosure::offer_termination() {
3256   G1ParScanThreadState* const pss = par_scan_state();
3257   start_term_time();
3258   const bool res = terminator()->offer_termination();
3259   end_term_time();
3260   return res;
3261 }
3262 
3263 void G1ParEvacuateFollowersClosure::do_void() {
3264   G1ParScanThreadState* const pss = par_scan_state();
3265   pss->trim_queue();
3266   do {
3267     pss->steal_and_trim_queue(queues());
3268   } while (!offer_termination());
3269 }
3270 
3271 class G1ParTask : public AbstractGangTask {
3272 protected:
3273   G1CollectedHeap*         _g1h;
3274   G1ParScanThreadStateSet* _pss;
3275   RefToScanQueueSet*       _queues;
3276   G1RootProcessor*         _root_processor;
3277   ParallelTaskTerminator   _terminator;
3278   uint                     _n_workers;
3279 
3280 public:
3281   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3282     : AbstractGangTask("G1 collection"),
3283       _g1h(g1h),
3284       _pss(per_thread_states),
3285       _queues(task_queues),
3286       _root_processor(root_processor),
3287       _terminator(n_workers, _queues),
3288       _n_workers(n_workers)
3289   {}
3290 
3291   void work(uint worker_id) {
3292     if (worker_id >= _n_workers) return;  // no work needed this round
3293 
3294     double start_sec = os::elapsedTime();
3295     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3296 
3297     {
3298       ResourceMark rm;
3299       HandleMark   hm;
3300 
3301       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3302 
3303       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3304       pss->set_ref_processor(rp);
3305 
3306       double start_strong_roots_sec = os::elapsedTime();
3307 
3308       _root_processor->evacuate_roots(pss->closures(), worker_id);
3309 
3310       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3311       // treating the nmethods visited to act as roots for concurrent marking.
3312       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3313       // objects copied by the current evacuation.
3314       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3315                                                       pss->closures()->weak_codeblobs(),
3316                                                       worker_id);
3317 
3318       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3319 
3320       double term_sec = 0.0;
3321       size_t evac_term_attempts = 0;
3322       {
3323         double start = os::elapsedTime();
3324         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3325         evac.do_void();
3326 
3327         evac_term_attempts = evac.term_attempts();
3328         term_sec = evac.term_time();
3329         double elapsed_sec = os::elapsedTime() - start;
3330         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3331         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3332         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3333       }
3334 
3335       assert(pss->queue_is_empty(), "should be empty");
3336 
3337       if (log_is_enabled(Debug, gc, task, stats)) {
3338         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3339         size_t lab_waste;
3340         size_t lab_undo_waste;
3341         pss->waste(lab_waste, lab_undo_waste);
3342         _g1h->print_termination_stats(worker_id,
3343                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3344                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3345                                       term_sec * 1000.0,                          /* evac term time */
3346                                       evac_term_attempts,                         /* evac term attempts */
3347                                       lab_waste,                                  /* alloc buffer waste */
3348                                       lab_undo_waste                              /* undo waste */
3349                                       );
3350       }
3351 
3352       // Close the inner scope so that the ResourceMark and HandleMark
3353       // destructors are executed here and are included as part of the
3354       // "GC Worker Time".
3355     }
3356     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3357   }
3358 };
3359 
3360 void G1CollectedHeap::print_termination_stats_hdr() {
3361   log_debug(gc, task, stats)("GC Termination Stats");
3362   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3363   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3364   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3365 }
3366 
3367 void G1CollectedHeap::print_termination_stats(uint worker_id,
3368                                               double elapsed_ms,
3369                                               double strong_roots_ms,
3370                                               double term_ms,
3371                                               size_t term_attempts,
3372                                               size_t alloc_buffer_waste,
3373                                               size_t undo_waste) const {
3374   log_debug(gc, task, stats)
3375               ("%3d %9.2f %9.2f %6.2f "
3376                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3377                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3378                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3379                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3380                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3381                alloc_buffer_waste * HeapWordSize / K,
3382                undo_waste * HeapWordSize / K);
3383 }
3384 
3385 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3386 private:
3387   BoolObjectClosure* _is_alive;
3388   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3389 
3390   int _initial_string_table_size;
3391   int _initial_symbol_table_size;
3392 
3393   bool  _process_strings;
3394   int _strings_processed;
3395   int _strings_removed;
3396 
3397   bool  _process_symbols;
3398   int _symbols_processed;
3399   int _symbols_removed;
3400 
3401   bool _process_string_dedup;
3402 
3403 public:
3404   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3405     AbstractGangTask("String/Symbol Unlinking"),
3406     _is_alive(is_alive),
3407     _dedup_closure(is_alive, NULL, false),
3408     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3409     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3410     _process_string_dedup(process_string_dedup) {
3411 
3412     _initial_string_table_size = StringTable::the_table()->table_size();
3413     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3414     if (process_strings) {
3415       StringTable::clear_parallel_claimed_index();
3416     }
3417     if (process_symbols) {
3418       SymbolTable::clear_parallel_claimed_index();
3419     }
3420   }
3421 
3422   ~G1StringAndSymbolCleaningTask() {
3423     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3424               "claim value %d after unlink less than initial string table size %d",
3425               StringTable::parallel_claimed_index(), _initial_string_table_size);
3426     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3427               "claim value %d after unlink less than initial symbol table size %d",
3428               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3429 
3430     log_info(gc, stringtable)(
3431         "Cleaned string and symbol table, "
3432         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3433         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3434         strings_processed(), strings_removed(),
3435         symbols_processed(), symbols_removed());
3436   }
3437 
3438   void work(uint worker_id) {
3439     int strings_processed = 0;
3440     int strings_removed = 0;
3441     int symbols_processed = 0;
3442     int symbols_removed = 0;
3443     if (_process_strings) {
3444       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3445       Atomic::add(strings_processed, &_strings_processed);
3446       Atomic::add(strings_removed, &_strings_removed);
3447     }
3448     if (_process_symbols) {
3449       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3450       Atomic::add(symbols_processed, &_symbols_processed);
3451       Atomic::add(symbols_removed, &_symbols_removed);
3452     }
3453     if (_process_string_dedup) {
3454       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3455     }
3456   }
3457 
3458   size_t strings_processed() const { return (size_t)_strings_processed; }
3459   size_t strings_removed()   const { return (size_t)_strings_removed; }
3460 
3461   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3462   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3463 };
3464 
3465 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3466 private:
3467   static Monitor* _lock;
3468 
3469   BoolObjectClosure* const _is_alive;
3470   const bool               _unloading_occurred;
3471   const uint               _num_workers;
3472 
3473   // Variables used to claim nmethods.
3474   CompiledMethod* _first_nmethod;
3475   volatile CompiledMethod* _claimed_nmethod;
3476 
3477   // The list of nmethods that need to be processed by the second pass.
3478   volatile CompiledMethod* _postponed_list;
3479   volatile uint            _num_entered_barrier;
3480 
3481  public:
3482   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3483       _is_alive(is_alive),
3484       _unloading_occurred(unloading_occurred),
3485       _num_workers(num_workers),
3486       _first_nmethod(NULL),
3487       _claimed_nmethod(NULL),
3488       _postponed_list(NULL),
3489       _num_entered_barrier(0)
3490   {
3491     CompiledMethod::increase_unloading_clock();
3492     // Get first alive nmethod
3493     CompiledMethodIterator iter = CompiledMethodIterator();
3494     if(iter.next_alive()) {
3495       _first_nmethod = iter.method();
3496     }
3497     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3498   }
3499 
3500   ~G1CodeCacheUnloadingTask() {
3501     CodeCache::verify_clean_inline_caches();
3502 
3503     CodeCache::set_needs_cache_clean(false);
3504     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3505 
3506     CodeCache::verify_icholder_relocations();
3507   }
3508 
3509  private:
3510   void add_to_postponed_list(CompiledMethod* nm) {
3511       CompiledMethod* old;
3512       do {
3513         old = (CompiledMethod*)_postponed_list;
3514         nm->set_unloading_next(old);
3515       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3516   }
3517 
3518   void clean_nmethod(CompiledMethod* nm) {
3519     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3520 
3521     if (postponed) {
3522       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3523       add_to_postponed_list(nm);
3524     }
3525 
3526     // Mark that this thread has been cleaned/unloaded.
