1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_INLINE_HPP
  26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_INLINE_HPP
  27 
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1ConcurrentMark.hpp"
  30 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.inline.hpp"
  31 #include "gc/g1/suspendibleThreadSet.hpp"
  32 #include "gc/shared/taskqueue.inline.hpp"
  33 #include "utilities/bitMap.inline.hpp"
  34 
  35 inline bool G1ConcurrentMark::par_mark(oop obj) {
  36   return _nextMarkBitMap->par_mark((HeapWord*)obj);
  37 }
  38 
  39 inline bool G1CMBitMap::iterate(G1CMBitMapClosure* cl, MemRegion mr) {
  40   assert(!mr.is_empty(), "Does not support empty memregion to iterate over");
  41   assert(_covered.contains(mr), "Given MemRegion from " PTR_FORMAT " to " PTR_FORMAT " not contained in heap area", p2i(mr.start()), p2i(mr.end()));
  42 
  43   BitMap::idx_t const end_offset = addr_to_offset(mr.end());
  44   BitMap::idx_t offset = _bm.get_next_one_offset(addr_to_offset(mr.start()), end_offset);
  45 
  46   while (offset < end_offset) {
  47     HeapWord* const addr = offset_to_addr(offset);
  48     if (!cl->do_addr(addr)) {
  49       return false;
  50     }
  51     size_t const obj_size = (size_t)((oop)addr)->size();
  52     offset = _bm.get_next_one_offset(offset + (obj_size >> _shifter), end_offset);
  53   }
  54   return true;
  55 }
  56 
  57 inline HeapWord* G1CMBitMap::get_next_marked_addr(const HeapWord* addr,
  58                                                   const HeapWord* limit) const {
  59   assert(limit != NULL, "limit must not be NULL");
  60   // Round addr up to a possible object boundary to be safe.
  61   size_t const addr_offset = addr_to_offset(align_up(addr, HeapWordSize << _shifter));
  62   size_t const limit_offset = addr_to_offset(limit);
  63   size_t const nextOffset = _bm.get_next_one_offset(addr_offset, limit_offset);
  64   return offset_to_addr(nextOffset);
  65 }
  66 
  67 #ifdef ASSERT
  68 inline void G1CMBitMap::check_mark(HeapWord* addr) {
  69   assert(G1CollectedHeap::heap()->is_in_exact(addr),
  70          "Trying to access bitmap " PTR_FORMAT " for address " PTR_FORMAT " not in the heap.",
  71          p2i(this), p2i(addr));
  72 }
  73 #endif
  74 
  75 inline void G1CMBitMap::mark(HeapWord* addr) {
  76   check_mark(addr);
  77   _bm.set_bit(addr_to_offset(addr));
  78 }
  79 
  80 inline void G1CMBitMap::clear(HeapWord* addr) {
  81   check_mark(addr);
  82   _bm.clear_bit(addr_to_offset(addr));
  83 }
  84 
  85 inline bool G1CMBitMap::par_mark(HeapWord* addr) {
  86   check_mark(addr);
  87   return _bm.par_set_bit(addr_to_offset(addr));
  88 }
  89 
  90 #ifndef PRODUCT
  91 template<typename Fn>
  92 inline void G1CMMarkStack::iterate(Fn fn) const {
  93   assert_at_safepoint(true);
  94 
  95   size_t num_chunks = 0;
  96 
  97   TaskQueueEntryChunk* cur = _chunk_list;
  98   while (cur != NULL) {
  99     guarantee(num_chunks <= _chunks_in_chunk_list, "Found " SIZE_FORMAT " oop chunks which is more than there should be", num_chunks);
 100 
 101     for (size_t i = 0; i < EntriesPerChunk; ++i) {
 102       if (cur->data[i].is_null()) {
 103         break;
 104       }
 105       fn(cur->data[i]);
 106     }
 107     cur = cur->next;
 108     num_chunks++;
 109   }
 110 }
 111 #endif
 112 
 113 // It scans an object and visits its children.
