1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_INLINE_HPP
  26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_INLINE_HPP
  27 
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1ConcurrentMark.hpp"
  30 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.inline.hpp"
  31 #include "gc/g1/suspendibleThreadSet.hpp"
  32 #include "gc/shared/taskqueue.inline.hpp"
  33 #include "utilities/bitMap.inline.hpp"
  34 
  35 inline bool G1ConcurrentMark::par_mark(oop obj) {
  36   return _nextMarkBitMap->par_mark((HeapWord*)obj);
  37 }
  38 
  39 inline bool G1CMBitMap::iterate(G1CMBitMapClosure* cl, MemRegion mr) {
  40   HeapWord* start_addr = MAX2(_covered.start(), mr.start());
  41   HeapWord* const end_addr = MIN2(_covered.end(), mr.end());
  42 
  43   if (end_addr > start_addr) {
  44     // Right-open interval [start-offset, end-offset).
  45     BitMap::idx_t start_offset = addr_to_offset(start_addr);
  46     BitMap::idx_t const end_offset = addr_to_offset(end_addr);
  47 
  48     start_offset = _bm.get_next_one_offset(start_offset, end_offset);
  49     while (start_offset < end_offset) {
  50       start_addr = offset_to_addr(start_offset);
  51       if (!cl->do_addr(start_addr)) {
  52         return false;
  53       }
  54       HeapWord* next_addr = MIN2(addr_after_obj(start_addr), end_addr);
  55       BitMap::idx_t const next_offset = addr_to_offset(next_addr);
  56       start_offset = _bm.get_next_one_offset(next_offset, end_offset);
  57     }
  58   }
  59   return true;
  60 }
  61 
  62 inline HeapWord* G1CMBitMap::get_next_marked_addr(const HeapWord* addr,
  63                                                   const HeapWord* limit) const {
  64   // First we must round addr *up* to a possible object boundary.
  65   addr = (HeapWord*)align_up(addr, HeapWordSize << _shifter);
  66   size_t addrOffset = addr_to_offset(addr);
  67   assert(limit != NULL, "limit must not be NULL");
  68   size_t limitOffset = addr_to_offset(limit);
  69   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  70   HeapWord* nextAddr = offset_to_addr(nextOffset);
  71   assert(nextAddr >= addr, "get_next_one postcondition");
  72   assert(nextAddr == limit || is_marked(nextAddr),
  73          "get_next_one postcondition");
  74   return nextAddr;
  75 }
  76 
  77 inline HeapWord* G1CMBitMap::addr_after_obj(HeapWord* addr) {
  78   return addr + ((oop)addr)->size();
  79 }
  80 
  81 #ifdef ASSERT
  82 inline void G1CMBitMap::check_mark(HeapWord* addr) {
  83   assert(G1CollectedHeap::heap()->is_in_exact(addr),
  84          "Trying to access bitmap " PTR_FORMAT " for address " PTR_FORMAT " not in the heap.",
  85          p2i(this), p2i(addr));
  86 }
  87 #endif
  88 
  89 inline void G1CMBitMap::mark(HeapWord* addr) {
  90   check_mark(addr);
  91   _bm.set_bit(addr_to_offset(addr));
  92 }
  93 
  94 inline void G1CMBitMap::clear(HeapWord* addr) {
  95   check_mark(addr);
  96   _bm.clear_bit(addr_to_offset(addr));
  97 }
  98 
  99 inline bool G1CMBitMap::par_mark(HeapWord* addr) {
 100   check_mark(addr);
 101   return _bm.par_set_bit(addr_to_offset(addr));
 102 }
 103 
 104 #ifndef PRODUCT
 105 template<typename Fn>
 106 inline void G1CMMarkStack::iterate(Fn fn) const {
 107   assert_at_safepoint(true);
 108 
 109   size_t num_chunks = 0;
 110 
 111   TaskQueueEntryChunk* cur = _chunk_list;
 112   while (cur != NULL) {
 113     guarantee(num_chunks <= _chunks_in_chunk_list, "Found " SIZE_FORMAT " oop chunks which is more than there should be", num_chunks);
 114 
 115     for (size_t i = 0; i < EntriesPerChunk; ++i) {
 116       if (cur->data[i].is_null()) {
 117         break;
 118       }
 119       fn(cur->data[i]);
 120     }
 121     cur = cur->next;
 122     num_chunks++;
 123   }
 124 }
 125 #endif
 126 
 127 // It scans an object and visits its children.