3527     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3528     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3529   }
3530 
3531   void clean_nmethod_postponed(CompiledMethod* nm) {
3532     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3533   }
3534 
3535   static const int MaxClaimNmethods = 16;
3536 
3537   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3538     CompiledMethod* first;
3539     CompiledMethodIterator last;
3540 
3541     do {
3542       *num_claimed_nmethods = 0;
3543 
3544       first = (CompiledMethod*)_claimed_nmethod;
3545       last = CompiledMethodIterator(first);
3546 
3547       if (first != NULL) {
3548 
3549         for (int i = 0; i < MaxClaimNmethods; i++) {
3550           if (!last.next_alive()) {
3551             break;
3552           }
3553           claimed_nmethods[i] = last.method();
3554           (*num_claimed_nmethods)++;
3555         }
3556       }
3557 
3558     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3559   }
3560 
3561   CompiledMethod* claim_postponed_nmethod() {
3562     CompiledMethod* claim;
3563     CompiledMethod* next;
3564 
3565     do {
3566       claim = (CompiledMethod*)_postponed_list;
3567       if (claim == NULL) {
3568         return NULL;
3569       }
3570 
3571       next = claim->unloading_next();
3572 
3573     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3574 
3575     return claim;
3576   }
3577 
3578  public:
3579   // Mark that we're done with the first pass of nmethod cleaning.
3580   void barrier_mark(uint worker_id) {
3581     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3582     _num_entered_barrier++;
3583     if (_num_entered_barrier == _num_workers) {
3584       ml.notify_all();
3585     }
3586   }
3587 
3588   // See if we have to wait for the other workers to
3589   // finish their first-pass nmethod cleaning work.
3590   void barrier_wait(uint worker_id) {
3591     if (_num_entered_barrier < _num_workers) {
3592       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3593       while (_num_entered_barrier < _num_workers) {
3594           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3595       }
3596     }
3597   }
3598 
3599   // Cleaning and unloading of nmethods. Some work has to be postponed
3600   // to the second pass, when we know which nmethods survive.
3601   void work_first_pass(uint worker_id) {
3602     // The first nmethods is claimed by the first worker.
3603     if (worker_id == 0 && _first_nmethod != NULL) {
3604       clean_nmethod(_first_nmethod);
3605       _first_nmethod = NULL;
3606     }
3607 
3608     int num_claimed_nmethods;
3609     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3610 
3611     while (true) {
3612       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3613 
3614       if (num_claimed_nmethods == 0) {
3615         break;
3616       }
3617 
3618       for (int i = 0; i < num_claimed_nmethods; i++) {
3619         clean_nmethod(claimed_nmethods[i]);
3620       }
3621     }
3622   }
3623 
3624   void work_second_pass(uint worker_id) {
3625     CompiledMethod* nm;
3626     // Take care of postponed nmethods.
3627     while ((nm = claim_postponed_nmethod()) != NULL) {
3628       clean_nmethod_postponed(nm);
3629     }
3630   }
3631 };
3632 
3633 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3634 
3635 class G1KlassCleaningTask : public StackObj {
3636   BoolObjectClosure*                      _is_alive;
3637   volatile jint                           _clean_klass_tree_claimed;
3638   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3639 
3640  public:
3641   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3642       _is_alive(is_alive),
3643       _clean_klass_tree_claimed(0),
3644       _klass_iterator() {
3645   }
3646 
3647  private:
3648   bool claim_clean_klass_tree_task() {
3649     if (_clean_klass_tree_claimed) {
3650       return false;
3651     }
3652 
3653     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3654   }
3655 
3656   InstanceKlass* claim_next_klass() {
3657     Klass* klass;
3658     do {
3659       klass =_klass_iterator.next_klass();
3660     } while (klass != NULL && !klass->is_instance_klass());
3661 
3662     // this can be null so don't call InstanceKlass::cast
3663     return static_cast<InstanceKlass*>(klass);
3664   }
3665 
3666 public:
3667 
3668   void clean_klass(InstanceKlass* ik) {
3669     ik->clean_weak_instanceklass_links(_is_alive);
3670   }
3671 
3672   void work() {
3673     ResourceMark rm;
3674 
3675     // One worker will clean the subklass/sibling klass tree.
3676     if (claim_clean_klass_tree_task()) {
3677       Klass::clean_subklass_tree(_is_alive);
3678     }
3679 
3680     // All workers will help cleaning the classes,
3681     InstanceKlass* klass;
3682     while ((klass = claim_next_klass()) != NULL) {
3683       clean_klass(klass);
3684     }
3685   }
3686 };
3687 
3688 class G1ResolvedMethodCleaningTask : public StackObj {
3689   BoolObjectClosure* _is_alive;
3690   volatile jint      _resolved_method_task_claimed;
3691 public:
3692   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3693       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3694 
3695   bool claim_resolved_method_task() {
3696     if (_resolved_method_task_claimed) {
3697       return false;
3698     }
3699     return Atomic::cmpxchg(1, (jint*)&_resolved_method_task_claimed, 0) == 0;
3700   }
3701 
3702   // These aren't big, one thread can do it all.
3703   void work() {
3704     if (claim_resolved_method_task()) {
3705       ResolvedMethodTable::unlink(_is_alive);
3706     }
3707   }
3708 };
3709 
3710 
3711 // To minimize the remark pause times, the tasks below are done in parallel.
3712 class G1ParallelCleaningTask : public AbstractGangTask {
3713 private:
3714   G1StringAndSymbolCleaningTask _string_symbol_task;
3715   G1CodeCacheUnloadingTask      _code_cache_task;
3716   G1KlassCleaningTask           _klass_cleaning_task;
3717   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3718 
3719 public:
3720   // The constructor is run in the VMThread.
3721   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3722       AbstractGangTask("Parallel Cleaning"),
3723       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3724       _code_cache_task(num_workers, is_alive, unloading_occurred),
3725       _klass_cleaning_task(is_alive),
3726       _resolved_method_cleaning_task(is_alive) {
3727   }
3728 
3729   // The parallel work done by all worker threads.
3730   void work(uint worker_id) {
3731     // Do first pass of code cache cleaning.
3732     _code_cache_task.work_first_pass(worker_id);
3733 
3734     // Let the threads mark that the first pass is done.
3735     _code_cache_task.barrier_mark(worker_id);
3736 
3737     // Clean the Strings and Symbols.
3738     _string_symbol_task.work(worker_id);
3739 
3740     // Clean unreferenced things in the ResolvedMethodTable
3741     _resolved_method_cleaning_task.work();
3742 
3743     // Wait for all workers to finish the first code cache cleaning pass.
3744     _code_cache_task.barrier_wait(worker_id);
3745 
3746     // Do the second code cache cleaning work, which realize on
3747     // the liveness information gathered during the first pass.
3748     _code_cache_task.work_second_pass(worker_id);
3749 
3750     // Clean all klasses that were not unloaded.
3751     _klass_cleaning_task.work();
3752   }
3753 };
3754 
3755 
3756 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3757                                         bool class_unloading_occurred) {
3758   uint n_workers = workers()->active_workers();
3759 
3760   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3761   workers()->run_task(&g1_unlink_task);
3762 }
3763 
3764 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3765                                        bool process_strings,
3766                                        bool process_symbols,
3767                                        bool process_string_dedup) {
3768   if (!process_strings && !process_symbols && !process_string_dedup) {
3769     // Nothing to clean.
3770     return;
3771   }
3772 
3773   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3774   workers()->run_task(&g1_unlink_task);
3775 
3776 }
3777 
3778 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3779  private:
3780   DirtyCardQueueSet* _queue;
3781   G1CollectedHeap* _g1h;
3782  public:
3783   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3784     _queue(queue), _g1h(g1h) { }
3785 
3786   virtual void work(uint worker_id) {
3787     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3788     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3789 
3790     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3791     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3792 
3793     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3794   }
3795 };
3796 
3797 void G1CollectedHeap::redirty_logged_cards() {
3798   double redirty_logged_cards_start = os::elapsedTime();
3799 
3800   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3801   dirty_card_queue_set().reset_for_par_iteration();
3802   workers()->run_task(&redirty_task);
3803 
3804   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3805   dcq.merge_bufferlists(&dirty_card_queue_set());
3806   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3807 
3808   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3809 }
3810 
3811 // Weak Reference Processing support
3812 
3813 // An always "is_alive" closure that is used to preserve referents.