 114 inline void G1CMTask::scan_task_entry(G1TaskQueueEntry task_entry) { process_grey_task_entry<true>(task_entry); }
 115 
 116 inline void G1CMTask::push(G1TaskQueueEntry task_entry) {
 117   assert(task_entry.is_array_slice() || _g1h->is_in_g1_reserved(task_entry.obj()), "invariant");
 118   assert(task_entry.is_array_slice() || !_g1h->is_on_master_free_list(
 119               _g1h->heap_region_containing(task_entry.obj())), "invariant");
 120   assert(task_entry.is_array_slice() || !_g1h->is_obj_ill(task_entry.obj()), "invariant");  // FIXME!!!
 121   assert(task_entry.is_array_slice() || _nextMarkBitMap->is_marked((HeapWord*)task_entry.obj()), "invariant");
 122 
 123   if (!_task_queue->push(task_entry)) {
 124     // The local task queue looks full. We need to push some entries
 125     // to the global stack.
 126     move_entries_to_global_stack();
 127 
 128     // this should succeed since, even if we overflow the global
 129     // stack, we should have definitely removed some entries from the
 130     // local queue. So, there must be space on it.
 131     bool success = _task_queue->push(task_entry);
 132     assert(success, "invariant");
 133   }
 134 }
 135 
 136 inline bool G1CMTask::is_below_finger(oop obj, HeapWord* global_finger) const {
 137   // If obj is above the global finger, then the mark bitmap scan
 138   // will find it later, and no push is needed.  Similarly, if we have
 139   // a current region and obj is between the local finger and the
 140   // end of the current region, then no push is needed.  The tradeoff
 141   // of checking both vs only checking the global finger is that the
 142   // local check will be more accurate and so result in fewer pushes,
 143   // but may also be a little slower.
 144   HeapWord* objAddr = (HeapWord*)obj;
 145   if (_finger != NULL) {
 146     // We have a current region.
 147 
 148     // Finger and region values are all NULL or all non-NULL.  We
 149     // use _finger to check since we immediately use its value.
 150     assert(_curr_region != NULL, "invariant");
 151     assert(_region_limit != NULL, "invariant");
 152     assert(_region_limit <= global_finger, "invariant");
 153 
 154     // True if obj is less than the local finger, or is between
 155     // the region limit and the global finger.
 156     if (objAddr < _finger) {
 157       return true;
 158     } else if (objAddr < _region_limit) {
 159       return false;
 160     } // Else check global finger.
 161   }
 162   // Check global finger.
 163   return objAddr < global_finger;
 164 }
 165 
 166 template<bool scan>
 167 inline void G1CMTask::process_grey_task_entry(G1TaskQueueEntry task_entry) {
 168   assert(scan || (task_entry.is_oop() && task_entry.obj()->is_typeArray()), "Skipping scan of grey non-typeArray");
 169   assert(task_entry.is_array_slice() || _nextMarkBitMap->is_marked((HeapWord*)task_entry.obj()),
 170          "Any stolen object should be a slice or marked");
 171 
 172   if (scan) {
 173     if (task_entry.is_array_slice()) {
 174       _words_scanned += _objArray_processor.process_slice(task_entry.slice());
 175     } else {
 176       oop obj = task_entry.obj();
 177       if (G1CMObjArrayProcessor::should_be_sliced(obj)) {
 178         _words_scanned += _objArray_processor.process_obj(obj);
 179       } else {
 180         _words_scanned += obj->oop_iterate_size(_cm_oop_closure);;
 181       }
 182     }
 183   }
 184   check_limits();
 185 }
 186 
 187 inline size_t G1CMTask::scan_objArray(objArrayOop obj, MemRegion mr) {
 188   obj->oop_iterate(_cm_oop_closure, mr);
 189   return mr.word_size();
 190 }
 191 
 192 inline void G1CMTask::make_reference_grey(oop obj) {
 193   if (_cm->par_mark(obj)) {
 194     // No OrderAccess:store_load() is needed. It is implicit in the
 195     // CAS done in G1CMBitMap::parMark() call in the routine above.