 128 inline void G1CMTask::scan_task_entry(G1TaskQueueEntry task_entry) { process_grey_task_entry<true>(task_entry); }
 129 
 130 inline void G1CMTask::push(G1TaskQueueEntry task_entry) {
 131   assert(task_entry.is_array_slice() || _g1h->is_in_g1_reserved(task_entry.obj()), "invariant");
 132   assert(task_entry.is_array_slice() || !_g1h->is_on_master_free_list(
 133               _g1h->heap_region_containing(task_entry.obj())), "invariant");
 134   assert(task_entry.is_array_slice() || !_g1h->is_obj_ill(task_entry.obj()), "invariant");  // FIXME!!!
 135   assert(task_entry.is_array_slice() || _nextMarkBitMap->is_marked((HeapWord*)task_entry.obj()), "invariant");
 136 
 137   if (!_task_queue->push(task_entry)) {
 138     // The local task queue looks full. We need to push some entries
 139     // to the global stack.
 140     move_entries_to_global_stack();
 141 
 142     // this should succeed since, even if we overflow the global
 143     // stack, we should have definitely removed some entries from the
 144     // local queue. So, there must be space on it.
 145     bool success = _task_queue->push(task_entry);
 146     assert(success, "invariant");
 147   }
 148 }
 149 
 150 inline bool G1CMTask::is_below_finger(oop obj, HeapWord* global_finger) const {
 151   // If obj is above the global finger, then the mark bitmap scan
 152   // will find it later, and no push is needed.  Similarly, if we have
 153   // a current region and obj is between the local finger and the
 154   // end of the current region, then no push is needed.  The tradeoff
 155   // of checking both vs only checking the global finger is that the
 156   // local check will be more accurate and so result in fewer pushes,
 157   // but may also be a little slower.
 158   HeapWord* objAddr = (HeapWord*)obj;
 159   if (_finger != NULL) {
 160     // We have a current region.
 161 
 162     // Finger and region values are all NULL or all non-NULL.  We
 163     // use _finger to check since we immediately use its value.
 164     assert(_curr_region != NULL, "invariant");
 165     assert(_region_limit != NULL, "invariant");
 166     assert(_region_limit <= global_finger, "invariant");
 167 
 168     // True if obj is less than the local finger, or is between
 169     // the region limit and the global finger.
 170     if (objAddr < _finger) {
 171       return true;
 172     } else if (objAddr < _region_limit) {
 173       return false;
 174     } // Else check global finger.
 175   }
 176   // Check global finger.
 177   return objAddr < global_finger;
 178 }
 179 
 180 template<bool scan>
 181 inline void G1CMTask::process_grey_task_entry(G1TaskQueueEntry task_entry) {
 182   assert(scan || (task_entry.is_oop() && task_entry.obj()->is_typeArray()), "Skipping scan of grey non-typeArray");
 183   assert(task_entry.is_array_slice() || _nextMarkBitMap->is_marked((HeapWord*)task_entry.obj()),
 184          "Any stolen object should be a slice or marked");
 185 
 186   if (scan) {
 187     if (task_entry.is_array_slice()) {
 188       _words_scanned += _objArray_processor.process_slice(task_entry.slice());
 189     } else {
 190       oop obj = task_entry.obj();
 191       if (G1CMObjArrayProcessor::should_be_sliced(obj)) {
 192         _words_scanned += _objArray_processor.process_obj(obj);
 193       } else {
 194         _words_scanned += obj->oop_iterate_size(_cm_oop_closure);;
 195       }
 196     }
 197   }
 198   check_limits();
 199 }
 200 
 201 inline size_t G1CMTask::scan_objArray(objArrayOop obj, MemRegion mr) {
 202   obj->oop_iterate(_cm_oop_closure, mr);
 203   return mr.word_size();
 204 }
 205 
 206 inline void G1CMTask::make_reference_grey(oop obj) {
 207   if (_cm->par_mark(obj)) {
 208     // No OrderAccess:store_load() is needed. It is implicit in the
 209     // CAS done in G1CMBitMap::parMark() call in the routine above.