3814 // If the object is non-null then it's alive.  Used in the preservation
3815 // of referent objects that are pointed to by reference objects
3816 // discovered by the CM ref processor.
3817 class G1AlwaysAliveClosure: public BoolObjectClosure {
3818   G1CollectedHeap* _g1;
3819 public:
3820   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3821   bool do_object_b(oop p) {
3822     if (p != NULL) {
3823       return true;
3824     }
3825     return false;
3826   }
3827 };
3828 
3829 bool G1STWIsAliveClosure::do_object_b(oop p) {
3830   // An object is reachable if it is outside the collection set,
3831   // or is inside and copied.
3832   return !_g1->is_in_cset(p) || p->is_forwarded();
3833 }
3834 
3835 // Non Copying Keep Alive closure
3836 class G1KeepAliveClosure: public OopClosure {
3837   G1CollectedHeap* _g1;
3838 public:
3839   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3840   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3841   void do_oop(oop* p) {
3842     oop obj = *p;
3843     assert(obj != NULL, "the caller should have filtered out NULL values");
3844 
3845     const InCSetState cset_state = _g1->in_cset_state(obj);
3846     if (!cset_state.is_in_cset_or_humongous()) {
3847       return;
3848     }
3849     if (cset_state.is_in_cset()) {
3850       assert( obj->is_forwarded(), "invariant" );
3851       *p = obj->forwardee();
3852     } else {
3853       assert(!obj->is_forwarded(), "invariant" );
3854       assert(cset_state.is_humongous(),
3855              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3856       _g1->set_humongous_is_live(obj);
3857     }
3858   }
3859 };
3860 
3861 // Copying Keep Alive closure - can be called from both
3862 // serial and parallel code as long as different worker
3863 // threads utilize different G1ParScanThreadState instances
3864 // and different queues.
3865 
3866 class G1CopyingKeepAliveClosure: public OopClosure {
3867   G1CollectedHeap*         _g1h;
3868   OopClosure*              _copy_non_heap_obj_cl;
3869   G1ParScanThreadState*    _par_scan_state;
3870 
3871 public:
3872   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3873                             OopClosure* non_heap_obj_cl,
3874                             G1ParScanThreadState* pss):
3875     _g1h(g1h),
3876     _copy_non_heap_obj_cl(non_heap_obj_cl),
3877     _par_scan_state(pss)
3878   {}
3879 
3880   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3881   virtual void do_oop(      oop* p) { do_oop_work(p); }
3882 
3883   template <class T> void do_oop_work(T* p) {
3884     oop obj = oopDesc::load_decode_heap_oop(p);
3885 
3886     if (_g1h->is_in_cset_or_humongous(obj)) {
3887       // If the referent object has been forwarded (either copied
3888       // to a new location or to itself in the event of an
3889       // evacuation failure) then we need to update the reference
3890       // field and, if both reference and referent are in the G1
3891       // heap, update the RSet for the referent.
3892       //
3893       // If the referent has not been forwarded then we have to keep
3894       // it alive by policy. Therefore we have copy the referent.
3895       //
3896       // If the reference field is in the G1 heap then we can push
3897       // on the PSS queue. When the queue is drained (after each
3898       // phase of reference processing) the object and it's followers
3899       // will be copied, the reference field set to point to the
3900       // new location, and the RSet updated. Otherwise we need to
3901       // use the the non-heap or metadata closures directly to copy
3902       // the referent object and update the pointer, while avoiding
3903       // updating the RSet.
3904 
3905       if (_g1h->is_in_g1_reserved(p)) {
3906         _par_scan_state->push_on_queue(p);
3907       } else {
3908         assert(!Metaspace::contains((const void*)p),
3909                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3910         _copy_non_heap_obj_cl->do_oop(p);
3911       }
3912     }
3913   }
3914 };
3915 
3916 // Serial drain queue closure. Called as the 'complete_gc'
3917 // closure for each discovered list in some of the
3918 // reference processing phases.
3919 
3920 class G1STWDrainQueueClosure: public VoidClosure {
3921 protected:
3922   G1CollectedHeap* _g1h;
3923   G1ParScanThreadState* _par_scan_state;
3924 
3925   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3926 
3927 public:
3928   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3929     _g1h(g1h),
3930     _par_scan_state(pss)
3931   { }
3932 
3933   void do_void() {
3934     G1ParScanThreadState* const pss = par_scan_state();
3935     pss->trim_queue();
3936   }
3937 };
3938 
3939 // Parallel Reference Processing closures
3940 
3941 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3942 // processing during G1 evacuation pauses.
3943 
3944 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3945 private:
3946   G1CollectedHeap*          _g1h;
3947   G1ParScanThreadStateSet*  _pss;
3948   RefToScanQueueSet*        _queues;
3949   WorkGang*                 _workers;
3950   uint                      _active_workers;
3951 
3952 public:
3953   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3954                            G1ParScanThreadStateSet* per_thread_states,
3955                            WorkGang* workers,
3956                            RefToScanQueueSet *task_queues,
3957                            uint n_workers) :
3958     _g1h(g1h),
3959     _pss(per_thread_states),
3960     _queues(task_queues),
3961     _workers(workers),
3962     _active_workers(n_workers)
3963   {
3964     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3965   }
3966 
3967   // Executes the given task using concurrent marking worker threads.
3968   virtual void execute(ProcessTask& task);
3969   virtual void execute(EnqueueTask& task);
3970 };
3971 
3972 // Gang task for possibly parallel reference processing
3973 
3974 class G1STWRefProcTaskProxy: public AbstractGangTask {
3975   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3976   ProcessTask&     _proc_task;
3977   G1CollectedHeap* _g1h;
3978   G1ParScanThreadStateSet* _pss;
3979   RefToScanQueueSet* _task_queues;
3980   ParallelTaskTerminator* _terminator;
3981 
3982 public:
3983   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3984                         G1CollectedHeap* g1h,
3985                         G1ParScanThreadStateSet* per_thread_states,
3986                         RefToScanQueueSet *task_queues,
3987                         ParallelTaskTerminator* terminator) :
3988     AbstractGangTask("Process reference objects in parallel"),
3989     _proc_task(proc_task),
3990     _g1h(g1h),
3991     _pss(per_thread_states),
3992     _task_queues(task_queues),
3993     _terminator(terminator)
3994   {}
3995 
3996   virtual void work(uint worker_id) {
3997     // The reference processing task executed by a single worker.
3998     ResourceMark rm;
3999     HandleMark   hm;
4000 
4001     G1STWIsAliveClosure is_alive(_g1h);
4002 
4003     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4004     pss->set_ref_processor(NULL);
4005 
4006     // Keep alive closure.
4007     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4008 
4009     // Complete GC closure
4010     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4011 
4012     // Call the reference processing task's work routine.
4013     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4014 
4015     // Note we cannot assert that the refs array is empty here as not all
4016     // of the processing tasks (specifically phase2 - pp2_work) execute
4017     // the complete_gc closure (which ordinarily would drain the queue) so
4018     // the queue may not be empty.
4019   }
4020 };
4021 
4022 // Driver routine for parallel reference processing.
4023 // Creates an instance of the ref processing gang
4024 // task and has the worker threads execute it.
4025 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4026   assert(_workers != NULL, "Need parallel worker threads.");
4027 
4028   ParallelTaskTerminator terminator(_active_workers, _queues);
4029   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4030 
4031   _workers->run_task(&proc_task_proxy);
4032 }
4033 
4034 // Gang task for parallel reference enqueueing.
4035 
4036 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4037   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4038   EnqueueTask& _enq_task;
4039 
4040 public:
4041   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4042     AbstractGangTask("Enqueue reference objects in parallel"),
4043     _enq_task(enq_task)
4044   { }
4045 
4046   virtual void work(uint worker_id) {
4047     _enq_task.work(worker_id);
4048   }
4049 };
4050 
4051 // Driver routine for parallel reference enqueueing.
