1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1FullGCScope.hpp"
  43 #include "gc/g1/g1GCPhaseTimes.hpp"
  44 #include "gc/g1/g1HeapSizingPolicy.hpp"
  45 #include "gc/g1/g1HeapTransition.hpp"
  46 #include "gc/g1/g1HeapVerifier.hpp"
  47 #include "gc/g1/g1HotCardCache.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.inline.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1YCTypes.hpp"
  57 #include "gc/g1/heapRegion.inline.hpp"
  58 #include "gc/g1/heapRegionRemSet.hpp"
  59 #include "gc/g1/heapRegionSet.inline.hpp"
  60 #include "gc/g1/suspendibleThreadSet.hpp"
  61 #include "gc/g1/vm_operations_g1.hpp"
  62 #include "gc/shared/gcHeapSummary.hpp"
  63 #include "gc/shared/gcId.hpp"
  64 #include "gc/shared/gcLocker.inline.hpp"
  65 #include "gc/shared/gcTimer.hpp"
  66 #include "gc/shared/gcTrace.hpp"
  67 #include "gc/shared/gcTraceTime.inline.hpp"
  68 #include "gc/shared/generationSpec.hpp"
  69 #include "gc/shared/isGCActiveMark.hpp"
  70 #include "gc/shared/preservedMarks.inline.hpp"
  71 #include "gc/shared/referenceProcessor.inline.hpp"
  72 #include "gc/shared/taskqueue.inline.hpp"
  73 #include "logging/log.hpp"
  74 #include "memory/allocation.hpp"
  75 #include "memory/iterator.hpp"
  76 #include "memory/resourceArea.hpp"
  77 #include "oops/oop.inline.hpp"
  78 #include "prims/resolvedMethodTable.hpp"
  79 #include "runtime/atomic.hpp"
  80 #include "runtime/init.hpp"
  81 #include "runtime/orderAccess.inline.hpp"
  82 #include "runtime/vmThread.hpp"
  83 #include "utilities/align.hpp"
  84 #include "utilities/globalDefinitions.hpp"
  85 #include "utilities/stack.inline.hpp"
  86 
  87 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  88 
  89 // INVARIANTS/NOTES
  90 //
  91 // All allocation activity covered by the G1CollectedHeap interface is
  92 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  93 // and allocate_new_tlab, which are the "entry" points to the
  94 // allocation code from the rest of the JVM.  (Note that this does not
  95 // apply to TLAB allocation, which is not part of this interface: it
  96 // is done by clients of this interface.)
  97 
  98 // Local to this file.
  99 
 100 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 101   bool _concurrent;
 102 public:
 103   RefineCardTableEntryClosure() : _concurrent(true) { }
 104 
 105   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 106     G1CollectedHeap::heap()->g1_rem_set()->refine_card_concurrently(card_ptr, worker_i);
 107 
 108     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 109       // Caller will actually yield.
 110       return false;
 111     }
 112     // Otherwise, we finished successfully; return true.
 113     return true;
 114   }
 115 
 116   void set_concurrent(bool b) { _concurrent = b; }
 117 };
 118 
 119 
 120 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 121  private:
 122   size_t _num_dirtied;
 123   G1CollectedHeap* _g1h;
 124   G1SATBCardTableLoggingModRefBS* _g1_bs;
 125 
 126   HeapRegion* region_for_card(jbyte* card_ptr) const {
 127     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 128   }
 129 
 130   bool will_become_free(HeapRegion* hr) const {
 131     // A region will be freed by free_collection_set if the region is in the
 132     // collection set and has not had an evacuation failure.
 133     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 134   }
 135 
 136  public:
 137   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 138     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 139 
 140   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 141     HeapRegion* hr = region_for_card(card_ptr);
 142 
 143     // Should only dirty cards in regions that won't be freed.
 144     if (!will_become_free(hr)) {
 145       *card_ptr = CardTableModRefBS::dirty_card_val();
 146       _num_dirtied++;
 147     }
 148 
 149     return true;
 150   }
 151 
 152   size_t num_dirtied()   const { return _num_dirtied; }
 153 };
 154 
 155 
 156 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 157   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 158 }
 159 
 160 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 161   // The from card cache is not the memory that is actually committed. So we cannot
 162   // take advantage of the zero_filled parameter.
 163   reset_from_card_cache(start_idx, num_regions);
 164 }
 165 
 166 // Returns true if the reference points to an object that
 167 // can move in an incremental collection.
 168 bool G1CollectedHeap::is_scavengable(const void* p) {
 169   HeapRegion* hr = heap_region_containing(p);
 170   return !hr->is_pinned();
 171 }
 172 
 173 
 174 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 175                                              MemRegion mr) {
 176   return new HeapRegion(hrs_index, bot(), mr);
 177 }
 178 
 179 // Private methods.
 180 
 181 HeapRegion*
 182 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 183   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 184   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 185     if (!_secondary_free_list.is_empty()) {
 186       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 187                                       "secondary_free_list has %u entries",
 188                                       _secondary_free_list.length());
 189       // It looks as if there are free regions available on the
 190       // secondary_free_list. Let's move them to the free_list and try
 191       // again to allocate from it.
 192       append_secondary_free_list();
 193 
 194       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 195              "empty we should have moved at least one entry to the free_list");
 196       HeapRegion* res = _hrm.allocate_free_region(is_old);
 197       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 198                                       "allocated " HR_FORMAT " from secondary_free_list",
 199                                       HR_FORMAT_PARAMS(res));
 200       return res;
 201     }
 202 
 203     // Wait here until we get notified either when (a) there are no
 204     // more free regions coming or (b) some regions have been moved on
 205     // the secondary_free_list.
 206     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 207   }
 208 
 209   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 210                                   "could not allocate from secondary_free_list");
 211   return NULL;
 212 }
 213 
 214 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 215   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 216          "the only time we use this to allocate a humongous region is "
 217          "when we are allocating a single humongous region");
 218 
 219   HeapRegion* res;
 220   if (G1StressConcRegionFreeing) {
 221     if (!_secondary_free_list.is_empty()) {
 222       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 223                                       "forced to look at the secondary_free_list");
 224       res = new_region_try_secondary_free_list(is_old);
 225       if (res != NULL) {
 226         return res;
 227       }
 228     }
 229   }
 230 
 231   res = _hrm.allocate_free_region(is_old);
 232 
 233   if (res == NULL) {
 234     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 235                                     "res == NULL, trying the secondary_free_list");
 236     res = new_region_try_secondary_free_list(is_old);
 237   }
 238   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 239     // Currently, only attempts to allocate GC alloc regions set
 240     // do_expand to true. So, we should only reach here during a
 241     // safepoint. If this assumption changes we might have to
 242     // reconsider the use of _expand_heap_after_alloc_failure.
 243     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 244 
 245     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 246                               word_size * HeapWordSize);
 247 
 248     if (expand(word_size * HeapWordSize)) {
 249       // Given that expand() succeeded in expanding the heap, and we
 250       // always expand the heap by an amount aligned to the heap
 251       // region size, the free list should in theory not be empty.
 252       // In either case allocate_free_region() will check for NULL.
 253       res = _hrm.allocate_free_region(is_old);
 254     } else {
 255       _expand_heap_after_alloc_failure = false;
 256     }
 257   }
 258   return res;
 259 }
 260 
 261 HeapWord*
 262 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 263                                                            uint num_regions,
 264                                                            size_t word_size,
 265                                                            AllocationContext_t context) {
 266   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 267   assert(is_humongous(word_size), "word_size should be humongous");
 268   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 269 
 270   // Index of last region in the series.
 271   uint last = first + num_regions - 1;
 272 
 273   // We need to initialize the region(s) we just discovered. This is
 274   // a bit tricky given that it can happen concurrently with
 275   // refinement threads refining cards on these regions and
 276   // potentially wanting to refine the BOT as they are scanning
 277   // those cards (this can happen shortly after a cleanup; see CR
 278   // 6991377). So we have to set up the region(s) carefully and in
 279   // a specific order.
 280 
 281   // The word size sum of all the regions we will allocate.
 282   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 283   assert(word_size <= word_size_sum, "sanity");
 284 
 285   // This will be the "starts humongous" region.
 286   HeapRegion* first_hr = region_at(first);
 287   // The header of the new object will be placed at the bottom of
 288   // the first region.
 289   HeapWord* new_obj = first_hr->bottom();
 290   // This will be the new top of the new object.
 291   HeapWord* obj_top = new_obj + word_size;
 292 
 293   // First, we need to zero the header of the space that we will be
 294   // allocating. When we update top further down, some refinement
 295   // threads might try to scan the region. By zeroing the header we
 296   // ensure that any thread that will try to scan the region will
 297   // come across the zero klass word and bail out.
 298   //
 299   // NOTE: It would not have been correct to have used
 300   // CollectedHeap::fill_with_object() and make the space look like
 301   // an int array. The thread that is doing the allocation will
 302   // later update the object header to a potentially different array
 303   // type and, for a very short period of time, the klass and length
 304   // fields will be inconsistent. This could cause a refinement
 305   // thread to calculate the object size incorrectly.
 306   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 307 
 308   // Next, pad out the unused tail of the last region with filler
 309   // objects, for improved usage accounting.
 310   // How many words we use for filler objects.
 311   size_t word_fill_size = word_size_sum - word_size;
 312 
 313   // How many words memory we "waste" which cannot hold a filler object.
 314   size_t words_not_fillable = 0;
 315 
 316   if (word_fill_size >= min_fill_size()) {
 317     fill_with_objects(obj_top, word_fill_size);
 318   } else if (word_fill_size > 0) {
 319     // We have space to fill, but we cannot fit an object there.
 320     words_not_fillable = word_fill_size;
 321     word_fill_size = 0;
 322   }
 323 
 324   // We will set up the first region as "starts humongous". This
 325   // will also update the BOT covering all the regions to reflect
 326   // that there is a single object that starts at the bottom of the
 327   // first region.
 328   first_hr->set_starts_humongous(obj_top, word_fill_size);
 329   first_hr->set_allocation_context(context);
 330   // Then, if there are any, we will set up the "continues
 331   // humongous" regions.
 332   HeapRegion* hr = NULL;
 333   for (uint i = first + 1; i <= last; ++i) {
 334     hr = region_at(i);
 335     hr->set_continues_humongous(first_hr);
 336     hr->set_allocation_context(context);
 337   }
 338 
 339   // Up to this point no concurrent thread would have been able to
 340   // do any scanning on any region in this series. All the top
 341   // fields still point to bottom, so the intersection between
 342   // [bottom,top] and [card_start,card_end] will be empty. Before we
 343   // update the top fields, we'll do a storestore to make sure that
 344   // no thread sees the update to top before the zeroing of the
 345   // object header and the BOT initialization.
 346   OrderAccess::storestore();
 347 
 348   // Now, we will update the top fields of the "continues humongous"
 349   // regions except the last one.
 350   for (uint i = first; i < last; ++i) {
 351     hr = region_at(i);
 352     hr->set_top(hr->end());
 353   }
 354 
 355   hr = region_at(last);
 356   // If we cannot fit a filler object, we must set top to the end
 357   // of the humongous object, otherwise we cannot iterate the heap
 358   // and the BOT will not be complete.
 359   hr->set_top(hr->end() - words_not_fillable);
 360 
 361   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 362          "obj_top should be in last region");
 363 
 364   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 365 
 366   assert(words_not_fillable == 0 ||
 367          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 368          "Miscalculation in humongous allocation");
 369 
 370   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 371 
 372   for (uint i = first; i <= last; ++i) {
 373     hr = region_at(i);
 374     _humongous_set.add(hr);
 375     _hr_printer.alloc(hr);
 376   }
 377 
 378   return new_obj;
 379 }
 380 
 381 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 382   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 383   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 384 }
 385 
 386 // If could fit into free regions w/o expansion, try.
 387 // Otherwise, if can expand, do so.
 388 // Otherwise, if using ex regions might help, try with ex given back.
 389 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 390   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 391 
 392   _verifier->verify_region_sets_optional();
 393 
 394   uint first = G1_NO_HRM_INDEX;
 395   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 396 
 397   if (obj_regions == 1) {
 398     // Only one region to allocate, try to use a fast path by directly allocating
 399     // from the free lists. Do not try to expand here, we will potentially do that
 400     // later.
 401     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 402     if (hr != NULL) {
 403       first = hr->hrm_index();
 404     }
 405   } else {
 406     // We can't allocate humongous regions spanning more than one region while
 407     // cleanupComplete() is running, since some of the regions we find to be
 408     // empty might not yet be added to the free list. It is not straightforward
 409     // to know in which list they are on so that we can remove them. We only
 410     // need to do this if we need to allocate more than one region to satisfy the
 411     // current humongous allocation request. If we are only allocating one region
 412     // we use the one-region region allocation code (see above), that already
 413     // potentially waits for regions from the secondary free list.
 414     wait_while_free_regions_coming();
 415     append_secondary_free_list_if_not_empty_with_lock();
 416 
 417     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 418     // are lucky enough to find some.
 419     first = _hrm.find_contiguous_only_empty(obj_regions);
 420     if (first != G1_NO_HRM_INDEX) {
 421       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 422     }
 423   }
 424 
 425   if (first == G1_NO_HRM_INDEX) {
 426     // Policy: We could not find enough regions for the humongous object in the
 427     // free list. Look through the heap to find a mix of free and uncommitted regions.
 428     // If so, try expansion.
 429     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 430     if (first != G1_NO_HRM_INDEX) {
 431       // We found something. Make sure these regions are committed, i.e. expand
 432       // the heap. Alternatively we could do a defragmentation GC.
 433       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 434                                     word_size * HeapWordSize);
 435 
 436       _hrm.expand_at(first, obj_regions, workers());
 437       g1_policy()->record_new_heap_size(num_regions());
 438 
 439 #ifdef ASSERT
 440       for (uint i = first; i < first + obj_regions; ++i) {
 441         HeapRegion* hr = region_at(i);
 442         assert(hr->is_free(), "sanity");
 443         assert(hr->is_empty(), "sanity");
 444         assert(is_on_master_free_list(hr), "sanity");
 445       }
 446 #endif
 447       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 448     } else {
 449       // Policy: Potentially trigger a defragmentation GC.
 450     }
 451   }
 452 
 453   HeapWord* result = NULL;
 454   if (first != G1_NO_HRM_INDEX) {
 455     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 456                                                        word_size, context);
 457     assert(result != NULL, "it should always return a valid result");
 458 
 459     // A successful humongous object allocation changes the used space
 460     // information of the old generation so we need to recalculate the
 461     // sizes and update the jstat counters here.
 462     g1mm()->update_sizes();
 463   }
 464 
 465   _verifier->verify_region_sets_optional();
 466 
 467   return result;
 468 }
 469 
 470 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 471   assert_heap_not_locked_and_not_at_safepoint();
 472   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 473 
 474   uint dummy_gc_count_before;
 475   uint dummy_gclocker_retry_count = 0;
 476   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 477 }
 478 
 479 HeapWord*
 480 G1CollectedHeap::mem_allocate(size_t word_size,
 481                               bool*  gc_overhead_limit_was_exceeded) {
 482   assert_heap_not_locked_and_not_at_safepoint();
 483 
 484   // Loop until the allocation is satisfied, or unsatisfied after GC.
 485   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 486     uint gc_count_before;
 487 
 488     HeapWord* result = NULL;
 489     if (!is_humongous(word_size)) {
 490       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 491     } else {
 492       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 493     }
 494     if (result != NULL) {
 495       return result;
 496     }
 497 
 498     // Create the garbage collection operation...
 499     VM_G1CollectForAllocation op(gc_count_before, word_size);
 500     op.set_allocation_context(AllocationContext::current());
 501 
 502     // ...and get the VM thread to execute it.
 503     VMThread::execute(&op);
 504 
 505     if (op.prologue_succeeded() && op.pause_succeeded()) {
 506       // If the operation was successful we'll return the result even
 507       // if it is NULL. If the allocation attempt failed immediately
 508       // after a Full GC, it's unlikely we'll be able to allocate now.
 509       HeapWord* result = op.result();
 510       if (result != NULL && !is_humongous(word_size)) {
 511         // Allocations that take place on VM operations do not do any
 512         // card dirtying and we have to do it here. We only have to do
 513         // this for non-humongous allocations, though.
 514         dirty_young_block(result, word_size);
 515       }
 516       return result;
 517     } else {
 518       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 519         return NULL;
 520       }
 521       assert(op.result() == NULL,
 522              "the result should be NULL if the VM op did not succeed");
 523     }
 524 
 525     // Give a warning if we seem to be looping forever.
 526     if ((QueuedAllocationWarningCount > 0) &&
 527         (try_count % QueuedAllocationWarningCount == 0)) {
 528       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 529     }
 530   }
 531 
 532   ShouldNotReachHere();
 533   return NULL;
 534 }
 535 
 536 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 537                                                    AllocationContext_t context,
 538                                                    uint* gc_count_before_ret,
 539                                                    uint* gclocker_retry_count_ret) {
 540   // Make sure you read the note in attempt_allocation_humongous().
 541 
 542   assert_heap_not_locked_and_not_at_safepoint();
 543   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 544          "be called for humongous allocation requests");
 545 
 546   // We should only get here after the first-level allocation attempt
 547   // (attempt_allocation()) failed to allocate.
 548 
 549   // We will loop until a) we manage to successfully perform the
 550   // allocation or b) we successfully schedule a collection which
 551   // fails to perform the allocation. b) is the only case when we'll
 552   // return NULL.
 553   HeapWord* result = NULL;
 554   for (int try_count = 1; /* we'll return */; try_count += 1) {
 555     bool should_try_gc;
 556     uint gc_count_before;
 557 
 558     {
 559       MutexLockerEx x(Heap_lock);
 560       result = _allocator->attempt_allocation_locked(word_size, context);
 561       if (result != NULL) {
 562         return result;
 563       }
 564 
 565       if (GCLocker::is_active_and_needs_gc()) {
 566         if (g1_policy()->can_expand_young_list()) {
 567           // No need for an ergo verbose message here,
 568           // can_expand_young_list() does this when it returns true.
 569           result = _allocator->attempt_allocation_force(word_size, context);
 570           if (result != NULL) {
 571             return result;
 572           }
 573         }
 574         should_try_gc = false;
 575       } else {
 576         // The GCLocker may not be active but the GCLocker initiated
 577         // GC may not yet have been performed (GCLocker::needs_gc()
 578         // returns true). In this case we do not try this GC and
 579         // wait until the GCLocker initiated GC is performed, and
 580         // then retry the allocation.
 581         if (GCLocker::needs_gc()) {
 582           should_try_gc = false;
 583         } else {
 584           // Read the GC count while still holding the Heap_lock.
 585           gc_count_before = total_collections();
 586           should_try_gc = true;
 587         }
 588       }
 589     }
 590 
 591     if (should_try_gc) {
 592       bool succeeded;
 593       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 594                                    GCCause::_g1_inc_collection_pause);
 595       if (result != NULL) {
 596         assert(succeeded, "only way to get back a non-NULL result");
 597         return result;
 598       }
 599 
 600       if (succeeded) {
 601         // If we get here we successfully scheduled a collection which
 602         // failed to allocate. No point in trying to allocate
 603         // further. We'll just return NULL.
 604         MutexLockerEx x(Heap_lock);
 605         *gc_count_before_ret = total_collections();
 606         return NULL;
 607       }
 608     } else {
 609       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 610         MutexLockerEx x(Heap_lock);
 611         *gc_count_before_ret = total_collections();
 612         return NULL;
 613       }
 614       // The GCLocker is either active or the GCLocker initiated
 615       // GC has not yet been performed. Stall until it is and
 616       // then retry the allocation.
 617       GCLocker::stall_until_clear();
 618       (*gclocker_retry_count_ret) += 1;
 619     }
 620 
 621     // We can reach here if we were unsuccessful in scheduling a
 622     // collection (because another thread beat us to it) or if we were
 623     // stalled due to the GC locker. In either can we should retry the
 624     // allocation attempt in case another thread successfully
 625     // performed a collection and reclaimed enough space. We do the
 626     // first attempt (without holding the Heap_lock) here and the
 627     // follow-on attempt will be at the start of the next loop
 628     // iteration (after taking the Heap_lock).
 629     result = _allocator->attempt_allocation(word_size, context);
 630     if (result != NULL) {
 631       return result;
 632     }
 633 
 634     // Give a warning if we seem to be looping forever.
 635     if ((QueuedAllocationWarningCount > 0) &&
 636         (try_count % QueuedAllocationWarningCount == 0)) {
 637       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 638                       "retries %d times", try_count);
 639     }
 640   }
 641 
 642   ShouldNotReachHere();
 643   return NULL;
 644 }
 645 
 646 void G1CollectedHeap::begin_archive_alloc_range() {
 647   assert_at_safepoint(true /* should_be_vm_thread */);
 648   if (_archive_allocator == NULL) {
 649     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 650   }
 651 }
 652 
 653 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 654   // Allocations in archive regions cannot be of a size that would be considered
 655   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 656   // may be different at archive-restore time.