 196     HeapWord* global_finger = _cm->finger();
 197 
 198     // We only need to push a newly grey object on the mark
 199     // stack if it is in a section of memory the mark bitmap
 200     // scan has already examined.  Mark bitmap scanning
 201     // maintains progress "fingers" for determining that.
 202     //
 203     // Notice that the global finger might be moving forward
 204     // concurrently. This is not a problem. In the worst case, we
 205     // mark the object while it is above the global finger and, by
 206     // the time we read the global finger, it has moved forward
 207     // past this object. In this case, the object will probably
 208     // be visited when a task is scanning the region and will also
 209     // be pushed on the stack. So, some duplicate work, but no
 210     // correctness problems.
 211     if (is_below_finger(obj, global_finger)) {
 212       G1TaskQueueEntry entry = G1TaskQueueEntry::from_oop(obj);
 213       if (obj->is_typeArray()) {
 214         // Immediately process arrays of primitive types, rather
 215         // than pushing on the mark stack.  This keeps us from
 216         // adding humongous objects to the mark stack that might
 217         // be reclaimed before the entry is processed - see
 218         // selection of candidates for eager reclaim of humongous
 219         // objects.  The cost of the additional type test is
 220         // mitigated by avoiding a trip through the mark stack,
 221         // by only doing a bookkeeping update and avoiding the
 222         // actual scan of the object - a typeArray contains no
 223         // references, and the metadata is built-in.
 224         process_grey_task_entry<false>(entry);
 225       } else {
 226         push(entry);
 227       }
 228     }
 229   }
 230 }
 231 
 232 inline void G1CMTask::deal_with_reference(oop obj) {
 233   increment_refs_reached();
 234 
 235   HeapWord* objAddr = (HeapWord*) obj;
 236   assert(obj->is_oop_or_null(true /* ignore mark word */), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
 237   if (_g1h->is_in_g1_reserved(objAddr)) {
 238     assert(obj != NULL, "null check is implicit");
 239     if (!_nextMarkBitMap->is_marked(objAddr)) {
 240       // Only get the containing region if the object is not marked on the
 241       // bitmap (otherwise, it's a waste of time since we won't do
 242       // anything with it).
 243       HeapRegion* hr = _g1h->heap_region_containing(obj);
 244       if (!hr->obj_allocated_since_next_marking(obj)) {
 245         make_reference_grey(obj);
 246       }
 247     }
 248   }
 249 }
 250 
 251 inline void G1ConcurrentMark::markPrev(oop p) {
 252   assert(!_prevMarkBitMap->is_marked((HeapWord*) p), "sanity");
 253  _prevMarkBitMap->mark((HeapWord*) p);
 254 }
 255 
 256 bool G1ConcurrentMark::isPrevMarked(oop p) const {
 257   assert(p != NULL && p->is_oop(), "expected an oop");
 258   return _prevMarkBitMap->is_marked((HeapWord*)p);
 259 }
 260 
 261 inline void G1ConcurrentMark::grayRoot(oop obj, HeapRegion* hr) {
 262   assert(obj != NULL, "pre-condition");
 263   HeapWord* addr = (HeapWord*) obj;
 264   if (hr == NULL) {
 265     hr = _g1h->heap_region_containing(addr);
 266   } else {
 267     assert(hr->is_in(addr), "pre-condition");
 268   }
 269   assert(hr != NULL, "sanity");
 270   // Given that we're looking for a region that contains an object
 271   // header it's impossible to get back a HC region.
 272   assert(!hr->is_continues_humongous(), "sanity");
 273 
 274   if (addr < hr->next_top_at_mark_start()) {
 275     if (!_nextMarkBitMap->is_marked(addr)) {
 276       par_mark(obj);
 277     }
 278   }
 279 }
 280 
 281 inline bool G1ConcurrentMark::do_yield_check() {
 282   if (SuspendibleThreadSet::should_yield()) {
 283     SuspendibleThreadSet::yield();
 284     return true;
 285   } else {
 286     return false;
 287   }
 288 }
 289 
 290 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_INLINE_HPP