4052 // Creates an instance of the ref enqueueing gang
4053 // task and has the worker threads execute it.
4054 
4055 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4056   assert(_workers != NULL, "Need parallel worker threads.");
4057 
4058   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4059 
4060   _workers->run_task(&enq_task_proxy);
4061 }
4062 
4063 // End of weak reference support closures
4064 
4065 // Abstract task used to preserve (i.e. copy) any referent objects
4066 // that are in the collection set and are pointed to by reference
4067 // objects discovered by the CM ref processor.
4068 
4069 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4070 protected:
4071   G1CollectedHeap*         _g1h;
4072   G1ParScanThreadStateSet* _pss;
4073   RefToScanQueueSet*       _queues;
4074   ParallelTaskTerminator   _terminator;
4075   uint                     _n_workers;
4076 
4077 public:
4078   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4079     AbstractGangTask("ParPreserveCMReferents"),
4080     _g1h(g1h),
4081     _pss(per_thread_states),
4082     _queues(task_queues),
4083     _terminator(workers, _queues),
4084     _n_workers(workers)
4085   {
4086     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4087   }
4088 
4089   void work(uint worker_id) {
4090     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4091 
4092     ResourceMark rm;
4093     HandleMark   hm;
4094 
4095     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4096     pss->set_ref_processor(NULL);
4097     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4098 
4099     // Is alive closure
4100     G1AlwaysAliveClosure always_alive(_g1h);
4101 
4102     // Copying keep alive closure. Applied to referent objects that need
4103     // to be copied.
4104     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4105 
4106     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4107 
4108     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4109     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4110 
4111     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4112     // So this must be true - but assert just in case someone decides to
4113     // change the worker ids.
4114     assert(worker_id < limit, "sanity");
4115     assert(!rp->discovery_is_atomic(), "check this code");
4116 
4117     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4118     for (uint idx = worker_id; idx < limit; idx += stride) {
4119       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4120 
4121       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4122       while (iter.has_next()) {
4123         // Since discovery is not atomic for the CM ref processor, we
4124         // can see some null referent objects.
4125         iter.load_ptrs(DEBUG_ONLY(true));
4126         oop ref = iter.obj();
4127 
4128         // This will filter nulls.
4129         if (iter.is_referent_alive()) {
4130           iter.make_referent_alive();
4131         }
4132         iter.move_to_next();
4133       }
4134     }
4135 
4136     // Drain the queue - which may cause stealing
4137     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4138     drain_queue.do_void();
4139     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4140     assert(pss->queue_is_empty(), "should be");
4141   }
4142 };
4143 
4144 void G1CollectedHeap::process_weak_jni_handles() {
4145   double ref_proc_start = os::elapsedTime();
4146 
4147   G1STWIsAliveClosure is_alive(this);
4148   G1KeepAliveClosure keep_alive(this);
4149   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4150 
4151   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4152   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4153 }
4154 
4155 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4156   // Any reference objects, in the collection set, that were 'discovered'
4157   // by the CM ref processor should have already been copied (either by
4158   // applying the external root copy closure to the discovered lists, or
4159   // by following an RSet entry).
4160   //
4161   // But some of the referents, that are in the collection set, that these
4162   // reference objects point to may not have been copied: the STW ref
4163   // processor would have seen that the reference object had already
4164   // been 'discovered' and would have skipped discovering the reference,
4165   // but would not have treated the reference object as a regular oop.
4166   // As a result the copy closure would not have been applied to the
4167   // referent object.
4168   //
4169   // We need to explicitly copy these referent objects - the references
4170   // will be processed at the end of remarking.
4171   //
4172   // We also need to do this copying before we process the reference
4173   // objects discovered by the STW ref processor in case one of these
4174   // referents points to another object which is also referenced by an
4175   // object discovered by the STW ref processor.
4176   double preserve_cm_referents_time = 0.0;
4177 
4178   // To avoid spawning task when there is no work to do, check that
4179   // a concurrent cycle is active and that some references have been
4180   // discovered.
4181   if (concurrent_mark()->cmThread()->during_cycle() &&
4182       ref_processor_cm()->has_discovered_references()) {
4183     double preserve_cm_referents_start = os::elapsedTime();
4184     uint no_of_gc_workers = workers()->active_workers();
4185     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4186                                                    per_thread_states,
4187                                                    no_of_gc_workers,
4188                                                    _task_queues);
4189     workers()->run_task(&keep_cm_referents);
4190     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4191   }
4192 
4193   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4194 }
4195 
4196 // Weak Reference processing during an evacuation pause (part 1).
4197 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4198   double ref_proc_start = os::elapsedTime();
4199 
4200   ReferenceProcessor* rp = _ref_processor_stw;
4201   assert(rp->discovery_enabled(), "should have been enabled");
4202 
4203   // Closure to test whether a referent is alive.
4204   G1STWIsAliveClosure is_alive(this);
4205 
4206   // Even when parallel reference processing is enabled, the processing
4207   // of JNI refs is serial and performed serially by the current thread
4208   // rather than by a worker. The following PSS will be used for processing
4209   // JNI refs.
4210 
4211   // Use only a single queue for this PSS.
4212   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4213   pss->set_ref_processor(NULL);
4214   assert(pss->queue_is_empty(), "pre-condition");
4215 
4216   // Keep alive closure.
4217   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4218 
4219   // Serial Complete GC closure
4220   G1STWDrainQueueClosure drain_queue(this, pss);
4221 
4222   // Setup the soft refs policy...
4223   rp->setup_policy(false);
4224 
4225   ReferenceProcessorStats stats;
4226   if (!rp->processing_is_mt()) {
4227     // Serial reference processing...
4228     stats = rp->process_discovered_references(&is_alive,
4229                                               &keep_alive,
4230                                               &drain_queue,
4231                                               NULL,
4232                                               _gc_timer_stw);
4233   } else {
4234     uint no_of_gc_workers = workers()->active_workers();
4235 
4236     // Parallel reference processing
4237     assert(no_of_gc_workers <= rp->max_num_q(),
4238            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4239            no_of_gc_workers,  rp->max_num_q());
4240 
4241     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4242     stats = rp->process_discovered_references(&is_alive,
4243                                               &keep_alive,
4244                                               &drain_queue,
4245                                               &par_task_executor,
4246                                               _gc_timer_stw);
4247   }
4248 
4249   _gc_tracer_stw->report_gc_reference_stats(stats);
4250 
4251   // We have completed copying any necessary live referent objects.
4252   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4253 
4254   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4255   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4256 }
4257 
4258 // Weak Reference processing during an evacuation pause (part 2).
4259 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4260   double ref_enq_start = os::elapsedTime();
4261 
4262   ReferenceProcessor* rp = _ref_processor_stw;
4263   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4264 
4265   // Now enqueue any remaining on the discovered lists on to
4266   // the pending list.
4267   if (!rp->processing_is_mt()) {
4268     // Serial reference processing...
4269     rp->enqueue_discovered_references();
4270   } else {
4271     // Parallel reference enqueueing
4272 
4273     uint n_workers = workers()->active_workers();
4274 
4275     assert(n_workers <= rp->max_num_q(),
4276            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4277            n_workers,  rp->max_num_q());
4278 
4279     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4280     rp->enqueue_discovered_references(&par_task_executor);
4281   }
4282 
4283   rp->verify_no_references_recorded();
4284   assert(!rp->discovery_enabled(), "should have been disabled");
4285 
4286   // FIXME
4287   // CM's reference processing also cleans up the string and symbol tables.
4288   // Should we do that here also? We could, but it is a serial operation
4289   // and could significantly increase the pause time.
4290 
4291   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4292   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4293 }
4294 
4295 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4296   double merge_pss_time_start = os::elapsedTime();
4297   per_thread_states->flush();
4298   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4299 }
4300 
4301 void G1CollectedHeap::pre_evacuate_collection_set() {
4302   _expand_heap_after_alloc_failure = true;
4303   _evacuation_failed = false;
4304 
4305   // Disable the hot card cache.