 657   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 658 }
 659 
 660 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 661   assert_at_safepoint(true /* should_be_vm_thread */);
 662   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 663   if (is_archive_alloc_too_large(word_size)) {
 664     return NULL;
 665   }
 666   return _archive_allocator->archive_mem_allocate(word_size);
 667 }
 668 
 669 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 670                                               size_t end_alignment_in_bytes) {
 671   assert_at_safepoint(true /* should_be_vm_thread */);
 672   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 673 
 674   // Call complete_archive to do the real work, filling in the MemRegion
 675   // array with the archive regions.
 676   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 677   delete _archive_allocator;
 678   _archive_allocator = NULL;
 679 }
 680 
 681 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 682   assert(ranges != NULL, "MemRegion array NULL");
 683   assert(count != 0, "No MemRegions provided");
 684   MemRegion reserved = _hrm.reserved();
 685   for (size_t i = 0; i < count; i++) {
 686     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 687       return false;
 688     }
 689   }
 690   return true;
 691 }
 692 
 693 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 694   assert(!is_init_completed(), "Expect to be called at JVM init time");
 695   assert(ranges != NULL, "MemRegion array NULL");
 696   assert(count != 0, "No MemRegions provided");
 697   MutexLockerEx x(Heap_lock);
 698 
 699   MemRegion reserved = _hrm.reserved();
 700   HeapWord* prev_last_addr = NULL;
 701   HeapRegion* prev_last_region = NULL;
 702 
 703   // Temporarily disable pretouching of heap pages. This interface is used
 704   // when mmap'ing archived heap data in, so pre-touching is wasted.
 705   FlagSetting fs(AlwaysPreTouch, false);
 706 
 707   // Enable archive object checking used by G1MarkSweep. We have to let it know
 708   // about each archive range, so that objects in those ranges aren't marked.
 709   G1ArchiveAllocator::enable_archive_object_check();
 710 
 711   // For each specified MemRegion range, allocate the corresponding G1
 712   // regions and mark them as archive regions. We expect the ranges in
 713   // ascending starting address order, without overlap.
 714   for (size_t i = 0; i < count; i++) {
 715     MemRegion curr_range = ranges[i];
 716     HeapWord* start_address = curr_range.start();
 717     size_t word_size = curr_range.word_size();
 718     HeapWord* last_address = curr_range.last();
 719     size_t commits = 0;
 720 
 721     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 722               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 723               p2i(start_address), p2i(last_address));
 724     guarantee(start_address > prev_last_addr,
 725               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 726               p2i(start_address), p2i(prev_last_addr));
 727     prev_last_addr = last_address;
 728 
 729     // Check for ranges that start in the same G1 region in which the previous
 730     // range ended, and adjust the start address so we don't try to allocate
 731     // the same region again. If the current range is entirely within that
 732     // region, skip it, just adjusting the recorded top.
 733     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 734     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 735       start_address = start_region->end();
 736       if (start_address > last_address) {
 737         increase_used(word_size * HeapWordSize);
 738         start_region->set_top(last_address + 1);
 739         continue;
 740       }
 741       start_region->set_top(start_address);
 742       curr_range = MemRegion(start_address, last_address + 1);
 743       start_region = _hrm.addr_to_region(start_address);
 744     }
 745 
 746     // Perform the actual region allocation, exiting if it fails.
 747     // Then note how much new space we have allocated.
 748     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 749       return false;
 750     }
 751     increase_used(word_size * HeapWordSize);
 752     if (commits != 0) {
 753       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 754                                 HeapRegion::GrainWords * HeapWordSize * commits);
 755 
 756     }
 757 
 758     // Mark each G1 region touched by the range as archive, add it to the old set,
 759     // and set the allocation context and top.
 760     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 761     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 762     prev_last_region = last_region;
 763 
 764     while (curr_region != NULL) {
 765       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 766              "Region already in use (index %u)", curr_region->hrm_index());
 767       curr_region->set_allocation_context(AllocationContext::system());
 768       curr_region->set_archive();
 769       _hr_printer.alloc(curr_region);
 770       _old_set.add(curr_region);
 771       if (curr_region != last_region) {
 772         curr_region->set_top(curr_region->end());
 773         curr_region = _hrm.next_region_in_heap(curr_region);
 774       } else {
 775         curr_region->set_top(last_address + 1);
 776         curr_region = NULL;
 777       }
 778     }
 779 
 780     // Notify mark-sweep of the archive range.
 781     G1ArchiveAllocator::set_range_archive(curr_range, true);
 782   }
 783   return true;
 784 }
 785 
 786 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 787   assert(!is_init_completed(), "Expect to be called at JVM init time");
 788   assert(ranges != NULL, "MemRegion array NULL");
 789   assert(count != 0, "No MemRegions provided");
 790   MemRegion reserved = _hrm.reserved();
 791   HeapWord *prev_last_addr = NULL;
 792   HeapRegion* prev_last_region = NULL;
 793 
 794   // For each MemRegion, create filler objects, if needed, in the G1 regions
 795   // that contain the address range. The address range actually within the
 796   // MemRegion will not be modified. That is assumed to have been initialized
 797   // elsewhere, probably via an mmap of archived heap data.
 798   MutexLockerEx x(Heap_lock);
 799   for (size_t i = 0; i < count; i++) {
 800     HeapWord* start_address = ranges[i].start();
 801     HeapWord* last_address = ranges[i].last();
 802 
 803     assert(reserved.contains(start_address) && reserved.contains(last_address),
 804            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 805            p2i(start_address), p2i(last_address));
 806     assert(start_address > prev_last_addr,
 807            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 808            p2i(start_address), p2i(prev_last_addr));
 809 
 810     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 811     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 812     HeapWord* bottom_address = start_region->bottom();
 813 
 814     // Check for a range beginning in the same region in which the
 815     // previous one ended.
 816     if (start_region == prev_last_region) {
 817       bottom_address = prev_last_addr + 1;
 818     }
 819 
 820     // Verify that the regions were all marked as archive regions by
 821     // alloc_archive_regions.
 822     HeapRegion* curr_region = start_region;
 823     while (curr_region != NULL) {
 824       guarantee(curr_region->is_archive(),
 825                 "Expected archive region at index %u", curr_region->hrm_index());
 826       if (curr_region != last_region) {
 827         curr_region = _hrm.next_region_in_heap(curr_region);
 828       } else {
 829         curr_region = NULL;
 830       }
 831     }
 832 
 833     prev_last_addr = last_address;
 834     prev_last_region = last_region;
 835 
 836     // Fill the memory below the allocated range with dummy object(s),
 837     // if the region bottom does not match the range start, or if the previous
 838     // range ended within the same G1 region, and there is a gap.
 839     if (start_address != bottom_address) {
 840       size_t fill_size = pointer_delta(start_address, bottom_address);
 841       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 842       increase_used(fill_size * HeapWordSize);
 843     }
 844   }
 845 }
 846 
 847 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 848                                                      uint* gc_count_before_ret,
 849                                                      uint* gclocker_retry_count_ret) {
 850   assert_heap_not_locked_and_not_at_safepoint();
 851   assert(!is_humongous(word_size), "attempt_allocation() should not "
 852          "be called for humongous allocation requests");
 853 
 854   AllocationContext_t context = AllocationContext::current();
 855   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 856 
 857   if (result == NULL) {
 858     result = attempt_allocation_slow(word_size,
 859                                      context,
 860                                      gc_count_before_ret,
 861                                      gclocker_retry_count_ret);
 862   }
 863   assert_heap_not_locked();
 864   if (result != NULL) {
 865     dirty_young_block(result, word_size);
 866   }
 867   return result;
 868 }
 869 
 870 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 871   assert(!is_init_completed(), "Expect to be called at JVM init time");
 872   assert(ranges != NULL, "MemRegion array NULL");
 873   assert(count != 0, "No MemRegions provided");
 874   MemRegion reserved = _hrm.reserved();
 875   HeapWord* prev_last_addr = NULL;
 876   HeapRegion* prev_last_region = NULL;
 877   size_t size_used = 0;
 878   size_t uncommitted_regions = 0;
 879 
 880   // For each Memregion, free the G1 regions that constitute it, and
 881   // notify mark-sweep that the range is no longer to be considered 'archive.'
 882   MutexLockerEx x(Heap_lock);
 883   for (size_t i = 0; i < count; i++) {
 884     HeapWord* start_address = ranges[i].start();
 885     HeapWord* last_address = ranges[i].last();
 886 
 887     assert(reserved.contains(start_address) && reserved.contains(last_address),
 888            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 889            p2i(start_address), p2i(last_address));
 890     assert(start_address > prev_last_addr,
 891            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 892            p2i(start_address), p2i(prev_last_addr));
 893     size_used += ranges[i].byte_size();
 894     prev_last_addr = last_address;
 895 
 896     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 897     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 898 
 899     // Check for ranges that start in the same G1 region in which the previous
 900     // range ended, and adjust the start address so we don't try to free
 901     // the same region again. If the current range is entirely within that
 902     // region, skip it.
 903     if (start_region == prev_last_region) {
 904       start_address = start_region->end();
 905       if (start_address > last_address) {
 906         continue;
 907       }
 908       start_region = _hrm.addr_to_region(start_address);
 909     }
 910     prev_last_region = last_region;
 911 
 912     // After verifying that each region was marked as an archive region by
 913     // alloc_archive_regions, set it free and empty and uncommit it.
 914     HeapRegion* curr_region = start_region;
 915     while (curr_region != NULL) {
 916       guarantee(curr_region->is_archive(),
 917                 "Expected archive region at index %u", curr_region->hrm_index());
 918       uint curr_index = curr_region->hrm_index();
 919       _old_set.remove(curr_region);
 920       curr_region->set_free();
 921       curr_region->set_top(curr_region->bottom());
 922       if (curr_region != last_region) {
 923         curr_region = _hrm.next_region_in_heap(curr_region);
 924       } else {
 925         curr_region = NULL;
 926       }
 927       _hrm.shrink_at(curr_index, 1);
 928       uncommitted_regions++;
 929     }
 930 
 931     // Notify mark-sweep that this is no longer an archive range.
 932     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 933   }
 934 
 935   if (uncommitted_regions != 0) {
 936     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 937                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 938   }
 939   decrease_used(size_used);
 940 }
 941 
 942 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 943                                                         uint* gc_count_before_ret,
 944                                                         uint* gclocker_retry_count_ret) {
 945   // The structure of this method has a lot of similarities to
 946   // attempt_allocation_slow(). The reason these two were not merged
 947   // into a single one is that such a method would require several "if
 948   // allocation is not humongous do this, otherwise do that"
 949   // conditional paths which would obscure its flow. In fact, an early
 950   // version of this code did use a unified method which was harder to
 951   // follow and, as a result, it had subtle bugs that were hard to
 952   // track down. So keeping these two methods separate allows each to
 953   // be more readable. It will be good to keep these two in sync as
 954   // much as possible.
 955 
 956   assert_heap_not_locked_and_not_at_safepoint();
 957   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 958          "should only be called for humongous allocations");
 959 
 960   // Humongous objects can exhaust the heap quickly, so we should check if we
 961   // need to start a marking cycle at each humongous object allocation. We do
 962   // the check before we do the actual allocation. The reason for doing it
 963   // before the allocation is that we avoid having to keep track of the newly
 964   // allocated memory while we do a GC.
 965   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 966                                            word_size)) {
 967     collect(GCCause::_g1_humongous_allocation);
 968   }
 969 
 970   // We will loop until a) we manage to successfully perform the
 971   // allocation or b) we successfully schedule a collection which
 972   // fails to perform the allocation. b) is the only case when we'll
 973   // return NULL.
 974   HeapWord* result = NULL;
 975   for (int try_count = 1; /* we'll return */; try_count += 1) {
 976     bool should_try_gc;
 977     uint gc_count_before;
 978 
 979     {
 980       MutexLockerEx x(Heap_lock);
 981 
 982       // Given that humongous objects are not allocated in young
 983       // regions, we'll first try to do the allocation without doing a
 984       // collection hoping that there's enough space in the heap.
 985       result = humongous_obj_allocate(word_size, AllocationContext::current());
 986       if (result != NULL) {
 987         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 988         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 989         return result;
 990       }
 991 
 992       if (GCLocker::is_active_and_needs_gc()) {
 993         should_try_gc = false;
 994       } else {
 995          // The GCLocker may not be active but the GCLocker initiated
 996         // GC may not yet have been performed (GCLocker::needs_gc()
 997         // returns true). In this case we do not try this GC and
 998         // wait until the GCLocker initiated GC is performed, and
 999         // then retry the allocation.
1000         if (GCLocker::needs_gc()) {
1001           should_try_gc = false;
1002         } else {
1003           // Read the GC count while still holding the Heap_lock.
1004           gc_count_before = total_collections();
1005           should_try_gc = true;
1006         }
1007       }
1008     }
1009 
1010     if (should_try_gc) {
1011       // If we failed to allocate the humongous object, we should try to
1012       // do a collection pause (if we're allowed) in case it reclaims
1013       // enough space for the allocation to succeed after the pause.
1014 
1015       bool succeeded;
1016       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1017                                    GCCause::_g1_humongous_allocation);
1018       if (result != NULL) {
1019         assert(succeeded, "only way to get back a non-NULL result");
1020         return result;
1021       }
1022 
1023       if (succeeded) {
1024         // If we get here we successfully scheduled a collection which
1025         // failed to allocate. No point in trying to allocate
1026         // further. We'll just return NULL.
1027         MutexLockerEx x(Heap_lock);
1028         *gc_count_before_ret = total_collections();
1029         return NULL;
1030       }
1031     } else {
1032       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1033         MutexLockerEx x(Heap_lock);
1034         *gc_count_before_ret = total_collections();
1035         return NULL;
1036       }
1037       // The GCLocker is either active or the GCLocker initiated
1038       // GC has not yet been performed. Stall until it is and
1039       // then retry the allocation.
1040       GCLocker::stall_until_clear();
1041       (*gclocker_retry_count_ret) += 1;
1042     }
1043 
1044     // We can reach here if we were unsuccessful in scheduling a
1045     // collection (because another thread beat us to it) or if we were
1046     // stalled due to the GC locker. In either can we should retry the
1047     // allocation attempt in case another thread successfully
1048     // performed a collection and reclaimed enough space.  Give a
1049     // warning if we seem to be looping forever.
1050 
1051     if ((QueuedAllocationWarningCount > 0) &&
1052         (try_count % QueuedAllocationWarningCount == 0)) {
1053       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1054                       "retries %d times", try_count);
1055     }
1056   }
1057 
1058   ShouldNotReachHere();
1059   return NULL;
1060 }
1061 
1062 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1063                                                            AllocationContext_t context,
1064                                                            bool expect_null_mutator_alloc_region) {
1065   assert_at_safepoint(true /* should_be_vm_thread */);
1066   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1067          "the current alloc region was unexpectedly found to be non-NULL");
1068 
1069   if (!is_humongous(word_size)) {
1070     return _allocator->attempt_allocation_locked(word_size, context);
1071   } else {
1072     HeapWord* result = humongous_obj_allocate(word_size, context);
1073     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1074       collector_state()->set_initiate_conc_mark_if_possible(true);
1075     }
1076     return result;
1077   }
1078 
1079   ShouldNotReachHere();
1080 }
1081 
1082 class PostCompactionPrinterClosure: public HeapRegionClosure {
1083 private:
1084   G1HRPrinter* _hr_printer;
1085 public:
1086   bool doHeapRegion(HeapRegion* hr) {
1087     assert(!hr->is_young(), "not expecting to find young regions");
1088     _hr_printer->post_compaction(hr);
1089     return false;
1090   }
1091 
1092   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1093     : _hr_printer(hr_printer) { }
1094 };
1095 
1096 void G1CollectedHeap::print_hrm_post_compaction() {
1097   if (_hr_printer.is_active()) {
1098     PostCompactionPrinterClosure cl(hr_printer());
1099     heap_region_iterate(&cl);
1100   }
1101 
1102 }
1103 
1104 void G1CollectedHeap::abort_concurrent_cycle() {
1105   // Note: When we have a more flexible GC logging framework that
1106   // allows us to add optional attributes to a GC log record we
1107   // could consider timing and reporting how long we wait in the
1108   // following two methods.
1109   wait_while_free_regions_coming();
1110   // If we start the compaction before the CM threads finish
1111   // scanning the root regions we might trip them over as we'll
1112   // be moving objects / updating references. So let's wait until
1113   // they are done. By telling them to abort, they should complete
1114   // early.
1115   _cm->root_regions()->abort();
1116   _cm->root_regions()->wait_until_scan_finished();
1117   append_secondary_free_list_if_not_empty_with_lock();
1118 
1119   // Disable discovery and empty the discovered lists
1120   // for the CM ref processor.
1121   ref_processor_cm()->disable_discovery();
1122   ref_processor_cm()->abandon_partial_discovery();
1123   ref_processor_cm()->verify_no_references_recorded();
1124 
1125   // Abandon current iterations of concurrent marking and concurrent
1126   // refinement, if any are in progress.
1127   concurrent_mark()->abort();
1128 }
1129 
1130 void G1CollectedHeap::prepare_heap_for_full_collection() {
1131   // Make sure we'll choose a new allocation region afterwards.
1132   _allocator->release_mutator_alloc_region();
1133   _allocator->abandon_gc_alloc_regions();
1134   g1_rem_set()->cleanupHRRS();
1135 
1136   // We may have added regions to the current incremental collection
1137   // set between the last GC or pause and now. We need to clear the
1138   // incremental collection set and then start rebuilding it afresh
1139   // after this full GC.
1140   abandon_collection_set(collection_set());
1141 
1142   tear_down_region_sets(false /* free_list_only */);
1143   collector_state()->set_gcs_are_young(true);
1144 }
1145 
1146 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1147   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1148   assert(used() == recalculate_used(), "Should be equal");
1149   _verifier->verify_region_sets_optional();
1150   _verifier->verify_before_gc();
1151   _verifier->check_bitmaps("Full GC Start");
1152 }
1153 
1154 void G1CollectedHeap::prepare_heap_for_mutators() {
1155   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1156   ClassLoaderDataGraph::purge();
1157   MetaspaceAux::verify_metrics();
1158 
1159   // Prepare heap for normal collections.
1160   assert(num_free_regions() == 0, "we should not have added any free regions");
1161   rebuild_region_sets(false /* free_list_only */);
1162   abort_refinement();
1163   resize_if_necessary_after_full_collection();
1164 
1165   // Rebuild the strong code root lists for each region
1166   rebuild_strong_code_roots();
1167 
1168   // Start a new incremental collection set for the next pause
1169   start_new_collection_set();
1170 
1171   _allocator->init_mutator_alloc_region();
1172 
1173   // Post collection state updates.
1174   MetaspaceGC::compute_new_size();
1175 }
1176 
1177 void G1CollectedHeap::abort_refinement() {
1178   if (_hot_card_cache->use_cache()) {
1179     _hot_card_cache->reset_card_counts();
1180     _hot_card_cache->reset_hot_cache();
1181   }
1182 
1183   // Discard all remembered set updates.
1184   JavaThread::dirty_card_queue_set().abandon_logs();
1185   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1186 }
1187 
1188 void G1CollectedHeap::verify_after_full_collection() {
1189   check_gc_time_stamps();
1190   _hrm.verify_optional();
1191   _verifier->verify_region_sets_optional();
1192   _verifier->verify_after_gc();
1193   // Clear the previous marking bitmap, if needed for bitmap verification.
1194   // Note we cannot do this when we clear the next marking bitmap in
1195   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1196   // objects marked during a full GC against the previous bitmap.
1197   // But we need to clear it before calling check_bitmaps below since
1198   // the full GC has compacted objects and updated TAMS but not updated
1199   // the prev bitmap.
1200   if (G1VerifyBitmaps) {
1201     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1202     _cm->clear_prev_bitmap(workers());
1203   }
1204   _verifier->check_bitmaps("Full GC End");
1205 
1206   // At this point there should be no regions in the
1207   // entire heap tagged as young.
1208   assert(check_young_list_empty(), "young list should be empty at this point");
1209 
1210   // Note: since we've just done a full GC, concurrent
1211   // marking is no longer active. Therefore we need not
1212   // re-enable reference discovery for the CM ref processor.
1213   // That will be done at the start of the next marking cycle.
1214   // We also know that the STW processor should no longer
1215   // discover any new references.
1216   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1217   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1218   ref_processor_stw()->verify_no_references_recorded();
1219   ref_processor_cm()->verify_no_references_recorded();
1220 }
1221 
1222 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1223   print_hrm_post_compaction();
1224   heap_transition->print();
1225   print_heap_after_gc();
1226   print_heap_regions();
1227 #ifdef TRACESPINNING
1228   ParallelTaskTerminator::print_termination_counts();
1229 #endif
1230 }
1231 
1232 void G1CollectedHeap::do_full_collection_inner(G1FullGCScope* scope) {
1233   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1234   g1_policy()->record_full_collection_start();
1235 
1236   print_heap_before_gc();
1237   print_heap_regions();
1238 
1239   abort_concurrent_cycle();
1240   verify_before_full_collection(scope->is_explicit_gc());
1241 
1242   gc_prologue(true);
1243   prepare_heap_for_full_collection();
1244 
1245   {
1246     G1FullCollector collector(scope, ref_processor_stw(), concurrent_mark()->nextMarkBitMap(), workers()->active_workers());
1247     // Prepare collection by putting reference processor
1248     // in a correct state.