 210     HeapWord* global_finger = _cm->finger();
 211 
 212     // We only need to push a newly grey object on the mark
 213     // stack if it is in a section of memory the mark bitmap
 214     // scan has already examined.  Mark bitmap scanning
 215     // maintains progress "fingers" for determining that.
 216     //
 217     // Notice that the global finger might be moving forward
 218     // concurrently. This is not a problem. In the worst case, we
 219     // mark the object while it is above the global finger and, by
 220     // the time we read the global finger, it has moved forward
 221     // past this object. In this case, the object will probably
 222     // be visited when a task is scanning the region and will also
 223     // be pushed on the stack. So, some duplicate work, but no
 224     // correctness problems.
 225     if (is_below_finger(obj, global_finger)) {
 226       G1TaskQueueEntry entry = G1TaskQueueEntry::from_oop(obj);
 227       if (obj->is_typeArray()) {
 228         // Immediately process arrays of primitive types, rather
 229         // than pushing on the mark stack.  This keeps us from
 230         // adding humongous objects to the mark stack that might
 231         // be reclaimed before the entry is processed - see
 232         // selection of candidates for eager reclaim of humongous
 233         // objects.  The cost of the additional type test is
 234         // mitigated by avoiding a trip through the mark stack,
 235         // by only doing a bookkeeping update and avoiding the
 236         // actual scan of the object - a typeArray contains no
 237         // references, and the metadata is built-in.
 238         process_grey_task_entry<false>(entry);
 239       } else {
 240         push(entry);
 241       }
 242     }
 243   }
 244 }
 245 
 246 inline void G1CMTask::deal_with_reference(oop obj) {
 247   increment_refs_reached();
 248 
 249   HeapWord* objAddr = (HeapWord*) obj;
 250   assert(obj->is_oop_or_null(true /* ignore mark word */), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
 251   if (_g1h->is_in_g1_reserved(objAddr)) {
 252     assert(obj != NULL, "null check is implicit");
 253     if (!_nextMarkBitMap->is_marked(objAddr)) {
 254       // Only get the containing region if the object is not marked on the
 255       // bitmap (otherwise, it's a waste of time since we won't do
 256       // anything with it).
 257       HeapRegion* hr = _g1h->heap_region_containing(obj);
 258       if (!hr->obj_allocated_since_next_marking(obj)) {
 259         make_reference_grey(obj);
 260       }
 261     }
 262   }
 263 }
 264 
 265 inline void G1ConcurrentMark::markPrev(oop p) {
 266   assert(!_prevMarkBitMap->is_marked((HeapWord*) p), "sanity");
 267  _prevMarkBitMap->mark((HeapWord*) p);
 268 }
 269 
 270 bool G1ConcurrentMark::isPrevMarked(oop p) const {
 271   assert(p != NULL && p->is_oop(), "expected an oop");
 272   return _prevMarkBitMap->is_marked((HeapWord*)p);
 273 }
 274 
 275 inline void G1ConcurrentMark::grayRoot(oop obj, HeapRegion* hr) {
 276   assert(obj != NULL, "pre-condition");
 277   HeapWord* addr = (HeapWord*) obj;
 278   if (hr == NULL) {
 279     hr = _g1h->heap_region_containing(addr);
 280   } else {
 281     assert(hr->is_in(addr), "pre-condition");
 282   }
 283   assert(hr != NULL, "sanity");
 284   // Given that we're looking for a region that contains an object
 285   // header it's impossible to get back a HC region.
 286   assert(!hr->is_continues_humongous(), "sanity");
 287 
 288   if (addr < hr->next_top_at_mark_start()) {
 289     if (!_nextMarkBitMap->is_marked(addr)) {
 290       par_mark(obj);
 291     }
 292   }
 293 }
 294 
 295 inline bool G1ConcurrentMark::do_yield_check() {
 296   if (SuspendibleThreadSet::should_yield()) {
 297     SuspendibleThreadSet::yield();
 298     return true;
 299   } else {
 300     return false;
 301   }
 302 }
 303 
 304 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_INLINE_HPP