4306   _hot_card_cache->reset_hot_cache_claimed_index();
4307   _hot_card_cache->set_use_cache(false);
4308 
4309   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4310   _preserved_marks_set.assert_empty();
4311 
4312   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4313 
4314   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4315   if (collector_state()->during_initial_mark_pause()) {
4316     double start_clear_claimed_marks = os::elapsedTime();
4317 
4318     ClassLoaderDataGraph::clear_claimed_marks();
4319 
4320     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4321     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4322   }
4323 }
4324 
4325 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4326   // Should G1EvacuationFailureALot be in effect for this GC?
4327   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4328 
4329   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4330 
4331   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4332 
4333   double start_par_time_sec = os::elapsedTime();
4334   double end_par_time_sec;
4335 
4336   {
4337     const uint n_workers = workers()->active_workers();
4338     G1RootProcessor root_processor(this, n_workers);
4339     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4340 
4341     print_termination_stats_hdr();
4342 
4343     workers()->run_task(&g1_par_task);
4344     end_par_time_sec = os::elapsedTime();
4345 
4346     // Closing the inner scope will execute the destructor
4347     // for the G1RootProcessor object. We record the current
4348     // elapsed time before closing the scope so that time
4349     // taken for the destructor is NOT included in the
4350     // reported parallel time.
4351   }
4352 
4353   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4354   phase_times->record_par_time(par_time_ms);
4355 
4356   double code_root_fixup_time_ms =
4357         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4358   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4359 }
4360 
4361 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4362   // Process any discovered reference objects - we have
4363   // to do this _before_ we retire the GC alloc regions
4364   // as we may have to copy some 'reachable' referent
4365   // objects (and their reachable sub-graphs) that were
4366   // not copied during the pause.
4367   if (g1_policy()->should_process_references()) {
4368     preserve_cm_referents(per_thread_states);
4369     process_discovered_references(per_thread_states);
4370   } else {
4371     ref_processor_stw()->verify_no_references_recorded();
4372     process_weak_jni_handles();
4373   }
4374 
4375   if (G1StringDedup::is_enabled()) {
4376     double fixup_start = os::elapsedTime();
4377 
4378     G1STWIsAliveClosure is_alive(this);
4379     G1KeepAliveClosure keep_alive(this);
4380     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4381 
4382     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4383     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4384   }
4385 
4386   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4387 
4388   if (evacuation_failed()) {
4389     restore_after_evac_failure();
4390 
4391     // Reset the G1EvacuationFailureALot counters and flags
4392     // Note: the values are reset only when an actual
4393     // evacuation failure occurs.
4394     NOT_PRODUCT(reset_evacuation_should_fail();)
4395   }
4396 
4397   _preserved_marks_set.assert_empty();
4398 
4399   // Enqueue any remaining references remaining on the STW
4400   // reference processor's discovered lists. We need to do
4401   // this after the card table is cleaned (and verified) as
4402   // the act of enqueueing entries on to the pending list
4403   // will log these updates (and dirty their associated
4404   // cards). We need these updates logged to update any
4405   // RSets.
4406   if (g1_policy()->should_process_references()) {
4407     enqueue_discovered_references(per_thread_states);
4408   } else {
4409     g1_policy()->phase_times()->record_ref_enq_time(0);
4410   }
4411 
4412   _allocator->release_gc_alloc_regions(evacuation_info);
4413 
4414   merge_per_thread_state_info(per_thread_states);
4415 
4416   // Reset and re-enable the hot card cache.
4417   // Note the counts for the cards in the regions in the
4418   // collection set are reset when the collection set is freed.
4419   _hot_card_cache->reset_hot_cache();
4420   _hot_card_cache->set_use_cache(true);
4421 
4422   purge_code_root_memory();
4423 
4424   redirty_logged_cards();
4425 #if defined(COMPILER2) || INCLUDE_JVMCI
4426   double start = os::elapsedTime();
4427   DerivedPointerTable::update_pointers();
4428   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4429 #endif
4430   g1_policy()->print_age_table();
4431 }
4432 
4433 void G1CollectedHeap::record_obj_copy_mem_stats() {
4434   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4435 
4436   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4437                                                create_g1_evac_summary(&_old_evac_stats));
4438 }
4439 
4440 void G1CollectedHeap::free_region(HeapRegion* hr,
4441                                   FreeRegionList* free_list,
4442                                   bool skip_remset,
4443                                   bool skip_hot_card_cache,
4444                                   bool locked) {
4445   assert(!hr->is_free(), "the region should not be free");
4446   assert(!hr->is_empty(), "the region should not be empty");
4447   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4448   assert(free_list != NULL, "pre-condition");
4449 
4450   if (G1VerifyBitmaps) {
4451     MemRegion mr(hr->bottom(), hr->end());
4452     concurrent_mark()->clearRangePrevBitmap(mr);
4453   }
4454 
4455   // Clear the card counts for this region.
4456   // Note: we only need to do this if the region is not young
4457   // (since we don't refine cards in young regions).
4458   if (!skip_hot_card_cache && !hr->is_young()) {
4459     _hot_card_cache->reset_card_counts(hr);
4460   }
4461   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4462   free_list->add_ordered(hr);
4463 }
4464 
4465 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4466                                             FreeRegionList* free_list,
4467                                             bool skip_remset) {
4468   assert(hr->is_humongous(), "this is only for humongous regions");
4469   assert(free_list != NULL, "pre-condition");
4470   hr->clear_humongous();
4471   free_region(hr, free_list, skip_remset);
4472 }
4473 
4474 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4475                                            const uint humongous_regions_removed) {
4476   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4477     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4478     _old_set.bulk_remove(old_regions_removed);
4479     _humongous_set.bulk_remove(humongous_regions_removed);
4480   }
4481 
4482 }
4483 
4484 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4485   assert(list != NULL, "list can't be null");
4486   if (!list->is_empty()) {
4487     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4488     _hrm.insert_list_into_free_list(list);
4489   }
4490 }
4491 
4492 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4493   decrease_used(bytes);
4494 }
4495 
4496 class G1ParScrubRemSetTask: public AbstractGangTask {
4497 protected:
4498   G1RemSet* _g1rs;
4499   HeapRegionClaimer _hrclaimer;
4500 
4501 public:
4502   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4503     AbstractGangTask("G1 ScrubRS"),
4504     _g1rs(g1_rs),
4505     _hrclaimer(num_workers) {
4506   }
4507 
4508   void work(uint worker_id) {
4509     _g1rs->scrub(worker_id, &_hrclaimer);
4510   }
4511 };
4512 
4513 void G1CollectedHeap::scrub_rem_set() {
4514   uint num_workers = workers()->active_workers();
4515   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4516   workers()->run_task(&g1_par_scrub_rs_task);
4517 }
4518 
4519 class G1FreeCollectionSetTask : public AbstractGangTask {
4520 private:
4521 
4522   // Closure applied to all regions in the collection set to do work that needs to
4523   // be done serially in a single thread.
4524   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4525   private:
4526     EvacuationInfo* _evacuation_info;
4527     const size_t* _surviving_young_words;
4528 
4529     // Bytes used in successfully evacuated regions before the evacuation.
4530     size_t _before_used_bytes;
4531     // Bytes used in unsucessfully evacuated regions before the evacuation
4532     size_t _after_used_bytes;
4533 
4534     size_t _bytes_allocated_in_old_since_last_gc;
4535 
4536     size_t _failure_used_words;
4537     size_t _failure_waste_words;
4538 
4539     FreeRegionList _local_free_list;
4540   public:
4541     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4542       HeapRegionClosure(),
4543       _evacuation_info(evacuation_info),
4544       _surviving_young_words(surviving_young_words),
4545       _before_used_bytes(0),
4546       _after_used_bytes(0),
4547       _bytes_allocated_in_old_since_last_gc(0),
4548       _failure_used_words(0),
4549       _failure_waste_words(0),
4550       _local_free_list("Local Region List for CSet Freeing") {
4551     }
4552 
4553     virtual bool doHeapRegion(HeapRegion* r) {
4554       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4555 
4556       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4557       g1h->clear_in_cset(r);
4558 
4559       if (r->is_young()) {
4560         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4561                "Young index %d is wrong for region %u of type %s with %u young regions",
4562                r->young_index_in_cset(),
4563                r->hrm_index(),
4564                r->get_type_str(),
4565                g1h->collection_set()->young_region_length());
4566         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4567         r->record_surv_words_in_group(words_survived);
4568       }
4569 
4570       if (!r->evacuation_failed()) {
4571         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4572         _before_used_bytes += r->used();
4573         g1h->free_region(r,
4574                          &_local_free_list,
4575                          true, /* skip_remset */
4576                          true, /* skip_hot_card_cache */
4577                          true  /* locked */);
4578       } else {
4579         r->uninstall_surv_rate_group();
4580         r->set_young_index_in_cset(-1);
4581         r->set_evacuation_failed(false);
4582         // When moving a young gen region to old gen, we "allocate" that whole region
4583         // there. This is in addition to any already evacuated objects. Notify the
4584         // policy about that.