1249     collector.prepare_collection();
1250 
1251     // Do the actual collection.
1252     collector.collect();
1253 
1254     collector.complete_collection();
1255   }
1256 
1257   prepare_heap_for_mutators();
1258 
1259   g1_policy()->record_full_collection_end();
1260   gc_epilogue(true);
1261 
1262   // Post collection verification.
1263   verify_after_full_collection();
1264 
1265   // Post collection logging.
1266   // We should do this after we potentially resize the heap so
1267   // that all the COMMIT / UNCOMMIT events are generated before
1268   // the compaction events.
1269   print_heap_after_full_collection(scope->heap_transition());
1270 }
1271 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1272                                          bool clear_all_soft_refs) {
1273   assert_at_safepoint(true /* should_be_vm_thread */);
1274 
1275   if (GCLocker::check_active_before_gc()) {
1276     // Full GC was not completed.
1277     return false;
1278   }
1279 
1280   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1281       collector_policy()->should_clear_all_soft_refs();
1282 
1283   G1FullGCScope scope(explicit_gc, do_clear_all_soft_refs);
1284   do_full_collection_inner(&scope);
1285 
1286   // Full collection was successfully completed.
1287   return true;
1288 }
1289 
1290 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1291   // Currently, there is no facility in the do_full_collection(bool) API to notify
1292   // the caller that the collection did not succeed (e.g., because it was locked
1293   // out by the GC locker). So, right now, we'll ignore the return value.
1294   bool dummy = do_full_collection(true,                /* explicit_gc */
1295                                   clear_all_soft_refs);
1296 }
1297 
1298 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1299   // Include bytes that will be pre-allocated to support collections, as "used".
1300   const size_t used_after_gc = used();
1301   const size_t capacity_after_gc = capacity();
1302   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1303 
1304   // This is enforced in arguments.cpp.
1305   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1306          "otherwise the code below doesn't make sense");
1307 
1308   // We don't have floating point command-line arguments
1309   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1310   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1311   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1312   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1313 
1314   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1315   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1316 
1317   // We have to be careful here as these two calculations can overflow
1318   // 32-bit size_t's.
1319   double used_after_gc_d = (double) used_after_gc;
1320   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1321   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1322 
1323   // Let's make sure that they are both under the max heap size, which
1324   // by default will make them fit into a size_t.
1325   double desired_capacity_upper_bound = (double) max_heap_size;
1326   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1327                                     desired_capacity_upper_bound);
1328   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1329                                     desired_capacity_upper_bound);
1330 
1331   // We can now safely turn them into size_t's.
1332   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1333   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1334 
1335   // This assert only makes sense here, before we adjust them
1336   // with respect to the min and max heap size.
1337   assert(minimum_desired_capacity <= maximum_desired_capacity,
1338          "minimum_desired_capacity = " SIZE_FORMAT ", "
1339          "maximum_desired_capacity = " SIZE_FORMAT,
1340          minimum_desired_capacity, maximum_desired_capacity);
1341 
1342   // Should not be greater than the heap max size. No need to adjust
1343   // it with respect to the heap min size as it's a lower bound (i.e.,
1344   // we'll try to make the capacity larger than it, not smaller).
1345   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1346   // Should not be less than the heap min size. No need to adjust it
1347   // with respect to the heap max size as it's an upper bound (i.e.,
1348   // we'll try to make the capacity smaller than it, not greater).
1349   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1350 
1351   if (capacity_after_gc < minimum_desired_capacity) {
1352     // Don't expand unless it's significant
1353     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1354 
1355     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1356                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1357                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1358 
1359     expand(expand_bytes, _workers);
1360 
1361     // No expansion, now see if we want to shrink
1362   } else if (capacity_after_gc > maximum_desired_capacity) {
1363     // Capacity too large, compute shrinking size
1364     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1365 
1366     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1367                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1368                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1369 
1370     shrink(shrink_bytes);
1371   }
1372 }
1373 
1374 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1375                                                             AllocationContext_t context,
1376                                                             bool do_gc,
1377                                                             bool clear_all_soft_refs,
1378                                                             bool expect_null_mutator_alloc_region,
1379                                                             bool* gc_succeeded) {
1380   *gc_succeeded = true;
1381   // Let's attempt the allocation first.
1382   HeapWord* result =
1383     attempt_allocation_at_safepoint(word_size,
1384                                     context,
1385                                     expect_null_mutator_alloc_region);
1386   if (result != NULL) {
1387     assert(*gc_succeeded, "sanity");
1388     return result;
1389   }
1390 
1391   // In a G1 heap, we're supposed to keep allocation from failing by
1392   // incremental pauses.  Therefore, at least for now, we'll favor
1393   // expansion over collection.  (This might change in the future if we can
1394   // do something smarter than full collection to satisfy a failed alloc.)
1395   result = expand_and_allocate(word_size, context);
1396   if (result != NULL) {
1397     assert(*gc_succeeded, "sanity");
1398     return result;
1399   }
1400 
1401   if (do_gc) {
1402     // Expansion didn't work, we'll try to do a Full GC.
1403     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1404                                        clear_all_soft_refs);
1405   }
1406 
1407   return NULL;
1408 }
1409 
1410 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1411                                                      AllocationContext_t context,
1412                                                      bool* succeeded) {
1413   assert_at_safepoint(true /* should_be_vm_thread */);
1414 
1415   // Attempts to allocate followed by Full GC.
1416   HeapWord* result =
1417     satisfy_failed_allocation_helper(word_size,
1418                                      context,
1419                                      true,  /* do_gc */
1420                                      false, /* clear_all_soft_refs */
1421                                      false, /* expect_null_mutator_alloc_region */
1422                                      succeeded);
1423 
1424   if (result != NULL || !*succeeded) {
1425     return result;
1426   }
1427 
1428   // Attempts to allocate followed by Full GC that will collect all soft references.
1429   result = satisfy_failed_allocation_helper(word_size,
1430                                             context,
1431                                             true, /* do_gc */
1432                                             true, /* clear_all_soft_refs */
1433                                             true, /* expect_null_mutator_alloc_region */
1434                                             succeeded);
1435 
1436   if (result != NULL || !*succeeded) {
1437     return result;
1438   }
1439 
1440   // Attempts to allocate, no GC
1441   result = satisfy_failed_allocation_helper(word_size,
1442                                             context,
1443                                             false, /* do_gc */
1444                                             false, /* clear_all_soft_refs */
1445                                             true,  /* expect_null_mutator_alloc_region */
1446                                             succeeded);
1447 
1448   if (result != NULL) {
1449     assert(*succeeded, "sanity");
1450     return result;
1451   }
1452 
1453   assert(!collector_policy()->should_clear_all_soft_refs(),
1454          "Flag should have been handled and cleared prior to this point");
1455 
1456   // What else?  We might try synchronous finalization later.  If the total
1457   // space available is large enough for the allocation, then a more
1458   // complete compaction phase than we've tried so far might be
1459   // appropriate.
1460   assert(*succeeded, "sanity");
1461   return NULL;
1462 }
1463 
1464 // Attempting to expand the heap sufficiently
1465 // to support an allocation of the given "word_size".  If
1466 // successful, perform the allocation and return the address of the
1467 // allocated block, or else "NULL".
1468 
1469 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1470   assert_at_safepoint(true /* should_be_vm_thread */);
1471 
1472   _verifier->verify_region_sets_optional();
1473 
1474   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1475   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1476                             word_size * HeapWordSize);
1477 
1478 
1479   if (expand(expand_bytes, _workers)) {
1480     _hrm.verify_optional();
1481     _verifier->verify_region_sets_optional();
1482     return attempt_allocation_at_safepoint(word_size,
1483                                            context,
1484                                            false /* expect_null_mutator_alloc_region */);
1485   }
1486   return NULL;
1487 }
1488 
1489 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1490   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1491   aligned_expand_bytes = align_up(aligned_expand_bytes,
1492                                        HeapRegion::GrainBytes);
1493 
1494   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1495                             expand_bytes, aligned_expand_bytes);
1496 
1497   if (is_maximal_no_gc()) {
1498     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1499     return false;
1500   }
1501 
1502   double expand_heap_start_time_sec = os::elapsedTime();
1503   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1504   assert(regions_to_expand > 0, "Must expand by at least one region");
1505 
1506   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1507   if (expand_time_ms != NULL) {
1508     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1509   }
1510 
1511   if (expanded_by > 0) {
1512     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1513     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1514     g1_policy()->record_new_heap_size(num_regions());
1515   } else {
1516     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1517 
1518     // The expansion of the virtual storage space was unsuccessful.
1519     // Let's see if it was because we ran out of swap.
1520     if (G1ExitOnExpansionFailure &&
1521         _hrm.available() >= regions_to_expand) {
1522       // We had head room...
1523       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1524     }
1525   }
1526   return regions_to_expand > 0;
1527 }
1528 
1529 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1530   size_t aligned_shrink_bytes =
1531     ReservedSpace::page_align_size_down(shrink_bytes);
1532   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1533                                          HeapRegion::GrainBytes);
1534   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1535 
1536   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1537   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1538 
1539 
1540   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1541                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1542   if (num_regions_removed > 0) {
1543     g1_policy()->record_new_heap_size(num_regions());
1544   } else {
1545     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1546   }
1547 }
1548 
1549 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1550   _verifier->verify_region_sets_optional();
1551 
1552   // We should only reach here at the end of a Full GC which means we
1553   // should not not be holding to any GC alloc regions. The method
1554   // below will make sure of that and do any remaining clean up.
1555   _allocator->abandon_gc_alloc_regions();
1556 
1557   // Instead of tearing down / rebuilding the free lists here, we
1558   // could instead use the remove_all_pending() method on free_list to
1559   // remove only the ones that we need to remove.
1560   tear_down_region_sets(true /* free_list_only */);
1561   shrink_helper(shrink_bytes);
1562   rebuild_region_sets(true /* free_list_only */);
1563 
1564   _hrm.verify_optional();
1565   _verifier->verify_region_sets_optional();
1566 }
1567 
1568 // Public methods.
1569 
1570 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1571   CollectedHeap(),
1572   _collector_policy(collector_policy),
1573   _g1_policy(create_g1_policy()),
1574   _collection_set(this, _g1_policy),
1575   _dirty_card_queue_set(false),
1576   _is_alive_closure_cm(this),
1577   _is_alive_closure_stw(this),
1578   _ref_processor_cm(NULL),
1579   _ref_processor_stw(NULL),
1580   _bot(NULL),
1581   _hot_card_cache(NULL),
1582   _g1_rem_set(NULL),
1583   _cg1r(NULL),
1584   _g1mm(NULL),
1585   _refine_cte_cl(NULL),
1586   _preserved_marks_set(true /* in_c_heap */),
1587   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1588   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1589   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1590   _humongous_reclaim_candidates(),
1591   _has_humongous_reclaim_candidates(false),
1592   _archive_allocator(NULL),
1593   _free_regions_coming(false),
1594   _gc_time_stamp(0),
1595   _summary_bytes_used(0),
1596   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1597   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1598   _expand_heap_after_alloc_failure(true),
1599   _old_marking_cycles_started(0),
1600   _old_marking_cycles_completed(0),
1601   _in_cset_fast_test(),
1602   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1603   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1604 
1605   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1606                           /* are_GC_task_threads */true,
1607                           /* are_ConcurrentGC_threads */false);
1608   _workers->initialize_workers();
1609   _verifier = new G1HeapVerifier(this);
1610 
1611   _allocator = G1Allocator::create_allocator(this);
1612 
1613   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1614 
1615   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1616 
1617   // Override the default _filler_array_max_size so that no humongous filler
1618   // objects are created.
1619   _filler_array_max_size = _humongous_object_threshold_in_words;
1620 
1621   uint n_queues = ParallelGCThreads;
1622   _task_queues = new RefToScanQueueSet(n_queues);
1623 
1624   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1625 
1626   for (uint i = 0; i < n_queues; i++) {
1627     RefToScanQueue* q = new RefToScanQueue();
1628     q->initialize();
1629     _task_queues->register_queue(i, q);
1630     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1631   }
1632 
1633   // Initialize the G1EvacuationFailureALot counters and flags.
1634   NOT_PRODUCT(reset_evacuation_should_fail();)
1635 
1636   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1637 }
1638 
1639 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1640                                                                  size_t size,
1641                                                                  size_t translation_factor) {
1642   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1643   // Allocate a new reserved space, preferring to use large pages.
1644   ReservedSpace rs(size, preferred_page_size);
1645   G1RegionToSpaceMapper* result  =
1646     G1RegionToSpaceMapper::create_mapper(rs,
1647                                          size,
1648                                          rs.alignment(),
1649                                          HeapRegion::GrainBytes,
1650                                          translation_factor,
1651                                          mtGC);
1652 
1653   os::trace_page_sizes_for_requested_size(description,
1654                                           size,
1655                                           preferred_page_size,
1656                                           rs.alignment(),
1657                                           rs.base(),
1658                                           rs.size());
1659 
1660   return result;
1661 }
1662 
1663 jint G1CollectedHeap::initialize() {
1664   CollectedHeap::pre_initialize();
1665   os::enable_vtime();
1666 
1667   // Necessary to satisfy locking discipline assertions.
1668 
1669   MutexLocker x(Heap_lock);
1670 
1671   // While there are no constraints in the GC code that HeapWordSize
1672   // be any particular value, there are multiple other areas in the
1673   // system which believe this to be true (e.g. oop->object_size in some
1674   // cases incorrectly returns the size in wordSize units rather than
1675   // HeapWordSize).
1676   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1677 
1678   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1679   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1680   size_t heap_alignment = collector_policy()->heap_alignment();
1681 
1682   // Ensure that the sizes are properly aligned.
1683   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1684   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1685   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1686 
1687   _refine_cte_cl = new RefineCardTableEntryClosure();
1688 
1689   jint ecode = JNI_OK;
1690   _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode);
1691   if (_cg1r == NULL) {
1692     return ecode;
1693   }
1694 
1695   // Reserve the maximum.
1696 
1697   // When compressed oops are enabled, the preferred heap base
1698   // is calculated by subtracting the requested size from the
1699   // 32Gb boundary and using the result as the base address for
1700   // heap reservation. If the requested size is not aligned to
1701   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1702   // into the ReservedHeapSpace constructor) then the actual
1703   // base of the reserved heap may end up differing from the
1704   // address that was requested (i.e. the preferred heap base).
1705   // If this happens then we could end up using a non-optimal
1706   // compressed oops mode.
1707 
1708   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1709                                                  heap_alignment);
1710 
1711   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1712 
1713   // Create the barrier set for the entire reserved region.
1714   G1SATBCardTableLoggingModRefBS* bs
1715     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1716   bs->initialize();
1717   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1718   set_barrier_set(bs);
1719 
1720   // Create the hot card cache.
1721   _hot_card_cache = new G1HotCardCache(this);
1722 
1723   // Also create a G1 rem set.
1724   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1725 
1726   // Carve out the G1 part of the heap.
1727   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1728   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1729   G1RegionToSpaceMapper* heap_storage =
1730     G1RegionToSpaceMapper::create_mapper(g1_rs,
1731                                          g1_rs.size(),
1732                                          page_size,
1733                                          HeapRegion::GrainBytes,
1734                                          1,
1735                                          mtJavaHeap);
1736   os::trace_page_sizes("Heap",
1737                        collector_policy()->min_heap_byte_size(),
1738                        max_byte_size,
1739                        page_size,
1740                        heap_rs.base(),
1741                        heap_rs.size());
1742   heap_storage->set_mapping_changed_listener(&_listener);
1743 
1744   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1745   G1RegionToSpaceMapper* bot_storage =
1746     create_aux_memory_mapper("Block Offset Table",
1747                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1748                              G1BlockOffsetTable::heap_map_factor());
1749 
1750   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1751   G1RegionToSpaceMapper* cardtable_storage =
1752     create_aux_memory_mapper("Card Table",
1753                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1754                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1755 
1756   G1RegionToSpaceMapper* card_counts_storage =
1757     create_aux_memory_mapper("Card Counts Table",
1758                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1759                              G1CardCounts::heap_map_factor());
1760 
1761   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1762   G1RegionToSpaceMapper* prev_bitmap_storage =
1763     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1764   G1RegionToSpaceMapper* next_bitmap_storage =
1765     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1766 
1767   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1768   g1_barrier_set()->initialize(cardtable_storage);
1769   // Do later initialization work for concurrent refinement.
1770   _hot_card_cache->initialize(card_counts_storage);
1771 
1772   // 6843694 - ensure that the maximum region index can fit
1773   // in the remembered set structures.
1774   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1775   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1776 
1777   g1_rem_set()->initialize(max_capacity(), max_regions());
1778 
1779   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1780   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1781   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1782             "too many cards per region");
1783 
1784   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1785 
1786   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1787 
1788   {
1789     HeapWord* start = _hrm.reserved().start();
1790     HeapWord* end = _hrm.reserved().end();
1791     size_t granularity = HeapRegion::GrainBytes;
1792 
1793     _in_cset_fast_test.initialize(start, end, granularity);
1794     _humongous_reclaim_candidates.initialize(start, end, granularity);
1795   }
1796 
1797   // Create the G1ConcurrentMark data structure and thread.
1798   // (Must do this late, so that "max_regions" is defined.)
1799   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1800   if (_cm == NULL || !_cm->completed_initialization()) {
1801     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1802     return JNI_ENOMEM;
1803   }
1804   _cmThread = _cm->cmThread();
1805 
1806   // Now expand into the initial heap size.
1807   if (!expand(init_byte_size, _workers)) {
1808     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1809     return JNI_ENOMEM;
1810   }
1811 
1812   // Perform any initialization actions delegated to the policy.
1813   g1_policy()->init(this, &_collection_set);
1814 
1815   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1816                                                SATB_Q_FL_lock,
1817                                                G1SATBProcessCompletedThreshold,
1818                                                Shared_SATB_Q_lock);
1819 
1820   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1821                                                 DirtyCardQ_CBL_mon,
1822                                                 DirtyCardQ_FL_lock,
1823                                                 (int)concurrent_g1_refine()->yellow_zone(),
1824                                                 (int)concurrent_g1_refine()->red_zone(),
1825                                                 Shared_DirtyCardQ_lock,
1826                                                 NULL,  // fl_owner
1827                                                 true); // init_free_ids
1828 
1829   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1830                                     DirtyCardQ_CBL_mon,
1831                                     DirtyCardQ_FL_lock,
1832                                     -1, // never trigger processing
1833                                     -1, // no limit on length
1834                                     Shared_DirtyCardQ_lock,
1835                                     &JavaThread::dirty_card_queue_set());
1836 
1837   // Here we allocate the dummy HeapRegion that is required by the
1838   // G1AllocRegion class.
1839   HeapRegion* dummy_region = _hrm.get_dummy_region();
1840 
1841   // We'll re-use the same region whether the alloc region will
1842   // require BOT updates or not and, if it doesn't, then a non-young
1843   // region will complain that it cannot support allocations without
1844   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1845   dummy_region->set_eden();
1846   // Make sure it's full.
1847   dummy_region->set_top(dummy_region->end());
1848   G1AllocRegion::setup(this, dummy_region);
1849 
1850   _allocator->init_mutator_alloc_region();
1851 
1852   // Do create of the monitoring and management support so that
1853   // values in the heap have been properly initialized.
1854   _g1mm = new G1MonitoringSupport(this);
1855 
1856   G1StringDedup::initialize();
1857 
1858   _preserved_marks_set.init(ParallelGCThreads);
1859 
1860   _collection_set.initialize(max_regions());
1861 
1862   return JNI_OK;
1863 }
1864 
1865 void G1CollectedHeap::stop() {
1866   // Stop all concurrent threads. We do this to make sure these threads
1867   // do not continue to execute and access resources (e.g. logging)
1868   // that are destroyed during shutdown.
1869   _cg1r->stop();
1870   _cmThread->stop();
1871   if (G1StringDedup::is_enabled()) {
1872     G1StringDedup::stop();
1873   }
1874 }
1875 
1876 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1877   return HeapRegion::max_region_size();
1878 }
1879 
1880 void G1CollectedHeap::post_initialize() {
1881   ref_processing_init();
1882 }
1883 
1884 void G1CollectedHeap::ref_processing_init() {
1885   // Reference processing in G1 currently works as follows:
1886   //
1887   // * There are two reference processor instances. One is
1888   //   used to record and process discovered references
1889   //   during concurrent marking; the other is used to
1890   //   record and process references during STW pauses
1891   //   (both full and incremental).
1892   // * Both ref processors need to 'span' the entire heap as
1893   //   the regions in the collection set may be dotted around.
1894   //
1895   // * For the concurrent marking ref processor:
1896   //   * Reference discovery is enabled at initial marking.
1897   //   * Reference discovery is disabled and the discovered
1898   //     references processed etc during remarking.
1899   //   * Reference discovery is MT (see below).
1900   //   * Reference discovery requires a barrier (see below).
1901   //   * Reference processing may or may not be MT
1902   //     (depending on the value of ParallelRefProcEnabled
1903   //     and ParallelGCThreads).
1904   //   * A full GC disables reference discovery by the CM
1905   //     ref processor and abandons any entries on it's
1906   //     discovered lists.
1907   //
1908   // * For the STW processor:
1909   //   * Non MT discovery is enabled at the start of a full GC.
1910   //   * Processing and enqueueing during a full GC is non-MT.
1911   //   * During a full GC, references are processed after marking.
1912   //
1913   //   * Discovery (may or may not be MT) is enabled at the start
1914   //     of an incremental evacuation pause.
1915   //   * References are processed near the end of a STW evacuation pause.
1916   //   * For both types of GC:
1917   //     * Discovery is atomic - i.e. not concurrent.
1918   //     * Reference discovery will not need a barrier.
1919 
1920   MemRegion mr = reserved_region();
1921 
1922   // Concurrent Mark ref processor
1923   _ref_processor_cm =
1924     new ReferenceProcessor(mr,    // span
1925                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
1926                                 // mt processing
1927                            ParallelGCThreads,
1928                                 // degree of mt processing
1929                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1930                                 // mt discovery
1931                            MAX2(ParallelGCThreads, ConcGCThreads),
1932                                 // degree of mt discovery
1933                            false,
1934                                 // Reference discovery is not atomic
1935                            &_is_alive_closure_cm);
1936                                 // is alive closure
1937                                 // (for efficiency/performance)
1938 
1939   // STW ref processor
1940   _ref_processor_stw =
1941     new ReferenceProcessor(mr,    // span
1942                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
1943                                 // mt processing
1944                            ParallelGCThreads,
1945                                 // degree of mt processing
1946                            (ParallelGCThreads > 1),
1947                                 // mt discovery
1948                            ParallelGCThreads,
1949                                 // degree of mt discovery
1950                            true,
1951                                 // Reference discovery is atomic
1952                            &_is_alive_closure_stw);
1953                                 // is alive closure
1954                                 // (for efficiency/performance)
1955 }
1956 
1957 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1958   return _collector_policy;
1959 }
1960 
1961 size_t G1CollectedHeap::capacity() const {
1962   return _hrm.length() * HeapRegion::GrainBytes;
1963 }
1964 
1965 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
1966   hr->reset_gc_time_stamp();
1967 }
1968 
1969 #ifndef PRODUCT
1970 
1971 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
1972 private:
1973   unsigned _gc_time_stamp;
1974   bool _failures;
1975 
1976 public:
1977   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
1978     _gc_time_stamp(gc_time_stamp), _failures(false) { }
1979 
1980   virtual bool doHeapRegion(HeapRegion* hr) {
1981     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
1982     if (_gc_time_stamp != region_gc_time_stamp) {
1983       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
1984                             region_gc_time_stamp, _gc_time_stamp);
1985       _failures = true;
1986     }
1987     return false;
1988   }
1989 
1990   bool failures() { return _failures; }
1991 };
1992 
1993 void G1CollectedHeap::check_gc_time_stamps() {
1994   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
1995   heap_region_iterate(&cl);
1996   guarantee(!cl.failures(), "all GC time stamps should have been reset");
1997 }
1998 #endif // PRODUCT
1999 
2000 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2001   _hot_card_cache->drain(cl, worker_i);
2002 }
2003 
2004 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2005   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2006   size_t n_completed_buffers = 0;
2007   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2008     n_completed_buffers++;
2009   }
2010   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2011   dcqs.clear_n_completed_buffers();
2012   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2013 }
2014 
2015 // Computes the sum of the storage used by the various regions.
2016 size_t G1CollectedHeap::used() const {
2017   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2018   if (_archive_allocator != NULL) {
2019     result += _archive_allocator->used();
2020   }
2021   return result;
2022 }
2023 
2024 size_t G1CollectedHeap::used_unlocked() const {
2025   return _summary_bytes_used;
2026 }
2027 
2028 class SumUsedClosure: public HeapRegionClosure {
2029   size_t _used;
2030 public:
2031   SumUsedClosure() : _used(0) {}
2032   bool doHeapRegion(HeapRegion* r) {
2033     _used += r->used();
2034     return false;
2035   }
2036   size_t result() { return _used; }
2037 };
2038 
2039 size_t G1CollectedHeap::recalculate_used() const {
2040   double recalculate_used_start = os::elapsedTime();
2041 
2042   SumUsedClosure blk;
2043   heap_region_iterate(&blk);
2044 
2045   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2046   return blk.result();
2047 }
2048 
2049 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2050   switch (cause) {
2051     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2052     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2053     case GCCause::_update_allocation_context_stats_inc: return true;
2054     case GCCause::_wb_conc_mark:                        return true;
2055     default :                                           return false;
2056   }
2057 }
2058 
2059 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2060   switch (cause) {
2061     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2062     case GCCause::_g1_humongous_allocation: return true;
2063     default:                                return is_user_requested_concurrent_full_gc(cause);
2064   }
2065 }
2066 
2067 #ifndef PRODUCT
2068 void G1CollectedHeap::allocate_dummy_regions() {
2069   // Let's fill up most of the region
2070   size_t word_size = HeapRegion::GrainWords - 1024;
2071   // And as a result the region we'll allocate will be humongous.
2072   guarantee(is_humongous(word_size), "sanity");
2073 
2074   // _filler_array_max_size is set to humongous object threshold
2075   // but temporarily change it to use CollectedHeap::fill_with_object().
2076   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2077 
2078   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2079     // Let's use the existing mechanism for the allocation
2080     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2081                                                  AllocationContext::system());
2082     if (dummy_obj != NULL) {
2083       MemRegion mr(dummy_obj, word_size);
2084       CollectedHeap::fill_with_object(mr);
2085     } else {
2086       // If we can't allocate once, we probably cannot allocate
2087       // again. Let's get out of the loop.
2088       break;
2089     }
2090   }
2091 }
2092 #endif // !PRODUCT
2093 
2094 void G1CollectedHeap::increment_old_marking_cycles_started() {
2095   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2096          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2097          "Wrong marking cycle count (started: %d, completed: %d)",
2098          _old_marking_cycles_started, _old_marking_cycles_completed);
2099 
2100   _old_marking_cycles_started++;
2101 }
2102 
2103 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2104   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2105 
2106   // We assume that if concurrent == true, then the caller is a
2107   // concurrent thread that was joined the Suspendible Thread
2108   // Set. If there's ever a cheap way to check this, we should add an
2109   // assert here.
2110 
2111   // Given that this method is called at the end of a Full GC or of a
2112   // concurrent cycle, and those can be nested (i.e., a Full GC can
2113   // interrupt a concurrent cycle), the number of full collections
2114   // completed should be either one (in the case where there was no
2115   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2116   // behind the number of full collections started.
2117 
2118   // This is the case for the inner caller, i.e. a Full GC.
2119   assert(concurrent ||
2120          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2121          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2122          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2123          "is inconsistent with _old_marking_cycles_completed = %u",
2124          _old_marking_cycles_started, _old_marking_cycles_completed);
2125 
2126   // This is the case for the outer caller, i.e. the concurrent cycle.
2127   assert(!concurrent ||
2128          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2129          "for outer caller (concurrent cycle): "
2130          "_old_marking_cycles_started = %u "
2131          "is inconsistent with _old_marking_cycles_completed = %u",
2132          _old_marking_cycles_started, _old_marking_cycles_completed);
2133 
2134   _old_marking_cycles_completed += 1;
2135 
2136   // We need to clear the "in_progress" flag in the CM thread before
2137   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2138   // is set) so that if a waiter requests another System.gc() it doesn't
2139   // incorrectly see that a marking cycle is still in progress.
2140   if (concurrent) {
2141     _cmThread->set_idle();
2142   }
2143 
2144   // This notify_all() will ensure that a thread that called
2145   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2146   // and it's waiting for a full GC to finish will be woken up. It is
2147   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2148   FullGCCount_lock->notify_all();
2149 }
2150 
2151 void G1CollectedHeap::collect(GCCause::Cause cause) {
2152   assert_heap_not_locked();
2153 
2154   uint gc_count_before;
2155   uint old_marking_count_before;
2156   uint full_gc_count_before;
2157   bool retry_gc;
2158 
2159   do {
2160     retry_gc = false;
2161 
2162     {
2163       MutexLocker ml(Heap_lock);
2164 
2165       // Read the GC count while holding the Heap_lock
2166       gc_count_before = total_collections();
2167       full_gc_count_before = total_full_collections();
2168       old_marking_count_before = _old_marking_cycles_started;
2169     }
2170 
2171     if (should_do_concurrent_full_gc(cause)) {
2172       // Schedule an initial-mark evacuation pause that will start a
2173       // concurrent cycle. We're setting word_size to 0 which means that
2174       // we are not requesting a post-GC allocation.
2175       VM_G1IncCollectionPause op(gc_count_before,
2176                                  0,     /* word_size */
2177                                  true,  /* should_initiate_conc_mark */
2178                                  g1_policy()->max_pause_time_ms(),
2179                                  cause);
2180       op.set_allocation_context(AllocationContext::current());
2181 
2182       VMThread::execute(&op);
2183       if (!op.pause_succeeded()) {
2184         if (old_marking_count_before == _old_marking_cycles_started) {
2185           retry_gc = op.should_retry_gc();
2186         } else {
2187           // A Full GC happened while we were trying to schedule the
2188           // initial-mark GC. No point in starting a new cycle given
2189           // that the whole heap was collected anyway.
2190         }
2191 
2192         if (retry_gc) {
2193           if (GCLocker::is_active_and_needs_gc()) {
2194             GCLocker::stall_until_clear();
2195           }
2196         }
2197       }
2198     } else {
2199       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2200           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2201 
2202         // Schedule a standard evacuation pause. We're setting word_size
2203         // to 0 which means that we are not requesting a post-GC allocation.
2204         VM_G1IncCollectionPause op(gc_count_before,
2205                                    0,     /* word_size */
2206                                    false, /* should_initiate_conc_mark */
2207                                    g1_policy()->max_pause_time_ms(),
2208                                    cause);
2209         VMThread::execute(&op);
2210       } else {
2211         // Schedule a Full GC.
2212         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2213         VMThread::execute(&op);
2214       }
2215     }
2216   } while (retry_gc);
2217 }
2218 
2219 bool G1CollectedHeap::is_in(const void* p) const {
2220   if (_hrm.reserved().contains(p)) {
2221     // Given that we know that p is in the reserved space,
2222     // heap_region_containing() should successfully
2223     // return the containing region.
2224     HeapRegion* hr = heap_region_containing(p);
2225     return hr->is_in(p);
2226   } else {
2227     return false;
2228   }
2229 }
2230 
2231 #ifdef ASSERT
2232 bool G1CollectedHeap::is_in_exact(const void* p) const {
2233   bool contains = reserved_region().contains(p);
2234   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2235   if (contains && available) {
2236     return true;
2237   } else {
2238     return false;
2239   }
2240 }
2241 #endif
2242 
2243 // Iteration functions.
2244 
2245 // Iterates an ObjectClosure over all objects within a HeapRegion.
2246 
2247 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2248   ObjectClosure* _cl;
2249 public:
2250   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2251   bool doHeapRegion(HeapRegion* r) {
2252     if (!r->is_continues_humongous()) {
2253       r->object_iterate(_cl);
2254     }
2255     return false;
2256   }
2257 };
2258 
2259 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2260   IterateObjectClosureRegionClosure blk(cl);
2261   heap_region_iterate(&blk);
2262 }
2263 
2264 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2265   _hrm.iterate(cl);
2266 }
2267 
2268 void G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2269                                               uint worker_id,
2270                                               HeapRegionClaimerBase *hrclaimer) const {
2271   _hrm.par_iterate(cl, worker_id, hrclaimer);
2272 }
2273 
2274 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2275   _collection_set.iterate(cl);
2276 }
2277 
2278 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2279   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2280 }
2281 
2282 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2283   HeapRegion* hr = heap_region_containing(addr);
2284   return hr->block_start(addr);
2285 }
2286 
2287 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2288   HeapRegion* hr = heap_region_containing(addr);
2289   return hr->block_size(addr);
2290 }
2291 
2292 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2293   HeapRegion* hr = heap_region_containing(addr);
2294   return hr->block_is_obj(addr);
2295 }
2296 
2297 bool G1CollectedHeap::supports_tlab_allocation() const {
2298   return true;
2299 }
2300 
2301 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2302   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2303 }
2304 
2305 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2306   return _eden.length() * HeapRegion::GrainBytes;
2307 }
2308 
2309 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2310 // must be equal to the humongous object limit.
2311 size_t G1CollectedHeap::max_tlab_size() const {
2312   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2313 }
2314 
2315 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2316   AllocationContext_t context = AllocationContext::current();
2317   return _allocator->unsafe_max_tlab_alloc(context);
2318 }
2319 
2320 size_t G1CollectedHeap::max_capacity() const {
2321   return _hrm.reserved().byte_size();
2322 }
2323 
2324 jlong G1CollectedHeap::millis_since_last_gc() {
2325   // See the notes in GenCollectedHeap::millis_since_last_gc()
2326   // for more information about the implementation.
2327   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2328     _g1_policy->collection_pause_end_millis();
2329   if (ret_val < 0) {
2330     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2331       ". returning zero instead.", ret_val);
2332     return 0;
2333   }
2334   return ret_val;
2335 }
2336 
2337 void G1CollectedHeap::prepare_for_verify() {
2338   _verifier->prepare_for_verify();
2339 }
2340 
2341 void G1CollectedHeap::verify(VerifyOption vo) {
2342   _verifier->verify(vo);
2343 }
2344 
2345 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2346   return true;
2347 }
2348 
2349 const char* const* G1CollectedHeap::concurrent_phases() const {
2350   return _cmThread->concurrent_phases();
2351 }
2352 
2353 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2354   return _cmThread->request_concurrent_phase(phase);
2355 }
2356 
2357 class PrintRegionClosure: public HeapRegionClosure {
2358   outputStream* _st;
2359 public:
2360   PrintRegionClosure(outputStream* st) : _st(st) {}
2361   bool doHeapRegion(HeapRegion* r) {
2362     r->print_on(_st);
2363     return false;
2364   }
2365 };
2366 
2367 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2368                                        const HeapRegion* hr,
2369                                        const VerifyOption vo) const {
2370   switch (vo) {
2371   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2372   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2373   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2374   default:                            ShouldNotReachHere();
2375   }
2376   return false; // keep some compilers happy
2377 }
2378 
2379 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2380                                        const VerifyOption vo) const {
2381   switch (vo) {
2382   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2383   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2384   case VerifyOption_G1UseMarkWord: {
2385     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2386     return !obj->is_gc_marked() && !hr->is_archive();
2387   }
2388   default:                            ShouldNotReachHere();
2389   }
2390   return false; // keep some compilers happy
2391 }
2392 
2393 void G1CollectedHeap::print_heap_regions() const {
2394   Log(gc, heap, region) log;
2395   if (log.is_trace()) {
2396     ResourceMark rm;
2397     print_regions_on(log.trace_stream());
2398   }
2399 }
2400 
2401 void G1CollectedHeap::print_on(outputStream* st) const {
2402   st->print(" %-20s", "garbage-first heap");
2403   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2404             capacity()/K, used_unlocked()/K);
2405   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2406             p2i(_hrm.reserved().start()),
2407             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2408             p2i(_hrm.reserved().end()));
2409   st->cr();
2410   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2411   uint young_regions = young_regions_count();
2412   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2413             (size_t) young_regions * HeapRegion::GrainBytes / K);
2414   uint survivor_regions = survivor_regions_count();
2415   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2416             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2417   st->cr();
2418   MetaspaceAux::print_on(st);
2419 }
2420 
2421 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2422   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2423                "HS=humongous(starts), HC=humongous(continues), "
2424                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2425                "AC=allocation context, "
2426                "TAMS=top-at-mark-start (previous, next)");
2427   PrintRegionClosure blk(st);
2428   heap_region_iterate(&blk);
2429 }
2430 
2431 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2432   print_on(st);
2433 
2434   // Print the per-region information.
2435   print_regions_on(st);
2436 }
2437 
2438 void G1CollectedHeap::print_on_error(outputStream* st) const {
2439   this->CollectedHeap::print_on_error(st);
2440 
2441   if (_cm != NULL) {
2442     st->cr();
2443     _cm->print_on_error(st);
2444   }
2445 }
2446 
2447 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2448   workers()->print_worker_threads_on(st);
2449   _cmThread->print_on(st);
2450   st->cr();
2451   _cm->print_worker_threads_on(st);
2452   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2453   if (G1StringDedup::is_enabled()) {
2454     G1StringDedup::print_worker_threads_on(st);
2455   }
2456 }
2457 
2458 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2459   workers()->threads_do(tc);
2460   tc->do_thread(_cmThread);
2461   _cm->threads_do(tc);
2462   _cg1r->threads_do(tc); // also iterates over the sample thread
2463   if (G1StringDedup::is_enabled()) {
2464     G1StringDedup::threads_do(tc);
2465   }
2466 }
2467 
2468 void G1CollectedHeap::print_tracing_info() const {
2469   g1_rem_set()->print_summary_info();
2470   concurrent_mark()->print_summary_info();
2471 }
2472 
2473 #ifndef PRODUCT
2474 // Helpful for debugging RSet issues.
2475 
2476 class PrintRSetsClosure : public HeapRegionClosure {
2477 private:
2478   const char* _msg;
2479   size_t _occupied_sum;
2480 
2481 public:
2482   bool doHeapRegion(HeapRegion* r) {
2483     HeapRegionRemSet* hrrs = r->rem_set();
2484     size_t occupied = hrrs->occupied();
2485     _occupied_sum += occupied;
2486 
2487     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2488     if (occupied == 0) {
2489       tty->print_cr("  RSet is empty");
2490     } else {
2491       hrrs->print();
2492     }
2493     tty->print_cr("----------");
2494     return false;
2495   }
2496 
2497   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2498     tty->cr();
2499     tty->print_cr("========================================");
2500     tty->print_cr("%s", msg);
2501     tty->cr();
2502   }
2503 
2504   ~PrintRSetsClosure() {
2505     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2506     tty->print_cr("========================================");
2507     tty->cr();
2508   }
2509 };
2510 
2511 void G1CollectedHeap::print_cset_rsets() {
2512   PrintRSetsClosure cl("Printing CSet RSets");
2513   collection_set_iterate(&cl);
2514 }
2515 
2516 void G1CollectedHeap::print_all_rsets() {
2517   PrintRSetsClosure cl("Printing All RSets");;
2518   heap_region_iterate(&cl);
2519 }
2520 #endif // PRODUCT
2521 
2522 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2523 
2524   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2525   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2526   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2527 
2528   size_t eden_capacity_bytes =
2529     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2530 
2531   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2532   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2533                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2534 }
2535 
2536 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2537   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2538                        stats->unused(), stats->used(), stats->region_end_waste(),
2539                        stats->regions_filled(), stats->direct_allocated(),
2540                        stats->failure_used(), stats->failure_waste());
2541 }
2542 
2543 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2544   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2545   gc_tracer->report_gc_heap_summary(when, heap_summary);
2546 
2547   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2548   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2549 }
2550 
2551 G1CollectedHeap* G1CollectedHeap::heap() {
2552   CollectedHeap* heap = Universe::heap();
2553   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2554   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2555   return (G1CollectedHeap*)heap;
2556 }
2557 
2558 void G1CollectedHeap::gc_prologue(bool full) {
2559   // always_do_update_barrier = false;
2560   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2561 
2562   // This summary needs to be printed before incrementing total collections.
2563   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2564 
2565   // Update common counters.
2566   increment_total_collections(full /* full gc */);
2567   if (full) {
2568     increment_old_marking_cycles_started();
2569     reset_gc_time_stamp();
2570   } else {
2571     increment_gc_time_stamp();
2572   }
2573 
2574   // Fill TLAB's and such
2575   double start = os::elapsedTime();
2576   accumulate_statistics_all_tlabs();
2577   ensure_parsability(true);
2578   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2579 }
2580 
2581 void G1CollectedHeap::gc_epilogue(bool full) {
2582   // Update common counters.
2583   if (full) {
2584     // Update the number of full collections that have been completed.
2585     increment_old_marking_cycles_completed(false /* concurrent */);
2586   }
2587 
2588   // We are at the end of the GC. Total collections has already been increased.
2589   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2590 
2591   // FIXME: what is this about?
2592   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2593   // is set.