4585         // Old gen regions do not cause an additional allocation: both the objects
4586         // still in the region and the ones already moved are accounted for elsewhere.
4587         if (r->is_young()) {
4588           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4589         }
4590         // The region is now considered to be old.
4591         r->set_old();
4592         // Do some allocation statistics accounting. Regions that failed evacuation
4593         // are always made old, so there is no need to update anything in the young
4594         // gen statistics, but we need to update old gen statistics.
4595         size_t used_words = r->marked_bytes() / HeapWordSize;
4596 
4597         _failure_used_words += used_words;
4598         _failure_waste_words += HeapRegion::GrainWords - used_words;
4599 
4600         g1h->old_set_add(r);
4601         _after_used_bytes += r->used();
4602       }
4603       return false;
4604     }
4605 
4606     void complete_work() {
4607       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4608 
4609       _evacuation_info->set_regions_freed(_local_free_list.length());
4610       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4611 
4612       g1h->prepend_to_freelist(&_local_free_list);
4613       g1h->decrement_summary_bytes(_before_used_bytes);
4614 
4615       G1Policy* policy = g1h->g1_policy();
4616       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4617 
4618       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4619     }
4620   };
4621 
4622   G1CollectionSet* _collection_set;
4623   G1SerialFreeCollectionSetClosure _cl;
4624   const size_t* _surviving_young_words;
4625 
4626   size_t _rs_lengths;
4627 
4628   volatile jint _serial_work_claim;
4629 
4630   struct WorkItem {
4631     uint region_idx;
4632     bool is_young;
4633     bool evacuation_failed;
4634 
4635     WorkItem(HeapRegion* r) {
4636       region_idx = r->hrm_index();
4637       is_young = r->is_young();
4638       evacuation_failed = r->evacuation_failed();
4639     }
4640   };
4641 
4642   volatile size_t _parallel_work_claim;
4643   size_t _num_work_items;
4644   WorkItem* _work_items;
4645 
4646   void do_serial_work() {
4647     // Need to grab the lock to be allowed to modify the old region list.
4648     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4649     _collection_set->iterate(&_cl);
4650   }
4651 
4652   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4653     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4654 
4655     HeapRegion* r = g1h->region_at(region_idx);
4656     assert(!g1h->is_on_master_free_list(r), "sanity");
4657 
4658     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4659 
4660     if (!is_young) {
4661       g1h->_hot_card_cache->reset_card_counts(r);
4662     }
4663 
4664     if (!evacuation_failed) {
4665       r->rem_set()->clear_locked();
4666     }
4667   }
4668 
4669   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4670   private:
4671     size_t _cur_idx;
4672     WorkItem* _work_items;
4673   public:
4674     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4675 
4676     virtual bool doHeapRegion(HeapRegion* r) {
4677       _work_items[_cur_idx++] = WorkItem(r);
4678       return false;
4679     }
4680   };
4681 
4682   void prepare_work() {
4683     G1PrepareFreeCollectionSetClosure cl(_work_items);
4684     _collection_set->iterate(&cl);
4685   }
4686 
4687   void complete_work() {
4688     _cl.complete_work();
4689 
4690     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4691     policy->record_max_rs_lengths(_rs_lengths);
4692     policy->cset_regions_freed();
4693   }
4694 public:
4695   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4696     AbstractGangTask("G1 Free Collection Set"),
4697     _cl(evacuation_info, surviving_young_words),
4698     _collection_set(collection_set),
4699     _surviving_young_words(surviving_young_words),
4700     _serial_work_claim(0),
4701     _rs_lengths(0),
4702     _parallel_work_claim(0),
4703     _num_work_items(collection_set->region_length()),
4704     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4705     prepare_work();
4706   }
4707 
4708   ~G1FreeCollectionSetTask() {
4709     complete_work();
4710     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4711   }
4712 
4713   // Chunk size for work distribution. The chosen value has been determined experimentally
4714   // to be a good tradeoff between overhead and achievable parallelism.
4715   static uint chunk_size() { return 32; }
4716 
4717   virtual void work(uint worker_id) {
4718     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4719 
4720     // Claim serial work.
4721     if (_serial_work_claim == 0) {
4722       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4723       if (value == 0) {
4724         double serial_time = os::elapsedTime();
4725         do_serial_work();
4726         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4727       }
4728     }
4729 
4730     // Start parallel work.
4731     double young_time = 0.0;
4732     bool has_young_time = false;
4733     double non_young_time = 0.0;
4734     bool has_non_young_time = false;
4735 
4736     while (true) {
4737       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4738       size_t cur = end - chunk_size();
4739 
4740       if (cur >= _num_work_items) {
4741         break;
4742       }
4743 
4744       double start_time = os::elapsedTime();
4745 
4746       end = MIN2(end, _num_work_items);
4747 
4748       for (; cur < end; cur++) {
4749         bool is_young = _work_items[cur].is_young;
4750 
4751         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4752 
4753         double end_time = os::elapsedTime();
4754         double time_taken = end_time - start_time;
4755         if (is_young) {
4756           young_time += time_taken;
4757           has_young_time = true;
4758         } else {
4759           non_young_time += time_taken;
4760           has_non_young_time = true;
4761         }
4762         start_time = end_time;
4763       }
4764     }
4765 
4766     if (has_young_time) {
4767       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4768     }
4769     if (has_non_young_time) {
4770       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4771     }
4772   }
4773 };
4774 
4775 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4776   _eden.clear();
4777 
4778   double free_cset_start_time = os::elapsedTime();
4779 
4780   {
4781     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4782     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4783 
4784     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4785 
4786     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4787                         cl.name(),
4788                         num_workers,
4789                         _collection_set.region_length());
4790     workers()->run_task(&cl, num_workers);
4791   }
4792   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4793 
4794   collection_set->clear();
4795 }
4796 
4797 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4798  private:
4799   FreeRegionList* _free_region_list;
4800   HeapRegionSet* _proxy_set;
4801   uint _humongous_objects_reclaimed;
4802   uint _humongous_regions_reclaimed;
4803   size_t _freed_bytes;
4804  public:
4805 
4806   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4807     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4808   }
4809 
4810   virtual bool doHeapRegion(HeapRegion* r) {
4811     if (!r->is_starts_humongous()) {
4812       return false;
4813     }
4814 
4815     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4816 
4817     oop obj = (oop)r->bottom();
4818     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4819 
4820     // The following checks whether the humongous object is live are sufficient.
4821     // The main additional check (in addition to having a reference from the roots
4822     // or the young gen) is whether the humongous object has a remembered set entry.
4823     //
4824     // A humongous object cannot be live if there is no remembered set for it
4825     // because:
4826     // - there can be no references from within humongous starts regions referencing
4827     // the object because we never allocate other objects into them.
4828     // (I.e. there are no intra-region references that may be missed by the
4829     // remembered set)
4830     // - as soon there is a remembered set entry to the humongous starts region
4831     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4832     // until the end of a concurrent mark.
4833     //
4834     // It is not required to check whether the object has been found dead by marking
4835     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4836     // all objects allocated during that time are considered live.
4837     // SATB marking is even more conservative than the remembered set.
4838     // So if at this point in the collection there is no remembered set entry,
4839     // nobody has a reference to it.
4840     // At the start of collection we flush all refinement logs, and remembered sets
4841     // are completely up-to-date wrt to references to the humongous object.