2594 #if defined(COMPILER2) || INCLUDE_JVMCI
2595   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2596 #endif
2597   // always_do_update_barrier = true;
2598 
2599   double start = os::elapsedTime();
2600   resize_all_tlabs();
2601   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2602 
2603   allocation_context_stats().update(full);
2604 
2605   MemoryService::track_memory_usage();
2606   // We have just completed a GC. Update the soft reference
2607   // policy with the new heap occupancy
2608   Universe::update_heap_info_at_gc();
2609 }
2610 
2611 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2612                                                uint gc_count_before,
2613                                                bool* succeeded,
2614                                                GCCause::Cause gc_cause) {
2615   assert_heap_not_locked_and_not_at_safepoint();
2616   VM_G1IncCollectionPause op(gc_count_before,
2617                              word_size,
2618                              false, /* should_initiate_conc_mark */
2619                              g1_policy()->max_pause_time_ms(),
2620                              gc_cause);
2621 
2622   op.set_allocation_context(AllocationContext::current());
2623   VMThread::execute(&op);
2624 
2625   HeapWord* result = op.result();
2626   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2627   assert(result == NULL || ret_succeeded,
2628          "the result should be NULL if the VM did not succeed");
2629   *succeeded = ret_succeeded;
2630 
2631   assert_heap_not_locked();
2632   return result;
2633 }
2634 
2635 void
2636 G1CollectedHeap::doConcurrentMark() {
2637   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2638   if (!_cmThread->in_progress()) {
2639     _cmThread->set_started();
2640     CGC_lock->notify();
2641   }
2642 }
2643 
2644 size_t G1CollectedHeap::pending_card_num() {
2645   size_t extra_cards = 0;
2646   JavaThread *curr = Threads::first();
2647   while (curr != NULL) {
2648     DirtyCardQueue& dcq = curr->dirty_card_queue();
2649     extra_cards += dcq.size();
2650     curr = curr->next();
2651   }
2652   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2653   size_t buffer_size = dcqs.buffer_size();
2654   size_t buffer_num = dcqs.completed_buffers_num();
2655 
2656   return buffer_size * buffer_num + extra_cards;
2657 }
2658 
2659 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2660  private:
2661   size_t _total_humongous;
2662   size_t _candidate_humongous;
2663 
2664   DirtyCardQueue _dcq;
2665 
2666   // We don't nominate objects with many remembered set entries, on
2667   // the assumption that such objects are likely still live.
2668   bool is_remset_small(HeapRegion* region) const {
2669     HeapRegionRemSet* const rset = region->rem_set();
2670     return G1EagerReclaimHumongousObjectsWithStaleRefs
2671       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2672       : rset->is_empty();
2673   }
2674 
2675   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2676     assert(region->is_starts_humongous(), "Must start a humongous object");
2677 
2678     oop obj = oop(region->bottom());
2679 
2680     // Dead objects cannot be eager reclaim candidates. Due to class
2681     // unloading it is unsafe to query their classes so we return early.
2682     if (heap->is_obj_dead(obj, region)) {
2683       return false;
2684     }
2685 
2686     // Candidate selection must satisfy the following constraints
2687     // while concurrent marking is in progress:
2688     //
2689     // * In order to maintain SATB invariants, an object must not be
2690     // reclaimed if it was allocated before the start of marking and
2691     // has not had its references scanned.  Such an object must have
2692     // its references (including type metadata) scanned to ensure no
2693     // live objects are missed by the marking process.  Objects
2694     // allocated after the start of concurrent marking don't need to
2695     // be scanned.
2696     //
2697     // * An object must not be reclaimed if it is on the concurrent
2698     // mark stack.  Objects allocated after the start of concurrent
2699     // marking are never pushed on the mark stack.
2700     //
2701     // Nominating only objects allocated after the start of concurrent
2702     // marking is sufficient to meet both constraints.  This may miss
2703     // some objects that satisfy the constraints, but the marking data
2704     // structures don't support efficiently performing the needed
2705     // additional tests or scrubbing of the mark stack.
2706     //
2707     // However, we presently only nominate is_typeArray() objects.
2708     // A humongous object containing references induces remembered
2709     // set entries on other regions.  In order to reclaim such an
2710     // object, those remembered sets would need to be cleaned up.
2711     //
2712     // We also treat is_typeArray() objects specially, allowing them
2713     // to be reclaimed even if allocated before the start of
2714     // concurrent mark.  For this we rely on mark stack insertion to
2715     // exclude is_typeArray() objects, preventing reclaiming an object
2716     // that is in the mark stack.  We also rely on the metadata for
2717     // such objects to be built-in and so ensured to be kept live.
2718     // Frequent allocation and drop of large binary blobs is an
2719     // important use case for eager reclaim, and this special handling
2720     // may reduce needed headroom.
2721 
2722     return obj->is_typeArray() && is_remset_small(region);
2723   }
2724 
2725  public:
2726   RegisterHumongousWithInCSetFastTestClosure()
2727   : _total_humongous(0),
2728     _candidate_humongous(0),
2729     _dcq(&JavaThread::dirty_card_queue_set()) {
2730   }
2731 
2732   virtual bool doHeapRegion(HeapRegion* r) {
2733     if (!r->is_starts_humongous()) {
2734       return false;
2735     }
2736     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2737 
2738     bool is_candidate = humongous_region_is_candidate(g1h, r);
2739     uint rindex = r->hrm_index();
2740     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2741     if (is_candidate) {
2742       _candidate_humongous++;
2743       g1h->register_humongous_region_with_cset(rindex);
2744       // Is_candidate already filters out humongous object with large remembered sets.
2745       // If we have a humongous object with a few remembered sets, we simply flush these
2746       // remembered set entries into the DCQS. That will result in automatic
2747       // re-evaluation of their remembered set entries during the following evacuation
2748       // phase.
2749       if (!r->rem_set()->is_empty()) {
2750         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2751                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2752         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2753         HeapRegionRemSetIterator hrrs(r->rem_set());
2754         size_t card_index;
2755         while (hrrs.has_next(card_index)) {
2756           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2757           // The remembered set might contain references to already freed
2758           // regions. Filter out such entries to avoid failing card table
2759           // verification.
2760           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2761             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2762               *card_ptr = CardTableModRefBS::dirty_card_val();
2763               _dcq.enqueue(card_ptr);
2764             }
2765           }
2766         }
2767         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2768                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2769                hrrs.n_yielded(), r->rem_set()->occupied());
2770         r->rem_set()->clear_locked();
2771       }
2772       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2773     }
2774     _total_humongous++;
2775 
2776     return false;
2777   }
2778 
2779   size_t total_humongous() const { return _total_humongous; }
2780   size_t candidate_humongous() const { return _candidate_humongous; }
2781 
2782   void flush_rem_set_entries() { _dcq.flush(); }
2783 };
2784 
2785 void G1CollectedHeap::register_humongous_regions_with_cset() {
2786   if (!G1EagerReclaimHumongousObjects) {
2787     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2788     return;
2789   }
2790   double time = os::elapsed_counter();
2791 
2792   // Collect reclaim candidate information and register candidates with cset.
2793   RegisterHumongousWithInCSetFastTestClosure cl;
2794   heap_region_iterate(&cl);
2795 
2796   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2797   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2798                                                                   cl.total_humongous(),
2799                                                                   cl.candidate_humongous());
2800   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2801 
2802   // Finally flush all remembered set entries to re-check into the global DCQS.
2803   cl.flush_rem_set_entries();
2804 }
2805 
2806 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2807   public:
2808     bool doHeapRegion(HeapRegion* hr) {
2809       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2810         hr->verify_rem_set();
2811       }
2812       return false;
2813     }
2814 };
2815 
2816 uint G1CollectedHeap::num_task_queues() const {
2817   return _task_queues->size();
2818 }
2819 
2820 #if TASKQUEUE_STATS
2821 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2822   st->print_raw_cr("GC Task Stats");
2823   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2824   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2825 }
2826 
2827 void G1CollectedHeap::print_taskqueue_stats() const {
2828   if (!log_is_enabled(Trace, gc, task, stats)) {
2829     return;
2830   }
2831   Log(gc, task, stats) log;
2832   ResourceMark rm;
2833   outputStream* st = log.trace_stream();
2834 
2835   print_taskqueue_stats_hdr(st);
2836 
2837   TaskQueueStats totals;
2838   const uint n = num_task_queues();
2839   for (uint i = 0; i < n; ++i) {
2840     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2841     totals += task_queue(i)->stats;
2842   }
2843   st->print_raw("tot "); totals.print(st); st->cr();
2844 
2845   DEBUG_ONLY(totals.verify());
2846 }
2847 
2848 void G1CollectedHeap::reset_taskqueue_stats() {
2849   const uint n = num_task_queues();
2850   for (uint i = 0; i < n; ++i) {
2851     task_queue(i)->stats.reset();
2852   }
2853 }
2854 #endif // TASKQUEUE_STATS
2855 
2856 void G1CollectedHeap::wait_for_root_region_scanning() {
2857   double scan_wait_start = os::elapsedTime();
2858   // We have to wait until the CM threads finish scanning the
2859   // root regions as it's the only way to ensure that all the
2860   // objects on them have been correctly scanned before we start
2861   // moving them during the GC.
2862   bool waited = _cm->root_regions()->wait_until_scan_finished();
2863   double wait_time_ms = 0.0;
2864   if (waited) {
2865     double scan_wait_end = os::elapsedTime();
2866     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2867   }
2868   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2869 }
2870 
2871 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2872 private:
2873   G1HRPrinter* _hr_printer;
2874 public:
2875   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2876 
2877   virtual bool doHeapRegion(HeapRegion* r) {
2878     _hr_printer->cset(r);
2879     return false;
2880   }
2881 };
2882 
2883 void G1CollectedHeap::start_new_collection_set() {
2884   collection_set()->start_incremental_building();
2885 
2886   clear_cset_fast_test();
2887 
2888   guarantee(_eden.length() == 0, "eden should have been cleared");
2889   g1_policy()->transfer_survivors_to_cset(survivor());
2890 }
2891 
2892 bool
2893 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2894   assert_at_safepoint(true /* should_be_vm_thread */);
2895   guarantee(!is_gc_active(), "collection is not reentrant");
2896 
2897   if (GCLocker::check_active_before_gc()) {
2898     return false;
2899   }
2900 
2901   _gc_timer_stw->register_gc_start();
2902 
2903   GCIdMark gc_id_mark;
2904   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2905 
2906   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2907   ResourceMark rm;
2908 
2909   g1_policy()->note_gc_start();
2910 
2911   wait_for_root_region_scanning();
2912 
2913   print_heap_before_gc();
2914   print_heap_regions();
2915   trace_heap_before_gc(_gc_tracer_stw);
2916 
2917   _verifier->verify_region_sets_optional();
2918   _verifier->verify_dirty_young_regions();
2919 
2920   // We should not be doing initial mark unless the conc mark thread is running
2921   if (!_cmThread->should_terminate()) {
2922     // This call will decide whether this pause is an initial-mark
2923     // pause. If it is, during_initial_mark_pause() will return true
2924     // for the duration of this pause.
2925     g1_policy()->decide_on_conc_mark_initiation();
2926   }
2927 
2928   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2929   assert(!collector_state()->during_initial_mark_pause() ||
2930           collector_state()->gcs_are_young(), "sanity");
2931 
2932   // We also do not allow mixed GCs during marking.
2933   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
2934 
2935   // Record whether this pause is an initial mark. When the current
2936   // thread has completed its logging output and it's safe to signal
2937   // the CM thread, the flag's value in the policy has been reset.
2938   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
2939 
2940   // Inner scope for scope based logging, timers, and stats collection
2941   {
2942     EvacuationInfo evacuation_info;
2943 
2944     if (collector_state()->during_initial_mark_pause()) {
2945       // We are about to start a marking cycle, so we increment the
2946       // full collection counter.
2947       increment_old_marking_cycles_started();
2948       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2949     }
2950 
2951     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2952 
2953     GCTraceCPUTime tcpu;
2954 
2955     FormatBuffer<> gc_string("Pause ");
2956     if (collector_state()->during_initial_mark_pause()) {
2957       gc_string.append("Initial Mark");
2958     } else if (collector_state()->gcs_are_young()) {
2959       gc_string.append("Young");
2960     } else {
2961       gc_string.append("Mixed");
2962     }
2963     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2964 
2965     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2966                                                                   workers()->active_workers(),
2967                                                                   Threads::number_of_non_daemon_threads());
2968     workers()->update_active_workers(active_workers);
2969     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2970 
2971     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2972     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
2973 
2974     // If the secondary_free_list is not empty, append it to the
2975     // free_list. No need to wait for the cleanup operation to finish;
2976     // the region allocation code will check the secondary_free_list
2977     // and wait if necessary. If the G1StressConcRegionFreeing flag is
2978     // set, skip this step so that the region allocation code has to
2979     // get entries from the secondary_free_list.
2980     if (!G1StressConcRegionFreeing) {
2981       append_secondary_free_list_if_not_empty_with_lock();
2982     }
2983 
2984     G1HeapTransition heap_transition(this);
2985     size_t heap_used_bytes_before_gc = used();
2986 
2987     // Don't dynamically change the number of GC threads this early.  A value of
2988     // 0 is used to indicate serial work.  When parallel work is done,
2989     // it will be set.
2990 
2991     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2992       IsGCActiveMark x;
2993 
2994       gc_prologue(false);
2995 
2996       if (VerifyRememberedSets) {
2997         log_info(gc, verify)("[Verifying RemSets before GC]");
2998         VerifyRegionRemSetClosure v_cl;
2999         heap_region_iterate(&v_cl);
3000       }
3001 
3002       _verifier->verify_before_gc();
3003 
3004       _verifier->check_bitmaps("GC Start");
3005 
3006 #if defined(COMPILER2) || INCLUDE_JVMCI
3007       DerivedPointerTable::clear();
3008 #endif
3009 
3010       // Please see comment in g1CollectedHeap.hpp and
3011       // G1CollectedHeap::ref_processing_init() to see how
3012       // reference processing currently works in G1.
3013 
3014       // Enable discovery in the STW reference processor
3015       if (g1_policy()->should_process_references()) {
3016         ref_processor_stw()->enable_discovery();
3017       } else {
3018         ref_processor_stw()->disable_discovery();
3019       }
3020 
3021       {
3022         // We want to temporarily turn off discovery by the
3023         // CM ref processor, if necessary, and turn it back on
3024         // on again later if we do. Using a scoped
3025         // NoRefDiscovery object will do this.
3026         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3027 
3028         // Forget the current alloc region (we might even choose it to be part
3029         // of the collection set!).
3030         _allocator->release_mutator_alloc_region();
3031 
3032         // This timing is only used by the ergonomics to handle our pause target.
3033         // It is unclear why this should not include the full pause. We will
3034         // investigate this in CR 7178365.
3035         //
3036         // Preserving the old comment here if that helps the investigation:
3037         //
3038         // The elapsed time induced by the start time below deliberately elides
3039         // the possible verification above.
3040         double sample_start_time_sec = os::elapsedTime();
3041 
3042         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3043 
3044         if (collector_state()->during_initial_mark_pause()) {
3045           concurrent_mark()->checkpointRootsInitialPre();
3046         }
3047 
3048         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3049 
3050         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3051 
3052         // Make sure the remembered sets are up to date. This needs to be
3053         // done before register_humongous_regions_with_cset(), because the
3054         // remembered sets are used there to choose eager reclaim candidates.
3055         // If the remembered sets are not up to date we might miss some
3056         // entries that need to be handled.
3057         g1_rem_set()->cleanupHRRS();
3058 
3059         register_humongous_regions_with_cset();
3060 
3061         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3062 
3063         // We call this after finalize_cset() to
3064         // ensure that the CSet has been finalized.
3065         _cm->verify_no_cset_oops();
3066 
3067         if (_hr_printer.is_active()) {
3068           G1PrintCollectionSetClosure cl(&_hr_printer);
3069           _collection_set.iterate(&cl);
3070         }
3071 
3072         // Initialize the GC alloc regions.
3073         _allocator->init_gc_alloc_regions(evacuation_info);
3074 
3075         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3076         pre_evacuate_collection_set();
3077 
3078         // Actually do the work...
3079         evacuate_collection_set(evacuation_info, &per_thread_states);
3080 
3081         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3082 
3083         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3084         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3085 
3086         eagerly_reclaim_humongous_regions();
3087 
3088         record_obj_copy_mem_stats();
3089         _survivor_evac_stats.adjust_desired_plab_sz();
3090         _old_evac_stats.adjust_desired_plab_sz();
3091 
3092         double start = os::elapsedTime();
3093         start_new_collection_set();
3094         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3095 
3096         if (evacuation_failed()) {
3097           set_used(recalculate_used());
3098           if (_archive_allocator != NULL) {
3099             _archive_allocator->clear_used();
3100           }
3101           for (uint i = 0; i < ParallelGCThreads; i++) {
3102             if (_evacuation_failed_info_array[i].has_failed()) {
3103               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3104             }
3105           }
3106         } else {
3107           // The "used" of the the collection set have already been subtracted
3108           // when they were freed.  Add in the bytes evacuated.
3109           increase_used(g1_policy()->bytes_copied_during_gc());
3110         }
3111 
3112         if (collector_state()->during_initial_mark_pause()) {
3113           // We have to do this before we notify the CM threads that
3114           // they can start working to make sure that all the
3115           // appropriate initialization is done on the CM object.
3116           concurrent_mark()->checkpointRootsInitialPost();
3117           collector_state()->set_mark_in_progress(true);
3118           // Note that we don't actually trigger the CM thread at
3119           // this point. We do that later when we're sure that
3120           // the current thread has completed its logging output.
3121         }
3122 
3123         allocate_dummy_regions();
3124 
3125         _allocator->init_mutator_alloc_region();
3126 
3127         {
3128           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3129           if (expand_bytes > 0) {
3130             size_t bytes_before = capacity();
3131             // No need for an ergo logging here,
3132             // expansion_amount() does this when it returns a value > 0.
3133             double expand_ms;
3134             if (!expand(expand_bytes, _workers, &expand_ms)) {
3135               // We failed to expand the heap. Cannot do anything about it.
3136             }
3137             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3138           }
3139         }
3140 
3141         // We redo the verification but now wrt to the new CSet which
3142         // has just got initialized after the previous CSet was freed.
3143         _cm->verify_no_cset_oops();
3144 
3145         // This timing is only used by the ergonomics to handle our pause target.
3146         // It is unclear why this should not include the full pause. We will
3147         // investigate this in CR 7178365.
3148         double sample_end_time_sec = os::elapsedTime();
3149         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3150         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScannedCards);
3151         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3152 
3153         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3154         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3155 
3156         if (VerifyRememberedSets) {
3157           log_info(gc, verify)("[Verifying RemSets after GC]");
3158           VerifyRegionRemSetClosure v_cl;
3159           heap_region_iterate(&v_cl);
3160         }
3161 
3162         _verifier->verify_after_gc();
3163         _verifier->check_bitmaps("GC End");
3164 
3165         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3166         ref_processor_stw()->verify_no_references_recorded();
3167 
3168         // CM reference discovery will be re-enabled if necessary.
3169       }
3170 
3171 #ifdef TRACESPINNING
3172       ParallelTaskTerminator::print_termination_counts();
3173 #endif
3174 
3175       gc_epilogue(false);
3176     }
3177 
3178     // Print the remainder of the GC log output.
3179     if (evacuation_failed()) {
3180       log_info(gc)("To-space exhausted");
3181     }
3182 
3183     g1_policy()->print_phases();
3184     heap_transition.print();
3185 
3186     // It is not yet to safe to tell the concurrent mark to
3187     // start as we have some optional output below. We don't want the
3188     // output from the concurrent mark thread interfering with this
3189     // logging output either.
3190 
3191     _hrm.verify_optional();
3192     _verifier->verify_region_sets_optional();
3193 
3194     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3195     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3196 
3197     print_heap_after_gc();
3198     print_heap_regions();
3199     trace_heap_after_gc(_gc_tracer_stw);
3200 
3201     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3202     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3203     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3204     // before any GC notifications are raised.
3205     g1mm()->update_sizes();
3206 
3207     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3208     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3209     _gc_timer_stw->register_gc_end();
3210     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3211   }
3212   // It should now be safe to tell the concurrent mark thread to start
3213   // without its logging output interfering with the logging output
3214   // that came from the pause.
3215 
3216   if (should_start_conc_mark) {
3217     // CAUTION: after the doConcurrentMark() call below,
3218     // the concurrent marking thread(s) could be running
3219     // concurrently with us. Make sure that anything after
3220     // this point does not assume that we are the only GC thread
3221     // running. Note: of course, the actual marking work will
3222     // not start until the safepoint itself is released in
3223     // SuspendibleThreadSet::desynchronize().
3224     doConcurrentMark();
3225   }
3226 
3227   return true;
3228 }
3229 
3230 void G1CollectedHeap::remove_self_forwarding_pointers() {
3231   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3232   workers()->run_task(&rsfp_task);
3233 }
3234 
3235 void G1CollectedHeap::restore_after_evac_failure() {
3236   double remove_self_forwards_start = os::elapsedTime();
3237 
3238   remove_self_forwarding_pointers();
3239   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3240   _preserved_marks_set.restore(&task_executor);
3241 
3242   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3243 }
3244 
3245 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3246   if (!_evacuation_failed) {
3247     _evacuation_failed = true;
3248   }
3249 
3250   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3251   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3252 }
3253 
3254 bool G1ParEvacuateFollowersClosure::offer_termination() {
3255   G1ParScanThreadState* const pss = par_scan_state();
3256   start_term_time();
3257   const bool res = terminator()->offer_termination();
3258   end_term_time();
3259   return res;
3260 }
3261 
3262 void G1ParEvacuateFollowersClosure::do_void() {
3263   G1ParScanThreadState* const pss = par_scan_state();
3264   pss->trim_queue();
3265   do {
3266     pss->steal_and_trim_queue(queues());
3267   } while (!offer_termination());
3268 }
3269 
3270 class G1ParTask : public AbstractGangTask {
3271 protected:
3272   G1CollectedHeap*         _g1h;
3273   G1ParScanThreadStateSet* _pss;
3274   RefToScanQueueSet*       _queues;
3275   G1RootProcessor*         _root_processor;
3276   ParallelTaskTerminator   _terminator;
3277   uint                     _n_workers;
3278 
3279 public:
3280   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3281     : AbstractGangTask("G1 collection"),
3282       _g1h(g1h),
3283       _pss(per_thread_states),
3284       _queues(task_queues),
3285       _root_processor(root_processor),
3286       _terminator(n_workers, _queues),
3287       _n_workers(n_workers)
3288   {}
3289 
3290   void work(uint worker_id) {
3291     if (worker_id >= _n_workers) return;  // no work needed this round
3292 
3293     double start_sec = os::elapsedTime();
3294     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3295 
3296     {
3297       ResourceMark rm;
3298       HandleMark   hm;
3299 
3300       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3301 
3302       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3303       pss->set_ref_processor(rp);
3304 
3305       double start_strong_roots_sec = os::elapsedTime();
3306 
3307       _root_processor->evacuate_roots(pss->closures(), worker_id);
3308 
3309       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3310       // treating the nmethods visited to act as roots for concurrent marking.
3311       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3312       // objects copied by the current evacuation.
3313       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3314                                                       pss->closures()->weak_codeblobs(),
3315                                                       worker_id);
3316 
3317       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3318 
3319       double term_sec = 0.0;
3320       size_t evac_term_attempts = 0;
3321       {
3322         double start = os::elapsedTime();
3323         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3324         evac.do_void();
3325 
3326         evac_term_attempts = evac.term_attempts();
3327         term_sec = evac.term_time();
3328         double elapsed_sec = os::elapsedTime() - start;
3329         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3330         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3331         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3332       }
3333 
3334       assert(pss->queue_is_empty(), "should be empty");
3335 
3336       if (log_is_enabled(Debug, gc, task, stats)) {
3337         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3338         size_t lab_waste;
3339         size_t lab_undo_waste;
3340         pss->waste(lab_waste, lab_undo_waste);
3341         _g1h->print_termination_stats(worker_id,
3342                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3343                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3344                                       term_sec * 1000.0,                          /* evac term time */
3345                                       evac_term_attempts,                         /* evac term attempts */
3346                                       lab_waste,                                  /* alloc buffer waste */
3347                                       lab_undo_waste                              /* undo waste */
3348                                       );
3349       }
3350 
3351       // Close the inner scope so that the ResourceMark and HandleMark
3352       // destructors are executed here and are included as part of the
3353       // "GC Worker Time".
3354     }
3355     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3356   }
3357 };
3358 
3359 void G1CollectedHeap::print_termination_stats_hdr() {
3360   log_debug(gc, task, stats)("GC Termination Stats");
3361   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3362   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3363   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3364 }
3365 
3366 void G1CollectedHeap::print_termination_stats(uint worker_id,
3367                                               double elapsed_ms,
3368                                               double strong_roots_ms,
3369                                               double term_ms,
3370                                               size_t term_attempts,
3371                                               size_t alloc_buffer_waste,
3372                                               size_t undo_waste) const {
3373   log_debug(gc, task, stats)
3374               ("%3d %9.2f %9.2f %6.2f "
3375                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3376                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3377                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3378                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3379                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3380                alloc_buffer_waste * HeapWordSize / K,
3381                undo_waste * HeapWordSize / K);
3382 }
3383 
3384 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3385 private:
3386   BoolObjectClosure* _is_alive;
3387   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3388 
3389   int _initial_string_table_size;
3390   int _initial_symbol_table_size;
3391 
3392   bool  _process_strings;
3393   int _strings_processed;
3394   int _strings_removed;
3395 
3396   bool  _process_symbols;
3397   int _symbols_processed;
3398   int _symbols_removed;
3399 
3400   bool _process_string_dedup;
3401 
3402 public:
3403   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3404     AbstractGangTask("String/Symbol Unlinking"),
3405     _is_alive(is_alive),
3406     _dedup_closure(is_alive, NULL, false),
3407     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3408     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3409     _process_string_dedup(process_string_dedup) {
3410 
3411     _initial_string_table_size = StringTable::the_table()->table_size();
3412     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3413     if (process_strings) {
3414       StringTable::clear_parallel_claimed_index();
3415     }
3416     if (process_symbols) {
3417       SymbolTable::clear_parallel_claimed_index();
3418     }
3419   }
3420 
3421   ~G1StringAndSymbolCleaningTask() {
3422     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3423               "claim value %d after unlink less than initial string table size %d",
3424               StringTable::parallel_claimed_index(), _initial_string_table_size);
3425     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3426               "claim value %d after unlink less than initial symbol table size %d",
3427               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3428 
3429     log_info(gc, stringtable)(
3430         "Cleaned string and symbol table, "
3431         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3432         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3433         strings_processed(), strings_removed(),
3434         symbols_processed(), symbols_removed());
3435   }
3436 
3437   void work(uint worker_id) {
3438     int strings_processed = 0;
3439     int strings_removed = 0;
3440     int symbols_processed = 0;
3441     int symbols_removed = 0;
3442     if (_process_strings) {
3443       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3444       Atomic::add(strings_processed, &_strings_processed);
3445       Atomic::add(strings_removed, &_strings_removed);
3446     }
3447     if (_process_symbols) {
3448       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3449       Atomic::add(symbols_processed, &_symbols_processed);
3450       Atomic::add(symbols_removed, &_symbols_removed);
3451     }
3452     if (_process_string_dedup) {
3453       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3454     }
3455   }
3456 
3457   size_t strings_processed() const { return (size_t)_strings_processed; }
3458   size_t strings_removed()   const { return (size_t)_strings_removed; }
3459 
3460   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3461   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3462 };
3463 
3464 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3465 private:
3466   static Monitor* _lock;
3467 
3468   BoolObjectClosure* const _is_alive;
3469   const bool               _unloading_occurred;
3470   const uint               _num_workers;
3471 
3472   // Variables used to claim nmethods.
3473   CompiledMethod* _first_nmethod;
3474   volatile CompiledMethod* _claimed_nmethod;
3475 
3476   // The list of nmethods that need to be processed by the second pass.
3477   volatile CompiledMethod* _postponed_list;
3478   volatile uint            _num_entered_barrier;
3479 
3480  public:
3481   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3482       _is_alive(is_alive),
3483       _unloading_occurred(unloading_occurred),
3484       _num_workers(num_workers),
3485       _first_nmethod(NULL),
3486       _claimed_nmethod(NULL),
3487       _postponed_list(NULL),
3488       _num_entered_barrier(0)
3489   {
3490     CompiledMethod::increase_unloading_clock();
3491     // Get first alive nmethod
3492     CompiledMethodIterator iter = CompiledMethodIterator();
3493     if(iter.next_alive()) {
3494       _first_nmethod = iter.method();
3495     }
3496     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3497   }
3498 
3499   ~G1CodeCacheUnloadingTask() {
3500     CodeCache::verify_clean_inline_caches();
3501 
3502     CodeCache::set_needs_cache_clean(false);
3503     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3504 
3505     CodeCache::verify_icholder_relocations();
3506   }
3507 
3508  private:
3509   void add_to_postponed_list(CompiledMethod* nm) {
3510       CompiledMethod* old;
3511       do {
3512         old = (CompiledMethod*)_postponed_list;
3513         nm->set_unloading_next(old);
3514       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3515   }
3516 
3517   void clean_nmethod(CompiledMethod* nm) {
3518     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3519 
3520     if (postponed) {
3521       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3522       add_to_postponed_list(nm);
3523     }
3524 
3525     // Mark that this thread has been cleaned/unloaded.
3526     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3527     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3528   }
3529 
3530   void clean_nmethod_postponed(CompiledMethod* nm) {
3531     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3532   }
3533 
3534   static const int MaxClaimNmethods = 16;
3535 
3536   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3537     CompiledMethod* first;
3538     CompiledMethodIterator last;
3539 
3540     do {
3541       *num_claimed_nmethods = 0;
3542 
3543       first = (CompiledMethod*)_claimed_nmethod;
3544       last = CompiledMethodIterator(first);
3545 
3546       if (first != NULL) {
3547 
3548         for (int i = 0; i < MaxClaimNmethods; i++) {
3549           if (!last.next_alive()) {
3550             break;
3551           }
3552           claimed_nmethods[i] = last.method();
3553           (*num_claimed_nmethods)++;
3554         }
3555       }
3556 
3557     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3558   }
3559 
3560   CompiledMethod* claim_postponed_nmethod() {
3561     CompiledMethod* claim;
3562     CompiledMethod* next;
3563 
3564     do {
3565       claim = (CompiledMethod*)_postponed_list;
3566       if (claim == NULL) {
3567         return NULL;
3568       }
3569 
3570       next = claim->unloading_next();
3571 
3572     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3573 
3574     return claim;
3575   }
3576 
3577  public:
3578   // Mark that we're done with the first pass of nmethod cleaning.
3579   void barrier_mark(uint worker_id) {
3580     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3581     _num_entered_barrier++;
3582     if (_num_entered_barrier == _num_workers) {
3583       ml.notify_all();
3584     }
3585   }
3586 
3587   // See if we have to wait for the other workers to
3588   // finish their first-pass nmethod cleaning work.
3589   void barrier_wait(uint worker_id) {
3590     if (_num_entered_barrier < _num_workers) {
3591       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3592       while (_num_entered_barrier < _num_workers) {
3593           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3594       }
3595     }
3596   }
3597 
3598   // Cleaning and unloading of nmethods. Some work has to be postponed
3599   // to the second pass, when we know which nmethods survive.
3600   void work_first_pass(uint worker_id) {
3601     // The first nmethods is claimed by the first worker.
3602     if (worker_id == 0 && _first_nmethod != NULL) {
3603       clean_nmethod(_first_nmethod);
3604       _first_nmethod = NULL;
3605     }
3606 
3607     int num_claimed_nmethods;
3608     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3609 
3610     while (true) {
3611       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3612 
3613       if (num_claimed_nmethods == 0) {
3614         break;
3615       }
3616 
3617       for (int i = 0; i < num_claimed_nmethods; i++) {
3618         clean_nmethod(claimed_nmethods[i]);
3619       }
3620     }
3621   }
3622 
3623   void work_second_pass(uint worker_id) {
3624     CompiledMethod* nm;
3625     // Take care of postponed nmethods.
3626     while ((nm = claim_postponed_nmethod()) != NULL) {
3627       clean_nmethod_postponed(nm);
3628     }
3629   }
3630 };
3631 
3632 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3633 
3634 class G1KlassCleaningTask : public StackObj {
3635   BoolObjectClosure*                      _is_alive;
3636   volatile jint                           _clean_klass_tree_claimed;
3637   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3638 
3639  public:
3640   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3641       _is_alive(is_alive),
3642       _clean_klass_tree_claimed(0),
3643       _klass_iterator() {
3644   }
3645 
3646  private:
3647   bool claim_clean_klass_tree_task() {
3648     if (_clean_klass_tree_claimed) {
3649       return false;
3650     }
3651 
3652     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3653   }
3654 
3655   InstanceKlass* claim_next_klass() {
3656     Klass* klass;
3657     do {
3658       klass =_klass_iterator.next_klass();
3659     } while (klass != NULL && !klass->is_instance_klass());
3660 
3661     // this can be null so don't call InstanceKlass::cast
3662     return static_cast<InstanceKlass*>(klass);
3663   }
3664 
3665 public:
3666 
3667   void clean_klass(InstanceKlass* ik) {
3668     ik->clean_weak_instanceklass_links(_is_alive);
3669   }
3670 
3671   void work() {
3672     ResourceMark rm;
3673 
3674     // One worker will clean the subklass/sibling klass tree.
3675     if (claim_clean_klass_tree_task()) {
3676       Klass::clean_subklass_tree(_is_alive);
3677     }
3678 
3679     // All workers will help cleaning the classes,
3680     InstanceKlass* klass;
3681     while ((klass = claim_next_klass()) != NULL) {
3682       clean_klass(klass);
3683     }
3684   }
3685 };
3686 
3687 class G1ResolvedMethodCleaningTask : public StackObj {
3688   BoolObjectClosure* _is_alive;
3689   volatile jint      _resolved_method_task_claimed;
3690 public:
3691   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3692       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3693 
3694   bool claim_resolved_method_task() {
3695     if (_resolved_method_task_claimed) {
3696       return false;
3697     }
3698     return Atomic::cmpxchg(1, (jint*)&_resolved_method_task_claimed, 0) == 0;
3699   }
3700 
3701   // These aren't big, one thread can do it all.
3702   void work() {
3703     if (claim_resolved_method_task()) {
3704       ResolvedMethodTable::unlink(_is_alive);
3705     }
3706   }
3707 };
3708 
3709 
3710 // To minimize the remark pause times, the tasks below are done in parallel.
3711 class G1ParallelCleaningTask : public AbstractGangTask {
3712 private:
3713   G1StringAndSymbolCleaningTask _string_symbol_task;
3714   G1CodeCacheUnloadingTask      _code_cache_task;
3715   G1KlassCleaningTask           _klass_cleaning_task;
3716   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3717 
3718 public:
3719   // The constructor is run in the VMThread.
3720   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3721       AbstractGangTask("Parallel Cleaning"),
3722       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3723       _code_cache_task(num_workers, is_alive, unloading_occurred),
3724       _klass_cleaning_task(is_alive),
3725       _resolved_method_cleaning_task(is_alive) {
3726   }
3727 
3728   // The parallel work done by all worker threads.
3729   void work(uint worker_id) {
3730     // Do first pass of code cache cleaning.
3731     _code_cache_task.work_first_pass(worker_id);
3732 
3733     // Let the threads mark that the first pass is done.
3734     _code_cache_task.barrier_mark(worker_id);
3735 
3736     // Clean the Strings and Symbols.
3737     _string_symbol_task.work(worker_id);
3738 
3739     // Clean unreferenced things in the ResolvedMethodTable
3740     _resolved_method_cleaning_task.work();
3741 
3742     // Wait for all workers to finish the first code cache cleaning pass.
3743     _code_cache_task.barrier_wait(worker_id);
3744 
3745     // Do the second code cache cleaning work, which realize on
3746     // the liveness information gathered during the first pass.
3747     _code_cache_task.work_second_pass(worker_id);
3748 
3749     // Clean all klasses that were not unloaded.
3750     _klass_cleaning_task.work();
3751   }
3752 };
3753 
3754 
3755 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3756                                         bool class_unloading_occurred) {
3757   uint n_workers = workers()->active_workers();
3758 
3759   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3760   workers()->run_task(&g1_unlink_task);
3761 }
3762 
3763 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3764                                        bool process_strings,
3765                                        bool process_symbols,
3766                                        bool process_string_dedup) {
3767   if (!process_strings && !process_symbols && !process_string_dedup) {
3768     // Nothing to clean.
3769     return;
3770   }
3771 
3772   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3773   workers()->run_task(&g1_unlink_task);
3774 
3775 }
3776 
3777 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3778  private:
3779   DirtyCardQueueSet* _queue;
3780   G1CollectedHeap* _g1h;
3781  public:
3782   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3783     _queue(queue), _g1h(g1h) { }
3784 
3785   virtual void work(uint worker_id) {
3786     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3787     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3788 
3789     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3790     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3791 
3792     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3793   }
3794 };
3795 
3796 void G1CollectedHeap::redirty_logged_cards() {
3797   double redirty_logged_cards_start = os::elapsedTime();
3798 
3799   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3800   dirty_card_queue_set().reset_for_par_iteration();
3801   workers()->run_task(&redirty_task);
3802 
3803   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3804   dcq.merge_bufferlists(&dirty_card_queue_set());
3805   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3806 
3807   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3808 }
3809 
3810 // Weak Reference Processing support
3811 
3812 // An always "is_alive" closure that is used to preserve referents.
3813 // If the object is non-null then it's alive.  Used in the preservation
3814 // of referent objects that are pointed to by reference objects
3815 // discovered by the CM ref processor.
3816 class G1AlwaysAliveClosure: public BoolObjectClosure {
3817   G1CollectedHeap* _g1;
3818 public:
3819   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3820   bool do_object_b(oop p) {
3821     if (p != NULL) {
3822       return true;
3823     }
3824     return false;
3825   }
3826 };
3827 
3828 bool G1STWIsAliveClosure::do_object_b(oop p) {
3829   // An object is reachable if it is outside the collection set,
3830   // or is inside and copied.
3831   return !_g1->is_in_cset(p) || p->is_forwarded();
3832 }
3833 
3834 // Non Copying Keep Alive closure
3835 class G1KeepAliveClosure: public OopClosure {
3836   G1CollectedHeap* _g1;
3837 public:
3838   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3839   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3840   void do_oop(oop* p) {
3841     oop obj = *p;
3842     assert(obj != NULL, "the caller should have filtered out NULL values");
3843 
3844     const InCSetState cset_state = _g1->in_cset_state(obj);
3845     if (!cset_state.is_in_cset_or_humongous()) {
3846       return;
3847     }
3848     if (cset_state.is_in_cset()) {
3849       assert( obj->is_forwarded(), "invariant" );
3850       *p = obj->forwardee();
3851     } else {
3852       assert(!obj->is_forwarded(), "invariant" );
3853       assert(cset_state.is_humongous(),
3854              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3855       _g1->set_humongous_is_live(obj);
3856     }
3857   }
3858 };
3859 
3860 // Copying Keep Alive closure - can be called from both
3861 // serial and parallel code as long as different worker
3862 // threads utilize different G1ParScanThreadState instances
3863 // and different queues.
3864 
3865 class G1CopyingKeepAliveClosure: public OopClosure {
3866   G1CollectedHeap*         _g1h;
3867   OopClosure*              _copy_non_heap_obj_cl;
3868   G1ParScanThreadState*    _par_scan_state;
3869 
3870 public:
3871   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3872                             OopClosure* non_heap_obj_cl,
3873                             G1ParScanThreadState* pss):
3874     _g1h(g1h),
3875     _copy_non_heap_obj_cl(non_heap_obj_cl),
3876     _par_scan_state(pss)
3877   {}
3878 
3879   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3880   virtual void do_oop(      oop* p) { do_oop_work(p); }
3881 
3882   template <class T> void do_oop_work(T* p) {
3883     oop obj = oopDesc::load_decode_heap_oop(p);
3884 
3885     if (_g1h->is_in_cset_or_humongous(obj)) {
3886       // If the referent object has been forwarded (either copied
3887       // to a new location or to itself in the event of an
3888       // evacuation failure) then we need to update the reference
3889       // field and, if both reference and referent are in the G1
3890       // heap, update the RSet for the referent.
3891       //
3892       // If the referent has not been forwarded then we have to keep
3893       // it alive by policy. Therefore we have copy the referent.
3894       //
3895       // If the reference field is in the G1 heap then we can push
3896       // on the PSS queue. When the queue is drained (after each
3897       // phase of reference processing) the object and it's followers
3898       // will be copied, the reference field set to point to the
3899       // new location, and the RSet updated. Otherwise we need to
3900       // use the the non-heap or metadata closures directly to copy
3901       // the referent object and update the pointer, while avoiding
3902       // updating the RSet.
3903 
3904       if (_g1h->is_in_g1_reserved(p)) {
3905         _par_scan_state->push_on_queue(p);
3906       } else {
3907         assert(!Metaspace::contains((const void*)p),
3908                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3909         _copy_non_heap_obj_cl->do_oop(p);
3910       }
3911     }
3912   }
3913 };
3914 
3915 // Serial drain queue closure. Called as the 'complete_gc'
3916 // closure for each discovered list in some of the
3917 // reference processing phases.
3918 
3919 class G1STWDrainQueueClosure: public VoidClosure {
3920 protected:
3921   G1CollectedHeap* _g1h;
3922   G1ParScanThreadState* _par_scan_state;
3923 
3924   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3925 
3926 public:
3927   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3928     _g1h(g1h),
3929     _par_scan_state(pss)
3930   { }
3931 
3932   void do_void() {
3933     G1ParScanThreadState* const pss = par_scan_state();
3934     pss->trim_queue();
3935   }
3936 };
3937 
3938 // Parallel Reference Processing closures
3939 
3940 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3941 // processing during G1 evacuation pauses.
3942 
3943 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3944 private:
3945   G1CollectedHeap*          _g1h;
3946   G1ParScanThreadStateSet*  _pss;
3947   RefToScanQueueSet*        _queues;
3948   WorkGang*                 _workers;
3949   uint                      _active_workers;
3950 
3951 public:
3952   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3953                            G1ParScanThreadStateSet* per_thread_states,
3954                            WorkGang* workers,
3955                            RefToScanQueueSet *task_queues,
3956                            uint n_workers) :
3957     _g1h(g1h),
3958     _pss(per_thread_states),
3959     _queues(task_queues),
3960     _workers(workers),
3961     _active_workers(n_workers)
3962   {
3963     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3964   }
3965 
3966   // Executes the given task using concurrent marking worker threads.