4842     //
4843     // Other implementation considerations:
4844     // - never consider object arrays at this time because they would pose
4845     // considerable effort for cleaning up the the remembered sets. This is
4846     // required because stale remembered sets might reference locations that
4847     // are currently allocated into.
4848     uint region_idx = r->hrm_index();
4849     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4850         !r->rem_set()->is_empty()) {
4851       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4852                                region_idx,
4853                                (size_t)obj->size() * HeapWordSize,
4854                                p2i(r->bottom()),
4855                                r->rem_set()->occupied(),
4856                                r->rem_set()->strong_code_roots_list_length(),
4857                                next_bitmap->isMarked(r->bottom()),
4858                                g1h->is_humongous_reclaim_candidate(region_idx),
4859                                obj->is_typeArray()
4860                               );
4861       return false;
4862     }
4863 
4864     guarantee(obj->is_typeArray(),
4865               "Only eagerly reclaiming type arrays is supported, but the object "
4866               PTR_FORMAT " is not.", p2i(r->bottom()));
4867 
4868     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4869                              region_idx,
4870                              (size_t)obj->size() * HeapWordSize,
4871                              p2i(r->bottom()),
4872                              r->rem_set()->occupied(),
4873                              r->rem_set()->strong_code_roots_list_length(),
4874                              next_bitmap->isMarked(r->bottom()),
4875                              g1h->is_humongous_reclaim_candidate(region_idx),
4876                              obj->is_typeArray()
4877                             );
4878 
4879     // Need to clear mark bit of the humongous object if already set.
4880     if (next_bitmap->isMarked(r->bottom())) {
4881       next_bitmap->clear(r->bottom());
4882     }
4883     _humongous_objects_reclaimed++;
4884     do {
4885       HeapRegion* next = g1h->next_region_in_humongous(r);
4886       _freed_bytes += r->used();
4887       r->set_containing_set(NULL);
4888       _humongous_regions_reclaimed++;
4889       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4890       r = next;
4891     } while (r != NULL);
4892 
4893     return false;
4894   }
4895 
4896   uint humongous_objects_reclaimed() {
4897     return _humongous_objects_reclaimed;
4898   }
4899 
4900   uint humongous_regions_reclaimed() {
4901     return _humongous_regions_reclaimed;
4902   }
4903 
4904   size_t bytes_freed() const {
4905     return _freed_bytes;
4906   }
4907 };
4908 
4909 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4910   assert_at_safepoint(true);
4911 
4912   if (!G1EagerReclaimHumongousObjects ||
4913       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4914     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4915     return;
4916   }
4917 
4918   double start_time = os::elapsedTime();
4919 
4920   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4921 
4922   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4923   heap_region_iterate(&cl);
4924 
4925   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4926 
4927   G1HRPrinter* hrp = hr_printer();
4928   if (hrp->is_active()) {
4929     FreeRegionListIterator iter(&local_cleanup_list);
4930     while (iter.more_available()) {
4931       HeapRegion* hr = iter.get_next();
4932       hrp->cleanup(hr);
4933     }
4934   }
4935 
4936   prepend_to_freelist(&local_cleanup_list);
4937   decrement_summary_bytes(cl.bytes_freed());
4938 
4939   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4940                                                                     cl.humongous_objects_reclaimed());
4941 }
4942 
4943 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4944 public:
4945   virtual bool doHeapRegion(HeapRegion* r) {
4946     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4947     G1CollectedHeap::heap()->clear_in_cset(r);
4948     r->set_young_index_in_cset(-1);
4949     return false;
4950   }
4951 };
4952 
4953 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4954   G1AbandonCollectionSetClosure cl;
4955   collection_set->iterate(&cl);
4956 
4957   collection_set->clear();
4958   collection_set->stop_incremental_building();
4959 }
4960 
4961 void G1CollectedHeap::set_free_regions_coming() {
4962   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
4963 
4964   assert(!free_regions_coming(), "pre-condition");
4965   _free_regions_coming = true;
4966 }
4967 
4968 void G1CollectedHeap::reset_free_regions_coming() {
4969   assert(free_regions_coming(), "pre-condition");
4970 
4971   {
4972     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4973     _free_regions_coming = false;
4974     SecondaryFreeList_lock->notify_all();
4975   }
4976 
4977   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
4978 }
4979 
4980 void G1CollectedHeap::wait_while_free_regions_coming() {
4981   // Most of the time we won't have to wait, so let's do a quick test
4982   // first before we take the lock.
4983   if (!free_regions_coming()) {
4984     return;
4985   }
4986 
4987   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
4988 
4989   {
4990     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4991     while (free_regions_coming()) {
4992       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
4993     }
4994   }
4995 
4996   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
4997 }
4998 
4999 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5000   return _allocator->is_retained_old_region(hr);
5001 }
5002 
5003 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5004   _eden.add(hr);
5005   _g1_policy->set_region_eden(hr);
5006 }
5007 
5008 #ifdef ASSERT
5009 
5010 class NoYoungRegionsClosure: public HeapRegionClosure {
5011 private:
5012   bool _success;
5013 public:
5014   NoYoungRegionsClosure() : _success(true) { }
5015   bool doHeapRegion(HeapRegion* r) {
5016     if (r->is_young()) {
5017       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5018                             p2i(r->bottom()), p2i(r->end()));
5019       _success = false;
5020     }
5021     return false;
5022   }
5023   bool success() { return _success; }
5024 };
5025 
5026 bool G1CollectedHeap::check_young_list_empty() {
5027   bool ret = (young_regions_count() == 0);
5028 
5029   NoYoungRegionsClosure closure;
5030   heap_region_iterate(&closure);
5031   ret = ret && closure.success();
5032 
5033   return ret;
5034 }
5035 
5036 #endif // ASSERT
5037 
5038 class TearDownRegionSetsClosure : public HeapRegionClosure {
5039 private:
5040   HeapRegionSet *_old_set;
5041 
5042 public:
5043   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5044 
5045   bool doHeapRegion(HeapRegion* r) {
5046     if (r->is_old()) {
5047       _old_set->remove(r);
5048     } else if(r->is_young()) {
5049       r->uninstall_surv_rate_group();
5050     } else {
5051       // We ignore free regions, we'll empty the free list afterwards.
5052       // We ignore humongous regions, we're not tearing down the
5053       // humongous regions set.
5054       assert(r->is_free() || r->is_humongous(),
5055              "it cannot be another type");
5056     }
5057     return false;
5058   }
5059 
5060   ~TearDownRegionSetsClosure() {
5061     assert(_old_set->is_empty(), "post-condition");
5062   }
5063 };
5064 
5065 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5066   assert_at_safepoint(true /* should_be_vm_thread */);
5067 
5068   if (!free_list_only) {
5069     TearDownRegionSetsClosure cl(&_old_set);
5070     heap_region_iterate(&cl);
5071 
5072     // Note that emptying the _young_list is postponed and instead done as
5073     // the first step when rebuilding the regions sets again. The reason for
5074     // this is that during a full GC string deduplication needs to know if
5075     // a collected region was young or old when the full GC was initiated.
5076   }
5077   _hrm.remove_all_free_regions();
5078 }
5079 
5080 void G1CollectedHeap::increase_used(size_t bytes) {
5081   _summary_bytes_used += bytes;
5082 }
5083 
5084 void G1CollectedHeap::decrease_used(size_t bytes) {
5085   assert(_summary_bytes_used >= bytes,
5086          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5087          _summary_bytes_used, bytes);
5088   _summary_bytes_used -= bytes;
5089 }
5090 
5091 void G1CollectedHeap::set_used(size_t bytes) {
5092   _summary_bytes_used = bytes;
5093 }
5094 
5095 class RebuildRegionSetsClosure : public HeapRegionClosure {
5096 private:
5097   bool            _free_list_only;
5098   HeapRegionSet*   _old_set;
5099   HeapRegionManager*   _hrm;
5100   size_t          _total_used;
5101 
5102 public:
5103   RebuildRegionSetsClosure(bool free_list_only,
5104                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5105     _free_list_only(free_list_only),
5106     _old_set(old_set), _hrm(hrm), _total_used(0) {
5107     assert(_hrm->num_free_regions() == 0, "pre-condition");
5108     if (!free_list_only) {
5109       assert(_old_set->is_empty(), "pre-condition");
5110     }
5111   }
5112 
5113   bool doHeapRegion(HeapRegion* r) {
5114     if (r->is_empty()) {
5115       // Add free regions to the free list
5116       r->set_free();
5117       r->set_allocation_context(AllocationContext::system());
5118       _hrm->insert_into_free_list(r);
5119     } else if (!_free_list_only) {
5120 
5121       if (r->is_humongous()) {
5122         // We ignore humongous regions. We left the humongous set unchanged.
5123       } else {
5124         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5125         // We now consider all regions old, so register as such. Leave
5126         // archive regions set that way, however, while still adding
5127         // them to the old set.
5128         if (!r->is_archive()) {
5129           r->set_old();
5130         }
5131         _old_set->add(r);
5132       }
5133       _total_used += r->used();
5134     }
5135 
5136     return false;
5137   }
5138 
5139   size_t total_used() {
5140     return _total_used;
5141   }
5142 };
5143 
5144 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5145   assert_at_safepoint(true /* should_be_vm_thread */);
5146 
5147   if (!free_list_only) {
5148     _eden.clear();
5149     _survivor.clear();
5150   }
5151 
5152   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5153   heap_region_iterate(&cl);
5154 
5155   if (!free_list_only) {
5156     set_used(cl.total_used());
5157     if (_archive_allocator != NULL) {
5158       _archive_allocator->clear_used();
5159     }
5160   }
5161   assert(used_unlocked() == recalculate_used(),
5162          "inconsistent used_unlocked(), "
5163          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5164          used_unlocked(), recalculate_used());
5165 }
5166 
5167 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5168   _refine_cte_cl->set_concurrent(concurrent);
5169 }
5170 
5171 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5172   HeapRegion* hr = heap_region_containing(p);
5173   return hr->is_in(p);
5174 }
5175 
5176 // Methods for the mutator alloc region
5177 
5178 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5179                                                       bool force) {
5180   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5181   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5182   if (force || should_allocate) {
5183     HeapRegion* new_alloc_region = new_region(word_size,
5184                                               false /* is_old */,
5185                                               false /* do_expand */);
5186     if (new_alloc_region != NULL) {
5187       set_region_short_lived_locked(new_alloc_region);
5188       _hr_printer.alloc(new_alloc_region, !should_allocate);
5189       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5190       return new_alloc_region;
5191     }
5192   }
5193   return NULL;
5194 }
5195 
5196 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5197                                                   size_t allocated_bytes) {
5198   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5199   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5200 
5201   collection_set()->add_eden_region(alloc_region);
5202   increase_used(allocated_bytes);
5203   _hr_printer.retire(alloc_region);
5204   // We update the eden sizes here, when the region is retired,
5205   // instead of when it's allocated, since this is the point that its
5206   // used space has been recored in _summary_bytes_used.
5207   g1mm()->update_eden_size();
5208 }
5209 
5210 // Methods for the GC alloc regions
5211 
5212 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5213   if (dest.is_old()) {
5214     return true;
5215   } else {
5216     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5217   }
5218 }
5219 
5220 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5221   assert(FreeList_lock->owned_by_self(), "pre-condition");
5222 
5223   if (!has_more_regions(dest)) {
5224     return NULL;
5225   }
5226 
5227   const bool is_survivor = dest.is_young();
5228 
5229   HeapRegion* new_alloc_region = new_region(word_size,
5230                                             !is_survivor,
5231                                             true /* do_expand */);
5232   if (new_alloc_region != NULL) {
5233     // We really only need to do this for old regions given that we
5234     // should never scan survivors. But it doesn't hurt to do it
5235     // for survivors too.
5236     new_alloc_region->record_timestamp();
5237     if (is_survivor) {
5238       new_alloc_region->set_survivor();
5239       _survivor.add(new_alloc_region);
5240       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5241     } else {
5242       new_alloc_region->set_old();
5243       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5244     }
5245     _hr_printer.alloc(new_alloc_region);
5246     bool during_im = collector_state()->during_initial_mark_pause();
5247     new_alloc_region->note_start_of_copying(during_im);
5248     return new_alloc_region;
5249   }
5250   return NULL;
5251 }
5252 
5253 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5254                                              size_t allocated_bytes,
5255                                              InCSetState dest) {
5256   bool during_im = collector_state()->during_initial_mark_pause();
5257   alloc_region->note_end_of_copying(during_im);
5258   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5259   if (dest.is_old()) {
5260     _old_set.add(alloc_region);
5261   }
5262   _hr_printer.retire(alloc_region);
5263 }
5264 
5265 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5266   bool expanded = false;
5267   uint index = _hrm.find_highest_free(&expanded);
5268 
5269   if (index != G1_NO_HRM_INDEX) {
5270     if (expanded) {
5271       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5272                                 HeapRegion::GrainWords * HeapWordSize);
5273     }
5274     _hrm.allocate_free_regions_starting_at(index, 1);
5275     return region_at(index);
5276   }
5277   return NULL;
5278 }
5279 
5280 // Optimized nmethod scanning
5281 
5282 class RegisterNMethodOopClosure: public OopClosure {
5283   G1CollectedHeap* _g1h;
5284   nmethod* _nm;
5285 
5286   template <class T> void do_oop_work(T* p) {
5287     T heap_oop = oopDesc::load_heap_oop(p);
5288     if (!oopDesc::is_null(heap_oop)) {
5289       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5290       HeapRegion* hr = _g1h->heap_region_containing(obj);
5291       assert(!hr->is_continues_humongous(),
5292              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5293              " starting at " HR_FORMAT,
5294              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5295 
5296       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5297       hr->add_strong_code_root_locked(_nm);
5298     }
5299   }
5300 
5301 public:
5302   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5303     _g1h(g1h), _nm(nm) {}
5304 
5305   void do_oop(oop* p)       { do_oop_work(p); }
5306   void do_oop(narrowOop* p) { do_oop_work(p); }
5307 };
5308 
5309 class UnregisterNMethodOopClosure: public OopClosure {
5310   G1CollectedHeap* _g1h;
5311   nmethod* _nm;
5312 
5313   template <class T> void do_oop_work(T* p) {
5314     T heap_oop = oopDesc::load_heap_oop(p);
5315     if (!oopDesc::is_null(heap_oop)) {
5316       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5317       HeapRegion* hr = _g1h->heap_region_containing(obj);
5318       assert(!hr->is_continues_humongous(),
5319              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5320              " starting at " HR_FORMAT,
5321              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5322 
5323       hr->remove_strong_code_root(_nm);
5324     }
5325   }
5326 
5327 public:
5328   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5329     _g1h(g1h), _nm(nm) {}
5330 
5331   void do_oop(oop* p)       { do_oop_work(p); }
5332   void do_oop(narrowOop* p) { do_oop_work(p); }
5333 };
5334 
5335 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5336   CollectedHeap::register_nmethod(nm);
5337 
5338   guarantee(nm != NULL, "sanity");
5339   RegisterNMethodOopClosure reg_cl(this, nm);
5340   nm->oops_do(&reg_cl);
5341 }
5342 
5343 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5344   CollectedHeap::unregister_nmethod(nm);
5345 
5346   guarantee(nm != NULL, "sanity");
5347   UnregisterNMethodOopClosure reg_cl(this, nm);
5348   nm->oops_do(&reg_cl, true);
5349 }
5350 
5351 void G1CollectedHeap::purge_code_root_memory() {
5352   double purge_start = os::elapsedTime();
5353   G1CodeRootSet::purge();
5354   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5355   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5356 }
5357 
5358 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5359   G1CollectedHeap* _g1h;
5360 
5361 public:
5362   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5363     _g1h(g1h) {}
5364 
5365   void do_code_blob(CodeBlob* cb) {
5366     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5367     if (nm == NULL) {
5368       return;
5369     }
5370 
5371     if (ScavengeRootsInCode) {
5372       _g1h->register_nmethod(nm);
5373     }
5374   }
5375 };
5376 
5377 void G1CollectedHeap::rebuild_strong_code_roots() {
5378   RebuildStrongCodeRootClosure blob_cl(this);
5379   CodeCache::blobs_do(&blob_cl);
5380 }