3967   virtual void execute(ProcessTask& task);
3968   virtual void execute(EnqueueTask& task);
3969 };
3970 
3971 // Gang task for possibly parallel reference processing
3972 
3973 class G1STWRefProcTaskProxy: public AbstractGangTask {
3974   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3975   ProcessTask&     _proc_task;
3976   G1CollectedHeap* _g1h;
3977   G1ParScanThreadStateSet* _pss;
3978   RefToScanQueueSet* _task_queues;
3979   ParallelTaskTerminator* _terminator;
3980 
3981 public:
3982   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3983                         G1CollectedHeap* g1h,
3984                         G1ParScanThreadStateSet* per_thread_states,
3985                         RefToScanQueueSet *task_queues,
3986                         ParallelTaskTerminator* terminator) :
3987     AbstractGangTask("Process reference objects in parallel"),
3988     _proc_task(proc_task),
3989     _g1h(g1h),
3990     _pss(per_thread_states),
3991     _task_queues(task_queues),
3992     _terminator(terminator)
3993   {}
3994 
3995   virtual void work(uint worker_id) {
3996     // The reference processing task executed by a single worker.
3997     ResourceMark rm;
3998     HandleMark   hm;
3999 
4000     G1STWIsAliveClosure is_alive(_g1h);
4001 
4002     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4003     pss->set_ref_processor(NULL);
4004 
4005     // Keep alive closure.
4006     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4007 
4008     // Complete GC closure
4009     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4010 
4011     // Call the reference processing task's work routine.
4012     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4013 
4014     // Note we cannot assert that the refs array is empty here as not all
4015     // of the processing tasks (specifically phase2 - pp2_work) execute
4016     // the complete_gc closure (which ordinarily would drain the queue) so
4017     // the queue may not be empty.
4018   }
4019 };
4020 
4021 // Driver routine for parallel reference processing.
4022 // Creates an instance of the ref processing gang
4023 // task and has the worker threads execute it.
4024 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4025   assert(_workers != NULL, "Need parallel worker threads.");
4026 
4027   ParallelTaskTerminator terminator(_active_workers, _queues);
4028   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4029 
4030   _workers->run_task(&proc_task_proxy);
4031 }
4032 
4033 // Gang task for parallel reference enqueueing.
4034 
4035 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4036   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4037   EnqueueTask& _enq_task;
4038 
4039 public:
4040   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4041     AbstractGangTask("Enqueue reference objects in parallel"),
4042     _enq_task(enq_task)
4043   { }
4044 
4045   virtual void work(uint worker_id) {
4046     _enq_task.work(worker_id);
4047   }
4048 };
4049 
4050 // Driver routine for parallel reference enqueueing.
4051 // Creates an instance of the ref enqueueing gang
4052 // task and has the worker threads execute it.
4053 
4054 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4055   assert(_workers != NULL, "Need parallel worker threads.");
4056 
4057   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4058 
4059   _workers->run_task(&enq_task_proxy);
4060 }
4061 
4062 // End of weak reference support closures
4063 
4064 // Abstract task used to preserve (i.e. copy) any referent objects
4065 // that are in the collection set and are pointed to by reference
4066 // objects discovered by the CM ref processor.
4067 
4068 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4069 protected:
4070   G1CollectedHeap*         _g1h;
4071   G1ParScanThreadStateSet* _pss;
4072   RefToScanQueueSet*       _queues;
4073   ParallelTaskTerminator   _terminator;
4074   uint                     _n_workers;
4075 
4076 public:
4077   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4078     AbstractGangTask("ParPreserveCMReferents"),
4079     _g1h(g1h),
4080     _pss(per_thread_states),
4081     _queues(task_queues),
4082     _terminator(workers, _queues),
4083     _n_workers(workers)
4084   {
4085     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4086   }
4087 
4088   void work(uint worker_id) {
4089     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4090 
4091     ResourceMark rm;
4092     HandleMark   hm;
4093 
4094     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4095     pss->set_ref_processor(NULL);
4096     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4097 
4098     // Is alive closure
4099     G1AlwaysAliveClosure always_alive(_g1h);
4100 
4101     // Copying keep alive closure. Applied to referent objects that need
4102     // to be copied.
4103     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4104 
4105     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4106 
4107     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4108     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4109 
4110     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4111     // So this must be true - but assert just in case someone decides to
4112     // change the worker ids.
4113     assert(worker_id < limit, "sanity");
4114     assert(!rp->discovery_is_atomic(), "check this code");
4115 
4116     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4117     for (uint idx = worker_id; idx < limit; idx += stride) {
4118       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4119 
4120       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4121       while (iter.has_next()) {
4122         // Since discovery is not atomic for the CM ref processor, we
4123         // can see some null referent objects.
4124         iter.load_ptrs(DEBUG_ONLY(true));
4125         oop ref = iter.obj();
4126 
4127         // This will filter nulls.
4128         if (iter.is_referent_alive()) {
4129           iter.make_referent_alive();
4130         }
4131         iter.move_to_next();
4132       }
4133     }
4134 
4135     // Drain the queue - which may cause stealing
4136     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4137     drain_queue.do_void();
4138     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4139     assert(pss->queue_is_empty(), "should be");
4140   }
4141 };
4142 
4143 void G1CollectedHeap::process_weak_jni_handles() {
4144   double ref_proc_start = os::elapsedTime();
4145 
4146   G1STWIsAliveClosure is_alive(this);
4147   G1KeepAliveClosure keep_alive(this);
4148   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4149 
4150   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4151   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4152 }
4153 
4154 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4155   // Any reference objects, in the collection set, that were 'discovered'
4156   // by the CM ref processor should have already been copied (either by
4157   // applying the external root copy closure to the discovered lists, or
4158   // by following an RSet entry).
4159   //
4160   // But some of the referents, that are in the collection set, that these
4161   // reference objects point to may not have been copied: the STW ref
4162   // processor would have seen that the reference object had already
4163   // been 'discovered' and would have skipped discovering the reference,
4164   // but would not have treated the reference object as a regular oop.
4165   // As a result the copy closure would not have been applied to the
4166   // referent object.
4167   //
4168   // We need to explicitly copy these referent objects - the references
4169   // will be processed at the end of remarking.
4170   //
4171   // We also need to do this copying before we process the reference
4172   // objects discovered by the STW ref processor in case one of these
4173   // referents points to another object which is also referenced by an
4174   // object discovered by the STW ref processor.
4175   double preserve_cm_referents_time = 0.0;
4176 
4177   // To avoid spawning task when there is no work to do, check that
4178   // a concurrent cycle is active and that some references have been
4179   // discovered.
4180   if (concurrent_mark()->cmThread()->during_cycle() &&
4181       ref_processor_cm()->has_discovered_references()) {
4182     double preserve_cm_referents_start = os::elapsedTime();
4183     uint no_of_gc_workers = workers()->active_workers();
4184     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4185                                                    per_thread_states,
4186                                                    no_of_gc_workers,
4187                                                    _task_queues);
4188     workers()->run_task(&keep_cm_referents);
4189     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4190   }
4191 
4192   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4193 }
4194 
4195 // Weak Reference processing during an evacuation pause (part 1).
4196 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4197   double ref_proc_start = os::elapsedTime();
4198 
4199   ReferenceProcessor* rp = _ref_processor_stw;
4200   assert(rp->discovery_enabled(), "should have been enabled");
4201 
4202   // Closure to test whether a referent is alive.
4203   G1STWIsAliveClosure is_alive(this);
4204 
4205   // Even when parallel reference processing is enabled, the processing
4206   // of JNI refs is serial and performed serially by the current thread
4207   // rather than by a worker. The following PSS will be used for processing
4208   // JNI refs.
4209 
4210   // Use only a single queue for this PSS.
4211   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4212   pss->set_ref_processor(NULL);
4213   assert(pss->queue_is_empty(), "pre-condition");
4214 
4215   // Keep alive closure.
4216   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4217 
4218   // Serial Complete GC closure
4219   G1STWDrainQueueClosure drain_queue(this, pss);
4220 
4221   // Setup the soft refs policy...
4222   rp->setup_policy(false);
4223 
4224   ReferenceProcessorStats stats;
4225   if (!rp->processing_is_mt()) {
4226     // Serial reference processing...
4227     stats = rp->process_discovered_references(&is_alive,
4228                                               &keep_alive,
4229                                               &drain_queue,
4230                                               NULL,
4231                                               _gc_timer_stw);
4232   } else {
4233     uint no_of_gc_workers = workers()->active_workers();
4234 
4235     // Parallel reference processing
4236     assert(no_of_gc_workers <= rp->max_num_q(),
4237            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4238            no_of_gc_workers,  rp->max_num_q());
4239 
4240     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4241     stats = rp->process_discovered_references(&is_alive,
4242                                               &keep_alive,
4243                                               &drain_queue,
4244                                               &par_task_executor,
4245                                               _gc_timer_stw);
4246   }
4247 
4248   _gc_tracer_stw->report_gc_reference_stats(stats);
4249 
4250   // We have completed copying any necessary live referent objects.
4251   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4252 
4253   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4254   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4255 }
4256 
4257 // Weak Reference processing during an evacuation pause (part 2).
4258 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4259   double ref_enq_start = os::elapsedTime();
4260 
4261   ReferenceProcessor* rp = _ref_processor_stw;
4262   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4263 
4264   // Now enqueue any remaining on the discovered lists on to
4265   // the pending list.
4266   if (!rp->processing_is_mt()) {
4267     // Serial reference processing...
4268     rp->enqueue_discovered_references();
4269   } else {
4270     // Parallel reference enqueueing
4271 
4272     uint n_workers = workers()->active_workers();
4273 
4274     assert(n_workers <= rp->max_num_q(),
4275            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4276            n_workers,  rp->max_num_q());
4277 
4278     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4279     rp->enqueue_discovered_references(&par_task_executor);
4280   }
4281 
4282   rp->verify_no_references_recorded();
4283   assert(!rp->discovery_enabled(), "should have been disabled");
4284 
4285   // FIXME
4286   // CM's reference processing also cleans up the string and symbol tables.
4287   // Should we do that here also? We could, but it is a serial operation
4288   // and could significantly increase the pause time.
4289 
4290   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4291   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4292 }
4293 
4294 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4295   double merge_pss_time_start = os::elapsedTime();
4296   per_thread_states->flush();
4297   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4298 }
4299 
4300 void G1CollectedHeap::pre_evacuate_collection_set() {
4301   _expand_heap_after_alloc_failure = true;
4302   _evacuation_failed = false;
4303 
4304   // Disable the hot card cache.
4305   _hot_card_cache->reset_hot_cache_claimed_index();
4306   _hot_card_cache->set_use_cache(false);
4307 
4308   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4309   _preserved_marks_set.assert_empty();
4310 
4311   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4312 
4313   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4314   if (collector_state()->during_initial_mark_pause()) {
4315     double start_clear_claimed_marks = os::elapsedTime();
4316 
4317     ClassLoaderDataGraph::clear_claimed_marks();
4318 
4319     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4320     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4321   }
4322 }
4323 
4324 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4325   // Should G1EvacuationFailureALot be in effect for this GC?
4326   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4327 
4328   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4329 
4330   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4331 
4332   double start_par_time_sec = os::elapsedTime();
4333   double end_par_time_sec;
4334 
4335   {
4336     const uint n_workers = workers()->active_workers();
4337     G1RootProcessor root_processor(this, n_workers);
4338     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4339 
4340     print_termination_stats_hdr();
4341 
4342     workers()->run_task(&g1_par_task);
4343     end_par_time_sec = os::elapsedTime();
4344 
4345     // Closing the inner scope will execute the destructor
4346     // for the G1RootProcessor object. We record the current
4347     // elapsed time before closing the scope so that time
4348     // taken for the destructor is NOT included in the
4349     // reported parallel time.
4350   }
4351 
4352   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4353   phase_times->record_par_time(par_time_ms);
4354 
4355   double code_root_fixup_time_ms =
4356         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4357   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4358 }
4359 
4360 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4361   // Process any discovered reference objects - we have
4362   // to do this _before_ we retire the GC alloc regions
4363   // as we may have to copy some 'reachable' referent
4364   // objects (and their reachable sub-graphs) that were
4365   // not copied during the pause.
4366   if (g1_policy()->should_process_references()) {
4367     preserve_cm_referents(per_thread_states);
4368     process_discovered_references(per_thread_states);
4369   } else {
4370     ref_processor_stw()->verify_no_references_recorded();
4371     process_weak_jni_handles();
4372   }
4373 
4374   if (G1StringDedup::is_enabled()) {
4375     double fixup_start = os::elapsedTime();
4376 
4377     G1STWIsAliveClosure is_alive(this);
4378     G1KeepAliveClosure keep_alive(this);
4379     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4380 
4381     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4382     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4383   }
4384 
4385   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4386 
4387   if (evacuation_failed()) {
4388     restore_after_evac_failure();
4389 
4390     // Reset the G1EvacuationFailureALot counters and flags
4391     // Note: the values are reset only when an actual
4392     // evacuation failure occurs.
4393     NOT_PRODUCT(reset_evacuation_should_fail();)
4394   }
4395 
4396   _preserved_marks_set.assert_empty();
4397 
4398   // Enqueue any remaining references remaining on the STW
4399   // reference processor's discovered lists. We need to do
4400   // this after the card table is cleaned (and verified) as
4401   // the act of enqueueing entries on to the pending list
4402   // will log these updates (and dirty their associated
4403   // cards). We need these updates logged to update any
4404   // RSets.
4405   if (g1_policy()->should_process_references()) {
4406     enqueue_discovered_references(per_thread_states);
4407   } else {
4408     g1_policy()->phase_times()->record_ref_enq_time(0);
4409   }
4410 
4411   _allocator->release_gc_alloc_regions(evacuation_info);
4412 
4413   merge_per_thread_state_info(per_thread_states);
4414 
4415   // Reset and re-enable the hot card cache.
4416   // Note the counts for the cards in the regions in the
4417   // collection set are reset when the collection set is freed.
4418   _hot_card_cache->reset_hot_cache();
4419   _hot_card_cache->set_use_cache(true);
4420 
4421   purge_code_root_memory();
4422 
4423   redirty_logged_cards();
4424 #if defined(COMPILER2) || INCLUDE_JVMCI
4425   double start = os::elapsedTime();
4426   DerivedPointerTable::update_pointers();
4427   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4428 #endif
4429   g1_policy()->print_age_table();
4430 }
4431 
4432 void G1CollectedHeap::record_obj_copy_mem_stats() {
4433   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4434 
4435   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4436                                                create_g1_evac_summary(&_old_evac_stats));
4437 }
4438 
4439 void G1CollectedHeap::free_region(HeapRegion* hr,
4440                                   FreeRegionList* free_list,
4441                                   bool skip_remset,
4442                                   bool skip_hot_card_cache,
4443                                   bool locked) {
4444   assert(!hr->is_free(), "the region should not be free");
4445   assert(!hr->is_empty(), "the region should not be empty");
4446   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4447   assert(free_list != NULL, "pre-condition");
4448 
4449   if (G1VerifyBitmaps) {
4450     MemRegion mr(hr->bottom(), hr->end());
4451     concurrent_mark()->clearRangePrevBitmap(mr);
4452   }
4453 
4454   // Clear the card counts for this region.
4455   // Note: we only need to do this if the region is not young
4456   // (since we don't refine cards in young regions).
4457   if (!skip_hot_card_cache && !hr->is_young()) {
4458     _hot_card_cache->reset_card_counts(hr);
4459   }
4460   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4461   free_list->add_ordered(hr);
4462 }
4463 
4464 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4465                                             FreeRegionList* free_list,
4466                                             bool skip_remset) {
4467   assert(hr->is_humongous(), "this is only for humongous regions");
4468   assert(free_list != NULL, "pre-condition");
4469   hr->clear_humongous();
4470   free_region(hr, free_list, skip_remset);
4471 }
4472 
4473 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4474                                            const uint humongous_regions_removed) {
4475   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4476     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4477     _old_set.bulk_remove(old_regions_removed);
4478     _humongous_set.bulk_remove(humongous_regions_removed);
4479   }
4480 
4481 }
4482 
4483 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4484   assert(list != NULL, "list can't be null");
4485   if (!list->is_empty()) {
4486     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4487     _hrm.insert_list_into_free_list(list);
4488   }
4489 }
4490 
4491 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4492   decrease_used(bytes);
4493 }
4494 
4495 class G1ParScrubRemSetTask: public AbstractGangTask {
4496 protected:
4497   G1RemSet* _g1rs;
4498   HeapRegionClaimer _hrclaimer;
4499 
4500 public:
4501   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4502     AbstractGangTask("G1 ScrubRS"),
4503     _g1rs(g1_rs),
4504     _hrclaimer(num_workers) {
4505   }
4506 
4507   void work(uint worker_id) {
4508     _g1rs->scrub(worker_id, &_hrclaimer);
4509   }
4510 };
4511 
4512 void G1CollectedHeap::scrub_rem_set() {
4513   uint num_workers = workers()->active_workers();
4514   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4515   workers()->run_task(&g1_par_scrub_rs_task);
4516 }
4517 
4518 class G1FreeCollectionSetTask : public AbstractGangTask {
4519 private:
4520 
4521   // Closure applied to all regions in the collection set to do work that needs to
4522   // be done serially in a single thread.
4523   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4524   private:
4525     EvacuationInfo* _evacuation_info;
4526     const size_t* _surviving_young_words;
4527 
4528     // Bytes used in successfully evacuated regions before the evacuation.
4529     size_t _before_used_bytes;
4530     // Bytes used in unsucessfully evacuated regions before the evacuation
4531     size_t _after_used_bytes;
4532 
4533     size_t _bytes_allocated_in_old_since_last_gc;
4534 
4535     size_t _failure_used_words;
4536     size_t _failure_waste_words;
4537 
4538     FreeRegionList _local_free_list;
4539   public:
4540     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4541       HeapRegionClosure(),
4542       _evacuation_info(evacuation_info),
4543       _surviving_young_words(surviving_young_words),
4544       _before_used_bytes(0),
4545       _after_used_bytes(0),
4546       _bytes_allocated_in_old_since_last_gc(0),
4547       _failure_used_words(0),
4548       _failure_waste_words(0),
4549       _local_free_list("Local Region List for CSet Freeing") {
4550     }
4551 
4552     virtual bool doHeapRegion(HeapRegion* r) {
4553       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4554 
4555       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4556       g1h->clear_in_cset(r);
4557 
4558       if (r->is_young()) {
4559         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4560                "Young index %d is wrong for region %u of type %s with %u young regions",
4561                r->young_index_in_cset(),
4562                r->hrm_index(),
4563                r->get_type_str(),
4564                g1h->collection_set()->young_region_length());
4565         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4566         r->record_surv_words_in_group(words_survived);
4567       }
4568 
4569       if (!r->evacuation_failed()) {
4570         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4571         _before_used_bytes += r->used();
4572         g1h->free_region(r,
4573                          &_local_free_list,
4574                          true, /* skip_remset */
4575                          true, /* skip_hot_card_cache */
4576                          true  /* locked */);
4577       } else {
4578         r->uninstall_surv_rate_group();
4579         r->set_young_index_in_cset(-1);
4580         r->set_evacuation_failed(false);
4581         // When moving a young gen region to old gen, we "allocate" that whole region
4582         // there. This is in addition to any already evacuated objects. Notify the
4583         // policy about that.
4584         // Old gen regions do not cause an additional allocation: both the objects
4585         // still in the region and the ones already moved are accounted for elsewhere.
4586         if (r->is_young()) {
4587           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4588         }
4589         // The region is now considered to be old.
4590         r->set_old();
4591         // Do some allocation statistics accounting. Regions that failed evacuation
4592         // are always made old, so there is no need to update anything in the young
4593         // gen statistics, but we need to update old gen statistics.
4594         size_t used_words = r->marked_bytes() / HeapWordSize;
4595 
4596         _failure_used_words += used_words;
4597         _failure_waste_words += HeapRegion::GrainWords - used_words;
4598 
4599         g1h->old_set_add(r);
4600         _after_used_bytes += r->used();
4601       }
4602       return false;
4603     }
4604 
4605     void complete_work() {
4606       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4607 
4608       _evacuation_info->set_regions_freed(_local_free_list.length());
4609       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4610 
4611       g1h->prepend_to_freelist(&_local_free_list);
4612       g1h->decrement_summary_bytes(_before_used_bytes);
4613 
4614       G1Policy* policy = g1h->g1_policy();
4615       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4616 
4617       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4618     }
4619   };
4620 
4621   G1CollectionSet* _collection_set;
4622   G1SerialFreeCollectionSetClosure _cl;
4623   const size_t* _surviving_young_words;
4624 
4625   size_t _rs_lengths;
4626 
4627   volatile jint _serial_work_claim;
4628 
4629   struct WorkItem {
4630     uint region_idx;
4631     bool is_young;
4632     bool evacuation_failed;
4633 
4634     WorkItem(HeapRegion* r) {
4635       region_idx = r->hrm_index();
4636       is_young = r->is_young();
4637       evacuation_failed = r->evacuation_failed();
4638     }
4639   };
4640 
4641   volatile size_t _parallel_work_claim;
4642   size_t _num_work_items;
4643   WorkItem* _work_items;
4644 
4645   void do_serial_work() {
4646     // Need to grab the lock to be allowed to modify the old region list.
4647     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4648     _collection_set->iterate(&_cl);
4649   }
4650 
4651   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4652     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4653 
4654     HeapRegion* r = g1h->region_at(region_idx);
4655     assert(!g1h->is_on_master_free_list(r), "sanity");
4656 
4657     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4658 
4659     if (!is_young) {
4660       g1h->_hot_card_cache->reset_card_counts(r);
4661     }
4662 
4663     if (!evacuation_failed) {
4664       r->rem_set()->clear_locked();
4665     }
4666   }
4667 
4668   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4669   private:
4670     size_t _cur_idx;
4671     WorkItem* _work_items;
4672   public:
4673     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4674 
4675     virtual bool doHeapRegion(HeapRegion* r) {
4676       _work_items[_cur_idx++] = WorkItem(r);
4677       return false;
4678     }
4679   };
4680 
4681   void prepare_work() {
4682     G1PrepareFreeCollectionSetClosure cl(_work_items);
4683     _collection_set->iterate(&cl);
4684   }
4685 
4686   void complete_work() {
4687     _cl.complete_work();
4688 
4689     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4690     policy->record_max_rs_lengths(_rs_lengths);
4691     policy->cset_regions_freed();
4692   }
4693 public:
4694   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4695     AbstractGangTask("G1 Free Collection Set"),
4696     _cl(evacuation_info, surviving_young_words),
4697     _collection_set(collection_set),
4698     _surviving_young_words(surviving_young_words),
4699     _serial_work_claim(0),
4700     _rs_lengths(0),
4701     _parallel_work_claim(0),
4702     _num_work_items(collection_set->region_length()),
4703     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4704     prepare_work();
4705   }
4706 
4707   ~G1FreeCollectionSetTask() {
4708     complete_work();
4709     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4710   }
4711 
4712   // Chunk size for work distribution. The chosen value has been determined experimentally
4713   // to be a good tradeoff between overhead and achievable parallelism.
4714   static uint chunk_size() { return 32; }
4715 
4716   virtual void work(uint worker_id) {
4717     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4718 
4719     // Claim serial work.
4720     if (_serial_work_claim == 0) {
4721       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4722       if (value == 0) {
4723         double serial_time = os::elapsedTime();
4724         do_serial_work();
4725         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4726       }
4727     }
4728 
4729     // Start parallel work.
4730     double young_time = 0.0;
4731     bool has_young_time = false;
4732     double non_young_time = 0.0;
4733     bool has_non_young_time = false;
4734 
4735     while (true) {
4736       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4737       size_t cur = end - chunk_size();
4738 
4739       if (cur >= _num_work_items) {
4740         break;
4741       }
4742 
4743       double start_time = os::elapsedTime();
4744 
4745       end = MIN2(end, _num_work_items);
4746 
4747       for (; cur < end; cur++) {
4748         bool is_young = _work_items[cur].is_young;
4749 
4750         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4751 
4752         double end_time = os::elapsedTime();
4753         double time_taken = end_time - start_time;
4754         if (is_young) {
4755           young_time += time_taken;
4756           has_young_time = true;
4757         } else {
4758           non_young_time += time_taken;
4759           has_non_young_time = true;
4760         }
4761         start_time = end_time;
4762       }
4763     }
4764 
4765     if (has_young_time) {
4766       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4767     }
4768     if (has_non_young_time) {
4769       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4770     }
4771   }
4772 };
4773 
4774 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4775   _eden.clear();
4776 
4777   double free_cset_start_time = os::elapsedTime();
4778 
4779   {
4780     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4781     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4782 
4783     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4784 
4785     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4786                         cl.name(),
4787                         num_workers,
4788                         _collection_set.region_length());
4789     workers()->run_task(&cl, num_workers);
4790   }
4791   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4792 
4793   collection_set->clear();
4794 }
4795 
4796 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4797  private:
4798   FreeRegionList* _free_region_list;
4799   HeapRegionSet* _proxy_set;
4800   uint _humongous_objects_reclaimed;
4801   uint _humongous_regions_reclaimed;
4802   size_t _freed_bytes;
4803  public:
4804 
4805   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4806     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4807   }
4808 
4809   virtual bool doHeapRegion(HeapRegion* r) {
4810     if (!r->is_starts_humongous()) {
4811       return false;
4812     }
4813 
4814     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4815 
4816     oop obj = (oop)r->bottom();
4817     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4818 
4819     // The following checks whether the humongous object is live are sufficient.
4820     // The main additional check (in addition to having a reference from the roots
4821     // or the young gen) is whether the humongous object has a remembered set entry.
4822     //
4823     // A humongous object cannot be live if there is no remembered set for it
4824     // because:
4825     // - there can be no references from within humongous starts regions referencing
4826     // the object because we never allocate other objects into them.
4827     // (I.e. there are no intra-region references that may be missed by the
4828     // remembered set)
4829     // - as soon there is a remembered set entry to the humongous starts region
4830     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4831     // until the end of a concurrent mark.
4832     //
4833     // It is not required to check whether the object has been found dead by marking
4834     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4835     // all objects allocated during that time are considered live.
4836     // SATB marking is even more conservative than the remembered set.
4837     // So if at this point in the collection there is no remembered set entry,
4838     // nobody has a reference to it.
4839     // At the start of collection we flush all refinement logs, and remembered sets
4840     // are completely up-to-date wrt to references to the humongous object.
4841     //
4842     // Other implementation considerations:
4843     // - never consider object arrays at this time because they would pose
4844     // considerable effort for cleaning up the the remembered sets. This is
4845     // required because stale remembered sets might reference locations that
4846     // are currently allocated into.
4847     uint region_idx = r->hrm_index();
4848     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4849         !r->rem_set()->is_empty()) {
4850       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4851                                region_idx,
4852                                (size_t)obj->size() * HeapWordSize,
4853                                p2i(r->bottom()),
4854                                r->rem_set()->occupied(),
4855                                r->rem_set()->strong_code_roots_list_length(),
4856                                next_bitmap->isMarked(r->bottom()),
4857                                g1h->is_humongous_reclaim_candidate(region_idx),
4858                                obj->is_typeArray()
4859                               );
4860       return false;
4861     }
4862 
4863     guarantee(obj->is_typeArray(),
4864               "Only eagerly reclaiming type arrays is supported, but the object "
4865               PTR_FORMAT " is not.", p2i(r->bottom()));
4866 
4867     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4868                              region_idx,
4869                              (size_t)obj->size() * HeapWordSize,
4870                              p2i(r->bottom()),
4871                              r->rem_set()->occupied(),
4872                              r->rem_set()->strong_code_roots_list_length(),
4873                              next_bitmap->isMarked(r->bottom()),
4874                              g1h->is_humongous_reclaim_candidate(region_idx),
4875                              obj->is_typeArray()
4876                             );
4877 
4878     // Need to clear mark bit of the humongous object if already set.
4879     if (next_bitmap->isMarked(r->bottom())) {
4880       next_bitmap->clear(r->bottom());
4881     }
4882     _humongous_objects_reclaimed++;
4883     do {
4884       HeapRegion* next = g1h->next_region_in_humongous(r);
4885       _freed_bytes += r->used();
4886       r->set_containing_set(NULL);
4887       _humongous_regions_reclaimed++;
4888       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4889       r = next;
4890     } while (r != NULL);
4891 
4892     return false;
4893   }
4894 
4895   uint humongous_objects_reclaimed() {
4896     return _humongous_objects_reclaimed;
4897   }
4898 
4899   uint humongous_regions_reclaimed() {
4900     return _humongous_regions_reclaimed;
4901   }
4902 
4903   size_t bytes_freed() const {
4904     return _freed_bytes;
4905   }
4906 };
4907 
4908 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4909   assert_at_safepoint(true);
4910 
4911   if (!G1EagerReclaimHumongousObjects ||
4912       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4913     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4914     return;
4915   }
4916 
4917   double start_time = os::elapsedTime();
4918 
4919   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4920 
4921   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4922   heap_region_iterate(&cl);
4923 
4924   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4925 
4926   G1HRPrinter* hrp = hr_printer();
4927   if (hrp->is_active()) {
4928     FreeRegionListIterator iter(&local_cleanup_list);
4929     while (iter.more_available()) {
4930       HeapRegion* hr = iter.get_next();
4931       hrp->cleanup(hr);
4932     }
4933   }
4934 
4935   prepend_to_freelist(&local_cleanup_list);
4936   decrement_summary_bytes(cl.bytes_freed());
4937 
4938   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4939                                                                     cl.humongous_objects_reclaimed());
4940 }
4941 
4942 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4943 public:
4944   virtual bool doHeapRegion(HeapRegion* r) {
4945     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4946     G1CollectedHeap::heap()->clear_in_cset(r);
4947     r->set_young_index_in_cset(-1);
4948     return false;
4949   }
4950 };
4951 
4952 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4953   G1AbandonCollectionSetClosure cl;
4954   collection_set->iterate(&cl);
4955 
4956   collection_set->clear();
4957   collection_set->stop_incremental_building();
4958 }
4959 
4960 void G1CollectedHeap::set_free_regions_coming() {
4961   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
4962 
4963   assert(!free_regions_coming(), "pre-condition");
4964   _free_regions_coming = true;
4965 }
4966 
4967 void G1CollectedHeap::reset_free_regions_coming() {
4968   assert(free_regions_coming(), "pre-condition");
4969 
4970   {
4971     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4972     _free_regions_coming = false;
4973     SecondaryFreeList_lock->notify_all();
4974   }
4975 
4976   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
4977 }
4978 
4979 void G1CollectedHeap::wait_while_free_regions_coming() {
4980   // Most of the time we won't have to wait, so let's do a quick test
4981   // first before we take the lock.
4982   if (!free_regions_coming()) {
4983     return;
4984   }
4985 
4986   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
4987 
4988   {
4989     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4990     while (free_regions_coming()) {
4991       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
4992     }
4993   }
4994 
4995   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
4996 }
4997 
4998 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4999   return _allocator->is_retained_old_region(hr);
5000 }
5001 
5002 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5003   _eden.add(hr);
5004   _g1_policy->set_region_eden(hr);
5005 }
5006 
5007 #ifdef ASSERT
5008 
5009 class NoYoungRegionsClosure: public HeapRegionClosure {
5010 private:
5011   bool _success;
5012 public:
5013   NoYoungRegionsClosure() : _success(true) { }
5014   bool doHeapRegion(HeapRegion* r) {
5015     if (r->is_young()) {
5016       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5017                             p2i(r->bottom()), p2i(r->end()));
5018       _success = false;
5019     }
5020     return false;
5021   }
5022   bool success() { return _success; }
5023 };
5024 
5025 bool G1CollectedHeap::check_young_list_empty() {
5026   bool ret = (young_regions_count() == 0);
5027 
5028   NoYoungRegionsClosure closure;
5029   heap_region_iterate(&closure);
5030   ret = ret && closure.success();
5031 
5032   return ret;
5033 }
5034 
5035 #endif // ASSERT
5036 
5037 class TearDownRegionSetsClosure : public HeapRegionClosure {
5038 private:
5039   HeapRegionSet *_old_set;
5040 
5041 public:
5042   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5043 
5044   bool doHeapRegion(HeapRegion* r) {
5045     if (r->is_old()) {
5046       _old_set->remove(r);
5047     } else if(r->is_young()) {
5048       r->uninstall_surv_rate_group();
5049     } else {
5050       // We ignore free regions, we'll empty the free list afterwards.
5051       // We ignore humongous regions, we're not tearing down the
5052       // humongous regions set.
5053       assert(r->is_free() || r->is_humongous(),
5054              "it cannot be another type");
5055     }
5056     return false;
5057   }
5058 
5059   ~TearDownRegionSetsClosure() {
5060     assert(_old_set->is_empty(), "post-condition");
5061   }
5062 };
5063 
5064 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5065   assert_at_safepoint(true /* should_be_vm_thread */);
5066 
5067   if (!free_list_only) {
5068     TearDownRegionSetsClosure cl(&_old_set);
5069     heap_region_iterate(&cl);
5070 
5071     // Note that emptying the _young_list is postponed and instead done as
5072     // the first step when rebuilding the regions sets again. The reason for
5073     // this is that during a full GC string deduplication needs to know if
5074     // a collected region was young or old when the full GC was initiated.
5075   }
5076   _hrm.remove_all_free_regions();
5077 }
5078 
5079 void G1CollectedHeap::increase_used(size_t bytes) {
5080   _summary_bytes_used += bytes;
5081 }
5082 
5083 void G1CollectedHeap::decrease_used(size_t bytes) {
5084   assert(_summary_bytes_used >= bytes,
5085          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5086          _summary_bytes_used, bytes);
5087   _summary_bytes_used -= bytes;
5088 }
5089 
5090 void G1CollectedHeap::set_used(size_t bytes) {
5091   _summary_bytes_used = bytes;
5092 }
5093 
5094 class RebuildRegionSetsClosure : public HeapRegionClosure {
5095 private:
5096   bool            _free_list_only;
5097   HeapRegionSet*   _old_set;
5098   HeapRegionManager*   _hrm;
5099   size_t          _total_used;
5100 
5101 public:
5102   RebuildRegionSetsClosure(bool free_list_only,
5103                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5104     _free_list_only(free_list_only),
5105     _old_set(old_set), _hrm(hrm), _total_used(0) {
5106     assert(_hrm->num_free_regions() == 0, "pre-condition");
5107     if (!free_list_only) {
5108       assert(_old_set->is_empty(), "pre-condition");
5109     }
5110   }
5111 
5112   bool doHeapRegion(HeapRegion* r) {
5113     if (r->is_empty()) {
5114       // Add free regions to the free list
5115       r->set_free();
5116       r->set_allocation_context(AllocationContext::system());
5117       _hrm->insert_into_free_list(r);
5118     } else if (!_free_list_only) {
5119 
5120       if (r->is_humongous()) {
5121         // We ignore humongous regions. We left the humongous set unchanged.
5122       } else {
5123         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5124         // We now consider all regions old, so register as such. Leave
5125         // archive regions set that way, however, while still adding
5126         // them to the old set.
5127         if (!r->is_archive()) {
5128           r->set_old();
5129         }
5130         _old_set->add(r);
5131       }
5132       _total_used += r->used();
5133     }
5134 
5135     return false;
5136   }
5137 
5138   size_t total_used() {
5139     return _total_used;
5140   }
5141 };
5142 
5143 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5144   assert_at_safepoint(true /* should_be_vm_thread */);
5145 
5146   if (!free_list_only) {
5147     _eden.clear();
5148     _survivor.clear();
5149   }
5150 
5151   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5152   heap_region_iterate(&cl);
5153 
5154   if (!free_list_only) {
5155     set_used(cl.total_used());
5156     if (_archive_allocator != NULL) {
5157       _archive_allocator->clear_used();
5158     }
5159   }
5160   assert(used_unlocked() == recalculate_used(),
5161          "inconsistent used_unlocked(), "
5162          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5163          used_unlocked(), recalculate_used());
5164 }
5165 
5166 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5167   _refine_cte_cl->set_concurrent(concurrent);
5168 }
5169 
5170 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5171   HeapRegion* hr = heap_region_containing(p);
5172   return hr->is_in(p);
5173 }
5174 
5175 // Methods for the mutator alloc region
5176 
5177 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5178                                                       bool force) {
5179   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5180   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5181   if (force || should_allocate) {
5182     HeapRegion* new_alloc_region = new_region(word_size,
5183                                               false /* is_old */,
5184                                               false /* do_expand */);
5185     if (new_alloc_region != NULL) {
5186       set_region_short_lived_locked(new_alloc_region);
5187       _hr_printer.alloc(new_alloc_region, !should_allocate);
5188       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5189       return new_alloc_region;
5190     }
5191   }
5192   return NULL;
5193 }
5194 
5195 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5196                                                   size_t allocated_bytes) {
5197   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5198   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5199 
5200   collection_set()->add_eden_region(alloc_region);
5201   increase_used(allocated_bytes);
5202   _hr_printer.retire(alloc_region);
5203   // We update the eden sizes here, when the region is retired,
5204   // instead of when it's allocated, since this is the point that its
5205   // used space has been recored in _summary_bytes_used.
5206   g1mm()->update_eden_size();
5207 }
5208 
5209 // Methods for the GC alloc regions
5210 
5211 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5212   if (dest.is_old()) {
5213     return true;
5214   } else {
5215     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5216   }
5217 }
5218 
5219 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5220   assert(FreeList_lock->owned_by_self(), "pre-condition");
5221 
5222   if (!has_more_regions(dest)) {
5223     return NULL;
5224   }
5225 
5226   const bool is_survivor = dest.is_young();
5227 
5228   HeapRegion* new_alloc_region = new_region(word_size,
5229                                             !is_survivor,
5230                                             true /* do_expand */);
5231   if (new_alloc_region != NULL) {
5232     // We really only need to do this for old regions given that we
5233     // should never scan survivors. But it doesn't hurt to do it
5234     // for survivors too.
5235     new_alloc_region->record_timestamp();
5236     if (is_survivor) {
5237       new_alloc_region->set_survivor();
5238       _survivor.add(new_alloc_region);
5239       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5240     } else {
5241       new_alloc_region->set_old();
5242       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5243     }
5244     _hr_printer.alloc(new_alloc_region);
5245     bool during_im = collector_state()->during_initial_mark_pause();
5246     new_alloc_region->note_start_of_copying(during_im);
5247     return new_alloc_region;
5248   }
5249   return NULL;
5250 }
5251 
5252 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5253                                              size_t allocated_bytes,
5254                                              InCSetState dest) {
5255   bool during_im = collector_state()->during_initial_mark_pause();
5256   alloc_region->note_end_of_copying(during_im);
5257   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5258   if (dest.is_old()) {
5259     _old_set.add(alloc_region);
5260   }
5261   _hr_printer.retire(alloc_region);
5262 }
5263 
5264 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5265   bool expanded = false;
5266   uint index = _hrm.find_highest_free(&expanded);
5267 
5268   if (index != G1_NO_HRM_INDEX) {
5269     if (expanded) {
5270       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5271                                 HeapRegion::GrainWords * HeapWordSize);
5272     }
5273     _hrm.allocate_free_regions_starting_at(index, 1);
5274     return region_at(index);
5275   }
5276   return NULL;
5277 }
5278 
5279 // Optimized nmethod scanning
5280 
5281 class RegisterNMethodOopClosure: public OopClosure {
5282   G1CollectedHeap* _g1h;
5283   nmethod* _nm;
5284 
5285   template <class T> void do_oop_work(T* p) {
5286     T heap_oop = oopDesc::load_heap_oop(p);
5287     if (!oopDesc::is_null(heap_oop)) {
5288       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5289       HeapRegion* hr = _g1h->heap_region_containing(obj);
5290       assert(!hr->is_continues_humongous(),
5291              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5292              " starting at " HR_FORMAT,
5293              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5294 
5295       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5296       hr->add_strong_code_root_locked(_nm);
5297     }
5298   }
5299 
5300 public:
5301   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5302     _g1h(g1h), _nm(nm) {}
5303 
5304   void do_oop(oop* p)       { do_oop_work(p); }
5305   void do_oop(narrowOop* p) { do_oop_work(p); }
5306 };
5307 
5308 class UnregisterNMethodOopClosure: public OopClosure {
5309   G1CollectedHeap* _g1h;
5310   nmethod* _nm;
5311 
5312   template <class T> void do_oop_work(T* p) {
5313     T heap_oop = oopDesc::load_heap_oop(p);
5314     if (!oopDesc::is_null(heap_oop)) {
5315       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5316       HeapRegion* hr = _g1h->heap_region_containing(obj);
5317       assert(!hr->is_continues_humongous(),
5318              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5319              " starting at " HR_FORMAT,
5320              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5321 
5322       hr->remove_strong_code_root(_nm);
5323     }
5324   }
5325 
5326 public:
5327   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5328     _g1h(g1h), _nm(nm) {}
5329 
5330   void do_oop(oop* p)       { do_oop_work(p); }
5331   void do_oop(narrowOop* p) { do_oop_work(p); }
5332 };
5333 
5334 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5335   CollectedHeap::register_nmethod(nm);
5336 
5337   guarantee(nm != NULL, "sanity");
5338   RegisterNMethodOopClosure reg_cl(this, nm);
5339   nm->oops_do(&reg_cl);
5340 }
5341 
5342 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5343   CollectedHeap::unregister_nmethod(nm);
5344 
5345   guarantee(nm != NULL, "sanity");
5346   UnregisterNMethodOopClosure reg_cl(this, nm);
5347   nm->oops_do(&reg_cl, true);
5348 }
5349 
5350 void G1CollectedHeap::purge_code_root_memory() {
5351   double purge_start = os::elapsedTime();
5352   G1CodeRootSet::purge();
5353   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5354   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5355 }
5356 
5357 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5358   G1CollectedHeap* _g1h;
5359 
5360 public:
5361   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5362     _g1h(g1h) {}
5363 
5364   void do_code_blob(CodeBlob* cb) {
5365     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5366     if (nm == NULL) {
5367       return;
5368     }
5369 
5370     if (ScavengeRootsInCode) {
5371       _g1h->register_nmethod(nm);
5372     }
5373   }
5374 };
5375 
5376 void G1CollectedHeap::rebuild_strong_code_roots() {
5377   RebuildStrongCodeRootClosure blob_cl(this);
5378   CodeCache::blobs_do(&blob_cl);
5379 }